Back
Robotics 35
☆ MultiGen: Using Multimodal Generation in Simulation to Learn Multimodal Policies in Real
Robots must integrate multiple sensory modalities to act effectively in the real world. Yet, learning such multimodal policies at scale remains challenging. Simulation offers a viable solution, but while vision has benefited from high-fidelity simulators, other modalities (e.g. sound) can be notoriously difficult to simulate. As a result, sim-to-real transfer has succeeded primarily in vision-based tasks, with multimodal transfer still largely unrealized. In this work, we tackle these challenges by introducing MultiGen, a framework that integrates large-scale generative models into traditional physics simulators, enabling multisensory simulation. We showcase our framework on the dynamic task of robot pouring, which inherently relies on multimodal feedback. By synthesizing realistic audio conditioned on simulation video, our method enables training on rich audiovisual trajectories -- without any real robot data. We demonstrate effective zero-shot transfer to real-world pouring with novel containers and liquids, highlighting the potential of generative modeling to both simulate hard-to-model modalities and close the multimodal sim-to-real gap.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
Trajectory Optimization for Differential Drive Mobile Manipulators via Topological Paths Search and Arc Length-Yaw Parameterization
We present an efficient hierarchical motion planning pipeline for differential drive mobile manipulators. Our approach first searches for multiple collisionfree and topologically distinct paths for the mobile base to extract the space in which optimal solutions may exist. Further sampling and optimization are then conducted in parallel to explore feasible whole-body trajectories. For trajectory optimization, we employ polynomial trajectories and arc length-yaw parameterization, enabling efficient handling of the nonholonomic dynamics while ensuring optimality.
comment: Technical Report
☆ DexVLG: Dexterous Vision-Language-Grasp Model at Scale
As large models gain traction, vision-language-action (VLA) systems are enabling robots to tackle increasingly complex tasks. However, limited by the difficulty of data collection, progress has mainly focused on controlling simple gripper end-effectors. There is little research on functional grasping with large models for human-like dexterous hands. In this paper, we introduce DexVLG, a large Vision-Language-Grasp model for Dexterous grasp pose prediction aligned with language instructions using single-view RGBD input. To accomplish this, we generate a dataset of 170 million dexterous grasp poses mapped to semantic parts across 174,000 objects in simulation, paired with detailed part-level captions. This large-scale dataset, named DexGraspNet 3.0, is used to train a VLM and flow-matching-based pose head capable of producing instruction-aligned grasp poses for tabletop objects. To assess DexVLG's performance, we create benchmarks in physics-based simulations and conduct real-world experiments. Extensive testing demonstrates DexVLG's strong zero-shot generalization capabilities-achieving over 76% zero-shot execution success rate and state-of-the-art part-grasp accuracy in simulation-and successful part-aligned grasps on physical objects in real-world scenarios.
☆ Optimizing Start Locations in Ergodic Search for Disaster Response
In disaster response scenarios, deploying robotic teams effectively is crucial for improving situational awareness and enhancing search and rescue operations. The use of robots in search and rescue has been studied but the question of where to start robot deployments has not been addressed. This work addresses the problem of optimally selecting starting locations for robots with heterogeneous capabilities by formulating a joint optimization problem. To determine start locations, this work adds a constraint to the ergodic optimization framework whose minimum assigns robots to start locations. This becomes a little more challenging when the robots are heterogeneous (equipped with different sensing and motion modalities) because not all robots start at the same location, and a more complex adaptation of the aforementioned constraint is applied. Our method assumes access to potential starting locations, which can be obtained from expert knowledge or aerial imagery. We experimentally evaluate the efficacy of our joint optimization approach by comparing it to baseline methods that use fixed starting locations for all robots. Our experimental results show significant gains in coverage performance, with average improvements of 35.98% on synthetic data and 31.91% on real-world data for homogeneous and heterogeneous teams, in terms of the ergodic metric.
☆ Integrating path-planning and control for robotic unicycles
This article focuses on integrating path-planning and control with specializing on the unique needs of robotic unicycles. A unicycle design is presented which is capable of accelerating/breaking and carrying out a variety of maneuvers. The proposed path-planning method segments the path into straight and curved path sections dedicated for accelerating/breaking and turning maneuvers, respectively. The curvature profiles of the curved sections are optimized while considering the control performance and the slipping limits of the wheel. The performance of the proposed integrated approach is demonstrated via numerical simulations.
☆ MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping IROS
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ ArtGS:3D Gaussian Splatting for Interactive Visual-Physical Modeling and Manipulation of Articulated Objects IROS 2025
Articulated object manipulation remains a critical challenge in robotics due to the complex kinematic constraints and the limited physical reasoning of existing methods. In this work, we introduce ArtGS, a novel framework that extends 3D Gaussian Splatting (3DGS) by integrating visual-physical modeling for articulated object understanding and interaction. ArtGS begins with multi-view RGB-D reconstruction, followed by reasoning with a vision-language model (VLM) to extract semantic and structural information, particularly the articulated bones. Through dynamic, differentiable 3DGS-based rendering, ArtGS optimizes the parameters of the articulated bones, ensuring physically consistent motion constraints and enhancing the manipulation policy. By leveraging dynamic Gaussian splatting, cross-embodiment adaptability, and closed-loop optimization, ArtGS establishes a new framework for efficient, scalable, and generalizable articulated object modeling and manipulation. Experiments conducted in both simulation and real-world environments demonstrate that ArtGS significantly outperforms previous methods in joint estimation accuracy and manipulation success rates across a variety of articulated objects. Additional images and videos are available on the project website: https://sites.google.com/view/artgs/home
comment: Accepted by IROS 2025
☆ Vibration of Soft, Twisted Beams for Under-Actuated Quadrupedal Locomotion
Under-actuated compliant robotic systems offer a promising approach to mitigating actuation and control challenges by harnessing pre-designed, embodied dynamic behaviors. This paper presents Flix-Walker, a novel, untethered, centimeter-scale quadrupedal robot inspired by compliant under-actuated mechanisms. Flix-Walker employs flexible, helix-shaped beams as legs, which are actuated by vibrations from just two motors to achieve three distinct mobility modes. We analyze the actuation parameters required to generate various locomotion modes through both simulation and prototype experiments. The effects of system and environmental variations on locomotion performance are examined, and we propose a generic metric for selecting control parameters that produce robust and functional motions. Experiments validate the effectiveness and robustness of these actuation parameters within a closed-loop control framework, demonstrating reliable trajectory-tracking and self-navigation capabilities.
comment: This manuscript is under revision for possible publication in the IEEE/ASME Transactions on Mechatronics. Copyright may be transferred to IEEE if the manuscript is accepted for publication, without further notice. Supplementary videos: https://youtu.be/T3d6FT3Rx-s, https://youtu.be/nPQrhKlN02E
☆ Safe and Socially Aware Multi-Robot Coordination in Multi-Human Social Care Settings
This research investigates strategies for multi-robot coordination in multi-human environments. It proposes a multi-objective learning-based coordination approach to addressing the problem of path planning, navigation, task scheduling, task allocation, and human-robot interaction in multi-human multi-robot (MHMR) settings.
comment: 3 pages, 1 figure. Accepted for poster presentation at the UK AI Research Symposium (UKAIR) 2025, themed "A Festival of Ideas", being held in Newcastle from 8th - 9th September, 2025. https://www.ukairs.ac.uk/
☆ HAC-LOCO: Learning Hierarchical Active Compliance Control for Quadruped Locomotion under Continuous External Disturbances
Despite recent remarkable achievements in quadruped control, it remains challenging to ensure robust and compliant locomotion in the presence of unforeseen external disturbances. Existing methods prioritize locomotion robustness over compliance, often leading to stiff, high-frequency motions, and energy inefficiency. This paper, therefore, presents a two-stage hierarchical learning framework that can learn to take active reactions to external force disturbances based on force estimation. In the first stage, a velocity-tracking policy is trained alongside an auto-encoder to distill historical proprioceptive features. A neural network-based estimator is learned through supervised learning, which estimates body velocity and external forces based on proprioceptive measurements. In the second stage, a compliance action module, inspired by impedance control, is learned based on the pre-trained encoder and policy. This module is employed to actively adjust velocity commands in response to external forces based on real-time force estimates. With the compliance action module, a quadruped robot can robustly handle minor disturbances while appropriately yielding to significant forces, thus striking a balance between robustness and compliance. Simulations and real-world experiments have demonstrated that our method has superior performance in terms of robustness, energy efficiency, and safety. Experiment comparison shows that our method outperforms the state-of-the-art RL-based locomotion controllers. Ablation studies are given to show the critical roles of the compliance action module.
comment: 8 pages, 7 Figures
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ MISC: Minimal Intervention Shared Control with Guaranteed Safety under Non-Convex Constraints
Shared control combines human intention with autonomous decision-making, from low-level safety overrides to high-level task guidance, enabling systems that adapt to users while ensuring safety and performance. This enhances task effectiveness and user experience across domains such as assistive robotics, teleoperation, and autonomous driving. However, existing shared control methods, based on e.g. Model Predictive Control, Control Barrier Functions, or learning-based control, struggle with feasibility, scalability, or safety guarantees, particularly since the user input is unpredictable. To address these challenges, we propose an assistive controller framework based on Constrained Optimal Control Problem that incorporates an offline-computed Control Invariant Set, enabling online computation of control actions that ensure feasibility, strict constraint satisfaction, and minimal override of user intent. Moreover, the framework can accommodate structured class of non-convex constraints, which are common in real-world scenarios. We validate the approach through a large-scale user study with 66 participants--one of the most extensive in shared control research--using a computer game environment to assess task load, trust, and perceived control, in addition to performance. The results show consistent improvements across all these aspects without compromising safety and user intent.
comment: This work has been submitted to the IEEE for possible publication
☆ A Late Collaborative Perception Framework for 3D Multi-Object and Multi-Source Association and Fusion
In autonomous driving, recent research has increasingly focused on collaborative perception based on deep learning to overcome the limitations of individual perception systems. Although these methods achieve high accuracy, they rely on high communication bandwidth and require unrestricted access to each agent's object detection model architecture and parameters. These constraints pose challenges real-world autonomous driving scenarios, where communication limitations and the need to safeguard proprietary models hinder practical implementation. To address this issue, we introduce a novel late collaborative framework for 3D multi-source and multi-object fusion, which operates solely on shared 3D bounding box attributes-category, size, position, and orientation-without necessitating direct access to detection models. Our framework establishes a new state-of-the-art in late fusion, achieving up to five times lower position error compared to existing methods. Additionally, it reduces scale error by a factor of 7.5 and orientation error by half, all while maintaining perfect 100% precision and recall when fusing detections from heterogeneous perception systems. These results highlight the effectiveness of our approach in addressing real-world collaborative perception challenges, setting a new benchmark for efficient and scalable multi-agent fusion.
☆ DigiT4TAF -- Bridging Physical and Digital Worlds for Future Transportation Systems
In the future, mobility will be strongly shaped by the increasing use of digitalization. Not only will individual road users be highly interconnected, but also the road and associated infrastructure. At that point, a Digital Twin becomes particularly appealing because, unlike a basic simulation, it offers a continuous, bilateral connection linking the real and virtual environments. This paper describes the digital reconstruction used to develop the Digital Twin of the Test Area Autonomous Driving-Baden-W\"urttemberg (TAF-BW), Germany. The TAF-BW offers a variety of different road sections, from high-traffic urban intersections and tunnels to multilane motorways. The test area is equipped with a comprehensive Vehicle-to-Everything (V2X) communication infrastructure and multiple intelligent intersections equipped with camera sensors to facilitate real-time traffic flow monitoring. The generation of authentic data as input for the Digital Twin was achieved by extracting object lists at the intersections. This process was facilitated by the combined utilization of camera images from the intelligent infrastructure and LiDAR sensors mounted on a test vehicle. Using a unified interface, recordings from real-world detections of traffic participants can be resimulated. Additionally, the simulation framework's design and the reconstruction process is discussed. The resulting framework is made publicly available for download and utilization at: https://digit4taf-bw.fzi.de The demonstration uses two case studies to illustrate the application of the digital twin and its interfaces: the analysis of traffic signal systems to optimize traffic flow and the simulation of security-related scenarios in the communications sector.
comment: Accepted at the IEEE IAVVC 2025 Conference
☆ Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms aim to compute a collision-free path, and many works focus on finding the optimal distance path. However, for some applications, a more suitable approach is to balance response time, safety of the paths, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of free configuration space. However, skeletonization algorithms are very resource-intensive, being primarily oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Auto-Encoder (DDAE) based on U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative process used by exact algorithms or the probabilistic sampling process. SkelUnet is trained and tested on a dataset consisting of 12,500 bi-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment for an Unmanned Aerial Vehicle (UAV) using 250 previously unseen maps, and assessed with various navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct a roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing times. These characteristics make this method particularly suitable for mobile service robots in structured environments.
☆ A Vehicle-in-the-Loop Simulator with AI-Powered Digital Twins for Testing Automated Driving Controllers
Simulators are useful tools for testing automated driving controllers. Vehicle-in-the-loop (ViL) tests and digital twins (DTs) are widely used simulation technologies to facilitate the smooth deployment of controllers to physical vehicles. However, conventional ViL tests rely on full-size vehicles, requiring large space and high expenses. Also, physical-model-based DT suffers from the reality gap caused by modeling imprecision. This paper develops a comprehensive and practical simulator for testing automated driving controllers enhanced by scaled physical cars and AI-powered DT models. The scaled cars allow for saving space and expenses of simulation tests. The AI-powered DT models ensure superior simulation fidelity. Moreover, the simulator integrates well with off-the-shelf software and control algorithms, making it easy to extend. We use a filtered control benchmark with formal safety guarantees to showcase the capability of the simulator in validating automated driving controllers. Experimental studies are performed to showcase the efficacy of the simulator, implying its great potential in validating control solutions for autonomous vehicles and intelligent traffic.
☆ Uncertainty-aware Reward Design Process
Designing effective reward functions is a cornerstone of reinforcement learning (RL), yet it remains a challenging process due to the inefficiencies and inconsistencies inherent in conventional reward engineering methodologies. Recent advances have explored leveraging large language models (LLMs) to automate reward function design. However, their suboptimal performance in numerical optimization often yields unsatisfactory reward quality, while the evolutionary search paradigm demonstrates inefficient utilization of simulation resources, resulting in prohibitively lengthy design cycles with disproportionate computational overhead. To address these challenges, we propose the Uncertainty-aware Reward Design Process (URDP), a novel framework that integrates large language models to streamline reward function design and evaluation in RL environments. URDP quantifies candidate reward function uncertainty based on self-consistency analysis, enabling simulation-free identification of ineffective reward components while discovering novel reward components. Furthermore, we introduce uncertainty-aware Bayesian optimization (UABO), which incorporates uncertainty estimation to significantly enhance hyperparameter configuration efficiency. Finally, we construct a bi-level optimization architecture by decoupling the reward component optimization and the hyperparameter tuning. URDP orchestrates synergistic collaboration between the reward logic reasoning of the LLMs and the numerical optimization strengths of the Bayesian Optimization. We conduct a comprehensive evaluation of URDP across 35 diverse tasks spanning three benchmark environments. Our experimental results demonstrate that URDP not only generates higher-quality reward functions but also achieves significant improvements in the efficiency of automated reward design compared to existing approaches.
comment: 34 pages, 9 figures
☆ CoInfra: A Large-Scale Cooperative Infrastructure Perception System and Dataset in Adverse Weather
We present CoInfra, a large-scale cooperative infrastructure perception system and dataset designed to advance robust multi-agent perception under real-world and adverse weather conditions. The CoInfra system includes 14 fully synchronized sensor nodes, each equipped with dual RGB cameras and a LiDAR, deployed across a shared region and operating continuously to capture all traffic participants in real-time. A robust, delay-aware synchronization protocol and a scalable system architecture that supports real-time data fusion, OTA management, and remote monitoring are provided in this paper. On the other hand, the dataset was collected in different weather scenarios, including sunny, rainy, freezing rain, and heavy snow and includes 195k LiDAR frames and 390k camera images from 8 infrastructure nodes that are globally time-aligned and spatially calibrated. Furthermore, comprehensive 3D bounding box annotations for five object classes (i.e., car, bus, truck, person, and bicycle) are provided in both global and individual node frames, along with high-definition maps for contextual understanding. Baseline experiments demonstrate the trade-offs between early and late fusion strategies, the significant benefits of HD map integration are discussed. By openly releasing our dataset, codebase, and system documentation at https://github.com/NingMingHao/CoInfra, we aim to enable reproducible research and drive progress in infrastructure-supported autonomous driving, particularly in challenging, real-world settings.
comment: This paper has been submitted to the IEEE Transactions on Robotics for review
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights at boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed excellent performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 cm (12.79 \%) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 \%). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 36 pages, 11 Figures
♻ ☆ Large Language Model-Driven Closed-Loop UAV Operation with Semantic Observations
Recent advances in large Language Models (LLMs) have revolutionized mobile robots, including unmanned aerial vehicles (UAVs), enabling their intelligent operation within Internet of Things (IoT) ecosystems. However, LLMs still face challenges from logical reasoning and complex decision-making, leading to concerns about the reliability of LLM-driven UAV operations in IoT applications. In this paper, we propose a LLM-driven closed-loop control framework that enables reliable UAV operations powered by effective feedback and refinement using two LLM modules, i.e., a Code Generator and an Evaluator. Our framework transforms numerical state observations from UAV operations into natural language trajectory descriptions to enhance the evaluator LLM's understanding of UAV dynamics for precise feedback generation. Our framework also enables a simulation-based refinement process, and hence eliminates the risks to physical UAVs caused by incorrect code execution during the refinement. Extensive experiments on UAV control tasks with different complexities are conducted. The experimental results show that our framework can achieve reliable UAV operations using LLMs, which significantly outperforms baseline approaches in terms of success rate and completeness with the increase of task complexity.
comment: 9 pages, 7 figures
♻ ☆ Observability Investigation for Rotational Calibration of (Global-pose aided) VIO under Straight Line Motion IROS 2025
Online extrinsic calibration is crucial for building "power-on-and-go" moving platforms, like robots and AR devices. However, blindly performing online calibration for unobservable parameter may lead to unpredictable results. In the literature, extensive studies have been conducted on the extrinsic calibration between IMU and camera, from theory to practice. It is well-known that the observability of extrinsic parameter can be guaranteed under sufficient motion excitation. Furthermore, the impacts of degenerate motions are also investigated. Despite these successful analyses, we identify an issue with respect to the existing observability conclusion. This paper focuses on the observability investigation for straight line motion, which is a common-seen and fundamental degenerate motion in applications. We analytically prove that pure translational straight line motion can lead to the unobservability of the rotational extrinsic parameter between IMU and camera (at least one degree of freedom). By correcting the existing observability conclusion, our novel theoretical finding disseminates more precise principle to the research community and provides explainable calibration guideline for practitioners. Our analysis is validated by rigorous theory and experiments.
comment: Accepted by IROS 2025
AC-DiT: Adaptive Coordination Diffusion Transformer for Mobile Manipulation
Recently, mobile manipulation has attracted increasing attention for enabling language-conditioned robotic control in household tasks. However, existing methods still face challenges in coordinating mobile base and manipulator, primarily due to two limitations. On the one hand, they fail to explicitly model the influence of the mobile base on manipulator control, which easily leads to error accumulation under high degrees of freedom. On the other hand, they treat the entire mobile manipulation process with the same visual observation modality (e.g., either all 2D or all 3D), overlooking the distinct multimodal perception requirements at different stages during mobile manipulation. To address this, we propose the Adaptive Coordination Diffusion Transformer (AC-DiT), which enhances mobile base and manipulator coordination for end-to-end mobile manipulation. First, since the motion of the mobile base directly influences the manipulator's actions, we introduce a mobility-to-body conditioning mechanism that guides the model to first extract base motion representations, which are then used as context prior for predicting whole-body actions. This enables whole-body control that accounts for the potential impact of the mobile base's motion. Second, to meet the perception requirements at different stages of mobile manipulation, we design a perception-aware multimodal conditioning strategy that dynamically adjusts the fusion weights between various 2D visual images and 3D point clouds, yielding visual features tailored to the current perceptual needs. This allows the model to, for example, adaptively rely more on 2D inputs when semantic information is crucial for action prediction, while placing greater emphasis on 3D geometric information when precise spatial understanding is required. We validate AC-DiT through extensive experiments on both simulated and real-world mobile manipulation tasks.
comment: Project website: https://ac-dit.github.io/
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of deformable objects and the location of their internal structures is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgery. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various regions of interest (ROIs) inside deformable objects. We compare LUDO to a popular baseline and show its superior ROI localization accuracy, training time, and memory requirements. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
comment: Published in IEEE Transactions on Robotics (T-RO)
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ TriVLA: A Triple-System-Based Unified Vision-Language-Action Model for General Robot Control
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods design a specific architecture like dual-system to leverage large-scale pretrained knowledge, they tend to capture static information, often neglecting the dynamic aspects vital for embodied tasks. To this end, we propose TriVLA, a unified Vision-Language-Action model with a triple-system architecture for general robot control. The vision-language module (System 2) interprets the environment through vision and language instructions. The dynamics perception module (System 3) inherently produces visual representations that encompass both current static information and predicted future dynamics, thereby providing valuable guidance for policy learning. TriVLA utilizes pre-trained VLM model and fine-tunes pre-trained video foundation model on robot datasets along with internet human manipulation data. The subsequent policy learning module (System 1) generates fluid motor actions in real time. Experimental evaluation demonstrates that TriVLA operates at approximately 36 Hz and surpasses state-of-the-art imitation learning baselines on standard simulation benchmarks as well as challenging real-world manipulation tasks.
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ GRIP: A General Robotic Incremental Potential Contact Simulation Dataset for Unified Deformable-Rigid Coupled Grasping
Grasping is fundamental to robotic manipulation, and recent advances in large-scale grasping datasets have provided essential training data and evaluation benchmarks, accelerating the development of learning-based methods for robust object grasping. However, most existing datasets exclude deformable bodies due to the lack of scalable, robust simulation pipelines, limiting the development of generalizable models for compliant grippers and soft manipulands. To address these challenges, we present GRIP, a General Robotic Incremental Potential contact simulation dataset for universal grasping. GRIP leverages an optimized Incremental Potential Contact (IPC)-based simulator for multi-environment data generation, achieving up to 48x speedup while ensuring efficient, intersection- and inversion-free simulations for compliant grippers and deformable objects. Our fully automated pipeline generates and evaluates diverse grasp interactions across 1,200 objects and 100,000 grasp poses, incorporating both soft and rigid grippers. The GRIP dataset enables applications such as neural grasp generation and stress field prediction.
comment: We release GRIP to advance research in robotic manipulation, soft-gripper control, and physics-driven simulation at: https://bell0o.github.io/GRIP/
♻ ☆ Aerial Vision-and-Language Navigation via Semantic-Topo-Metric Representation Guided LLM Reasoning
Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. It remains challenging due to the complex spatial relationships in outdoor aerial scenes. In this paper, we propose an end-to-end zero-shot framework for aerial VLN tasks, where the large language model (LLM) is introduced as our agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning ability of LLMs. This is achieved by extracting and projecting instruction-related semantic masks of landmarks into a top-down map that contains the location information of surrounding landmarks. Further, this map is transformed into a matrix representation with distance metrics as the text prompt to the LLM, for action prediction according to the instruction. Experiments conducted in real and simulation environments have successfully proved the effectiveness and robustness of our method, achieving 15.9% and 12.5% improvements (absolute) in Oracle Success Rate (OSR) on AerialVLN-S dataset.
♻ ☆ Data Authorisation and Validation in Autonomous Vehicles: A Critical Review
Autonomous systems are becoming increasingly prevalent in new vehicles. Due to their environmental friendliness and their remarkable capability to significantly enhance road safety, these vehicles have gained widespread recognition and acceptance in recent years. Automated Driving Systems (ADS) are intricate systems that incorporate a multitude of sensors and actuators to interact with the environment autonomously, pervasively, and interactively. Consequently, numerous studies are currently underway to keep abreast of these rapid developments. This paper aims to provide a comprehensive overview of recent advancements in ADS technologies. It provides in-depth insights into the detailed information about how data and information flow in the distributed system, including autonomous vehicles and other various supporting services and entities. Data validation and system requirements are emphasised, such as security, privacy, scalability, and data ownership, in accordance with regulatory standards. Finally, several current research directions in the AVs field will be discussed.
comment: 16 pages, 9 figures. This is the Author Version
♻ ☆ ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation SIGGRAPH
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ Bridging Deep Reinforcement Learning and Motion Planning for Model-Free Navigation in Cluttered Environments
Deep Reinforcement Learning (DRL) has emerged as a powerful model-free paradigm for learning optimal policies. However, in navigation tasks with cluttered environments, DRL methods often suffer from insufficient exploration, especially under sparse rewards or complex dynamics with system disturbances. To address this challenge, we bridge general graph-based motion planning with DRL, enabling agents to explore cluttered spaces more effectively and achieve desired navigation performance. Specifically, we design a dense reward function grounded in a graph structure that spans the entire state space. This graph provides rich guidance, steering the agent toward optimal strategies. We validate our approach in challenging environments, demonstrating substantial improvements in exploration efficiency and task success rates.
comment: 16 pages
♻ ☆ High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
This work presents an overview of the technical details behind a high performance reinforcement learning policy deployment with the Spot RL Researcher Development Kit for low level motor access on Boston Dynamics Spot. This represents the first public demonstration of an end to end end reinforcement learning policy deployed on Spot hardware with training code publicly available through Nvidia IsaacLab and deployment code available through Boston Dynamics. We utilize Wasserstein Distance and Maximum Mean Discrepancy to quantify the distributional dissimilarity of data collected on hardware and in simulation to measure our sim2real gap. We use these measures as a scoring function for the Covariance Matrix Adaptation Evolution Strategy to optimize simulated parameters that are unknown or difficult to measure from Spot. Our procedure for modeling and training produces high quality reinforcement learning policies capable of multiple gaits, including a flight phase. We deploy policies capable of over 5.2ms locomotion, more than triple Spots default controller maximum speed, robustness to slippery surfaces, disturbance rejection, and overall agility previously unseen on Spot. We detail our method and release our code to support future work on Spot with the low level API.
♻ ☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
Vision 150
☆ MultiGen: Using Multimodal Generation in Simulation to Learn Multimodal Policies in Real
Robots must integrate multiple sensory modalities to act effectively in the real world. Yet, learning such multimodal policies at scale remains challenging. Simulation offers a viable solution, but while vision has benefited from high-fidelity simulators, other modalities (e.g. sound) can be notoriously difficult to simulate. As a result, sim-to-real transfer has succeeded primarily in vision-based tasks, with multimodal transfer still largely unrealized. In this work, we tackle these challenges by introducing MultiGen, a framework that integrates large-scale generative models into traditional physics simulators, enabling multisensory simulation. We showcase our framework on the dynamic task of robot pouring, which inherently relies on multimodal feedback. By synthesizing realistic audio conditioned on simulation video, our method enables training on rich audiovisual trajectories -- without any real robot data. We demonstrate effective zero-shot transfer to real-world pouring with novel containers and liquids, highlighting the potential of generative modeling to both simulate hard-to-model modalities and close the multimodal sim-to-real gap.
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
comment: Project Page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c&feature=youtu.be
☆ RefTok: Reference-Based Tokenization for Video Generation
Effectively handling temporal redundancy remains a key challenge in learning video models. Prevailing approaches often treat each set of frames independently, failing to effectively capture the temporal dependencies and redundancies inherent in videos. To address this limitation, we introduce RefTok, a novel reference-based tokenization method capable of capturing complex temporal dynamics and contextual information. Our method encodes and decodes sets of frames conditioned on an unquantized reference frame. When decoded, RefTok preserves the continuity of motion and the appearance of objects across frames. For example, RefTok retains facial details despite head motion, reconstructs text correctly, preserves small patterns, and maintains the legibility of handwriting from the context. Across 4 video datasets (K600, UCF-101, BAIR Robot Pushing, and DAVIS), RefTok significantly outperforms current state-of-the-art tokenizers (Cosmos and MAGVIT) and improves all evaluated metrics (PSNR, SSIM, LPIPS) by an average of 36.7% at the same or higher compression ratios. When a video generation model is trained using RefTok's latents on the BAIR Robot Pushing task, the generations not only outperform MAGVIT-B but the larger MAGVIT-L, which has 4x more parameters, across all generation metrics by an average of 27.9%.
☆ Less is Enough: Training-Free Video Diffusion Acceleration via Runtime-Adaptive Caching
Video generation models have demonstrated remarkable performance, yet their broader adoption remains constrained by slow inference speeds and substantial computational costs, primarily due to the iterative nature of the denoising process. Addressing this bottleneck is essential for democratizing advanced video synthesis technologies and enabling their integration into real-world applications. This work proposes EasyCache, a training-free acceleration framework for video diffusion models. EasyCache introduces a lightweight, runtime-adaptive caching mechanism that dynamically reuses previously computed transformation vectors, avoiding redundant computations during inference. Unlike prior approaches, EasyCache requires no offline profiling, pre-computation, or extensive parameter tuning. We conduct comprehensive studies on various large-scale video generation models, including OpenSora, Wan2.1, and HunyuanVideo. Our method achieves leading acceleration performance, reducing inference time by up to 2.1-3.3$\times$ compared to the original baselines while maintaining high visual fidelity with a significant up to 36% PSNR improvement compared to the previous SOTA method. This improvement makes our EasyCache a efficient and highly accessible solution for high-quality video generation in both research and practical applications. The code is available at https://github.com/H-EmbodVis/EasyCache.
comment: The code is made available at https://github.com/H-EmbodVis/EasyCache. Project page: https://h-embodvis.github.io/EasyCache/
☆ Bootstrapping Grounded Chain-of-Thought in Multimodal LLMs for Data-Efficient Model Adaptation ICCV2025
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in interpreting images using natural language. However, without using large-scale datasets for retraining, these models are difficult to adapt to specialized vision tasks, e.g., chart understanding. This problem is caused by a mismatch between pre-training and downstream datasets: pre-training datasets primarily concentrate on scenes and objects but contain limited information about specialized, non-object images, such as charts and tables. In this paper, we share an interesting finding that training an MLLM with Chain-of-Thought (CoT) reasoning data can facilitate model adaptation in specialized vision tasks, especially under data-limited regimes. However, we identify a critical issue within CoT data distilled from pre-trained MLLMs, i.e., the data often contains multiple factual errors in the reasoning steps. To address the problem, we propose Grounded Chain-of-Thought (GCoT), a simple bootstrapping-based approach that aims to inject grounding information (i.e., bounding boxes) into CoT data, essentially making the reasoning steps more faithful to input images. We evaluate our approach on five specialized vision tasks, which cover a variety of visual formats including charts, tables, receipts, and reports. The results demonstrate that under data-limited regimes our approach significantly improves upon fine-tuning and distillation.
comment: Accepted by ICCV2025
☆ AnyI2V: Animating Any Conditional Image with Motion Control ICCV 2025
Recent advancements in video generation, particularly in diffusion models, have driven notable progress in text-to-video (T2V) and image-to-video (I2V) synthesis. However, challenges remain in effectively integrating dynamic motion signals and flexible spatial constraints. Existing T2V methods typically rely on text prompts, which inherently lack precise control over the spatial layout of generated content. In contrast, I2V methods are limited by their dependence on real images, which restricts the editability of the synthesized content. Although some methods incorporate ControlNet to introduce image-based conditioning, they often lack explicit motion control and require computationally expensive training. To address these limitations, we propose AnyI2V, a training-free framework that animates any conditional images with user-defined motion trajectories. AnyI2V supports a broader range of modalities as the conditional image, including data types such as meshes and point clouds that are not supported by ControlNet, enabling more flexible and versatile video generation. Additionally, it supports mixed conditional inputs and enables style transfer and editing via LoRA and text prompts. Extensive experiments demonstrate that the proposed AnyI2V achieves superior performance and provides a new perspective in spatial- and motion-controlled video generation. Code is available at https://henghuiding.com/AnyI2V/.
comment: ICCV 2025, Project Page: https://henghuiding.com/AnyI2V/
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ USAD: An Unsupervised Data Augmentation Spatio-Temporal Attention Diffusion Network
The primary objective of human activity recognition (HAR) is to infer ongoing human actions from sensor data, a task that finds broad applications in health monitoring, safety protection, and sports analysis. Despite proliferating research, HAR still faces key challenges, including the scarcity of labeled samples for rare activities, insufficient extraction of high-level features, and suboptimal model performance on lightweight devices. To address these issues, this paper proposes a comprehensive optimization approach centered on multi-attention interaction mechanisms. First, an unsupervised, statistics-guided diffusion model is employed to perform data augmentation, thereby alleviating the problems of labeled data scarcity and severe class imbalance. Second, a multi-branch spatio-temporal interaction network is designed, which captures multi-scale features of sequential data through parallel residual branches with 3*3, 5*5, and 7*7 convolutional kernels. Simultaneously, temporal attention mechanisms are incorporated to identify critical time points, while spatial attention enhances inter-sensor interactions. A cross-branch feature fusion unit is further introduced to improve the overall feature representation capability. Finally, an adaptive multi-loss function fusion strategy is integrated, allowing for dynamic adjustment of loss weights and overall model optimization. Experimental results on three public datasets, WISDM, PAMAP2, and OPPORTUNITY, demonstrate that the proposed unsupervised data augmentation spatio-temporal attention diffusion network (USAD) achieves accuracies of 98.84%, 93.81%, and 80.92% respectively, significantly outperforming existing approaches. Furthermore, practical deployment on embedded devices verifies the efficiency and feasibility of the proposed method.
☆ Confidence-driven Gradient Modulation for Multimodal Human Activity Recognition: A Dynamic Contrastive Dual-Path Learning Approach
Sensor-based Human Activity Recognition (HAR) is a core technology that enables intelligent systems to perceive and interact with their environment. However, multimodal HAR systems still encounter key challenges, such as difficulties in cross-modal feature alignment and imbalanced modality contributions. To address these issues, we propose a novel framework called the Dynamic Contrastive Dual-Path Network (DCDP-HAR). The framework comprises three key components. First, a dual-path feature extraction architecture is employed, where ResNet and DenseNet branches collaboratively process multimodal sensor data. Second, a multi-stage contrastive learning mechanism is introduced to achieve progressive alignment from local perception to semantic abstraction. Third, we present a confidence-driven gradient modulation strategy that dynamically monitors and adjusts the learning intensity of each modality branch during backpropagation, effectively alleviating modality competition. In addition, a momentum-based gradient accumulation strategy is adopted to enhance training stability. We conduct ablation studies to validate the effectiveness of each component and perform extensive comparative experiments on four public benchmark datasets.
☆ LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.
comment: Project page: https://liuff19.github.io/LangScene-X
☆ HyperGaussians: High-Dimensional Gaussian Splatting for High-Fidelity Animatable Face Avatars
We introduce HyperGaussians, a novel extension of 3D Gaussian Splatting for high-quality animatable face avatars. Creating such detailed face avatars from videos is a challenging problem and has numerous applications in augmented and virtual reality. While tremendous successes have been achieved for static faces, animatable avatars from monocular videos still fall in the uncanny valley. The de facto standard, 3D Gaussian Splatting (3DGS), represents a face through a collection of 3D Gaussian primitives. 3DGS excels at rendering static faces, but the state-of-the-art still struggles with nonlinear deformations, complex lighting effects, and fine details. While most related works focus on predicting better Gaussian parameters from expression codes, we rethink the 3D Gaussian representation itself and how to make it more expressive. Our insights lead to a novel extension of 3D Gaussians to high-dimensional multivariate Gaussians, dubbed 'HyperGaussians'. The higher dimensionality increases expressivity through conditioning on a learnable local embedding. However, splatting HyperGaussians is computationally expensive because it requires inverting a high-dimensional covariance matrix. We solve this by reparameterizing the covariance matrix, dubbed the 'inverse covariance trick'. This trick boosts the efficiency so that HyperGaussians can be seamlessly integrated into existing models. To demonstrate this, we plug in HyperGaussians into the state-of-the-art in fast monocular face avatars: FlashAvatar. Our evaluation on 19 subjects from 4 face datasets shows that HyperGaussians outperform 3DGS numerically and visually, particularly for high-frequency details like eyeglass frames, teeth, complex facial movements, and specular reflections.
comment: Project page: https://gserifi.github.io/HyperGaussians
☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
☆ RichControl: Structure- and Appearance-Rich Training-Free Spatial Control for Text-to-Image Generation
Text-to-image (T2I) diffusion models have shown remarkable success in generating high-quality images from text prompts. Recent efforts extend these models to incorporate conditional images (e.g., depth or pose maps) for fine-grained spatial control. Among them, feature injection methods have emerged as a training-free alternative to traditional fine-tuning approaches. However, they often suffer from structural misalignment, condition leakage, and visual artifacts, especially when the condition image diverges significantly from natural RGB distributions. By revisiting existing methods, we identify a core limitation: the synchronous injection of condition features fails to account for the trade-off between domain alignment and structural preservation during denoising. Inspired by this observation, we propose a flexible feature injection framework that decouples the injection timestep from the denoising process. At its core is a structure-rich injection module, which enables the model to better adapt to the evolving interplay between alignment and structure preservation throughout the diffusion steps, resulting in more faithful structural generation. In addition, we introduce appearance-rich prompting and a restart refinement strategy to further enhance appearance control and visual quality. Together, these designs enable training-free generation that is both structure-rich and appearance-rich. Extensive experiments show that our approach achieves state-of-the-art performance across diverse zero-shot conditioning scenarios.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ From Pixels to Damage Severity: Estimating Earthquake Impacts Using Semantic Segmentation of Social Media Images
In the aftermath of earthquakes, social media images have become a crucial resource for disaster reconnaissance, providing immediate insights into the extent of damage. Traditional approaches to damage severity assessment in post-earthquake social media images often rely on classification methods, which are inherently subjective and incapable of accounting for the varying extents of damage within an image. Addressing these limitations, this study proposes a novel approach by framing damage severity assessment as a semantic segmentation problem, aiming for a more objective analysis of damage in earthquake-affected areas. The methodology involves the construction of a segmented damage severity dataset, categorizing damage into three degrees: undamaged structures, damaged structures, and debris. Utilizing this dataset, the study fine-tunes a SegFormer model to generate damage severity segmentations for post-earthquake social media images. Furthermore, a new damage severity scoring system is introduced, quantifying damage by considering the varying degrees of damage across different areas within images, adjusted for depth estimation. The application of this approach allows for the quantification of damage severity in social media images in a more objective and comprehensive manner. By providing a nuanced understanding of damage, this study enhances the ability to offer precise guidance to disaster reconnaissance teams, facilitating more effective and targeted response efforts in the aftermath of earthquakes.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Partial Weakly-Supervised Oriented Object Detection
The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
comment: 10 pages, 5 figures, 4 tables, source code: https://github.com/VisionXLab/PWOOD
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ DexVLG: Dexterous Vision-Language-Grasp Model at Scale
As large models gain traction, vision-language-action (VLA) systems are enabling robots to tackle increasingly complex tasks. However, limited by the difficulty of data collection, progress has mainly focused on controlling simple gripper end-effectors. There is little research on functional grasping with large models for human-like dexterous hands. In this paper, we introduce DexVLG, a large Vision-Language-Grasp model for Dexterous grasp pose prediction aligned with language instructions using single-view RGBD input. To accomplish this, we generate a dataset of 170 million dexterous grasp poses mapped to semantic parts across 174,000 objects in simulation, paired with detailed part-level captions. This large-scale dataset, named DexGraspNet 3.0, is used to train a VLM and flow-matching-based pose head capable of producing instruction-aligned grasp poses for tabletop objects. To assess DexVLG's performance, we create benchmarks in physics-based simulations and conduct real-world experiments. Extensive testing demonstrates DexVLG's strong zero-shot generalization capabilities-achieving over 76% zero-shot execution success rate and state-of-the-art part-grasp accuracy in simulation-and successful part-aligned grasps on physical objects in real-world scenarios.
☆ Prompt learning with bounding box constraints for medical image segmentation
Pixel-wise annotations are notoriously labourious and costly to obtain in the medical domain. To mitigate this burden, weakly supervised approaches based on bounding box annotations-much easier to acquire-offer a practical alternative. Vision foundation models have recently shown noteworthy segmentation performance when provided with prompts such as points or bounding boxes. Prompt learning exploits these models by adapting them to downstream tasks and automating segmentation, thereby reducing user intervention. However, existing prompt learning approaches depend on fully annotated segmentation masks. This paper proposes a novel framework that combines the representational power of foundation models with the annotation efficiency of weakly supervised segmentation. More specifically, our approach automates prompt generation for foundation models using only bounding box annotations. Our proposed optimization scheme integrates multiple constraints derived from box annotations with pseudo-labels generated by the prompted foundation model. Extensive experiments across multimodal datasets reveal that our weakly supervised method achieves an average Dice score of 84.90% in a limited data setting, outperforming existing fully-supervised and weakly-supervised approaches. The code is available at https://github.com/Minimel/box-prompt-learning-VFM.git
comment: Accepted to IEEE Transactions on Biomedical Engineering (TMBE), 14 pages
☆ FairHuman: Boosting Hand and Face Quality in Human Image Generation with Minimum Potential Delay Fairness in Diffusion Models ICCV 2025
Image generation has achieved remarkable progress with the development of large-scale text-to-image models, especially diffusion-based models. However, generating human images with plausible details, such as faces or hands, remains challenging due to insufficient supervision of local regions during training. To address this issue, we propose FairHuman, a multi-objective fine-tuning approach designed to enhance both global and local generation quality fairly. Specifically, we first construct three learning objectives: a global objective derived from the default diffusion objective function and two local objectives for hands and faces based on pre-annotated positional priors. Subsequently, we derive the optimal parameter updating strategy under the guidance of the Minimum Potential Delay (MPD) criterion, thereby attaining fairness-ware optimization for this multi-objective problem. Based on this, our proposed method can achieve significant improvements in generating challenging local details while maintaining overall quality. Extensive experiments showcase the effectiveness of our method in improving the performance of human image generation under different scenarios.
comment: ICCV 2025
☆ UniMC: Taming Diffusion Transformer for Unified Keypoint-Guided Multi-Class Image Generation
Although significant advancements have been achieved in the progress of keypoint-guided Text-to-Image diffusion models, existing mainstream keypoint-guided models encounter challenges in controlling the generation of more general non-rigid objects beyond humans (e.g., animals). Moreover, it is difficult to generate multiple overlapping humans and animals based on keypoint controls solely. These challenges arise from two main aspects: the inherent limitations of existing controllable methods and the lack of suitable datasets. First, we design a DiT-based framework, named UniMC, to explore unifying controllable multi-class image generation. UniMC integrates instance- and keypoint-level conditions into compact tokens, incorporating attributes such as class, bounding box, and keypoint coordinates. This approach overcomes the limitations of previous methods that struggled to distinguish instances and classes due to their reliance on skeleton images as conditions. Second, we propose HAIG-2.9M, a large-scale, high-quality, and diverse dataset designed for keypoint-guided human and animal image generation. HAIG-2.9M includes 786K images with 2.9M instances. This dataset features extensive annotations such as keypoints, bounding boxes, and fine-grained captions for both humans and animals, along with rigorous manual inspection to ensure annotation accuracy. Extensive experiments demonstrate the high quality of HAIG-2.9M and the effectiveness of UniMC, particularly in heavy occlusions and multi-class scenarios.
☆ SIU3R: Simultaneous Scene Understanding and 3D Reconstruction Beyond Feature Alignment
Simultaneous understanding and 3D reconstruction plays an important role in developing end-to-end embodied intelligent systems. To achieve this, recent approaches resort to 2D-to-3D feature alignment paradigm, which leads to limited 3D understanding capability and potential semantic information loss. In light of this, we propose SIU3R, the first alignment-free framework for generalizable simultaneous understanding and 3D reconstruction from unposed images. Specifically, SIU3R bridges reconstruction and understanding tasks via pixel-aligned 3D representation, and unifies multiple understanding tasks into a set of unified learnable queries, enabling native 3D understanding without the need of alignment with 2D models. To encourage collaboration between the two tasks with shared representation, we further conduct in-depth analyses of their mutual benefits, and propose two lightweight modules to facilitate their interaction. Extensive experiments demonstrate that our method achieves state-of-the-art performance not only on the individual tasks of 3D reconstruction and understanding, but also on the task of simultaneous understanding and 3D reconstruction, highlighting the advantages of our alignment-free framework and the effectiveness of the mutual benefit designs.
☆ CanonSwap: High-Fidelity and Consistent Video Face Swapping via Canonical Space Modulation ICCV
Video face swapping aims to address two primary challenges: effectively transferring the source identity to the target video and accurately preserving the dynamic attributes of the target face, such as head poses, facial expressions, lip-sync, \etc. Existing methods mainly focus on achieving high-quality identity transfer but often fall short in maintaining the dynamic attributes of the target face, leading to inconsistent results. We attribute this issue to the inherent coupling of facial appearance and motion in videos. To address this, we propose CanonSwap, a novel video face-swapping framework that decouples motion information from appearance information. Specifically, CanonSwap first eliminates motion-related information, enabling identity modification within a unified canonical space. Subsequently, the swapped feature is reintegrated into the original video space, ensuring the preservation of the target face's dynamic attributes. To further achieve precise identity transfer with minimal artifacts and enhanced realism, we design a Partial Identity Modulation module that adaptively integrates source identity features using a spatial mask to restrict modifications to facial regions. Additionally, we introduce several fine-grained synchronization metrics to comprehensively evaluate the performance of video face swapping methods. Extensive experiments demonstrate that our method significantly outperforms existing approaches in terms of visual quality, temporal consistency, and identity preservation. Our project page are publicly available at https://luoxyhappy.github.io/CanonSwap/.
comment: ICCV Accepted
☆ APT: Adaptive Personalized Training for Diffusion Models with Limited Data CVPR 2025
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
comment: CVPR 2025 camera ready. Project page: https://lgcnsai.github.io/apt
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
☆ Real-time Image-based Lighting of Glints
Image-based lighting is a widely used technique to reproduce shading under real-world lighting conditions, especially in real-time rendering applications. A particularly challenging scenario involves materials exhibiting a sparkling or glittering appearance, caused by discrete microfacets scattered across their surface. In this paper, we propose an efficient approximation for image-based lighting of glints, enabling fully dynamic material properties and environment maps. Our novel approach is grounded in real-time glint rendering under area light illumination and employs standard environment map filtering techniques. Crucially, our environment map filtering process is sufficiently fast to be executed on a per-frame basis. Our method assumes that the environment map is partitioned into few homogeneous regions of constant radiance. By filtering the corresponding indicator functions with the normal distribution function, we obtain the probabilities for individual microfacets to reflect light from each region. During shading, these probabilities are utilized to hierarchically sample a multinomial distribution, facilitated by our novel dual-gated Gaussian approximation of binomial distributions. We validate that our real-time approximation is close to ground-truth renderings for a range of material properties and lighting conditions, and demonstrate robust and stable performance, with little overhead over rendering glints from a single directional light. Compared to rendering smooth materials without glints, our approach requires twice as much memory to store the prefiltered environment map.
☆ MISCGrasp: Leveraging Multiple Integrated Scales and Contrastive Learning for Enhanced Volumetric Grasping IROS
Robotic grasping faces challenges in adapting to objects with varying shapes and sizes. In this paper, we introduce MISCGrasp, a volumetric grasping method that integrates multi-scale feature extraction with contrastive feature enhancement for self-adaptive grasping. We propose a query-based interaction between high-level and low-level features through the Insight Transformer, while the Empower Transformer selectively attends to the highest-level features, which synergistically strikes a balance between focusing on fine geometric details and overall geometric structures. Furthermore, MISCGrasp utilizes multi-scale contrastive learning to exploit similarities among positive grasp samples, ensuring consistency across multi-scale features. Extensive experiments in both simulated and real-world environments demonstrate that MISCGrasp outperforms baseline and variant methods in tabletop decluttering tasks. More details are available at https://miscgrasp.github.io/.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ MEGANet-W: A Wavelet-Driven Edge-Guided Attention Framework for Weak Boundary Polyp Detection
Colorectal polyp segmentation is critical for early detection of colorectal cancer, yet weak and low contrast boundaries significantly limit automated accuracy. Existing deep models either blur fine edge details or rely on handcrafted filters that perform poorly under variable imaging conditions. We propose MEGANet-W, a Wavelet Driven Edge Guided Attention Network that injects directional, parameter free Haar wavelet edge maps into each decoder stage to recalibrate semantic features. Our two main contributions are: (1) a two-level Haar wavelet head for multi orientation edge extraction; and (2) Wavelet Edge Guided Attention (WEGA) modules that fuse wavelet cues with reverse and input branches. On five public polyp datasets, MEGANetW consistently outperforms existing methods, improving mIoU by up to 2.3% and mDice by 1.2%, while introducing no additional learnable parameters.
comment: 7 pages, 3 figures
☆ AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models ICCV 2025
The rapid development of AI-generated content (AIGC) technology has led to the misuse of highly realistic AI-generated images (AIGI) in spreading misinformation, posing a threat to public information security. Although existing AIGI detection techniques are generally effective, they face two issues: 1) a lack of human-verifiable explanations, and 2) a lack of generalization in the latest generation technology. To address these issues, we introduce a large-scale and comprehensive dataset, Holmes-Set, which includes the Holmes-SFTSet, an instruction-tuning dataset with explanations on whether images are AI-generated, and the Holmes-DPOSet, a human-aligned preference dataset. Our work introduces an efficient data annotation method called the Multi-Expert Jury, enhancing data generation through structured MLLM explanations and quality control via cross-model evaluation, expert defect filtering, and human preference modification. In addition, we propose Holmes Pipeline, a meticulously designed three-stage training framework comprising visual expert pre-training, supervised fine-tuning, and direct preference optimization. Holmes Pipeline adapts multimodal large language models (MLLMs) for AIGI detection while generating human-verifiable and human-aligned explanations, ultimately yielding our model AIGI-Holmes. During the inference stage, we introduce a collaborative decoding strategy that integrates the model perception of the visual expert with the semantic reasoning of MLLMs, further enhancing the generalization capabilities. Extensive experiments on three benchmarks validate the effectiveness of our AIGI-Holmes.
comment: Accepted to ICCV 2025
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
comment: Submitted to Acta Astronautica
☆ AuroraLong: Bringing RNNs Back to Efficient Open-Ended Video Understanding ICCV 2025
The challenge of long video understanding lies in its high computational complexity and prohibitive memory cost, since the memory and computation required by transformer-based LLMs scale quadratically with input sequence length. We propose AuroraLong to address this challenge by replacing the LLM component in MLLMs with a linear RNN language model that handles input sequence of arbitrary length with constant-size hidden states. To further increase throughput and efficiency, we combine visual token merge with linear RNN models by reordering the visual tokens by their sizes in ascending order. Despite having only 2B parameters and being trained exclusively on public data, AuroraLong achieves performance comparable to Transformer-based models of similar size trained on private datasets across multiple video benchmarks. This demonstrates the potential of efficient, linear RNNs to democratize long video understanding by lowering its computational entry barrier. To our best knowledge, we are the first to use a linear RNN based LLM backbone in a LLaVA-like model for open-ended video understanding.
comment: Accepted to ICCV 2025
☆ Structure-aware Semantic Discrepancy and Consistency for 3D Medical Image Self-supervised Learning ICCV25
3D medical image self-supervised learning (mSSL) holds great promise for medical analysis. Effectively supporting broader applications requires considering anatomical structure variations in location, scale, and morphology, which are crucial for capturing meaningful distinctions. However, previous mSSL methods partition images with fixed-size patches, often ignoring the structure variations. In this work, we introduce a novel perspective on 3D medical images with the goal of learning structure-aware representations. We assume that patches within the same structure share the same semantics (semantic consistency) while those from different structures exhibit distinct semantics (semantic discrepancy). Based on this assumption, we propose an mSSL framework named $S^2DC$, achieving Structure-aware Semantic Discrepancy and Consistency in two steps. First, $S^2DC$ enforces distinct representations for different patches to increase semantic discrepancy by leveraging an optimal transport strategy. Second, $S^2DC$ advances semantic consistency at the structural level based on neighborhood similarity distribution. By bridging patch-level and structure-level representations, $S^2DC$ achieves structure-aware representations. Thoroughly evaluated across 10 datasets, 4 tasks, and 3 modalities, our proposed method consistently outperforms the state-of-the-art methods in mSSL.
comment: Accepted by ICCV25
☆ Parametric shape models for vessels learned from segmentations via differentiable voxelization
Vessels are complex structures in the body that have been studied extensively in multiple representations. While voxelization is the most common of them, meshes and parametric models are critical in various applications due to their desirable properties. However, these representations are typically extracted through segmentations and used disjointly from each other. We propose a framework that joins the three representations under differentiable transformations. By leveraging differentiable voxelization, we automatically extract a parametric shape model of the vessels through shape-to-segmentation fitting, where we learn shape parameters from segmentations without the explicit need for ground-truth shape parameters. The vessel is parametrized as centerlines and radii using cubic B-splines, ensuring smoothness and continuity by construction. Meshes are differentiably extracted from the learned shape parameters, resulting in high-fidelity meshes that can be manipulated post-fit. Our method can accurately capture the geometry of complex vessels, as demonstrated by the volumetric fits in experiments on aortas, aneurysms, and brain vessels.
comment: 15 pages, 6 figures
☆ Reconstructing Close Human Interaction with Appearance and Proxemics Reasoning
Due to visual ambiguities and inter-person occlusions, existing human pose estimation methods cannot recover plausible close interactions from in-the-wild videos. Even state-of-the-art large foundation models~(\eg, SAM) cannot accurately distinguish human semantics in such challenging scenarios. In this work, we find that human appearance can provide a straightforward cue to address these obstacles. Based on this observation, we propose a dual-branch optimization framework to reconstruct accurate interactive motions with plausible body contacts constrained by human appearances, social proxemics, and physical laws. Specifically, we first train a diffusion model to learn the human proxemic behavior and pose prior knowledge. The trained network and two optimizable tensors are then incorporated into a dual-branch optimization framework to reconstruct human motions and appearances. Several constraints based on 3D Gaussians, 2D keypoints, and mesh penetrations are also designed to assist the optimization. With the proxemics prior and diverse constraints, our method is capable of estimating accurate interactions from in-the-wild videos captured in complex environments. We further build a dataset with pseudo ground-truth interaction annotations, which may promote future research on pose estimation and human behavior understanding. Experimental results on several benchmarks demonstrate that our method outperforms existing approaches. The code and data are available at https://www.buzhenhuang.com/works/CloseApp.html.
☆ MoGe-2: Accurate Monocular Geometry with Metric Scale and Sharp Details
We propose MoGe-2, an advanced open-domain geometry estimation model that recovers a metric scale 3D point map of a scene from a single image. Our method builds upon the recent monocular geometry estimation approach, MoGe, which predicts affine-invariant point maps with unknown scales. We explore effective strategies to extend MoGe for metric geometry prediction without compromising the relative geometry accuracy provided by the affine-invariant point representation. Additionally, we discover that noise and errors in real data diminish fine-grained detail in the predicted geometry. We address this by developing a unified data refinement approach that filters and completes real data from different sources using sharp synthetic labels, significantly enhancing the granularity of the reconstructed geometry while maintaining the overall accuracy. We train our model on a large corpus of mixed datasets and conducted comprehensive evaluations, demonstrating its superior performance in achieving accurate relative geometry, precise metric scale, and fine-grained detail recovery -- capabilities that no previous methods have simultaneously achieved.
comment: Project page: https://wangrc.site/MoGe2Page/
☆ IMASHRIMP: Automatic White Shrimp (Penaeus vannamei) Biometrical Analysis from Laboratory Images Using Computer Vision and Deep Learning
This paper introduces IMASHRIMP, an adapted system for the automated morphological analysis of white shrimp (Penaeus vannamei}, aimed at optimizing genetic selection tasks in aquaculture. Existing deep learning and computer vision techniques were modified to address the specific challenges of shrimp morphology analysis from RGBD images. IMASHRIMP incorporates two discrimination modules, based on a modified ResNet-50 architecture, to classify images by the point of view and determine rostrum integrity. It is proposed a "two-factor authentication (human and IA)" system, it reduces human error in view classification from 0.97% to 0% and in rostrum detection from 12.46% to 3.64%. Additionally, a pose estimation module was adapted from VitPose to predict 23 key points on the shrimp's skeleton, with separate networks for lateral and dorsal views. A morphological regression module, using a Support Vector Machine (SVM) model, was integrated to convert pixel measurements to centimeter units. Experimental results show that the system effectively reduces human error, achieving a mean average precision (mAP) of 97.94% for pose estimation and a pixel-to-centimeter conversion error of 0.07 (+/- 0.1) cm. IMASHRIMP demonstrates the potential to automate and accelerate shrimp morphological analysis, enhancing the efficiency of genetic selection and contributing to more sustainable aquaculture practices.The code are available at https://github.com/AbiamRemacheGonzalez/ImaShrimp-public
comment: 14 pages, 7 figures
Detecting Multiple Diseases in Multiple Crops Using Deep Learning
India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
☆ Automatic Labelling for Low-Light Pedestrian Detection
Pedestrian detection in RGB images is a key task in pedestrian safety, as the most common sensor in autonomous vehicles and advanced driver assistance systems is the RGB camera. A challenge in RGB pedestrian detection, that does not appear to have large public datasets, is low-light conditions. As a solution, in this research, we propose an automated infrared-RGB labeling pipeline. The proposed pipeline consists of 1) Infrared detection, where a fine-tuned model for infrared pedestrian detection is used 2) Label transfer process from the infrared detections to their RGB counterparts 3) Training object detection models using the generated labels for low-light RGB pedestrian detection. The research was performed using the KAIST dataset. For the evaluation, object detection models were trained on the generated autolabels and ground truth labels. When compared on a previously unseen image sequence, the results showed that the models trained on generated labels outperformed the ones trained on ground-truth labels in 6 out of 9 cases for the mAP@50 and mAP@50-95 metrics. The source code for this research is available at https://github.com/BouzoulasDimitrios/IR-RGB-Automated-LowLight-Pedestrian-Labeling
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy MICCAI 2025
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.
comment: Accepted at MICCAI 2025
☆ MedFormer: Hierarchical Medical Vision Transformer with Content-Aware Dual Sparse Selection Attention
Medical image recognition serves as a key way to aid in clinical diagnosis, enabling more accurate and timely identification of diseases and abnormalities. Vision transformer-based approaches have proven effective in handling various medical recognition tasks. However, these methods encounter two primary challenges. First, they are often task-specific and architecture-tailored, limiting their general applicability. Second, they usually either adopt full attention to model long-range dependencies, resulting in high computational costs, or rely on handcrafted sparse attention, potentially leading to suboptimal performance. To tackle these issues, we present MedFormer, an efficient medical vision transformer with two key ideas. First, it employs a pyramid scaling structure as a versatile backbone for various medical image recognition tasks, including image classification and dense prediction tasks such as semantic segmentation and lesion detection. This structure facilitates hierarchical feature representation while reducing the computation load of feature maps, highly beneficial for boosting performance. Second, it introduces a novel Dual Sparse Selection Attention (DSSA) with content awareness to improve computational efficiency and robustness against noise while maintaining high performance. As the core building technique of MedFormer, DSSA is explicitly designed to attend to the most relevant content. In addition, a detailed theoretical analysis has been conducted, demonstrating that MedFormer has superior generality and efficiency in comparison to existing medical vision transformers. Extensive experiments on a variety of imaging modality datasets consistently show that MedFormer is highly effective in enhancing performance across all three above-mentioned medical image recognition tasks. The code is available at https://github.com/XiaZunhui/MedFormer.
comment: 13 pages, 9 figures, 9 tables
☆ CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
☆ Mesh Silksong: Auto-Regressive Mesh Generation as Weaving Silk
We introduce Mesh Silksong, a compact and efficient mesh representation tailored to generate the polygon mesh in an auto-regressive manner akin to silk weaving. Existing mesh tokenization methods always produce token sequences with repeated vertex tokens, wasting the network capability. Therefore, our approach tokenizes mesh vertices by accessing each mesh vertice only once, reduces the token sequence's redundancy by 50\%, and achieves a state-of-the-art compression rate of approximately 22\%. Furthermore, Mesh Silksong produces polygon meshes with superior geometric properties, including manifold topology, watertight detection, and consistent face normals, which are critical for practical applications. Experimental results demonstrate the effectiveness of our approach, showcasing not only intricate mesh generation but also significantly improved geometric integrity.
comment: 9 pages main text, 14 pages appendix, 23 figures
☆ Weakly-supervised Contrastive Learning with Quantity Prompts for Moving Infrared Small Target Detection
Different from general object detection, moving infrared small target detection faces huge challenges due to tiny target size and weak background contrast.Currently, most existing methods are fully-supervised, heavily relying on a large number of manual target-wise annotations. However, manually annotating video sequences is often expensive and time-consuming, especially for low-quality infrared frame images. Inspired by general object detection, non-fully supervised strategies ($e.g.$, weakly supervised) are believed to be potential in reducing annotation requirements. To break through traditional fully-supervised frameworks, as the first exploration work, this paper proposes a new weakly-supervised contrastive learning (WeCoL) scheme, only requires simple target quantity prompts during model training.Specifically, in our scheme, based on the pretrained segment anything model (SAM), a potential target mining strategy is designed to integrate target activation maps and multi-frame energy accumulation.Besides, contrastive learning is adopted to further improve the reliability of pseudo-labels, by calculating the similarity between positive and negative samples in feature subspace.Moreover, we propose a long-short term motion-aware learning scheme to simultaneously model the local motion patterns and global motion trajectory of small targets.The extensive experiments on two public datasets (DAUB and ITSDT-15K) verify that our weakly-supervised scheme could often outperform early fully-supervised methods. Even, its performance could reach over 90\% of state-of-the-art (SOTA) fully-supervised ones.
☆ IGDNet: Zero-Shot Robust Underexposed Image Enhancement via Illumination-Guided and Denoising
Current methods for restoring underexposed images typically rely on supervised learning with paired underexposed and well-illuminated images. However, collecting such datasets is often impractical in real-world scenarios. Moreover, these methods can lead to over-enhancement, distorting well-illuminated regions. To address these issues, we propose IGDNet, a Zero-Shot enhancement method that operates solely on a single test image, without requiring guiding priors or training data. IGDNet exhibits strong generalization ability and effectively suppresses noise while restoring illumination. The framework comprises a decomposition module and a denoising module. The former separates the image into illumination and reflection components via a dense connection network, while the latter enhances non-uniformly illuminated regions using an illumination-guided pixel adaptive correction method. A noise pair is generated through downsampling and refined iteratively to produce the final result. Extensive experiments on four public datasets demonstrate that IGDNet significantly improves visual quality under complex lighting conditions. Quantitative results on metrics like PSNR (20.41dB) and SSIM (0.860dB) show that it outperforms 14 state-of-the-art unsupervised methods. The code will be released soon.
comment: Submitted to IEEE Transactions on Artificial Intelligence (TAI) on Oct.31, 2024
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ F^2TTA: Free-Form Test-Time Adaptation on Cross-Domain Medical Image Classification via Image-Level Disentangled Prompt Tuning
Test-Time Adaptation (TTA) has emerged as a promising solution for adapting a source model to unseen medical sites using unlabeled test data, due to the high cost of data annotation. Existing TTA methods consider scenarios where data from one or multiple domains arrives in complete domain units. However, in clinical practice, data usually arrives in domain fragments of arbitrary lengths and in random arrival orders, due to resource constraints and patient variability. This paper investigates a practical Free-Form Test-Time Adaptation (F$^{2}$TTA) task, where a source model is adapted to such free-form domain fragments, with shifts occurring between fragments unpredictably. In this setting, these shifts could distort the adaptation process. To address this problem, we propose a novel Image-level Disentangled Prompt Tuning (I-DiPT) framework. I-DiPT employs an image-invariant prompt to explore domain-invariant representations for mitigating the unpredictable shifts, and an image-specific prompt to adapt the source model to each test image from the incoming fragments. The prompts may suffer from insufficient knowledge representation since only one image is available for training. To overcome this limitation, we first introduce Uncertainty-oriented Masking (UoM), which encourages the prompts to extract sufficient information from the incoming image via masked consistency learning driven by the uncertainty of the source model representations. Then, we further propose a Parallel Graph Distillation (PGD) method that reuses knowledge from historical image-specific and image-invariant prompts through parallel graph networks. Experiments on breast cancer and glaucoma classification demonstrate the superiority of our method over existing TTA approaches in F$^{2}$TTA. Code is available at https://github.com/mar-cry/F2TTA.
comment: This paper has been submitted to relevant journals
☆ AvatarMakeup: Realistic Makeup Transfer for 3D Animatable Head Avatars
Similar to facial beautification in real life, 3D virtual avatars require personalized customization to enhance their visual appeal, yet this area remains insufficiently explored. Although current 3D Gaussian editing methods can be adapted for facial makeup purposes, these methods fail to meet the fundamental requirements for achieving realistic makeup effects: 1) ensuring a consistent appearance during drivable expressions, 2) preserving the identity throughout the makeup process, and 3) enabling precise control over fine details. To address these, we propose a specialized 3D makeup method named AvatarMakeup, leveraging a pretrained diffusion model to transfer makeup patterns from a single reference photo of any individual. We adopt a coarse-to-fine idea to first maintain the consistent appearance and identity, and then to refine the details. In particular, the diffusion model is employed to generate makeup images as supervision. Due to the uncertainties in diffusion process, the generated images are inconsistent across different viewpoints and expressions. Therefore, we propose a Coherent Duplication method to coarsely apply makeup to the target while ensuring consistency across dynamic and multiview effects. Coherent Duplication optimizes a global UV map by recoding the averaged facial attributes among the generated makeup images. By querying the global UV map, it easily synthesizes coherent makeup guidance from arbitrary views and expressions to optimize the target avatar. Given the coarse makeup avatar, we further enhance the makeup by incorporating a Refinement Module into the diffusion model to achieve high makeup quality. Experiments demonstrate that AvatarMakeup achieves state-of-the-art makeup transfer quality and consistency throughout animation.
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ Privacy-preserving Preselection for Face Identification Based on Packing
Face identification systems operating in the ciphertext domain have garnered significant attention due to increasing privacy concerns and the potential recovery of original facial data. However, as the size of ciphertext template libraries grows, the face retrieval process becomes progressively more time-intensive. To address this challenge, we propose a novel and efficient scheme for face retrieval in the ciphertext domain, termed Privacy-Preserving Preselection for Face Identification Based on Packing (PFIP). PFIP incorporates an innovative preselection mechanism to reduce computational overhead and a packing module to enhance the flexibility of biometric systems during the enrollment stage. Extensive experiments conducted on the LFW and CASIA datasets demonstrate that PFIP preserves the accuracy of the original face recognition model, achieving a 100% hit rate while retrieving 1,000 ciphertext face templates within 300 milliseconds. Compared to existing approaches, PFIP achieves a nearly 50x improvement in retrieval efficiency.
comment: This paper has been accepted for publication in SecureComm 2025
☆ 3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices
Echocardiography (echo) plays an indispensable role in the clinical practice of heart diseases. However, ultrasound imaging typically provides only two-dimensional (2D) cross-sectional images from a few specific views, making it challenging to interpret and inaccurate for estimation of clinical parameters like the volume of left ventricle (LV). 3D ultrasound imaging provides an alternative for 3D quantification, but is still limited by the low spatial and temporal resolution and the highly demanding manual delineation. To address these challenges, we propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices that are frequently used in clinical practice. Specifically, a novel 3D reconstruction pipeline is designed, which alternatively optimizes between the 3D pose estimation of these 2D slices and the 3D integration of these slices using an implicit neural network, progressively transforming a prior 3D heart shape into a personalized 3D heart model. We validate the method with two datasets. When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation over the bi-plane method (error in percent: 1.98\% VS. 20.24\%). In addition, the whole reconstruction framework makes even an important breakthrough that can estimate RV volume from 2D echo slices (with an error of 5.75\% ). This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound and is of great potential in clinical practice.
comment: 10 pages
☆ A Novel Tuning Method for Real-time Multiple-Object Tracking Utilizing Thermal Sensor with Complexity Motion Pattern
Multi-Object Tracking in thermal images is essential for surveillance systems, particularly in challenging environments where RGB cameras struggle due to low visibility or poor lighting conditions. Thermal sensors enhance recognition tasks by capturing infrared signatures, but a major challenge is their low-level feature representation, which makes it difficult to accurately detect and track pedestrians. To address this, the paper introduces a novel tuning method for pedestrian tracking, specifically designed to handle the complex motion patterns in thermal imagery. The proposed framework optimizes two-stages, ensuring that each stage is tuned with the most suitable hyperparameters to maximize tracking performance. By fine-tuning hyperparameters for real-time tracking, the method achieves high accuracy without relying on complex reidentification or motion models. Extensive experiments on PBVS Thermal MOT dataset demonstrate that the approach is highly effective across various thermal camera conditions, making it a robust solution for real-world surveillance applications.
☆ PosDiffAE: Position-aware Diffusion Auto-encoder For High-Resolution Brain Tissue Classification Incorporating Artifact Restoration
Denoising diffusion models produce high-fidelity image samples by capturing the image distribution in a progressive manner while initializing with a simple distribution and compounding the distribution complexity. Although these models have unlocked new applicabilities, the sampling mechanism of diffusion does not offer means to extract image-specific semantic representation, which is inherently provided by auto-encoders. The encoding component of auto-encoders enables mapping between a specific image and its latent space, thereby offering explicit means of enforcing structures in the latent space. By integrating an encoder with the diffusion model, we establish an auto-encoding formulation, which learns image-specific representations and offers means to organize the latent space. In this work, First, we devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images. We enforce the representations to regress positional information of the patches from high-resolution images. This creates a conducive latent space for differentiating tissue types of the brain. Second, we devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference. Third, through representational guidance and leveraging the inference time steerable noising and denoising capability of diffusion, we devise an unsupervised JPEG artifact restoration technique.
comment: Published in IEEE Journal of Biomedical and Health Informatics (Early Access Available) https://ieeexplore.ieee.org/document/10989734
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
comment: accepted by iccv 2025. code is will be available at https://github.com/rama0126/PwTF-DVD
☆ Continual Multiple Instance Learning with Enhanced Localization for Histopathological Whole Slide Image Analysis ICCV 2025
Multiple instance learning (MIL) significantly reduced annotation costs via bag-level weak labels for large-scale images, such as histopathological whole slide images (WSIs). However, its adaptability to continual tasks with minimal forgetting has been rarely explored, especially on instance classification for localization. Weakly incremental learning for semantic segmentation has been studied for continual localization, but it focused on natural images, leveraging global relationships among hundreds of small patches (e.g., $16 \times 16$) using pre-trained models. This approach seems infeasible for MIL localization due to enormous amounts ($\sim 10^5$) of large patches (e.g., $256 \times 256$) and no available global relationships such as cancer cells. To address these challenges, we propose Continual Multiple Instance Learning with Enhanced Localization (CoMEL), an MIL framework for both localization and adaptability with minimal forgetting. CoMEL consists of (1) Grouped Double Attention Transformer (GDAT) for efficient instance encoding, (2) Bag Prototypes-based Pseudo-Labeling (BPPL) for reliable instance pseudo-labeling, and (3) Orthogonal Weighted Low-Rank Adaptation (OWLoRA) to mitigate forgetting in both bag and instance classification. Extensive experiments on three public WSI datasets demonstrate superior performance of CoMEL, outperforming the prior arts by up to $11.00\%$ in bag-level accuracy and up to $23.4\%$ in localization accuracy under the continual MIL setup.
comment: Accepted at ICCV 2025
☆ PLOT: Pseudo-Labeling via Video Object Tracking for Scalable Monocular 3D Object Detection
Monocular 3D object detection (M3OD) has long faced challenges due to data scarcity caused by high annotation costs and inherent 2D-to-3D ambiguity. Although various weakly supervised methods and pseudo-labeling methods have been proposed to address these issues, they are mostly limited by domain-specific learning or rely solely on shape information from a single observation. In this paper, we propose a novel pseudo-labeling framework that uses only video data and is more robust to occlusion, without requiring a multi-view setup, additional sensors, camera poses, or domain-specific training. Specifically, we explore a technique for aggregating the pseudo-LiDARs of both static and dynamic objects across temporally adjacent frames using object point tracking, enabling 3D attribute extraction in scenarios where 3D data acquisition is infeasible. Extensive experiments demonstrate that our method ensures reliable accuracy and strong scalability, making it a practical and effective solution for M3OD.
comment: 18 pages, 16 figures
☆ UVLM: Benchmarking Video Language Model for Underwater World Understanding
Recently, the remarkable success of large language models (LLMs) has achieved a profound impact on the field of artificial intelligence. Numerous advanced works based on LLMs have been proposed and applied in various scenarios. Among them, video language models (VidLMs) are particularly widely used. However, existing works primarily focus on terrestrial scenarios, overlooking the highly demanding application needs of underwater observation. To overcome this gap, we introduce UVLM, an under water observation benchmark which is build through a collaborative approach combining human expertise and AI models. To ensure data quality, we have conducted in-depth considerations from multiple perspectives. First, to address the unique challenges of underwater environments, we selected videos that represent typical underwater challenges including light variations, water turbidity, and diverse viewing angles to construct the dataset. Second, to ensure data diversity, the dataset covers a wide range of frame rates, resolutions, 419 classes of marine animals, and various static plants and terrains. Next, for task diversity, we adopted a structured design where observation targets are categorized into two major classes: biological and environmental. Each category includes content observation and change/action observation, totaling 20 distinct task types. Finally, we designed several challenging evaluation metrics to enable quantitative comparison and analysis of different methods. Experiments on two representative VidLMs demonstrate that fine-tuning VidLMs on UVLM significantly improves underwater world understanding while also showing potential for slight improvements on existing in-air VidLM benchmarks, such as VideoMME and Perception text. The dataset and prompt engineering will be released publicly.
comment: 13 pages, 4 figures, 3 tables
☆ A robust and versatile deep learning model for prediction of the arterial input function in dynamic small animal $\left[^{18}\text{F}\right]$FDG PET imaging
Dynamic positron emission tomography (PET) and kinetic modeling are pivotal in advancing tracer development research in small animal studies. Accurate kinetic modeling requires precise input function estimation, traditionally achieved via arterial blood sampling. However, arterial cannulation in small animals like mice, involves intricate, time-consuming, and terminal procedures, precluding longitudinal studies. This work proposes a non-invasive, fully convolutional deep learning-based approach (FC-DLIF) to predict input functions directly from PET imaging, potentially eliminating the need for blood sampling in dynamic small-animal PET. The proposed FC-DLIF model includes a spatial feature extractor acting on the volumetric time frames of the PET sequence, extracting spatial features. These are subsequently further processed in a temporal feature extractor that predicts the arterial input function. The proposed approach is trained and evaluated using images and arterial blood curves from [$^{18}$F]FDG data using cross validation. Further, the model applicability is evaluated on imaging data and arterial blood curves collected using two additional radiotracers ([$^{18}$F]FDOPA, and [$^{68}$Ga]PSMA). The model was further evaluated on data truncated and shifted in time, to simulate shorter, and shifted, PET scans. The proposed FC-DLIF model reliably predicts the arterial input function with respect to mean squared error and correlation. Furthermore, the FC-DLIF model is able to predict the arterial input function even from truncated and shifted samples. The model fails to predict the AIF from samples collected using different radiotracers, as these are not represented in the training data. Our deep learning-based input function offers a non-invasive and reliable alternative to arterial blood sampling, proving robust and flexible to temporal shifts and different scan durations.
comment: 22 pages, 12 figures
☆ LocalDyGS: Multi-view Global Dynamic Scene Modeling via Adaptive Local Implicit Feature Decoupling ICCV 2025
Due to the complex and highly dynamic motions in the real world, synthesizing dynamic videos from multi-view inputs for arbitrary viewpoints is challenging. Previous works based on neural radiance field or 3D Gaussian splatting are limited to modeling fine-scale motion, greatly restricting their application. In this paper, we introduce LocalDyGS, which consists of two parts to adapt our method to both large-scale and fine-scale motion scenes: 1) We decompose a complex dynamic scene into streamlined local spaces defined by seeds, enabling global modeling by capturing motion within each local space. 2) We decouple static and dynamic features for local space motion modeling. A static feature shared across time steps captures static information, while a dynamic residual field provides time-specific features. These are combined and decoded to generate Temporal Gaussians, modeling motion within each local space. As a result, we propose a novel dynamic scene reconstruction framework to model highly dynamic real-world scenes more realistically. Our method not only demonstrates competitive performance on various fine-scale datasets compared to state-of-the-art (SOTA) methods, but also represents the first attempt to model larger and more complex highly dynamic scenes. Project page: https://wujh2001.github.io/LocalDyGS/.
comment: Accepted by ICCV 2025
☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
☆ Lightweight Shrimp Disease Detection Research Based on YOLOv8n
Shrimp diseases are one of the primary causes of economic losses in shrimp aquaculture. To prevent disease transmission and enhance intelligent detection efficiency in shrimp farming, this paper proposes a lightweight network architecture based on YOLOv8n. First, by designing the RLDD detection head and C2f-EMCM module, the model reduces computational complexity while maintaining detection accuracy, improving computational efficiency. Subsequently, an improved SegNext_Attention self-attention mechanism is introduced to further enhance the model's feature extraction capability, enabling more precise identification of disease characteristics. Extensive experiments, including ablation studies and comparative evaluations, are conducted on a self-constructed shrimp disease dataset, with generalization tests extended to the URPC2020 dataset. Results demonstrate that the proposed model achieves a 32.3% reduction in parameters compared to the original YOLOv8n, with a mAP@0.5 of 92.7% (3% improvement over YOLOv8n). Additionally, the model outperforms other lightweight YOLO-series models in mAP@0.5, parameter count, and model size. Generalization experiments on the URPC2020 dataset further validate the model's robustness, showing a 4.1% increase in mAP@0.5 compared to YOLOv8n. The proposed method achieves an optimal balance between accuracy and efficiency, providing reliable technical support for intelligent disease detection in shrimp aquaculture.
comment: in Chinese language
☆ Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process. Initially, an object detection network identifies regions of interest (ROIs) proximal to the landmark locations. Subsequently, a modified U-Net with deep supervision is exploited to accurately locate the bifurcations. This two-step method reduces various problems, such as the missed detections caused by two landmarks being close to each other and having similar visual characteristics, especially when processing the complete MRA Time-of-Flight (TOF). Additionally, it accounts for the anatomical variability of the CoW, which affects the number of detectable landmarks per scan. We assessed the effectiveness of our approach using two cerebral MRA datasets: our In-House dataset which had varying numbers of landmarks, and a public dataset with standardized landmark configuration. Our experimental results demonstrate that our method achieves the highest level of performance on a bifurcation detection task.
☆ Neural Network-based Study for Rice Leaf Disease Recognition and Classification: A Comparative Analysis Between Feature-based Model and Direct Imaging Model
Rice leaf diseases significantly reduce productivity and cause economic losses, highlighting the need for early detection to enable effective management and improve yields. This study proposes Artificial Neural Network (ANN)-based image-processing techniques for timely classification and recognition of rice diseases. Despite the prevailing approach of directly inputting images of rice leaves into ANNs, there is a noticeable absence of thorough comparative analysis between the Feature Analysis Detection Model (FADM) and Direct Image-Centric Detection Model (DICDM), specifically when it comes to evaluating the effectiveness of Feature Extraction Algorithms (FEAs). Hence, this research presents initial experiments on the Feature Analysis Detection Model, utilizing various image Feature Extraction Algorithms, Dimensionality Reduction Algorithms (DRAs), Feature Selection Algorithms (FSAs), and Extreme Learning Machine (ELM). The experiments are carried out on datasets encompassing bacterial leaf blight, brown spot, leaf blast, leaf scald, Sheath blight rot, and healthy leaf, utilizing 10-fold Cross-Validation method. A Direct Image-Centric Detection Model is established without the utilization of any FEA, and the evaluation of classification performance relies on different metrics. Ultimately, an exhaustive contrast is performed between the achievements of the Feature Analysis Detection Model and Direct Image-Centric Detection Model in classifying rice leaf diseases. The results reveal that the highest performance is attained using the Feature Analysis Detection Model. The adoption of the proposed Feature Analysis Detection Model for detecting rice leaf diseases holds excellent potential for improving crop health, minimizing yield losses, and enhancing overall productivity and sustainability of rice farming.
☆ Heeding the Inner Voice: Aligning ControlNet Training via Intermediate Features Feedback
Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).
comment: code available at https://github.com/ControlGenAI/InnerControl
☆ Are Synthetic Videos Useful? A Benchmark for Retrieval-Centric Evaluation of Synthetic Videos
Text-to-video (T2V) synthesis has advanced rapidly, yet current evaluation metrics primarily capture visual quality and temporal consistency, offering limited insight into how synthetic videos perform in downstream tasks such as text-to-video retrieval (TVR). In this work, we introduce SynTVA, a new dataset and benchmark designed to evaluate the utility of synthetic videos for building retrieval models. Based on 800 diverse user queries derived from MSRVTT training split, we generate synthetic videos using state-of-the-art T2V models and annotate each video-text pair along four key semantic alignment dimensions: Object \& Scene, Action, Attribute, and Prompt Fidelity. Our evaluation framework correlates general video quality assessment (VQA) metrics with these alignment scores, and examines their predictive power for downstream TVR performance. To explore pathways of scaling up, we further develop an Auto-Evaluator to estimate alignment quality from existing metrics. Beyond benchmarking, our results show that SynTVA is a valuable asset for dataset augmentation, enabling the selection of high-utility synthetic samples that measurably improve TVR outcomes. Project page and dataset can be found at https://jasoncodemaker.github.io/SynTVA/.
comment: 7 pages, 10 figures
☆ MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
comment: 10 pages, 6 figures
☆ Perception Activator: An intuitive and portable framework for brain cognitive exploration
Recent advances in brain-vision decoding have driven significant progress, reconstructing with high fidelity perceived visual stimuli from neural activity, e.g., functional magnetic resonance imaging (fMRI), in the human visual cortex. Most existing methods decode the brain signal using a two-level strategy, i.e., pixel-level and semantic-level. However, these methods rely heavily on low-level pixel alignment yet lack sufficient and fine-grained semantic alignment, resulting in obvious reconstruction distortions of multiple semantic objects. To better understand the brain's visual perception patterns and how current decoding models process semantic objects, we have developed an experimental framework that uses fMRI representations as intervention conditions. By injecting these representations into multi-scale image features via cross-attention, we compare both downstream performance and intermediate feature changes on object detection and instance segmentation tasks with and without fMRI information. Our results demonstrate that incorporating fMRI signals enhances the accuracy of downstream detection and segmentation, confirming that fMRI contains rich multi-object semantic cues and coarse spatial localization information-elements that current models have yet to fully exploit or integrate.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ LMPNet for Weakly-supervised Keypoint Discovery
In this work, we explore the task of semantic object keypoint discovery weakly-supervised by only category labels. This is achieved by transforming discriminatively-trained intermediate layer filters into keypoint detectors. We begin by identifying three preferred characteristics of keypoint detectors: (i) spatially sparse activations, (ii) consistency and (iii) diversity. Instead of relying on hand-crafted loss terms, a novel computationally-efficient leaky max pooling (LMP) layer is proposed to explicitly encourage final conv-layer filters to learn "non-repeatable local patterns" that are well aligned with object keypoints. Informed by visualizations, a simple yet effective selection strategy is proposed to ensure consistent filter activations and attention mask-out is then applied to force the network to distribute its attention to the whole object instead of just the most discriminative region. For the final keypoint prediction, a learnable clustering layer is proposed to group keypoint proposals into keypoint predictions. The final model, named LMPNet, is highly interpretable in that it directly manipulates network filters to detect predefined concepts. Our experiments show that LMPNet can (i) automatically discover semantic keypoints that are robust to object pose and (ii) achieves strong prediction accuracy comparable to a supervised pose estimation model.
☆ Flow-CDNet: A Novel Network for Detecting Both Slow and Fast Changes in Bitemporal Images
Change detection typically involves identifying regions with changes between bitemporal images taken at the same location. Besides significant changes, slow changes in bitemporal images are also important in real-life scenarios. For instance, weak changes often serve as precursors to major hazards in scenarios like slopes, dams, and tailings ponds. Therefore, designing a change detection network that simultaneously detects slow and fast changes presents a novel challenge. In this paper, to address this challenge, we propose a change detection network named Flow-CDNet, consisting of two branches: optical flow branch and binary change detection branch. The first branch utilizes a pyramid structure to extract displacement changes at multiple scales. The second one combines a ResNet-based network with the optical flow branch's output to generate fast change outputs. Subsequently, to supervise and evaluate this new change detection framework, a self-built change detection dataset Flow-Change, a loss function combining binary tversky loss and L2 norm loss, along with a new evaluation metric called FEPE are designed. Quantitative experiments conducted on Flow-Change dataset demonstrated that our approach outperforms the existing methods. Furthermore, ablation experiments verified that the two branches can promote each other to enhance the detection performance.
comment: 18 pages, 8 figures
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ DreamComposer++: Empowering Diffusion Models with Multi-View Conditions for 3D Content Generation CVPR 2024
Recent advancements in leveraging pre-trained 2D diffusion models achieve the generation of high-quality novel views from a single in-the-wild image. However, existing works face challenges in producing controllable novel views due to the lack of information from multiple views. In this paper, we present DreamComposer++, a flexible and scalable framework designed to improve current view-aware diffusion models by incorporating multi-view conditions. Specifically, DreamComposer++ utilizes a view-aware 3D lifting module to extract 3D representations of an object from various views. These representations are then aggregated and rendered into the latent features of target view through the multi-view feature fusion module. Finally, the obtained features of target view are integrated into pre-trained image or video diffusion models for novel view synthesis. Experimental results demonstrate that DreamComposer++ seamlessly integrates with cutting-edge view-aware diffusion models and enhances their abilities to generate controllable novel views from multi-view conditions. This advancement facilitates controllable 3D object reconstruction and enables a wide range of applications.
comment: Accepted by TPAMI, extension of CVPR 2024 paper DreamComposer
☆ ViRefSAM: Visual Reference-Guided Segment Anything Model for Remote Sensing Segmentation
The Segment Anything Model (SAM), with its prompt-driven paradigm, exhibits strong generalization in generic segmentation tasks. However, applying SAM to remote sensing (RS) images still faces two major challenges. First, manually constructing precise prompts for each image (e.g., points or boxes) is labor-intensive and inefficient, especially in RS scenarios with dense small objects or spatially fragmented distributions. Second, SAM lacks domain adaptability, as it is pre-trained primarily on natural images and struggles to capture RS-specific semantics and spatial characteristics, especially when segmenting novel or unseen classes. To address these issues, inspired by few-shot learning, we propose ViRefSAM, a novel framework that guides SAM utilizing only a few annotated reference images that contain class-specific objects. Without requiring manual prompts, ViRefSAM enables automatic segmentation of class-consistent objects across RS images. Specifically, ViRefSAM introduces two key components while keeping SAM's original architecture intact: (1) a Visual Contextual Prompt Encoder that extracts class-specific semantic clues from reference images and generates object-aware prompts via contextual interaction with target images; and (2) a Dynamic Target Alignment Adapter, integrated into SAM's image encoder, which mitigates the domain gap by injecting class-specific semantics into target image features, enabling SAM to dynamically focus on task-relevant regions. Extensive experiments on three few-shot segmentation benchmarks, including iSAID-5$^i$, LoveDA-2$^i$, and COCO-20$^i$, demonstrate that ViRefSAM enables accurate and automatic segmentation of unseen classes by leveraging only a few reference images and consistently outperforms existing few-shot segmentation methods across diverse datasets.
☆ CineMyoPS: Segmenting Myocardial Pathologies from Cine Cardiac MR
Myocardial infarction (MI) is a leading cause of death worldwide. Late gadolinium enhancement (LGE) and T2-weighted cardiac magnetic resonance (CMR) imaging can respectively identify scarring and edema areas, both of which are essential for MI risk stratification and prognosis assessment. Although combining complementary information from multi-sequence CMR is useful, acquiring these sequences can be time-consuming and prohibitive, e.g., due to the administration of contrast agents. Cine CMR is a rapid and contrast-free imaging technique that can visualize both motion and structural abnormalities of the myocardium induced by acute MI. Therefore, we present a new end-to-end deep neural network, referred to as CineMyoPS, to segment myocardial pathologies, \ie scars and edema, solely from cine CMR images. Specifically, CineMyoPS extracts both motion and anatomy features associated with MI. Given the interdependence between these features, we design a consistency loss (resembling the co-training strategy) to facilitate their joint learning. Furthermore, we propose a time-series aggregation strategy to integrate MI-related features across the cardiac cycle, thereby enhancing segmentation accuracy for myocardial pathologies. Experimental results on a multi-center dataset demonstrate that CineMyoPS achieves promising performance in myocardial pathology segmentation, motion estimation, and anatomy segmentation.
☆ Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ LaCo: Efficient Layer-wise Compression of Visual Tokens for Multimodal Large Language Models
Existing visual token compression methods for Multimodal Large Language Models (MLLMs) predominantly operate as post-encoder modules, limiting their potential for efficiency gains. To address this limitation, we propose LaCo (Layer-wise Visual Token Compression), a novel framework that enables effective token compression within the intermediate layers of the vision encoder. LaCo introduces two core components: 1) a layer-wise pixel-shuffle mechanism that systematically merges adjacent tokens through space-to-channel transformations, and 2) a residual learning architecture with non-parametric shortcuts that preserves critical visual information during compression. Extensive experiments indicate that our LaCo outperforms all existing methods when compressing tokens in the intermediate layers of the vision encoder, demonstrating superior effectiveness. In addition, compared to external compression, our method improves training efficiency beyond 20% and inference throughput over 15% while maintaining strong performance.
☆ Spotlighting Partially Visible Cinematic Language for Video-to-Audio Generation via Self-distillation IJCAI 2025
Video-to-Audio (V2A) Generation achieves significant progress and plays a crucial role in film and video post-production. However, current methods overlook the cinematic language, a critical component of artistic expression in filmmaking. As a result, their performance deteriorates in scenarios where Foley targets are only partially visible. To address this challenge, we propose a simple self-distillation approach to extend V2A models to cinematic language scenarios. By simulating the cinematic language variations, the student model learns to align the video features of training pairs with the same audio-visual correspondences, enabling it to effectively capture the associations between sounds and partial visual information. Our method not only achieves impressive improvements under partial visibility across all evaluation metrics, but also enhances performance on the large-scale V2A dataset, VGGSound.
comment: Accepted by IJCAI 2025
☆ MAC-Lookup: Multi-Axis Conditional Lookup Model for Underwater Image Enhancement
Enhancing underwater images is crucial for exploration. These images face visibility and color issues due to light changes, water turbidity, and bubbles. Traditional prior-based methods and pixel-based methods often fail, while deep learning lacks sufficient high-quality datasets. We introduce the Multi-Axis Conditional Lookup (MAC-Lookup) model, which enhances visual quality by improving color accuracy, sharpness, and contrast. It includes Conditional 3D Lookup Table Color Correction (CLTCC) for preliminary color and quality correction and Multi-Axis Adaptive Enhancement (MAAE) for detail refinement. This model prevents over-enhancement and saturation while handling underwater challenges. Extensive experiments show that MAC-Lookup excels in enhancing underwater images by restoring details and colors better than existing methods. The code is https://github.com/onlycatdoraemon/MAC-Lookup.
comment: Accepted by IEEE SMC 2025
☆ Cross-domain Hyperspectral Image Classification based on Bi-directional Domain Adaptation
Utilizing hyperspectral remote sensing technology enables the extraction of fine-grained land cover classes. Typically, satellite or airborne images used for training and testing are acquired from different regions or times, where the same class has significant spectral shifts in different scenes. In this paper, we propose a Bi-directional Domain Adaptation (BiDA) framework for cross-domain hyperspectral image (HSI) classification, which focuses on extracting both domain-invariant features and domain-specific information in the independent adaptive space, thereby enhancing the adaptability and separability to the target scene. In the proposed BiDA, a triple-branch transformer architecture (the source branch, target branch, and coupled branch) with semantic tokenizer is designed as the backbone. Specifically, the source branch and target branch independently learn the adaptive space of source and target domains, a Coupled Multi-head Cross-attention (CMCA) mechanism is developed in coupled branch for feature interaction and inter-domain correlation mining. Furthermore, a bi-directional distillation loss is designed to guide adaptive space learning using inter-domain correlation. Finally, we propose an Adaptive Reinforcement Strategy (ARS) to encourage the model to focus on specific generalized feature extraction within both source and target scenes in noise condition. Experimental results on cross-temporal/scene airborne and satellite datasets demonstrate that the proposed BiDA performs significantly better than some state-of-the-art domain adaptation approaches. In the cross-temporal tree species classification task, the proposed BiDA is more than 3\%$\sim$5\% higher than the most advanced method. The codes will be available from the website: https://github.com/YuxiangZhang-BIT/IEEE_TCSVT_BiDA.
☆ Multi-Label Classification Framework for Hurricane Damage Assessment SC
Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.
comment: 9 pages, 3 figures. Accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025)
☆ SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
Precise surgical interventions are vital to patient safety, and advanced enhancement algorithms have been developed to assist surgeons in decision-making. Despite significant progress, these algorithms are typically designed for single tasks in specific scenarios, limiting their effectiveness in complex real-world situations. To address this limitation, we propose SurgVisAgent, an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs). SurgVisAgent dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks such as low-light enhancement, overexposure correction, motion blur elimination, and smoke removal. Specifically, to achieve superior surgical scenario understanding, we design a prior model that provides domain-specific knowledge. Additionally, through in-context few-shot learning and chain-of-thought (CoT) reasoning, SurgVisAgent delivers customized image enhancements tailored to a wide range of distortion types and severity levels, thereby addressing the diverse requirements of surgeons. Furthermore, we construct a comprehensive benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models, highlighting its potential as a unified solution for surgical assistance.
☆ FMOcc: TPV-Driven Flow Matching for 3D Occupancy Prediction with Selective State Space Model
3D semantic occupancy prediction plays a pivotal role in autonomous driving. However, inherent limitations of fewframe images and redundancy in 3D space compromise prediction accuracy for occluded and distant scenes. Existing methods enhance performance by fusing historical frame data, which need additional data and significant computational resources. To address these issues, this paper propose FMOcc, a Tri-perspective View (TPV) refinement occupancy network with flow matching selective state space model for few-frame 3D occupancy prediction. Firstly, to generate missing features, we designed a feature refinement module based on a flow matching model, which is called Flow Matching SSM module (FMSSM). Furthermore, by designing the TPV SSM layer and Plane Selective SSM (PS3M), we selectively filter TPV features to reduce the impact of air voxels on non-air voxels, thereby enhancing the overall efficiency of the model and prediction capability for distant scenes. Finally, we design the Mask Training (MT) method to enhance the robustness of FMOcc and address the issue of sensor data loss. Experimental results on the Occ3D-nuScenes and OpenOcc datasets show that our FMOcc outperforms existing state-of-theart methods. Our FMOcc with two frame input achieves notable scores of 43.1% RayIoU and 39.8% mIoU on Occ3D-nuScenes validation, 42.6% RayIoU on OpenOcc with 5.4 G inference memory and 330ms inference time.
♻ ☆ Towards autonomous photogrammetric forest inventory using a lightweight under-canopy robotic drone
Drones are increasingly used in forestry to capture high-resolution remote sensing data, supporting enhanced monitoring, assessment, and decision-making processes. While operations above the forest canopy are already highly automated, flying inside forests remains challenging, primarily relying on manual piloting. Inside dense forests, reliance on the Global Navigation Satellite System (GNSS) for localization is not feasible. Additionally, the drone must autonomously adjust its flight path to avoid collisions. Recently, advancements in robotics have enabled autonomous drone flights in GNSS-denied obstacle-rich areas. In this article, a step towards autonomous forest data collection is taken by building a prototype of a robotic under-canopy drone utilizing state-of-the-art open-source methods and validating its performance for data collection inside forests. Specifically, the study focused on camera-based autonomous flight under the forest canopy and photogrammetric post-processing of the data collected with the low-cost onboard stereo camera. The autonomous flight capability of the prototype was evaluated through multiple test flights at boreal forests. The tree parameter estimation capability was studied by performing diameter at breast height (DBH) estimation. The prototype successfully carried out flights in selected challenging forest environments, and the experiments showed excellent performance in forest 3D modeling with a miniaturized stereoscopic photogrammetric system. The DBH estimation achieved a root mean square error (RMSE) of 3.33 cm (12.79 \%) across all trees. For trees with a DBH less than 30 cm, the RMSE was 1.16 cm (5.74 \%). The results provide valuable insights into autonomous under-canopy forest mapping and highlight the critical next steps for advancing lightweight robotic drone systems for mapping complex forest environments.
comment: 36 pages, 11 Figures
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: Preprint in progress. We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ Modality-agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
♻ ☆ CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Computer Aided Design (CAD) is indispensable across various industries. \emph{Text-based CAD editing}, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce \emph{CAD-Editor}, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively. The code is available at \url {https://github.com/microsoft/CAD-Editor}.
♻ ☆ Enhancing Fetal Plane Classification Accuracy with Data Augmentation Using Diffusion Models
Ultrasound imaging is widely used in medical diagnosis, especially for fetal health assessment. However, the availability of high-quality annotated ultrasound images is limited, which restricts the training of machine learning models. In this paper, we investigate the use of diffusion models to generate synthetic ultrasound images to improve the performance on fetal plane classification. We train different classifiers first on synthetic images and then fine-tune them with real images. Extensive experimental results demonstrate that incorporating generated images into training pipelines leads to better classification accuracy than training with real images alone. The findings suggest that generating synthetic data using diffusion models can be a valuable tool in overcoming the challenges of data scarcity in ultrasound medical imaging.
♻ ☆ LUDO: Low-Latency Understanding of Deformable Objects using Point Cloud Occupancy Functions
Accurately determining the shape of deformable objects and the location of their internal structures is crucial for medical tasks that require precise targeting, such as robotic biopsies. We introduce LUDO, a method for accurate low-latency understanding of deformable objects. LUDO reconstructs objects in their deformed state, including their internal structures, from a single-view point cloud observation in under 30 ms using occupancy networks. LUDO provides uncertainty estimates for its predictions. Additionally, it provides explainability by highlighting key features in its input observations. Both uncertainty and explainability are important for safety-critical applications such as surgery. We evaluate LUDO in real-world robotic experiments, achieving a success rate of 98.9% for puncturing various regions of interest (ROIs) inside deformable objects. We compare LUDO to a popular baseline and show its superior ROI localization accuracy, training time, and memory requirements. LUDO demonstrates the potential to interact with deformable objects without the need for deformable registration methods.
comment: Published in IEEE Transactions on Robotics (T-RO)
♻ ☆ The Evolution of Dataset Distillation: Toward Scalable and Generalizable Solutions
Dataset distillation, which condenses large-scale datasets into compact synthetic representations, has emerged as a critical solution for training modern deep learning models efficiently. While prior surveys focus on developments before 2023, this work comprehensively reviews recent advances, emphasizing scalability to large-scale datasets such as ImageNet-1K and ImageNet-21K. We categorize progress into a few key methodologies: trajectory matching, gradient matching, distribution matching, scalable generative approaches, and decoupling optimization mechanisms. As a comprehensive examination of recent dataset distillation advances, this survey highlights breakthrough innovations: the SRe2L framework for efficient and effective condensation, soft label strategies that significantly enhance model accuracy, and lossless distillation techniques that maximize compression while maintaining performance. Beyond these methodological advancements, we address critical challenges, including robustness against adversarial and backdoor attacks, effective handling of non-IID data distributions. Additionally, we explore emerging applications in video and audio processing, multi-modal learning, medical imaging, and scientific computing, highlighting its domain versatility. By offering extensive performance comparisons and actionable research directions, this survey equips researchers and practitioners with practical insights to advance efficient and generalizable dataset distillation, paving the way for future innovations.
comment: Dr. Jiawei Du is the corresponding author
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
comment: preprint
♻ ☆ RFWNet: A Lightweight Remote Sensing Object Detector Integrating Multiscale Receptive Fields and Foreground Focus Mechanism
Challenges in remote sensing object detection(RSOD), such as high interclass similarity, imbalanced foreground-background distribution, and the small size of objects in remote sensing images, significantly hinder detection accuracy. Moreover, the tradeoff between model accuracy and computational complexity poses additional constraints on the application of RSOD algorithms. To address these issues, this study proposes an efficient and lightweight RSOD algorithm integrating multiscale receptive fields and foreground focus mechanism, named robust foreground weighted network(RFWNet). Specifically, we proposed a lightweight backbone network receptive field adaptive selection network (RFASNet), leveraging the rich context information of remote sensing images to enhance class separability. Additionally, we developed a foreground-background separation module(FBSM)consisting of a background redundant information filtering module (BRIFM) and a foreground information enhancement module (FIEM) to emphasize critical regions within images while filtering redundant background information. Finally, we designed a loss function, the weighted CIoU-Wasserstein loss (LWCW),which weights the IoU-based loss by using the normalized Wasserstein distance to mitigate model sensitivity to small object position deviations. The comprehensive experimental results demonstrate that RFWNet achieved 95.3% and 73.2% mean average precision (mAP) with 6.0 M parameters on the DOTA V1.0 and NWPU VHR-10 datasets, respectively, with an inference speed of 52 FPS.
♻ ☆ Similarity Memory Prior is All You Need for Medical Image Segmentation
In recent years, it has been found that "grandmother cells" in the primary visual cortex (V1) of macaques can directly recognize visual input with complex shapes. This inspires us to examine the value of these cells in promoting the research of medical image segmentation. In this paper, we design a Similarity Memory Prior Network (Sim-MPNet) for medical image segmentation. Specifically, we propose a Dynamic Memory Weights-Loss Attention (DMW-LA), which matches and remembers the category features of specific lesions or organs in medical images through the similarity memory prior in the prototype memory bank, thus helping the network to learn subtle texture changes between categories. DMW-LA also dynamically updates the similarity memory prior in reverse through Weight-Loss Dynamic (W-LD) update strategy, effectively assisting the network directly extract category features. In addition, we propose the Double-Similarity Global Internal Enhancement Module (DS-GIM) to deeply explore the internal differences in the feature distribution of input data through cosine similarity and euclidean distance. Extensive experiments on four public datasets show that Sim-MPNet has better segmentation performance than other state-of-the-art methods. Our code is available on https://github.com/vpsg-research/Sim-MPNet.
♻ ☆ TurboReg: TurboClique for Robust and Efficient Point Cloud Registration ICCV-2025
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.
comment: ICCV-2025 Accepted Paper
♻ ☆ Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.
comment: 24 pages, 14 figures, 7 tables
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Fairer Analysis and Demographically Balanced Face Generation for Fairer Face Verification WACV2025
Face recognition and verification are two computer vision tasks whose performances have advanced with the introduction of deep representations. However, ethical, legal, and technical challenges due to the sensitive nature of face data and biases in real-world training datasets hinder their development. Generative AI addresses privacy by creating fictitious identities, but fairness problems remain. Using the existing DCFace SOTA framework, we introduce a new controlled generation pipeline that improves fairness. Through classical fairness metrics and a proposed in-depth statistical analysis based on logit models and ANOVA, we show that our generation pipeline improves fairness more than other bias mitigation approaches while slightly improving raw performance.
comment: Published in WACV2025
♻ ☆ DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named \textit{DeltaEdit} to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN's editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles.
comment: Code is available at https://github.com/Yueming6568/DeltaEdit
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Lightweight Structure-Aware Attention for Visual Understanding
Attention operator has been widely used as a basic brick in visual understanding since it provides some flexibility through its adjustable kernels. However, this operator suffers from inherent limitations: (1) the attention kernel is not discriminative enough, resulting in high redundancy, and (2) the complexity in computation and memory is quadratic in the sequence length. In this paper, we propose a novel attention operator, called Lightweight Structure-aware Attention (LiSA), which has a better representation power with log-linear complexity. Our operator transforms the attention kernels to be more discriminative by learning structural patterns. These structural patterns are encoded by exploiting a set of relative position embeddings (RPEs) as multiplicative weights, thereby improving the representation power of the attention kernels. Additionally, the RPEs are approximated to obtain log-linear complexity. Our experiments and analyses demonstrate that the proposed operator outperforms self-attention and other existing operators, achieving state-of-the-art results on ImageNet-1K and other downstream tasks such as video action recognition on Kinetics-400, object detection \& instance segmentation on COCO, and semantic segmentation on ADE-20K.
comment: 12 pages, 4 figures
RGE-GS: Reward-Guided Expansive Driving Scene Reconstruction via Diffusion Priors
A single-pass driving clip frequently results in incomplete scanning of the road structure, making reconstructed scene expanding a critical requirement for sensor simulators to effectively regress driving actions. Although contemporary 3D Gaussian Splatting (3DGS) techniques achieve remarkable reconstruction quality, their direct extension through the integration of diffusion priors often introduces cumulative physical inconsistencies and compromises training efficiency. To address these limitations, we present RGE-GS, a novel expansive reconstruction framework that synergizes diffusion-based generation with reward-guided Gaussian integration. The RGE-GS framework incorporates two key innovations: First, we propose a reward network that learns to identify and prioritize consistently generated patterns prior to reconstruction phases, thereby enabling selective retention of diffusion outputs for spatial stability. Second, during the reconstruction process, we devise a differentiated training strategy that automatically adjust Gaussian optimization progress according to scene converge metrics, which achieving better convergence than baseline methods. Extensive evaluations of publicly available datasets demonstrate that RGE-GS achieves state-of-the-art performance in reconstruction quality. Our source-code will be made publicly available at https://github.com/CN-ADLab/RGE-GS.
♻ ☆ BANet: Bilateral Aggregation Network for Mobile Stereo Matching ICCV 2025
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging. Directly applying 2D convolutions for cost aggregation often results in edge blurring, detail loss, and mismatches in textureless regions. Some complex operations, like deformable convolutions and iterative warping, can partially alleviate this issue; however, they are not mobile-friendly, limiting their deployment on mobile devices. In this paper, we present a novel bilateral aggregation network (BANet) for mobile stereo matching that produces high-quality results with sharp edges and fine details using only 2D convolutions. Specifically, we first separate the full cost volume into detailed and smooth volumes using a spatial attention map, then perform detailed and smooth aggregations accordingly, ultimately fusing both to obtain the final disparity map. Experimental results demonstrate that our BANet-2D significantly outperforms other mobile-friendly methods, achieving 35.3\% higher accuracy on the KITTI 2015 leaderboard than MobileStereoNet-2D, with faster runtime on mobile devices. Code: \textcolor{magenta}{https://github.com/gangweix/BANet}.
comment: Accepted by ICCV 2025
♻ ☆ ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
comment: More video demonstrations, code, models and data can be found on our project website: http://xg-chu.site/project_artalk/
♻ ☆ Stereo Any Video: Temporally Consistent Stereo Matching ICCV2025
This paper introduces Stereo Any Video, a powerful framework for video stereo matching. It can estimate spatially accurate and temporally consistent disparities without relying on auxiliary information such as camera poses or optical flow. The strong capability is driven by rich priors from monocular video depth models, which are integrated with convolutional features to produce stable representations. To further enhance performance, key architectural innovations are introduced: all-to-all-pairs correlation, which constructs smooth and robust matching cost volumes, and temporal convex upsampling, which improves temporal coherence. These components collectively ensure robustness, accuracy, and temporal consistency, setting a new standard in video stereo matching. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple datasets both qualitatively and quantitatively in zero-shot settings, as well as strong generalization to real-world indoor and outdoor scenarios.
comment: Accepted at ICCV2025
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Stronger, Steadier & Superior: Geometric Consistency in Depth VFM Forges Domain Generalized Semantic Segmentation ICCV 2025
Vision Foundation Models (VFMs) have delivered remarkable performance in Domain Generalized Semantic Segmentation (DGSS). However, recent methods often overlook the fact that visual cues are susceptible, whereas the underlying geometry remains stable, rendering depth information more robust. In this paper, we investigate the potential of integrating depth information with features from VFMs, to improve the geometric consistency within an image and boost the generalization performance of VFMs. We propose a novel fine-tuning DGSS framework, named DepthForge, which integrates the visual cues from frozen DINOv2 or EVA02 and depth cues from frozen Depth Anything V2. In each layer of the VFMs, we incorporate depth-aware learnable tokens to continuously decouple domain-invariant visual and spatial information, thereby enhancing depth awareness and attention of the VFMs. Finally, we develop a depth refinement decoder and integrate it into the model architecture to adaptively refine multi-layer VFM features and depth-aware learnable tokens. Extensive experiments are conducted based on various DGSS settings and five different datsets as unseen target domains. The qualitative and quantitative results demonstrate that our method significantly outperforms alternative approaches with stronger performance, steadier visual-spatial attention, and superior generalization ability. In particular, DepthForge exhibits outstanding performance under extreme conditions (e.g., night and snow). Code is available at https://github.com/anonymouse-xzrptkvyqc/DepthForge.
comment: Accepted by ICCV 2025
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ Sequence-aware Pre-training for Echocardiography Probe Movement Guidance
Echocardiography is an essential medical technique for diagnosing cardiovascular diseases, but its high operational complexity has led to a shortage of trained professionals. To address this issue, we introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged structure of the heart rather than personalized cardiac structures, leading to a performance bottleneck. Clinically, we observe that sonographers dynamically adjust their interpretation of a patient's cardiac anatomy based on prior scanning sequences, consequently refining their scanning strategies. Inspired by this, we propose a novel sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of personalized cardiac structure. Extensive experiments on a large-scale expert scanning dataset with 1.31 million samples demonstrate that our proposed sequence-aware paradigm can effectively reduce probe guidance errors compared to other advanced baseline methods. Our code will be released after acceptance.
comment: Tech Report
♻ ☆ ZeroStereo: Zero-Shot Stereo Matching from Single Images ICCV 2025
State-of-the-art supervised stereo matching methods have achieved remarkable performance on various benchmarks. However, their generalization to real-world scenarios remains challenging due to the scarcity of annotated real-world stereo data. In this paper, we propose ZeroStereo, a novel stereo image generation pipeline for zero-shot stereo matching. Our approach synthesizes high-quality right images from arbitrary single images by leveraging pseudo disparities generated by a monocular depth estimation model. Unlike previous methods that address occluded regions by filling missing areas with neighboring pixels or random backgrounds, we fine-tune a diffusion inpainting model to recover missing details while preserving semantic structure. Additionally, we propose Training-Free Confidence Generation, which mitigates the impact of unreliable pseudo labels without additional training, and Adaptive Disparity Selection, which ensures a diverse and realistic disparity distribution while preventing excessive occlusion and foreground distortion. Experiments demonstrate that models trained with our pipeline achieve state-of-the-art zero-shot generalization across multiple datasets with only a dataset volume comparable to Scene Flow. Code: https://github.com/Windsrain/ZeroStereo.
comment: Accepted to ICCV 2025
♻ ☆ Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping ICCV2025
Transformer-based models have driven significant advancements in Multimodal Large Language Models (MLLMs), yet their computational costs surge drastically when scaling resolution, training data, and model parameters. A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding. We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models. On top of conventional token compression approaches, our method introduces two complementary acceleration strategies. For training acceleration, we observe that Feed-Forward Network (FFN) computations on visual tokens induce marginal feature updates. This motivates our Skip-FFN strategy, which bypasses FFN layers for redundant visual tokens. For inference acceleration, we design a selective KV-cache removal mechanism that prunes the skipped key-value pairs during decoding while preserving model performance. Experimental results demonstrate that Skip-Vision reduces training time by up to 35\%, inference FLOPs by 75\%, and latency by 45\%, while achieving comparable or superior performance to existing methods. Our work provides a practical solution for scaling high-performance MLLMs with enhanced efficiency.
comment: Accepted by ICCV2025
♻ ☆ MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound MICCAI 2025
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.
comment: Accepted by MICCAI 2025
♻ ☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
♻ ☆ Assessing the Uncertainty and Robustness of the Laptop Refurbishing Software
Refurbishing laptops extends their lives while contributing to reducing electronic waste, which promotes building a sustainable future. To this end, the Danish Technological Institute (DTI) focuses on the research and development of several robotic applications empowered with software, including laptop refurbishing. Cleaning represents a major step in refurbishing and involves identifying and removing stickers from laptop surfaces. Software plays a crucial role in the cleaning process. For instance, the software integrates various object detection models to identify and remove stickers from laptops automatically. However, given the diversity in types of stickers (e.g., shapes, colors, locations), identification of the stickers is highly uncertain, thereby requiring explicit quantification of uncertainty associated with the identified stickers. Such uncertainty quantification can help reduce risks in removing stickers, which, for example, could otherwise result in software faults damaging laptop surfaces. For uncertainty quantification, we adopted the Monte Carlo Dropout method to evaluate six sticker detection models (SDMs) from DTI using three datasets: the original image dataset from DTI and two datasets generated with vision language models, i.e., DALL-E-3 and Stable Diffusion-3. In addition, we presented novel robustness metrics concerning detection accuracy and uncertainty to assess the robustness of the SDMs based on adversarial datasets generated from the three datasets using a dense adversary method. Our evaluation results show that different SDMs perform differently regarding different metrics. Based on the results, we provide SDM selection guidelines and lessons learned from various perspectives.
comment: 17 pages, 6 figures, 4 tables
♻ ☆ Illuminant and light direction estimation using Wasserstein distance method
Illumination estimation remains a pivotal challenge in image processing, particularly for robotics, where robust environmental perception is essential under varying lighting conditions. Traditional approaches, such as RGB histograms and GIST descriptors, often fail in complex scenarios due to their sensitivity to illumination changes. This study introduces a novel method utilizing the Wasserstein distance, rooted in optimal transport theory, to estimate illuminant and light direction in images. Experiments on diverse images indoor scenes, black-and-white photographs, and night images demonstrate the method's efficacy in detecting dominant light sources and estimating their directions, outperforming traditional statistical methods in complex lighting environments. The approach shows promise for applications in light source localization, image quality assessment, and object detection enhancement. Future research may explore adaptive thresholding and integrate gradient analysis to enhance accuracy, offering a scalable solution for real-world illumination challenges in robotics and beyond.
♻ ☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
TiCoSS: Tightening the Coupling between Semantic Segmentation and Stereo Matching within A Joint Learning Framework
Semantic segmentation and stereo matching, respectively analogous to the ventral and dorsal streams in our human brain, are two key components of autonomous driving perception systems. Addressing these two tasks with separate networks is no longer the mainstream direction in developing computer vision algorithms, particularly with the recent advances in large vision models and embodied artificial intelligence. The trend is shifting towards combining them within a joint learning framework, especially emphasizing feature sharing between the two tasks. The major contributions of this study lie in comprehensively tightening the coupling between semantic segmentation and stereo matching. Specifically, this study introduces three novelties: (1) a tightly coupled, gated feature fusion strategy, (2) a hierarchical deep supervision strategy, and (3) a coupling tightening loss function. The combined use of these technical contributions results in TiCoSS, a state-of-the-art joint learning framework that simultaneously tackles semantic segmentation and stereo matching. Through extensive experiments on the KITTI and vKITTI2 datasets, along with qualitative and quantitative analyses, we validate the effectiveness of our developed strategies and loss function, and demonstrate its superior performance compared to prior arts, with a notable increase in mIoU by over 9%. Our source code will be publicly available at mias.group/TiCoSS upon publication.
♻ ☆ LLaVA-KD: A Framework of Distilling Multimodal Large Language Models ICCV'25
The success of Large Language Models (LLMs) has inspired the development of Multimodal Large Language Models (MLLMs) for unified understanding of vision and language. However, the increasing model size and computational complexity of large-scale MLLMs (l-MLLMs) limit their use in resource-constrained scenarios. Although small-scale MLLMs (s-MLLMs) are designed to reduce computational costs, they typically suffer from performance degradation. To mitigate this limitation, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLMs to s-MLLMs. Specifically, we introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities, and Relation Distillation (RDist) to transfer teacher model's ability to capture visual token relationships. Additionally, we propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy: 1) Distilled Pre-Training to strengthen the alignment between visual-linguistic representations in s-MLLMs, 2) Supervised Fine-Tuning to equip the s-MLLMs with multimodal understanding capacity, and 3) Distilled Fine-Tuning to refine s-MLLM's knowledge. Our approach significantly improves s-MLLMs performance without altering the model architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/Fantasyele/LLaVA-KD.
comment: ICCV'25
Diffusion-Based Generative Models for 3D Occupancy Prediction in Autonomous Driving ICRA 2025
Accurately predicting 3D occupancy grids from visual inputs is critical for autonomous driving, but current discriminative methods struggle with noisy data, incomplete observations, and the complex structures inherent in 3D scenes. In this work, we reframe 3D occupancy prediction as a generative modeling task using diffusion models, which learn the underlying data distribution and incorporate 3D scene priors. This approach enhances prediction consistency, noise robustness, and better handles the intricacies of 3D spatial structures. Our extensive experiments show that diffusion-based generative models outperform state-of-the-art discriminative approaches, delivering more realistic and accurate occupancy predictions, especially in occluded or low-visibility regions. Moreover, the improved predictions significantly benefit downstream planning tasks, highlighting the practical advantages of our method for real-world autonomous driving applications.
comment: ICRA 2025
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ PAID: Pairwise Angular-Invariant Decomposition for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to online adapt a pre-trained model to changing environments during inference. Most existing methods focus on exploiting target data, while overlooking another crucial source of information, the pre-trained weights, which encode underutilized domain-invariant priors. This paper takes the geometric attributes of pre-trained weights as a starting point, systematically analyzing three key components: magnitude, absolute angle, and pairwise angular structure. We find that the pairwise angular structure remains stable across diverse corrupted domains and encodes domain-invariant semantic information, suggesting it should be preserved during adaptation. Based on this insight, we propose PAID (Pairwise Angular-Invariant Decomposition), a prior-driven CTTA method that decomposes weight into magnitude and direction, and introduces a learnable orthogonal matrix via Householder reflections to globally rotate direction while preserving the pairwise angular structure. During adaptation, only the magnitudes and the orthogonal matrices are updated. PAID achieves consistent improvements over recent SOTA methods on four widely used CTTA benchmarks, demonstrating that preserving pairwise angular structure offers a simple yet effective principle for CTTA.
♻ ☆ MAD: Makeup All-in-One with Cross-Domain Diffusion Model CVPR
Existing makeup techniques often require designing multiple models to handle different inputs and align features across domains for different makeup tasks, e.g., beauty filter, makeup transfer, and makeup removal, leading to increased complexity. Another limitation is the absence of text-guided makeup try-on, which is more user-friendly without needing reference images. In this study, we make the first attempt to use a single model for various makeup tasks. Specifically, we formulate different makeup tasks as cross-domain translations and leverage a cross-domain diffusion model to accomplish all tasks. Unlike existing methods that rely on separate encoder-decoder configurations or cycle-based mechanisms, we propose using different domain embeddings to facilitate domain control. This allows for seamless domain switching by merely changing embeddings with a single model, thereby reducing the reliance on additional modules for different tasks. Moreover, to support precise text-to-makeup applications, we introduce the MT-Text dataset by extending the MT dataset with textual annotations, advancing the practicality of makeup technologies.
comment: Accepted by CVPRW2025
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection
The rise of autonomous vehicles has significantly increased the demand for robust 3D object detection systems. While cameras and LiDAR sensors each offer unique advantages--cameras provide rich texture information and LiDAR offers precise 3D spatial data--relying on a single modality often leads to performance limitations. This paper introduces MV2DFusion, a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism. By introducing an image query generator to align with image-specific attributes and a point cloud query generator, MV2DFusion effectively combines modality-specific object semantics without biasing toward one single modality. Then the sparse fusion process can be accomplished based on the valuable object semantics, ensuring efficient and accurate object detection across various scenarios. Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements. Extensive evaluations on the nuScenes and Argoverse2 datasets demonstrate that MV2DFusion achieves state-of-the-art performance, particularly excelling in long-range detection scenarios.
♻ ☆ Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models ICIP 2025
Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.
comment: ICIP 2025
♻ ☆ Self-Guidance: Boosting Flow and Diffusion Generation on Their Own
Proper guidance strategies are essential to achieve high-quality generation results without retraining diffusion and flow-based text-to-image models. Existing guidance either requires specific training or strong inductive biases of diffusion model networks, potentially limiting their applications. Motivated by the observation that artifact outliers can be detected by a significant decline in the density from a noisier to a cleaner noise level, we propose Self-Guidance (SG), which improves the image quality by suppressing the generation of low-quality samples. SG only relies on the sampling probabilities of its own diffusion model at different noise levels with no need of any guidance-specific training. This makes it flexible to be used in a plug-and-play manner with other sampling algorithms. We also introduce a more efficient approximation of SG, named SG-prev, which reuses the output from the immediately previous diffusion step to avoid doubling sampling time. We conduct experiments on text-to-image and text-to-video generation with different architectures, including UNet and transformer models. With open-sourced diffusion models such as Stable Diffusion 3.5 and FLUX, SG exceeds existing algorithms on multiple metrics, including both FID and Human Preference Score. SG-prev also achieves strong results over both the baseline and the SG with only one forward pass. Moreover, we find that SG and SG-prev both have a surprisingly positive effect on the generation of physiologically correct human body structures such as hands, faces, and arms, showing their ability of eliminating human body artifacts with minimal efforts. We will release our code along with this paper.
comment: 16 pages, 10 figures
♻ ☆ Uncertainty-Guided Coarse-to-Fine Tumor Segmentation with Anatomy-Aware Post-Processing SC
Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
comment: 6 pages, 2 figures, to appear in IEEE ADSCA 2025
♻ ☆ Customizable ROI-Based Deep Image Compression
Region of Interest (ROI)-based image compression optimizes bit allocation by prioritizing ROI for higher-quality reconstruction. However, as the users (including human clients and downstream machine tasks) become more diverse, ROI-based image compression needs to be customizable to support various preferences. For example, different users may define distinct ROI or require different quality trade-offs between ROI and non-ROI. Existing ROI-based image compression schemes predefine the ROI, making it unchangeable, and lack effective mechanisms to balance reconstruction quality between ROI and non-ROI. This work proposes a paradigm for customizable ROI-based deep image compression. First, we develop a Text-controlled Mask Acquisition (TMA) module, which allows users to easily customize their ROI for compression by just inputting the corresponding semantic \emph{text}. It makes the encoder controlled by text. Second, we design a Customizable Value Assign (CVA) mechanism, which masks the non-ROI with a changeable extent decided by users instead of a constant one to manage the reconstruction quality trade-off between ROI and non-ROI. Finally, we present a Latent Mask Attention (LMA) module, where the latent spatial prior of the mask and the latent Rate-Distortion Optimization (RDO) prior of the image are extracted and fused in the latent space, and further used to optimize the latent representation of the source image. Experimental results demonstrate that our proposed customizable ROI-based deep image compression paradigm effectively addresses the needs of customization for ROI definition and mask acquisition as well as the reconstruction quality trade-off management between the ROI and non-ROI.
♻ ☆ Task-Adapter++: Task-specific Adaptation with Order-aware Alignment for Few-shot Action Recognition
Large-scale pre-trained models have achieved remarkable success in language and image tasks, leading an increasing number of studies to explore the application of pre-trained image models, such as CLIP, in the domain of few-shot action recognition (FSAR). However, current methods generally suffer from several problems: 1) Direct fine-tuning often undermines the generalization capability of the pre-trained model; 2) The exploration of task-specific information is insufficient in the visual tasks; 3) The semantic order information is typically overlooked during text modeling; 4) Existing cross-modal alignment techniques ignore the temporal coupling of multimodal information. To address these, we propose Task-Adapter++, a parameter-efficient dual adaptation method for both image and text encoders. Specifically, to make full use of the variations across different few-shot learning tasks, we design a task-specific adaptation for the image encoder so that the most discriminative information can be well noticed during feature extraction. Furthermore, we leverage large language models (LLMs) to generate detailed sequential sub-action descriptions for each action class, and introduce semantic order adapters into the text encoder to effectively model the sequential relationships between these sub-actions. Finally, we develop an innovative fine-grained cross-modal alignment strategy that actively maps visual features to reside in the same temporal stage as semantic descriptions. Extensive experiments fully demonstrate the effectiveness and superiority of the proposed method, which achieves state-of-the-art performance on 5 benchmarks consistently. The code is open-sourced at https://github.com/Jaulin-Bage/Task-Adapter-pp.
comment: extended work of Task-Adapter
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
♻ ☆ Adapter-Enhanced Semantic Prompting for Continual Learning
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
comment: This work has been submitted to the IJCV for possible publication
♻ ☆ Rejoining fragmented ancient bamboo slips with physics-driven deep learning
Bamboo slips are a crucial medium for recording ancient civilizations in East Asia, and offers invaluable archaeological insights for reconstructing the Silk Road, studying material culture exchanges, and global history. However, many excavated bamboo slips have been fragmented into thousands of irregular pieces, making their rejoining a vital yet challenging step for understanding their content. Here we introduce WisePanda, a physics-driven deep learning framework designed to rejoin fragmented bamboo slips. Based on the physics of fracture and material deterioration, WisePanda automatically generates synthetic training data that captures the physical properties of bamboo fragmentations. This approach enables the training of a matching network without requiring manually paired samples, providing ranked suggestions to facilitate the rejoining process. Compared to the leading curve matching method, WisePanda increases Top-50 matching accuracy from 36% to 52% among more than one thousand candidate fragments. Archaeologists using WisePanda have experienced substantial efficiency improvements (approximately 20 times faster) when rejoining fragmented bamboo slips. This research demonstrates that incorporating physical principles into deep learning models can significantly enhance their performance, transforming how archaeologists restore and study fragmented artifacts. WisePanda provides a new paradigm for addressing data scarcity in ancient artifact restoration through physics-driven machine learning.
♻ ☆ Bi-modality medical images synthesis by a bi-directional discrete process matching method
Recently, medical image synthesis gains more and more popularity, along with the rapid development of generative models. Medical image synthesis aims to generate an unacquired image modality, often from other observed data modalities. Synthesized images can be used for clinical diagnostic assistance, data augmentation for model training and validation or image quality improving. In the meanwhile, the flow-based models are among the successful generative models for the ability of generating realistic and high-quality synthetic images. However, most flow-based models require to calculate flow ordinary different equation (ODE) evolution steps in synthesis process, for which the performances are significantly limited by heavy computation time due to a large number of time iterations. In this paper, we propose a novel flow-based model, namely bi-directional Discrete Process Matching (Bi-DPM) to accomplish the bi-modality image synthesis tasks. Different to other flow matching based models, we propose to utilize both forward and backward ODE flows and enhance the consistency on the intermediate images over a few discrete time steps, resulting in a synthesis process maintaining high-quality generations for both modalities under the guidance of paired data. Our experiments on three datasets of MRI T1/T2 and CT/MRI demonstrate that Bi-DPM outperforms other state-of-the-art flow-based methods for bi-modality image synthesis, delivering higher image quality with accurate anatomical regions.
♻ ☆ Escaping Platos Cave: JAM for Aligning Independently Trained Vision and Language Models
Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
Machine Learning 150
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
☆ LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis MICCAI-25
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.
comment: Accepted by MICCAI-25, code is available at \url{https://github.com/zky04/MvHo-IB}
☆ LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Measurement as Bricolage: Examining How Data Scientists Construct Target Variables for Predictive Modeling Tasks
Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
☆ Replicable Distribution Testing
We initiate a systematic investigation of distribution testing in the framework of algorithmic replicability. Specifically, given independent samples from a collection of probability distributions, the goal is to characterize the sample complexity of replicably testing natural properties of the underlying distributions. On the algorithmic front, we develop new replicable algorithms for testing closeness and independence of discrete distributions. On the lower bound front, we develop a new methodology for proving sample complexity lower bounds for replicable testing that may be of broader interest. As an application of our technique, we establish near-optimal sample complexity lower bounds for replicable uniformity testing -- answering an open question from prior work -- and closeness testing.
comment: 39 pages
☆ In-Training Multicalibrated Survival Analysis for Healthcare via Constrained Optimization
Survival analysis is an important problem in healthcare because it models the relationship between an individual's covariates and the onset time of an event of interest (e.g., death). It is important for survival models to be well-calibrated (i.e., for their predicted probabilities to be close to ground-truth probabilities) because badly calibrated systems can result in erroneous clinical decisions. Existing survival models are typically calibrated at the population level only, and thus run the risk of being poorly calibrated for one or more minority subpopulations. We propose a model called GRADUATE that achieves multicalibration by ensuring that all subpopulations are well-calibrated too. GRADUATE frames multicalibration as a constrained optimization problem, and optimizes both calibration and discrimination in-training to achieve a good balance between them. We mathematically prove that the optimization method used yields a solution that is both near-optimal and feasible with high probability. Empirical comparisons against state-of-the-art baselines on real-world clinical datasets demonstrate GRADUATE's efficacy. In a detailed analysis, we elucidate the shortcomings of the baselines vis-a-vis GRADUATE's strengths.
☆ Learning to Coordinate Bidders in Non-Truthful Auctions
In non-truthful auctions such as first-price and all-pay auctions, the independent strategic behaviors of bidders, with the corresponding equilibrium notion -- Bayes Nash equilibria -- are notoriously difficult to characterize and can cause undesirable outcomes. An alternative approach to designing better auction systems is to coordinate the bidders: let a mediator make incentive-compatible recommendations of correlated bidding strategies to the bidders, namely, implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however, requires knowledge of the distribution of bidders' private valuations, which is often unavailable. We initiate the study of the sample complexity of learning Bayes correlated equilibria in non-truthful auctions. We prove that the BCEs in a large class of non-truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial number $\tilde O(\frac{n}{\varepsilon^2})$ of samples from the bidders' value distributions. Our technique is a reduction to the problem of estimating bidders' expected utility from samples, combined with an analysis of the pseudo-dimension of the class of all monotone bidding strategies of bidders.
☆ Self-Steering Deep Non-Linear Spatially Selective Filters for Efficient Extraction of Moving Speakers under Weak Guidance SP
Recent works on deep non-linear spatially selective filters demonstrate exceptional enhancement performance with computationally lightweight architectures for stationary speakers of known directions. However, to maintain this performance in dynamic scenarios, resource-intensive data-driven tracking algorithms become necessary to provide precise spatial guidance conditioned on the initial direction of a target speaker. As this additional computational overhead hinders application in resource-constrained scenarios such as real-time speech enhancement, we present a novel strategy utilizing a low-complexity tracking algorithm in the form of a particle filter instead. Assuming a causal, sequential processing style, we introduce temporal feedback to leverage the enhanced speech signal of the spatially selective filter to compensate for the limited modeling capabilities of the particle filter. Evaluation on a synthetic dataset illustrates how the autoregressive interplay between both algorithms drastically improves tracking accuracy and leads to strong enhancement performance. A listening test with real-world recordings complements these findings by indicating a clear trend towards our proposed self-steering pipeline as preferred choice over comparable methods.
comment: Accepted at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2025
☆ Understanding and Improving Length Generalization in Recurrent Models
Recently, recurrent models such as state space models and linear attention have become popular due to their linear complexity in the sequence length. Thanks to their recurrent nature, in principle they can process arbitrarily long sequences, but their performance sometimes drops considerably beyond their training context lengths-i.e. they fail to length generalize. In this work, we provide comprehensive empirical and theoretical analysis to support the unexplored states hypothesis, which posits that models fail to length generalize when during training they are only exposed to a limited subset of the distribution of all attainable states (i.e. states that would be attained if the recurrence was applied to long sequences). Furthermore, we investigate simple training interventions that aim to increase the coverage of the states that the model is trained on, e.g. by initializing the state with Gaussian noise or with the final state of a different input sequence. With only 500 post-training steps ($\sim 0.1\%$ of the pre-training budget), these interventions enable length generalization for sequences that are orders of magnitude longer than the training context (e.g. $2k\longrightarrow 128k$) and show improved performance in long context tasks, thus presenting a simple and efficient way to enable robust length generalization in general recurrent models.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Contextual Online Pricing with (Biased) Offline Data
We study contextual online pricing with biased offline data. For the scalar price elasticity case, we identify the instance-dependent quantity $\delta^2$ that measures how far the offline data lies from the (unknown) online optimum. We show that the time length $T$, bias bound $V$, size $N$ and dispersion $\lambda_{\min}(\hat{\Sigma})$ of the offline data, and $\delta^2$ jointly determine the statistical complexity. An Optimism-in-the-Face-of-Uncertainty (OFU) policy achieves a minimax-optimal, instance-dependent regret bound $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT}{\lambda_{\min}(\hat{\Sigma}) + (N \wedge T) \delta^2})\big)$. For general price elasticity, we establish a worst-case, minimax-optimal rate $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT }{\lambda_{\min}(\hat{\Sigma})})\big)$ and provide a generalized OFU algorithm that attains it. When the bias bound $V$ is unknown, we design a robust variant that always guarantees sub-linear regret and strictly improves on purely online methods whenever the exact bias is small. These results deliver the first tight regret guarantees for contextual pricing in the presence of biased offline data. Our techniques also transfer verbatim to stochastic linear bandits with biased offline data, yielding analogous bounds.
comment: 47 pages, 4 figures
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Classification by Separating Hypersurfaces: An Entropic Approach
We consider the following classification problem: Given a population of individuals characterized by a set of attributes represented as a vector in ${\mathbb R}^N$, the goal is to find a hyperplane in ${\mathbb R}^N$ that separates two sets of points corresponding to two distinct classes. This problem, with a history dating back to the perceptron model, remains central to machine learning. In this paper we propose a novel approach by searching for a vector of parameters in a bounded $N$-dimensional hypercube centered at the origin and a positive vector in ${\mathbb R}^M$, obtained through the minimization of an entropy-based function defined over the space of unknown variables. The method extends to polynomial surfaces, allowing the separation of data points by more complex decision boundaries. This provides a robust alternative to traditional linear or quadratic optimization techniques, such as support vector machines and gradient descent. Numerical experiments demonstrate the efficiency and versatility of the method in handling diverse classification tasks, including linear and non-linear separability.
comment: 15 pages, 10 tables, 4 figures
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
Recent advances in AI for science have highlighted the power of contrastive learning in bridging heterogeneous biological data modalities. Building on this paradigm, we propose HIPPO (HIerarchical Protein-Protein interaction prediction across Organisms), a hierarchical contrastive framework for protein-protein interaction(PPI) prediction, where protein sequences and their hierarchical attributes are aligned through multi-tiered biological representation matching. The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins. The framework adaptively incorporates domain and family knowledge through a data-driven penalty mechanism, enforcing consistency between the learned embedding space and the intrinsic hierarchy of protein functions. Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes. Notably, the model demonstrates strong zero-shot transferability to other species without retraining, enabling reliable PPI prediction and functional inference even in less characterized or rare organisms where experimental data are limited. Further analysis reveals that hierarchical feature fusion is critical for capturing conserved interaction determinants, such as binding motifs and functional annotations. This work advances cross-species PPI prediction and provides a unified framework for interaction prediction in scenarios with sparse or imbalanced multi-species data.
☆ A Comprehensive Machine Learning Framework for Micromobility Demand Prediction
Dockless e-scooters, a key micromobility service, have emerged as eco-friendly and flexible urban transport alternatives. These services improve first and last-mile connectivity, reduce congestion and emissions, and complement public transport for short-distance travel. However, effective management of these services depends on accurate demand prediction, which is crucial for optimal fleet distribution and infrastructure planning. While previous studies have focused on analyzing spatial or temporal factors in isolation, this study introduces a framework that integrates spatial, temporal, and network dependencies for improved micromobility demand forecasting. This integration enhances accuracy while providing deeper insights into urban micromobility usage patterns. Our framework improves demand prediction accuracy by 27 to 49% over baseline models, demonstrating its effectiveness in capturing micromobility demand patterns. These findings support data-driven micromobility management, enabling optimized fleet distribution, cost reduction, and sustainable urban planning.
☆ A Forget-and-Grow Strategy for Deep Reinforcement Learning Scaling in Continuous Control
Deep reinforcement learning for continuous control has recently achieved impressive progress. However, existing methods often suffer from primacy bias, a tendency to overfit early experiences stored in the replay buffer, which limits an RL agent's sample efficiency and generalizability. In contrast, humans are less susceptible to such bias, partly due to infantile amnesia, where the formation of new neurons disrupts early memory traces, leading to the forgetting of initial experiences. Inspired by this dual processes of forgetting and growing in neuroscience, in this paper, we propose Forget and Grow (FoG), a new deep RL algorithm with two mechanisms introduced. First, Experience Replay Decay (ER Decay) "forgetting early experience", which balances memory by gradually reducing the influence of early experiences. Second, Network Expansion, "growing neural capacity", which enhances agents' capability to exploit the patterns of existing data by dynamically adding new parameters during training. Empirical results on four major continuous control benchmarks with more than 40 tasks demonstrate the superior performance of FoG against SoTA existing deep RL algorithms, including BRO, SimBa, and TD-MPC2.
☆ Fluid Democracy in Federated Data Aggregation ICML 2025
Federated learning (FL) mechanisms typically require each client to transfer their weights to a central server, irrespective of how useful they are. In order to avoid wasteful data transfer costs from clients to the central server, we propose the use of consensus based protocols to identify a subset of clients with most useful model weights at each data transfer step. First, we explore the application of existing fluid democracy protocols to FL from a performance standpoint, comparing them with traditional one-person-one-vote (also known as 1p1v or FedAvg). We propose a new fluid democracy protocol named viscous-retained democracy that always does better than 1p1v under the same assumptions as existing fluid democracy protocols while also not allowing for influence accumulation. Secondly, we identify weaknesses of fluid democracy protocols from an adversarial lens in terms of their dependence on topology and/ or number of adversaries required to negatively impact the global model weights. To this effect, we propose an algorithm (FedVRD) that dynamically limits the effect of adversaries while minimizing cost by leveraging the delegation topology.
comment: ICML 2025 Workshop on Collaborative and Federated Agentic Workflows
☆ Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Conditions
This study investigates how Multi-Agent Reinforcement Learning (MARL) can improve dynamic pricing strategies in supply chains, particularly in contexts where traditional ERP systems rely on static, rule-based approaches that overlook strategic interactions among market actors. While recent research has applied reinforcement learning to pricing, most implementations remain single-agent and fail to model the interdependent nature of real-world supply chains. This study addresses that gap by evaluating the performance of three MARL algorithms: MADDPG, MADQN, and QMIX against static rule-based baselines, within a simulated environment informed by real e-commerce transaction data and a LightGBM demand prediction model. Results show that rule-based agents achieve near-perfect fairness (Jain's Index: 0.9896) and the highest price stability (volatility: 0.024), but they fully lack competitive dynamics. Among MARL agents, MADQN exhibits the most aggressive pricing behaviour, with the highest volatility and the lowest fairness (0.5844). MADDPG provides a more balanced approach, supporting market competition (share volatility: 9.5 pp) while maintaining relatively high fairness (0.8819) and stable pricing. These findings suggest that MARL introduces emergent strategic behaviour not captured by static pricing rules and may inform future developments in dynamic pricing.
☆ RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.
comment: 15 pages, 7 figures. Business process prediction using reinforcement learning and heterogeneous graph neural networks
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ Guided Generation for Developable Antibodies ICML 2025
Therapeutic antibodies require not only high-affinity target engagement, but also favorable manufacturability, stability, and safety profiles for clinical effectiveness. These properties are collectively called `developability'. To enable a computational framework for optimizing antibody sequences for favorable developability, we introduce a guided discrete diffusion model trained on natural paired heavy- and light-chain sequences from the Observed Antibody Space (OAS) and quantitative developability measurements for 246 clinical-stage antibodies. To steer generation toward biophysically viable candidates, we integrate a Soft Value-based Decoding in Diffusion (SVDD) Module that biases sampling without compromising naturalness. In unconstrained sampling, our model reproduces global features of both the natural repertoire and approved therapeutics, and under SVDD guidance we achieve significant enrichment in predicted developability scores over unguided baselines. When combined with high-throughput developability assays, this framework enables an iterative, ML-driven pipeline for designing antibodies that satisfy binding and biophysical criteria in tandem.
comment: Published in ICML 2025 GenBio Workshop
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
In this work, we address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation. Specifically, we focus on a class of exploration bonuses that targets epistemic uncertainty rather than the aleatoric noise inherent in the environment. We prove that these bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards, thereby aligning exploration with genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches, which previously lacked theoretical grounding. To enable practical use, we also discuss tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep Ensemble models. We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration. We empirically demonstrate that PTS-BE substantially outperforms other baselines across a variety of environments characterized by sparse rewards and/or purely exploratory tasks.
☆ High-Order Deep Meta-Learning with Category-Theoretic Interpretation
We introduce a new hierarchical deep learning framework for recursive higher-order meta-learning that enables neural networks (NNs) to construct, solve, and generalise across hierarchies of tasks. Central to this approach is a generative mechanism that creates \emph{virtual tasks} -- synthetic problem instances designed to enable the meta-learner to learn \emph{soft constraints} and unknown generalisable rules across related tasks. Crucially, this enables the framework to generate its own informative, task-grounded datasets thereby freeing machine learning (ML) training from the limitations of relying entirely on human-generated data. By actively exploring the virtual point landscape and seeking out tasks lower-level learners find difficult, the meta-learner iteratively refines constraint regions. This enhances inductive biases, regularises the adaptation process, and produces novel, unanticipated tasks and constraints required for generalisation. Each meta-level of the hierarchy corresponds to a progressively abstracted generalisation of problems solved at lower levels, enabling a structured and interpretable learning progression. By interpreting meta-learners as category-theoretic \emph{functors} that generate and condition a hierarchy of subordinate learners, we establish a compositional structure that supports abstraction and knowledge transfer across progressively generalised tasks. The category-theoretic perspective unifies existing meta-learning models and reveals how learning processes can be transformed and compared through functorial relationships, while offering practical design principles for structuring meta-learning. We speculate this architecture may underpin the next generation of NNs capable of autonomously generating novel, instructive tasks and their solutions, thereby advancing ML towards general artificial intelligence.
☆ Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
Background: The use of Electronic Health Records (EHRs) for epidemiological studies and artificial intelligence (AI) training is increasing rapidly. The reliability of the results depends on the accuracy and completeness of EHR data. However, EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors, as they are primarily collected for clinical and billing purposes. Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research. Methods: We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns. We demonstrate our approach using the Medical Data Pecking Tool (MDPT), which consists of two main components: (1) an automated test generator that uses large language models and grounding techniques to create a test suite from data and study descriptions, and (2) a data testing framework that executes these tests, reporting potential errors and coverage. Results: We evaluated MDPT on three datasets: All of Us (AoU), MIMIC-III, and SyntheticMass, generating 55-73 tests per cohort across four conditions. These tests correctly identified 20-43 non-aligned or non-conforming data issues. We present a detailed analysis of the LLM-generated test suites in terms of reference grounding and value accuracy. Conclusion: Our approach incorporates external medical knowledge to enable context-sensitive data quality testing as part of the data analysis workflow to improve the validity of its outcomes. Our approach tackles these challenges from a quality assurance perspective, laying the foundation for further development such as additional data modalities and improved grounding methods.
comment: 18 pages, 4 figures (+ appendix)
☆ A Matrix Variational Auto-Encoder for Variant Effect Prediction in Pharmacogenes
Variant effect predictors (VEPs) aim to assess the functional impact of protein variants, traditionally relying on multiple sequence alignments (MSAs). This approach assumes that naturally occurring variants are fit, an assumption challenged by pharmacogenomics, where some pharmacogenes experience low evolutionary pressure. Deep mutational scanning (DMS) datasets provide an alternative by offering quantitative fitness scores for variants. In this work, we propose a transformer-based matrix variational auto-encoder (matVAE) with a structured prior and evaluate its performance on 33 DMS datasets corresponding to 26 drug target and ADME proteins from the ProteinGym benchmark. Our model trained on MSAs (matVAE-MSA) outperforms the state-of-the-art DeepSequence model in zero-shot prediction on DMS datasets, despite using an order of magnitude fewer parameters and requiring less computation at inference time. We also compare matVAE-MSA to matENC-DMS, a model of similar capacity trained on DMS data, and find that the latter performs better on supervised prediction tasks. Additionally, incorporating AlphaFold-generated structures into our transformer model further improves performance, achieving results comparable to DeepSequence trained on MSAs and finetuned on DMS. These findings highlight the potential of DMS datasets to replace MSAs without significant loss in predictive performance, motivating further development of DMS datasets and exploration of their relationships to enhance variant effect prediction.
comment: 12+8 pages
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
☆ Alleviating Attack Data Scarcity: SCANIA's Experience Towards Enhancing In-Vehicle Cyber Security Measures
The digital evolution of connected vehicles and the subsequent security risks emphasize the critical need for implementing in-vehicle cyber security measures such as intrusion detection and response systems. The continuous advancement of attack scenarios further highlights the need for adaptive detection mechanisms that can detect evolving, unknown, and complex threats. The effective use of ML-driven techniques can help address this challenge. However, constraints on implementing diverse attack scenarios on test vehicles due to safety, cost, and ethical considerations result in a scarcity of data representing attack scenarios. This limitation necessitates alternative efficient and effective methods for generating high-quality attack-representing data. This paper presents a context-aware attack data generator that generates attack inputs and corresponding in-vehicle network log, i.e., controller area network (CAN) log, representing various types of attack including denial of service (DoS), fuzzy, spoofing, suspension, and replay attacks. It utilizes parameterized attack models augmented with CAN message decoding and attack intensity adjustments to configure the attack scenarios with high similarity to real-world scenarios and promote variability. We evaluate the practicality of the generated attack-representing data within an intrusion detection system (IDS) case study, in which we develop and perform an empirical evaluation of two deep neural network IDS models using the generated data. In addition to the efficiency and scalability of the approach, the performance results of IDS models, high detection and classification capabilities, validate the consistency and effectiveness of the generated data as well. In this experience study, we also elaborate on the aspects influencing the fidelity of the data to real-world scenarios and provide insights into its application.
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Padé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Data
Purpose: The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad\'e Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research addresses the question: Can Pad\'e Approximant Neural Networks (Pad\'eNets) outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in diagnosing electrical and mechanical faults using vibration and acoustic data? Methods: We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad\'eNets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad\'eNet model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as Leaky ReLU. Results and Conclusion: Pad\'eNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad\'eNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.
comment: Submitted to the Journal of Vibration Engineering & Technologies
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ Scalable Interconnect Learning in Boolean Networks
Learned Differentiable Boolean Logic Networks (DBNs) already deliver efficient inference on resource-constrained hardware. We extend them with a trainable, differentiable interconnect whose parameter count remains constant as input width grows, allowing DBNs to scale to far wider layers than earlier learnable-interconnect designs while preserving their advantageous accuracy. To further reduce model size, we propose two complementary pruning stages: an SAT-based logic equivalence pass that removes redundant gates without affecting performance, and a similarity-based, data-driven pass that outperforms a magnitude-style greedy baseline and offers a superior compression-accuracy trade-off.
comment: 12 pages, 8 Figures
☆ Transformers Don't Need LayerNorm at Inference Time: Scaling LayerNorm Removal to GPT-2 XL and the Implications for Mechanistic Interpretability
Layer-wise normalization (LN) is an essential component of virtually all transformer-based large language models. While its effects on training stability are well documented, its role at inference time is poorly understood. Additionally, LN layers hinder mechanistic interpretability by introducing additional nonlinearities and increasing the interconnectedness of individual model components. Here, we show that all LN layers can be removed from every GPT-2 model with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-2 XL). Thus, LN cannot play a substantial role in language modeling. We find that the amount of fine-tuning data needed for LN removal grows sublinearly with model parameters, suggesting scaling to larger models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face. Furthermore, we test interpretability techniques on LN-free models. Direct logit attribution now gives the exact direct effect of individual components, while the accuracy of attribution patching does not significantly improve. We also confirm that GPT-2's "confidence neurons" are inactive in the LN-free models. Our work clarifies the role of LN layers in language modeling, showing that GPT-2-class models can function without LN layers. We hope that our LN-free analogs of the GPT-2 family of models will enable more precise interpretability research and improve our understanding of language models.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ RetrySQL: text-to-SQL training with retry data for self-correcting query generation
The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
☆ TFOC-Net: A Short-time Fourier Transform-based Deep Learning Approach for Enhancing Cross-Subject Motor Imagery Classification
Cross-subject motor imagery (CS-MI) classification in brain-computer interfaces (BCIs) is a challenging task due to the significant variability in Electroencephalography (EEG) patterns across different individuals. This variability often results in lower classification accuracy compared to subject-specific models, presenting a major barrier to developing calibration-free BCIs suitable for real-world applications. In this paper, we introduce a novel approach that significantly enhances cross-subject MI classification performance through optimized preprocessing and deep learning techniques. Our approach involves direct classification of Short-Time Fourier Transform (STFT)-transformed EEG data, optimized STFT parameters, and a balanced batching strategy during training of a Convolutional Neural Network (CNN). This approach is uniquely validated across four different datasets, including three widely-used benchmark datasets leading to substantial improvements in cross-subject classification, achieving 67.60% on the BCI Competition IV Dataset 1 (IV-1), 65.96% on Dataset 2A (IV-2A), and 80.22% on Dataset 2B (IV-2B), outperforming state-of-the-art techniques. Additionally, we systematically investigate the classification performance using MI windows ranging from the full 4-second window to 1-second windows. These results establish a new benchmark for generalizable, calibration-free MI classification in addition to contributing a robust open-access dataset to advance research in this domain.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Online Conformal Prediction with Efficiency Guarantees
We study the problem of conformal prediction in a novel online framework that directly optimizes efficiency. In our problem, we are given a target miscoverage rate $\alpha > 0$, and a time horizon $T$. On each day $t \le T$ an algorithm must output an interval $I_t \subseteq [0, 1]$, then a point $y_t \in [0, 1]$ is revealed. The goal of the algorithm is to achieve coverage, that is, $y_t \in I_t$ on (close to) a $(1 - \alpha)$-fraction of days, while maintaining efficiency, that is, minimizing the average volume (length) of the intervals played. This problem is an online analogue to the problem of constructing efficient confidence intervals. We study this problem over arbitrary and exchangeable (random order) input sequences. For exchangeable sequences, we show that it is possible to construct intervals that achieve coverage $(1 - \alpha) - o(1)$, while having length upper bounded by the best fixed interval that achieves coverage in hindsight. For arbitrary sequences however, we show that any algorithm that achieves a $\mu$-approximation in average length compared to the best fixed interval achieving coverage in hindsight, must make a multiplicative factor more mistakes than $\alpha T$, where the multiplicative factor depends on $\mu$ and the aspect ratio of the problem. Our main algorithmic result is a matching algorithm that can recover all Pareto-optimal settings of $\mu$ and number of mistakes. Furthermore, our algorithm is deterministic and therefore robust to an adaptive adversary. This gap between the exchangeable and arbitrary settings is in contrast to the classical online learning problem. In fact, we show that no single algorithm can simultaneously be Pareto-optimal for arbitrary sequences and optimal for exchangeable sequences. On the algorithmic side, we give an algorithm that achieves the near-optimal tradeoff between the two cases.
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Variational Kolmogorov-Arnold Network IJCNN'25
Kolmogorov Arnold Networks (KANs) are an emerging architecture for building machine learning models. KANs are based on the theoretical foundation of the Kolmogorov-Arnold Theorem and its expansions, which provide an exact representation of a multi-variate continuous bounded function as the composition of a limited number of univariate continuous functions. While such theoretical results are powerful, their use as a representation learning alternative to a multi-layer perceptron (MLP) hinges on the ad-hoc choice of the number of bases modeling each of the univariate functions. In this work, we show how to address this problem by adaptively learning a potentially infinite number of bases for each univariate function during training. We therefore model the problem as a variational inference optimization problem. Our proposal, called InfinityKAN, which uses backpropagation, extends the potential applicability of KANs by treating an important hyperparameter as part of the learning process.
comment: A preliminary (short paper) version presented at ComBayNS Workshop at IJCNN'25
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization SC 2025
Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
comment: Accepted for publication at ITSC 2025
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Posterior Transition Modeling for Unsupervised Diffusion-Based Speech Enhancement
We explore unsupervised speech enhancement using diffusion models as expressive generative priors for clean speech. Existing approaches guide the reverse diffusion process using noisy speech through an approximate, noise-perturbed likelihood score, combined with the unconditional score via a trade-off hyperparameter. In this work, we propose two alternative algorithms that directly model the conditional reverse transition distribution of diffusion states. The first method integrates the diffusion prior with the observation model in a principled way, removing the need for hyperparameter tuning. The second defines a diffusion process over the noisy speech itself, yielding a fully tractable and exact likelihood score. Experiments on the WSJ0-QUT and VoiceBank-DEMAND datasets demonstrate improved enhancement metrics and greater robustness to domain shifts compared to both supervised and unsupervised baselines.
☆ Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Inducing-point-based sparse variational Gaussian processes have become the standard workhorse for scaling up GP models. Recent advances show that these methods can be improved by introducing a diagonal scaling matrix to the conditional posterior density given the inducing points. This paper first considers an extension that employs a block-diagonal structure for the scaling matrix, provably tightening the variational lower bound. We then revisit the unifying framework of sparse GPs based on Power Expectation Propagation (PEP) and show that it can leverage and benefit from the new structured approximate posteriors. Through extensive regression experiments, we show that the proposed block-diagonal approximation consistently performs similarly to or better than existing diagonal approximations while maintaining comparable computational costs. Furthermore, the new PEP framework with structured posteriors provides competitive performance across various power hyperparameter settings, offering practitioners flexible alternatives to standard variational approaches.
☆ Deep Reinforcement Learning-Based DRAM Equalizer Parameter Optimization Using Latent Representations
Equalizer parameter optimization for signal integrity in high-speed Dynamic Random Access Memory systems is crucial but often computationally demanding or model-reliant. This paper introduces a data-driven framework employing learned latent signal representations for efficient signal integrity evaluation, coupled with a model-free Advantage Actor-Critic reinforcement learning agent for parameter optimization. The latent representation captures vital signal integrity features, offering a fast alternative to direct eye diagram analysis during optimization, while the reinforcement learning agent derives optimal equalizer settings without explicit system models. Applied to industry-standard Dynamic Random Access Memory waveforms, the method achieved significant eye-opening window area improvements: 42.7\% for cascaded Continuous-Time Linear Equalizer and Decision Feedback Equalizer structures, and 36.8\% for Decision Feedback Equalizer-only configurations. These results demonstrate superior performance, computational efficiency, and robust generalization across diverse Dynamic Random Access Memory units compared to existing techniques. Core contributions include an efficient latent signal integrity metric for optimization, a robust model-free reinforcement learning strategy, and validated superior performance for complex equalizer architectures.
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms aim to compute a collision-free path, and many works focus on finding the optimal distance path. However, for some applications, a more suitable approach is to balance response time, safety of the paths, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of free configuration space. However, skeletonization algorithms are very resource-intensive, being primarily oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Auto-Encoder (DDAE) based on U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative process used by exact algorithms or the probabilistic sampling process. SkelUnet is trained and tested on a dataset consisting of 12,500 bi-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment for an Unmanned Aerial Vehicle (UAV) using 250 previously unseen maps, and assessed with various navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct a roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing times. These characteristics make this method particularly suitable for mobile service robots in structured environments.
☆ Transformer-based EEG Decoding: A Survey
Electroencephalography (EEG) is one of the most common signals used to capture the electrical activity of the brain, and the decoding of EEG, to acquire the user intents, has been at the forefront of brain-computer/machine interfaces (BCIs/BMIs) research. Compared to traditional EEG analysis methods with machine learning, the advent of deep learning approaches have gradually revolutionized the field by providing an end-to-end long-cascaded architecture, which can learn more discriminative features automatically. Among these, Transformer is renowned for its strong handling capability of sequential data by the attention mechanism, and the application of Transformers in various EEG processing tasks is increasingly prevalent. This article delves into a relevant survey, summarizing the latest application of Transformer models in EEG decoding since it appeared. The evolution of the model architecture is followed to sort and organize the related advances, in which we first elucidate the fundamentals of the Transformer that benefits EEG decoding and its direct application. Then, the common hybrid architectures by integrating basic Transformer with other deep learning techniques (convolutional/recurrent/graph/spiking neural netwo-rks, generative adversarial networks, diffusion models, etc.) is overviewed in detail. The research advances of applying the modified intrinsic structures of customized Transformer have also been introduced. Finally, the current challenges and future development prospects in this rapidly evolving field are discussed. This paper aims to help readers gain a clear understanding of the current state of Transformer applications in EEG decoding and to provide valuable insights for future research endeavors.
comment: Submitted to IEEE Journals
☆ Improving Constrained Generation in Language Models via Self-Distilled Twisted Sequential Monte Carlo
Recent work has framed constrained text generation with autoregressive language models as a probabilistic inference problem. Among these, Zhao et al. (2024) introduced a promising approach based on twisted Sequential Monte Carlo, which incorporates learned twist functions and twist-induced proposals to guide the generation process. However, in constrained generation settings where the target distribution concentrates on outputs that are unlikely under the base model, learning becomes challenging due to sparse and uninformative reward signals. We show that iteratively refining the base model through self-distillation alleviates this issue by making the model progressively more aligned with the target, leading to substantial gains in generation quality.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
☆ Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
Evaluating Frontier Models for Stealth and Situational Awareness
Recent work has demonstrated the plausibility of frontier AI models scheming -- knowingly and covertly pursuing an objective misaligned with its developer's intentions. Such behavior could be very hard to detect, and if present in future advanced systems, could pose severe loss of control risk. It is therefore important for AI developers to rule out harm from scheming prior to model deployment. In this paper, we present a suite of scheming reasoning evaluations measuring two types of reasoning capabilities that we believe are prerequisites for successful scheming: First, we propose five evaluations of ability to reason about and circumvent oversight (stealth). Second, we present eleven evaluations for measuring a model's ability to instrumentally reason about itself, its environment and its deployment (situational awareness). We demonstrate how these evaluations can be used as part of a scheming inability safety case: a model that does not succeed on these evaluations is almost certainly incapable of causing severe harm via scheming in real deployment. We run our evaluations on current frontier models and find that none of them show concerning levels of either situational awareness or stealth.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble CCS 2025
Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models and are widely used as tools for privacy assessment, auditing, and machine unlearning. While prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR - either by developing new methods to enhance these metrics or using them to evaluate privacy solutions - we found that it overlooks the disparities among different attacks. These disparities, both between distinct attack methods and between multiple instantiations of the same method, have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools. In this paper, we systematically investigate these disparities through a novel framework based on coverage and stability analysis. Extensive experiments reveal significant disparities in MIAs, their potential causes, and their broader implications for privacy evaluation. To address these challenges, we propose an ensemble framework with three distinct strategies to harness the strengths of state-of-the-art MIAs while accounting for their disparities. This framework not only enables the construction of more powerful attacks but also provides a more robust and comprehensive methodology for privacy evaluation.
comment: 22 pages, To appear at ACM CCS 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Interpreting Graph Inference with Skyline Explanations
Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNNs outputs are often hard to interpret comprehensively. Existing methods typically compromise to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-sided'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN output by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
♻ ☆ Orientation-Aware Sparse Tensor PCA for Efficient Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-art. When transform axes align with feature distribution patterns, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
♻ ☆ StructTransform: A Scalable Attack Surface for Safety-Aligned Large Language Models
In this work, we present a series of structure transformation attacks on LLM alignment, where we encode natural language intent using diverse syntax spaces, ranging from simple structure formats and basic query languages (e.g., SQL) to new novel spaces and syntaxes created entirely by LLMs. Our extensive evaluation shows that our simplest attacks can achieve close to a 90% success rate, even on strict LLMs (such as Claude 3.5 Sonnet) using SOTA alignment mechanisms. We improve the attack performance further by using an adaptive scheme that combines structure transformations along with existing content transformations, resulting in over 96% ASR with 0% refusals. To generalize our attacks, we explore numerous structure formats, including syntaxes purely generated by LLMs. Our results indicate that such novel syntaxes are easy to generate and result in a high ASR, suggesting that defending against our attacks is not a straightforward process. Finally, we develop a benchmark and evaluate existing safety-alignment defenses against it, showing that most of them fail with 100% ASR. Our results show that existing safety alignment mostly relies on token-level patterns without recognizing harmful concepts, highlighting and motivating the need for serious research efforts in this direction. As a case study, we demonstrate how attackers can use our attack to easily generate a sample malware and a corpus of fraudulent SMS messages, which perform well in bypassing detection.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Fading memory and the convolution theorem
Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analyzed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous similar characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces.
♻ ☆ Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Despite substantial progress in recent years, probabilistic solvers with adaptive step sizes can still not solve memory-demanding differential equations -- unless we care only about a single point in time (which is far too restrictive; we want the whole time series). Counterintuitively, the culprit is the adaptivity itself: Its unpredictable memory demands easily exceed our machine's capabilities, making our simulations fail unexpectedly and without warning. Still, dropping adaptivity would abandon years of progress, which can't be the answer. In this work, we solve this conundrum. We develop an adaptive probabilistic solver with fixed memory demands building on recent developments in robust state estimation. Switching to our method (i) eliminates memory issues for long time series, (ii) accelerates simulations by orders of magnitude through unlocking just-in-time compilation, and (iii) makes adaptive probabilistic solvers compatible with scientific computing in JAX.
♻ ☆ Flow Matching on Lie Groups
Flow Matching (FM) is a recent generative modelling technique: we aim to learn how to sample from distribution $\mathfrak{X}_1$ by flowing samples from some distribution $\mathfrak{X}_0$ that is easy to sample from. The key trick is that this flow field can be trained while conditioning on the end point in $\mathfrak{X}_1$: given an end point, simply move along a straight line segment to the end point (Lipman et al. 2022). However, straight line segments are only well-defined on Euclidean space. Consequently, Chen and Lipman (2023) generalised the method to FM on Riemannian manifolds, replacing line segments with geodesics or their spectral approximations. We take an alternative point of view: we generalise to FM on Lie groups by instead substituting exponential curves for line segments. This leads to a simple, intrinsic, and fast implementation for many matrix Lie groups, since the required Lie group operations (products, inverses, exponentials, logarithms) are simply given by the corresponding matrix operations. FM on Lie groups could then be used for generative modelling with data consisting of sets of features (in $\mathbb{R}^n$) and poses (in some Lie group), e.g. the latent codes of Equivariant Neural Fields (Wessels et al. 2025).
comment: Accepted in the 7th International Conference on Geometric Science of Information
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Higher-Order Singular-Value Derivatives of Rectangular Real Matrices
We present a theoretical framework for deriving the general $n$-th order Fr\'echet derivatives of singular values in real rectangular matrices, by leveraging reduced resolvent operators from Kato's analytic perturbation theory for self-adjoint operators. Deriving closed-form expressions for higher-order derivatives of singular values is notoriously challenging through standard matrix-analysis techniques. To overcome this, we treat a real rectangular matrix as a compact operator on a finite-dimensional Hilbert space, and embed the rectangular matrix into a block self-adjoint operator so that non-symmetric perturbations are captured. Applying Kato's asymptotic eigenvalue expansion to this construction, we obtain a general, closed-form expression for the infinitesimal $n$-th order spectral variations. Specializing to $n=2$ and deploying on a Kronecker-product representation with matrix convention yield the Hessian of a singular value, not found in literature. By bridging abstract operator-theoretic perturbation theory with matrices, our framework equips researchers with a practical toolkit for higher-order spectral sensitivity studies in random matrix applications (e.g., adversarial perturbation in deep learning).
comment: Adding authors; change title; change template
♻ ☆ Assessing Quantum Advantage for Gaussian Process Regression
Gaussian Process Regression is a well-known machine learning technique for which several quantum algorithms have been proposed. We show here that in a wide range of scenarios these algorithms show no exponential speedup. We achieve this by rigorously proving that the condition number of a kernel matrix scales at least linearly with the matrix size under general assumptions on the data and kernel. We additionally prove that the sparsity and Frobenius norm of a kernel matrix scale linearly under similar assumptions. The implications for the quantum algorithms runtime are independent of the complexity of loading classical data on a quantum computer and also apply to dequantised algorithms. We supplement our theoretical analysis with numerical verification for popular kernels in machine learning.
comment: 18 pages, 2 figures. Version 2 contains updated figures and a slightly revised discussion for additional clarity
♻ ☆ Ordinality in Discrete-level Question Difficulty Estimation: Introducing Balanced DRPS and OrderedLogitNN
Recent years have seen growing interest in Question Difficulty Estimation (QDE) using natural language processing techniques. Question difficulty is often represented using discrete levels, framing the task as ordinal regression due to the inherent ordering from easiest to hardest. However, the literature has neglected the ordinal nature of the task, relying on classification or discretized regression models, with specialized ordinal regression methods remaining unexplored. Furthermore, evaluation metrics are tightly coupled to the modeling paradigm, hindering cross-study comparability. While some metrics fail to account for the ordinal structure of difficulty levels, none adequately address class imbalance, resulting in biased performance assessments. This study addresses these limitations by benchmarking three types of model outputs -- discretized regression, classification, and ordinal regression -- using the balanced Discrete Ranked Probability Score (DRPS), a novel metric that jointly captures ordinality and class imbalance. In addition to using popular ordinal regression methods, we propose OrderedLogitNN, extending the ordered logit model from econometrics to neural networks. We fine-tune BERT on the RACE++ and ARC datasets and find that OrderedLogitNN performs considerably better on complex tasks. The balanced DRPS offers a robust and fair evaluation metric for discrete-level QDE, providing a principled foundation for future research.
comment: Published in the EvalLAC'25 workshop at AIED 2025
♻ ☆ A Square Peg in a Square Hole: Meta-Expert for Long-Tailed Semi-Supervised Learning ICML 2025
This paper studies the long-tailed semi-supervised learning (LTSSL) with distribution mismatch, where the class distribution of the labeled training data follows a long-tailed distribution and mismatches with that of the unlabeled training data. Most existing methods introduce auxiliary classifiers (experts) to model various unlabeled data distributions and produce pseudo-labels, but the expertises of various experts are not fully utilized. We observe that different experts are good at predicting different intervals of samples, e.g., long-tailed expert is skilled in samples located in the head interval and uniform expert excels in samples located in the medium interval. Therefore, we propose a dynamic expert assignment module that can estimate the class membership (i.e., head, medium, or tail class) of samples, and dynamically assigns suitable expert to each sample based on the estimated membership to produce high-quality pseudo-label in the training phase and produce prediction in the testing phase. We also theoretically reveal that integrating different experts' strengths will lead to a smaller generalization error bound. Moreover, we find that the deeper features are more biased toward the head class but with more discriminative ability, while the shallower features are less biased but also with less discriminative ability. We, therefore, propose a multi-depth feature fusion module to utilize different depth features to mitigate the model bias. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR-10-LT, STL-10-LT, and SVHN-LT datasets across various settings. The code is available at https://github.com/yaxinhou/Meta-Expert.
comment: The paper is accepted by ICML 2025
♻ ☆ Deep learning four decades of human migration
We present a novel and detailed dataset on origin-destination annual migration flows and stocks between 230 countries and regions, spanning the period from 1990 to the present. Our flow estimates are further disaggregated by country of birth, providing a comprehensive picture of migration over the last 35 years. The estimates are obtained by training a deep recurrent neural network to learn flow patterns from 18 covariates for all countries, including geographic, economic, cultural, societal, and political information. The recurrent architecture of the neural network means that the entire past can influence current migration patterns, allowing us to learn long-range temporal correlations. By training an ensemble of neural networks and additionally pushing uncertainty on the covariates through the trained network, we obtain confidence bounds for all our estimates, allowing researchers to pinpoint the geographic regions most in need of additional data collection. We validate our approach on various test sets of unseen data, demonstrating that it significantly outperforms traditional methods estimating five-year flows while delivering a significant increase in temporal resolution. The model is fully open source: all training data, neural network weights, and training code are made public alongside the migration estimates, providing a valuable resource for future studies of human migration.
♻ ☆ Self-Supervised Frameworks for Speaker Verification via Bootstrapped Positive Sampling
Recent developments in Self-Supervised Learning (SSL) have demonstrated significant potential for Speaker Verification (SV), but closing the performance gap with supervised systems remains an ongoing challenge. SSL frameworks rely on anchor-positive pairs, constructed from segments of the same audio utterance. Hence, positives have channel characteristics similar to those of their corresponding anchors, even with extensive data-augmentation. Therefore, this positive sampling strategy is a fundamental limitation as it encodes too much information regarding the recording source in the learned representations. This article introduces Self-Supervised Positive Sampling (SSPS), a bootstrapped technique for sampling appropriate and diverse positives in SSL frameworks for SV. SSPS samples positives close to their anchor in the representation space, assuming that these pseudo-positives belong to the same speaker identity but correspond to different recording conditions. This method consistently demonstrates improvements in SV performance on VoxCeleb benchmarks when applied to major SSL frameworks, including SimCLR, SwAV, VICReg, and DINO. Using SSPS, SimCLR and DINO achieve 2.57% and 2.53% EER on VoxCeleb1-O, respectively. SimCLR yields a 58% relative reduction in EER, getting comparable performance to DINO with a simpler training framework. Furthermore, SSPS lowers intra-class variance and reduces channel information in speaker representations while exhibiting greater robustness without data-augmentation.
comment: accepted for publication in IEEE TASLP
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ The Choice of Normalization Influences Shrinkage in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on binary features and show that their class balances (proportions of ones) directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance of the coefficient estimates. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 39 pages, 18 figures
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Learning Massive-scale Partial Correlation Networks in Clinical Multi-omics Studies with HP-ACCORD
Graphical model estimation from multi-omics data requires a balance between statistical estimation performance and computational scalability. We introduce a novel pseudolikelihood-based graphical model framework that reparameterizes the target precision matrix while preserving the sparsity pattern and estimates it by minimizing an $\ell_1$-penalized empirical risk based on a new loss function. The proposed estimator maintains estimation and selection consistency in various metrics under high-dimensional assumptions. The associated optimization problem allows for a provably fast computation algorithm using a novel operator-splitting approach and communication-avoiding distributed matrix multiplication. A high-performance computing implementation of our framework was tested using simulated data with up to one million variables, demonstrating complex dependency structures similar to those found in biological networks. Leveraging this scalability, we estimated a partial correlation network from a dual-omic liver cancer data set. The co-expression network estimated from the ultrahigh-dimensional data demonstrated superior specificity in prioritizing key transcription factors and co-activators by excluding the impact of epigenetic regulation, thereby highlighting the value of computational scalability in multi-omic data analysis.
comment: 25 pages, 6 figures, preprint
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Universal Collection of Euclidean Invariants between Pairs of Position-Orientations
Euclidean E(3) equivariant neural networks that employ scalar fields on position-orientation space M(3) have been effectively applied to tasks such as predicting molecular dynamics and properties. To perform equivariant convolutional-like operations in these architectures one needs Euclidean invariant kernels on M(3) x M(3). In practice, a handcrafted collection of invariants is selected, and this collection is then fed into multilayer perceptrons to parametrize the kernels. We rigorously describe an optimal collection of 4 smooth scalar invariants on the whole of M(3) x M(3). With optimal we mean that the collection is independent and universal, meaning that all invariants are pertinent, and any invariant kernel is a function of them. We evaluate two collections of invariants, one universal and one not, using the PONITA neural network architecture. Our experiments show that using a collection of invariants that is universal positively impacts the accuracy of PONITA significantly.
♻ ☆ Roto-Translation Invariant Metrics on Position-Orientation Space
Riemannian metrics on the position-orientation space M(3) that are roto-translation group SE(3) invariant play a key role in image analysis tasks like enhancement, denoising, and segmentation. These metrics enable roto-translation equivariant algorithms, with the associated Riemannian distance often used in implementation. However, computing the Riemannian distance is costly, which makes it unsuitable in situations where constant recomputation is needed. We propose the mav (minimal angular velocity) distance, defined as the Riemannian length of a geometrically meaningful curve, as a practical alternative. We see an application of the mav distance in geometric deep learning. Namely, neural networks architectures such as PONITA, relies on geometric invariants to create their roto-translation equivariant model. The mav distance offers a trainable invariant, with the parameters that determine the Riemannian metric acting as learnable weights. In this paper we: 1) classify and parametrize all SE(3) invariant metrics on M(3), 2) describes how to efficiently calculate the mav distance, and 3) investigate if including the mav distance within PONITA can positively impact its accuracy in predicting molecular properties.
♻ ☆ A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (\texttt{DANSur}) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around $10^{-4}$. Implemented in the \textsc{bilby} framework, we show they can be used for parameter estimation tasks.
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations
Increasing HPC cluster sizes and large-scale simulations that produce petabytes of data per run, create massive IO and storage challenges for analysis. Deep learning-based techniques, in particular, make use of these amounts of domain data to extract patterns that help build scientific understanding. Here, we demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework, circumventing the file system bottleneck. Data is transformed in transit, asynchronously to the simulation and the training of the model. With the presented workflow, data operations can be performed in common and easy-to-use programming languages, freeing the application user from adapting the application output routines. As a proof-of-concept we consider a GPU accelerated particle-in-cell (PIConGPU) simulation of the Kelvin- Helmholtz instability (KHI). We employ experience replay to avoid catastrophic forgetting in learning from this non-steady process in a continual manner. We detail challenges addressed while porting and scaling to Frontier exascale system.
comment: 12 pages, 9 figures, in 2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Milan, Italy, 2025
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation SIGGRAPH
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ Attention-based clustering
Transformers have emerged as a powerful neural network architecture capable of tackling a wide range of learning tasks. In this work, we provide a theoretical analysis of their ability to automatically extract structure from data in an unsupervised setting. In particular, we demonstrate their suitability for clustering when the input data is generated from a Gaussian mixture model. To this end, we study a simplified two-head attention layer and define a population risk whose minimization with unlabeled data drives the head parameters to align with the true mixture centroids. This phenomenon highlights the ability of attention-based layers to capture underlying distributional structure. We further examine an attention layer with key, query, and value matrices fixed to the identity, and show that, even without any trainable parameters, it can perform in-context quantization, revealing the surprising capacity of transformer-based methods to adapt dynamically to input-specific distributions.
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.
♻ ☆ Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations ICML
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.
comment: Accepted at ICML Workshop on Foundation Models for Structured Data
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
As modern networks grow increasingly complex--driven by diverse devices, encrypted protocols, and evolving threats--network traffic analysis has become critically important. Existing machine learning models often rely only on a single representation of packets or flows, limiting their ability to capture the contextual relationships essential for robust analysis. Furthermore, task-specific architectures for supervised, semi-supervised, and unsupervised learning lead to inefficiencies in adapting to varying data formats and security tasks. To address these gaps, we propose UniNet, a unified framework that introduces a novel multi-granular traffic representation (T-Matrix), integrating session, flow, and packet-level features to provide comprehensive contextual information. Combined with T-Attent, a lightweight attention-based model, UniNet efficiently learns latent embeddings for diverse security tasks. Extensive evaluations across four key network security and privacy problems--anomaly detection, attack classification, IoT device identification, and encrypted website fingerprinting--demonstrate UniNet's significant performance gain over state-of-the-art methods, achieving higher accuracy, lower false positive rates, and improved scalability. By addressing the limitations of single-level models and unifying traffic analysis paradigms, UniNet sets a new benchmark for modern network security.
comment: 16 pages,6 figures, 12 tables; accepted for publication in IEEE Transactions on Cognitive Communications and Networking, 2025
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ SecAlign: Defending Against Prompt Injection with Preference Optimization CCS 2025
Large language models (LLMs) are becoming increasingly prevalent in modern software systems, interfacing between the user and the Internet to assist with tasks that require advanced language understanding. To accomplish these tasks, the LLM often uses external data sources such as user documents, web retrieval, results from API calls, etc. This opens up new avenues for attackers to manipulate the LLM via prompt injection. Adversarial prompts can be injected into external data sources to override the system's intended instruction and instead execute a malicious instruction. To mitigate this vulnerability, we propose a new defense called SecAlign based on the technique of preference optimization. Our defense first constructs a preference dataset with prompt-injected inputs, secure outputs (ones that respond to the legitimate instruction), and insecure outputs (ones that respond to the injection). We then perform preference optimization on this dataset to teach the LLM to prefer the secure output over the insecure one. This provides the first known method that reduces the success rates of various prompt injections to <10%, even against attacks much more sophisticated than ones seen during training. This indicates our defense generalizes well against unknown and yet-to-come attacks. Also, SecAlign models are still practical with similar utility to the one before defensive training in our evaluations. Our code is at https://github.com/facebookresearch/SecAlign
comment: ACM CCS 2025. Key words: prompt injection defense, LLM security, LLM-integrated applications
♻ ☆ High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
This work presents an overview of the technical details behind a high performance reinforcement learning policy deployment with the Spot RL Researcher Development Kit for low level motor access on Boston Dynamics Spot. This represents the first public demonstration of an end to end end reinforcement learning policy deployed on Spot hardware with training code publicly available through Nvidia IsaacLab and deployment code available through Boston Dynamics. We utilize Wasserstein Distance and Maximum Mean Discrepancy to quantify the distributional dissimilarity of data collected on hardware and in simulation to measure our sim2real gap. We use these measures as a scoring function for the Covariance Matrix Adaptation Evolution Strategy to optimize simulated parameters that are unknown or difficult to measure from Spot. Our procedure for modeling and training produces high quality reinforcement learning policies capable of multiple gaits, including a flight phase. We deploy policies capable of over 5.2ms locomotion, more than triple Spots default controller maximum speed, robustness to slippery surfaces, disturbance rejection, and overall agility previously unseen on Spot. We detail our method and release our code to support future work on Spot with the low level API.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Generalization vs. Specialization under Concept Shift
Machine learning models are often brittle under distribution shift, i.e., when data distributions at test time differ from those during training. Understanding this failure mode is central to identifying and mitigating safety risks of mass adoption of machine learning. Here we analyze ridge regression under concept shift -- a form of distribution shift in which the input-label relationship changes at test time. We derive an exact expression for prediction risk in the thermodynamic limit. Our results reveal nontrivial effects of concept shift on generalization performance, including a phase transition between weak and strong concept shift regimes and nonmonotonic data dependence of test performance even when double descent is absent. Our theoretical results are in good agreement with experiments based on transformers pretrained to solve linear regression; under concept shift, too long context length can be detrimental to generalization performance of next token prediction. Finally, our experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
comment: 8 pages, 3 figures
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks
This work introduces Neural CRNs, a general-purpose chemical neural network framework that embeds learning directly into mass-action chemical reaction systems. Unlike prior approaches that chemically implement and compose discrete neural computations, Neural CRNs adopt an analog computing approach, where both forward and backward passes of learning are implemented as continuous-time evolutions of molecular concentrations. Such an analog formulation naturally aligns with the analog nature of chemical kinetics, yielding concise circuits and practicable reactions. We demonstrate this efficiency by constructing a streamlined supervised learning procedure executable in just two sequential stages. We then implement several learning circuits to demonstrate the framework's linear and nonlinear modeling capabilities and to validate its learning procedure. These circuits are implemented entirely using unimolecular and bimolecular reactions, avoiding the complexity of higher-order chemistries. In summary, Neural CRNs offer a compact, scalable, and autonomous framework for biochemical learning, opening new avenues for adaptive computing in synthetic biology, bioengineering, and biomedicine.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Implicit Counterfactual Data Augmentation for Robust Learning
Machine learning models are prone to capturing the spurious correlations between non-causal attributes and classes, with counterfactual data augmentation being a promising direction for breaking these spurious associations. However, generating counterfactual data explicitly poses a challenge, and incorporating augmented data into the training process decreases training efficiency. This study proposes an Implicit Counterfactual Data Augmentation (ICDA) method to remove spurious correlations and make stable predictions. Specifically, first, a novel sample-wise augmentation strategy is developed that generates semantically and counterfactually meaningful deep features with distinct augmentation strength for each sample. Second, we derive an easy-to-compute surrogate loss on the augmented feature set when the number of augmented samples becomes infinite. Third, two concrete schemes are proposed, including direct quantification and meta-learning, to derive the key parameters for the robust loss. In addition, ICDA is explained from a regularization perspective, revealing its capacity to improve intra-class compactness and augment margins at both class and sample levels. Extensive experiments have been conducted across various biased learning scenarios covering both image and text datasets, demonstrating that ICDA consistently enhances the generalization and robustness performance of popular networks.
comment: 46 pages, 12 figures
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
System/Control 21
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
☆ A formal specification of the desired software behaviour of the Princess Marijke lock complex
The Princess Marijke lock complex is a large lock and water-protection installation in the Netherlands between the river Rhine and the Amsterdam-Rijnkanaal -- a large waterway connecting the Rhine to the port of Amsterdam. The lock complex consists of two independent locks and a moveable flood-protection barrier. Ensuring safe control of the lock complex is of utmost importance to guarantee both flood-protection and reliable ship operations. This paper gives a precise, formal description of the software control of the lock complex in less than 400 lines of mCRL2 code. This description can act as a blueprint on how the software of this lock complex needs to be constructed. Moreover, using model checking, 53 software requirements are shown to be valid, ensuring that the formal description of the behaviour is correct with regard to these properties and is unlikely to contain mistakes and oversights.
☆ Integrating path-planning and control for robotic unicycles
This article focuses on integrating path-planning and control with specializing on the unique needs of robotic unicycles. A unicycle design is presented which is capable of accelerating/breaking and carrying out a variety of maneuvers. The proposed path-planning method segments the path into straight and curved path sections dedicated for accelerating/breaking and turning maneuvers, respectively. The curvature profiles of the curved sections are optimized while considering the control performance and the slipping limits of the wheel. The performance of the proposed integrated approach is demonstrated via numerical simulations.
☆ Online Convex Optimization for Coordinated Long-Term and Short-Term Isolated Microgrid Dispatch
This paper proposes a novel non-anticipatory long-short-term coordinated dispatch framework for isolated microgrid with hybrid short-long-duration energy storages (LDES). We introduce a convex hull approximation model for nonconvex LDES electrochemical dynamics, facilitating computational tractability and accuracy. To address temporal coupling in SoC dynamics and long-term contracts, we generate hindsight-optimal state-of-charge (SoC) trajectories of LDES and netloads for offline training. In the online stage, we employ kernel regression to dynamically update the SoC reference and propose an adaptive online convex optimization (OCO) algorithm with SoC reference tracking and expert tracking to mitigate myopia and enable adaptive step-size optimization. We rigorously prove that both long-term and short-term policies achieve sublinear regret bounds over time, which improves with more regression scenarios, stronger tracking penalties, and finer convex approximations. Simulation results show that the proposed method outperforms state-of-the-art methods, reducing costs by 73.4%, eliminating load loss via reference tracking, and achieving an additional 2.4% cost saving via the OCO algorithm. These benefits scale up with longer LDES durations, and the method demonstrates resilience to poor forecasts and unexpected system faults.
☆ Padé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Data
Purpose: The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad\'e Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research addresses the question: Can Pad\'e Approximant Neural Networks (Pad\'eNets) outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in diagnosing electrical and mechanical faults using vibration and acoustic data? Methods: We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad\'eNets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad\'eNet model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as Leaky ReLU. Results and Conclusion: Pad\'eNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad\'eNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.
comment: Submitted to the Journal of Vibration Engineering & Technologies
☆ Observer-Based Distributed Model Predictive Control for String-Stable Multi-vehicle Systems with Markovian Switching Topology
Switching communication topologies can cause instability in vehicle platoons, as vehicle information may be lost during the dynamic switching process. This highlights the need to design a controller capable of maintaining the stability of vehicle platoons under dynamically changing topologies. However, capturing the dynamic characteristics of switching topologies and obtaining complete vehicle information for controller design while ensuring stability remains a significant challenge. In this study, we propose an observer-based distributed model predictive control (DMPC) method for vehicle platoons under directed Markovian switching topologies. Considering the stochastic nature of the switching topologies, we model the directed switching communication topologies using a continuous-time Markov chain. To obtain the leader vehicle's information for controller design, we develop a fully distributed adaptive observer that can quickly adapt to the randomly switching topologies, ensuring that the observed information is not affected by the dynamic topology switches. Additionally, a sufficient condition is derived to guarantee the mean-square stability of the observer. Furthermore, we construct the DMPC terminal update law based on the observer and formulate a string stability constraint based on the observed information. Numerical simulations demonstrate that our method can reduce tracking errors while ensuring string stability.
comment: 8 pages,7 figures,conference
☆ A Data-Driven Prescribed-Time Control Framework via Koopman Operator and Adaptive Backstepping
Achieving rapid and time-deterministic stabilization for complex systems characterized by strong nonlinearities and parametric uncertainties presents a significant challenge. Traditional model-based control relies on precise system models, whereas purely data-driven methods often lack formal stability guarantees, limiting their applicability in safety-critical systems. This paper proposes a novel control framework that synergistically integrates data-driven modeling with model-based control. The framework first employs the Extended Dynamic Mode Decomposition with Control (EDMDc) to identify a high-dimensional Koopman linear model and quantify its bounded uncertainty from data. Subsequently, a novel Prescribed-Time Adaptive Backstepping (PTAB) controller is synthesized based on this data-driven model. The design leverages the structural advantages of Koopman linearization to systematically handle model errors and circumvent the "explosion of complexity" issue inherent in traditional backstepping. The proposed controller is validated through simulations on the classic Van der Pol oscillator. The results demonstrate that the controller can precisely stabilize the system states to a small neighborhood of the origin within a user-prescribed time, regardless of the initial conditions, while ensuring the boundedness of all closed-loop signals. This research successfully combines the flexibility of data-driven approaches with the rigor of Lyapunov-based analysis. It provides a high-performance control strategy with quantifiable performance and pre-assignable settling time for nonlinear systems, showcasing its great potential for controlling complex dynamics.
comment: 6pages,4figs,1tables
☆ Robust feedback-based quantum optimization: analysis of coherent control errors
The Feedback-based Algorithm for Quantum Optimization (FALQON) is a Lyapunov inspired quantum algorithm proposed to tackle combinatorial optimization problems. In this paper, we examine the robustness of FALQON against coherent control errors, a class of multiplicative errors that affect the control input. We show that the algorithm is asymptotically robust with respect to systematic errors, and we derive robustness bounds for independent errors. Finally, we propose a robust version of FALQON which minimizes a regularized Lyapunov function. Our theoretical results are supported through simulations.
☆ The Bias of Subspace-based Data-Driven Predictive Control
This paper quantifies and addresses the bias of subspace-based Data-Driven Predictive Control (DDPC) for linear, time-invariant (LTI) systems. The primary focus is the bias that arises when the training data is gathered with a feedback controller in closed-loop with the system. First, the closed-loop bias of Subspace Predictive Control is quantified using the training data innovations. Next, the bias of direct, subspace-based DDPC methods DeePC and $\gamma$-DDPC is shown to consist of two parts--the Subspace Bias, which arises from closed-loop data, and an Optimism Bias, which arises from DeePC/$\gamma$-DDPC's "optimistic" adjustment of the output trajectory. We show that, unlike subspace-based DDPC methods, Transient Predictive Control does not suffer from Subspace Bias or Optimism Bias. Double integrator experiments demonstrate that Subspace and Optimism Bias are responsible for poor reference tracking by the subspace-based DDPC methods.
☆ MISC: Minimal Intervention Shared Control with Guaranteed Safety under Non-Convex Constraints
Shared control combines human intention with autonomous decision-making, from low-level safety overrides to high-level task guidance, enabling systems that adapt to users while ensuring safety and performance. This enhances task effectiveness and user experience across domains such as assistive robotics, teleoperation, and autonomous driving. However, existing shared control methods, based on e.g. Model Predictive Control, Control Barrier Functions, or learning-based control, struggle with feasibility, scalability, or safety guarantees, particularly since the user input is unpredictable. To address these challenges, we propose an assistive controller framework based on Constrained Optimal Control Problem that incorporates an offline-computed Control Invariant Set, enabling online computation of control actions that ensure feasibility, strict constraint satisfaction, and minimal override of user intent. Moreover, the framework can accommodate structured class of non-convex constraints, which are common in real-world scenarios. We validate the approach through a large-scale user study with 66 participants--one of the most extensive in shared control research--using a computer game environment to assess task load, trust, and perceived control, in addition to performance. The results show consistent improvements across all these aspects without compromising safety and user intent.
comment: This work has been submitted to the IEEE for possible publication
☆ Green Ammonia: A Techno-Economic Supply Chain Optimization
Green ammonia is emerging as a strategic intermediary within green energy supply chains, serving effectively as both an industrial commodity and hydrogen carrier. This study provides a techno-economic analysis of green ammonia supply chains, comparing cost-effective pathways from global production to European consumers, and evaluates ammonia alongside alternative hydrogen carriers. Gaseous hydrogen consistently remains the most economical import option for Europe, though ammonia holds a narrowing cost advantage over liquid hydrogen (from 16 % in 2030 to 10 % by 2040). Competitive ammonia suppliers, notably Morocco, the United States, and the United Arab Emirates, benefit from low renewable energy costs, with significant price reductions expected by 2040, driven by falling costs for electricity, electrolysers, and conversion technologies. Optimal transport modes vary by consumer demand and distance: trucks are ideal for low demands at all distances, rail for medium ranges, and pipelines for high-demand scenarios. By 2040, ammonia will primarily serve direct-use applications, as hydrogen consumers increasingly shift to direct hydrogen supplies. Policymakers should prioritize pipeline infrastructure for hydrogen distribution, cautiously invest in ammonia's short- to medium-term infrastructure advantages, and limit long-term reliance on ammonia as a hydrogen carrier to mitigate stranded asset risks.
comment: GitHub incl. data and results is linked in the text
☆ Indoor thermal comfort management: A Bayesian machine-learning approach to data denoising and dynamics prediction of HVAC systems
The optimal management of a building's microclimate to satisfy the occupants' needs and objectives in terms of comfort, energy efficiency, and costs is particularly challenging. This complexity arises from the non-linear, time-dependent interactions among all the variables of the control problem and the changing internal and external constraints. Focusing on the accurate modeling of the indoor temperature, we propose a data-driven approach to address this challenge. We account for thermal inertia, non-linear effects, small perturbations of the indoor climate dynamics caused by ventilation and weather variations, as well as for the stochastic nature of the control system due to the observed noise in the input signal. Since the prohibitive cost of quality data acquisition and processing limits the implementation of data-driven approaches for real-life problems, we applied a method that merges several Bayesian machine learning and deep learning architectures that are suitable for predicting complex system dynamics, while relaxing the dataset quality requirements. Our framework includes a built-in deep Kalman filter, which makes it deployable even with low-accuracy temperature sensors. It achieves state-of-the-art performance, best performing with a 150-minute prediction horizon with an RMSE of 0.2455, an MAE of 0.162, and an $R^2$ of 0.926. The model's performance remains consistent even when exposed to highly noisy data. Finally, we show how our approach can be extended to other applications including demand response event duration prediction and equipment failure detection.
☆ Joint Radiation Power, Antenna Position, and Beamforming Optimization for Pinching-Antenna Systems with Motion Power Consumption
Pinching-antenna systems (PASS) have been recently proposed to improve the performance of wireless networks by reconfiguring both the large-scale and small-scale channel conditions. However, existing studies ignore the physical constraints of antenna placement and assume fixed antenna radiation power. To fill this research gap, this paper investigates the design of PASS taking into account the motion power consumption of pinching-antennas (PAs) and the impact of adjustable antenna radiation power. To that end, we minimize the average power consumption for a given quality-of-service (QoS) requirement, by jointly optimizing the antenna positions, antenna radiation power ratios, and transmit beamforming. To the best of the authors' knowledge, this is the first work to consider radiation power optimization in PASS, which provides an additional degree of freedom (DoF) for system design. The cases with both continuous and discrete antenna placement are considered, where the main challenge lies in the fact that the antenna positions affect both the magnitude and phase of the channel coefficients of PASS, making system optimization very challenging. To tackle the resulting unique obstacles, an alternating direction method of multipliers (ADMM)-based framework is proposed to solve the problem for continuous antenna movement, while its discrete counterpart is formulated as a mixed integer nonlinear programming (MINLP) problem and solved by the block coordinate descent (BCD) method. Simulation results validate the performance enhancement achieved by incorporating PA movement power assumption and adjustable radiation power into PASS design, while also demonstrating the efficiency of the proposed optimization framework. The benefits of PASS over conventional multiple-input multiple-output (MIMO) systems in mitigating the large-scale path loss and inter-user interference is also revealed.
comment: 13 pages
☆ Grid-Connected, Data-Driven Inverter Control, Theory to Hardware
Grid-connected inverter control is challenging to implement due to the difficulty of obtaining and maintaining an accurate grid model. Direct Data-Driven Predictive Control provides a model-free alternative to traditional model-based control methods. This paper describes how the recently-proposed Transient Predictive Control (TPC) can be used for real-world, plug-and-play inverter control. The following hypotheses were tested: 1) The TPC algorithm can be run online using standard hardware, and 2) TPC, which is derived using Linear Time-Invariant assumptions, is effective for grid-connected inverter control, which is a nonlinear and time-varying system. Experiments conducted on a two-converter benchtop setup and at the CoSES Laboratory on a 25 kVA converter connected to the Munich grid support these hypotheses.
☆ A Vehicle-in-the-Loop Simulator with AI-Powered Digital Twins for Testing Automated Driving Controllers
Simulators are useful tools for testing automated driving controllers. Vehicle-in-the-loop (ViL) tests and digital twins (DTs) are widely used simulation technologies to facilitate the smooth deployment of controllers to physical vehicles. However, conventional ViL tests rely on full-size vehicles, requiring large space and high expenses. Also, physical-model-based DT suffers from the reality gap caused by modeling imprecision. This paper develops a comprehensive and practical simulator for testing automated driving controllers enhanced by scaled physical cars and AI-powered DT models. The scaled cars allow for saving space and expenses of simulation tests. The AI-powered DT models ensure superior simulation fidelity. Moreover, the simulator integrates well with off-the-shelf software and control algorithms, making it easy to extend. We use a filtered control benchmark with formal safety guarantees to showcase the capability of the simulator in validating automated driving controllers. Experimental studies are performed to showcase the efficacy of the simulator, implying its great potential in validating control solutions for autonomous vehicles and intelligent traffic.
☆ Hybrid Satellite-Ground Deployments for Web3 DID: System Design and Performance Analysis
The emerging Web3 has great potential to provide worldwide decentralized services powered by global-range data-driven networks in the future. To ensure the security of Web3 services among diverse user entities, a decentralized identity (DID) system is essential. Especially, a user's access request to Web3 services can be treated as a DID transaction within the blockchain, executed through a consensus mechanism. However, a critical implementation issue arises in the current Web3, i.e., how to deploy network nodes to serve users on a global scale. To address this issue, emerging Low Earth Orbit (LEO) satellite communication systems, such as Starlink, offer a promising solution. With their global coverage and high reliability, these communication satellites can complement terrestrial networks as Web3 deployment infrastructures. In this case, this paper develops three hybrid satellite-ground modes to deploy the blockchain-enabled DID system for Web3 users. Three modes integrate ground nodes and satellites to provide flexible and continuous DID services for worldwide users. Meanwhile, to evaluate the effectiveness of the present hybrid deployment modes, we analyze the complete DID consensus performance of blockchain on three hybrid satellite-ground modes. Moreover, we conduct numerical and simulation experiments to verify the effectiveness of three hybrid satellite-ground modes. The impacts of various system parameters are thoroughly analyzed, providing valuable insights for implementing the worldwide Web3 DID system in real-world network environments.
☆ Beyond Interval MDPs: Tight and Efficient Abstractions of Stochastic Systems
This work addresses the general problem of control synthesis for continuous-space, discrete-time stochastic systems with probabilistic guarantees via finite abstractions. While established methods exist, they often trade off accuracy for tractability. We propose a unified abstraction framework that improves both the tightness of probabilistic guarantees and computational efficiency. First, we introduce multi-interval MDPs (MI-MDPs), a generalization of interval-valued MDPs (IMDPs), which allows multiple, possibly overlapping clusters of successor states. This results in tighter abstractions but with increased computational complexity. To mitigate this, we further propose a generalized form of MDPs with set-valued transition probabilities (SMDPs), which model transitions as a fixed probability to a state cluster, followed by a non-deterministic choice within the cluster, as a sound abstraction. We show that control synthesis for MI-MDPs reduces to robust dynamic programming via linear optimization, while SMDPs admit even more efficient synthesis algorithms that avoid linear programming altogether. Theoretically, we prove that, given the partitioning of the state and disturbance spaces, both MI-MDPs and SMDPs yield tighter probabilistic guarantees than IMDPs, and that SMDPs are tighter than MI-MDPs. Extensive experiments across several benchmarks validate our theoretical results and demonstrate that SMDPs achieve favorable trade-offs among tightness, memory usage, and computation time.
♻ ☆ Vertiport Terminal Scheduling and Throughput Analysis for Multiple Surface Directions SC 2023
Vertical Take-Off and Landing (VTOL) vehicles are gaining traction in both the delivery drone market and passenger transportation, driving the development of Urban Air Mobility (UAM) systems. UAM seeks to alleviate road congestion in dense urban areas by leveraging urban airspace. To handle UAM traffic, vertiport terminals (vertiminals) play a critical role in supporting VTOL vehicle operations such as take-offs, landings, taxiing, passenger boarding, refueling or charging, and maintenance. Efficient scheduling algorithms are essential to manage these operations and optimize vertiminal throughput while ensuring safety protocols. Unlike fixed-wing aircraft, which rely on runways for take-off and climbing in fixed directions, VTOL vehicles can utilize multiple surface directions for climbing and approach. This flexibility necessitates specialized scheduling methods. We propose a Mixed Integer Linear Program (MILP) formulation to holistically optimize vertiminal operations, including taxiing, climbing (or approach) using multiple directions, and turnaround at gates. The proposed MILP reduces delays by up to 50%. Additionally, we derive equations to compute upper bounds of the throughput capacity of vertiminals, considering its core elements: the TLOF pad system, taxiway system, and gate system. Our results demonstrate that the MILP achieves throughput levels consistent with the theoretical maximum derived from these equations. We also validate our framework through a case study using a well-established vertiminal topology from the literature. Our MILP can be used to find the optimal configuration of vertiminal. This dual approach, MILP and throughput analysis, allows for comprehensive capacity analysis without requiring simulations while enabling efficient scheduling through the MILP formulation.
comment: Extension of conference work "Integrated Taxiing and TLOF pad Scheduling Using Different Surface Directions with Fairness Analysis" published in ITSC 2023. DOI: https://doi.org/10.1109/ITSC57777.2023.10422484
♻ ☆ Bridging the Sim-to-real Gap: A Control Framework for Imitation Learning of Model Predictive Control
To address the computational challenges of Model Predictive Control (MPC), recent research has studied using imitation learning to approximate the MPC to a computationally efficient Deep Neural Network (DNN). However, this introduces a common issue in learning-based control, the simulation-to-reality (sim-to-real) gap, and Domain Randomization (DR) has been widely used to mitigate this gap by introducing perturbations in the source domain. However, DR inevitably leads to low data collection efficiency and an overly conservative control strategy. This study proposes a new control framework that addresses this issue from a control perspective inspired by Robust Tube MPC. The framework ensures the DNN operates in the same environment as the source domain, handling the sim-to-real gap with great data collection efficiency. Moreover, a parameter governor is introduced to address the DNN's inability to adapt to variations in model parameters, enabling the system to satisfy MPC constraints more robustly under changing conditions. The proposed framework was validated through two case studies: cart-pole control and vehicle collision avoidance control, which analyzed the principles of the proposed framework in detail and demonstrated its application to a vehicle control case.
♻ ☆ Vibration-based damage detection of a trainer jet via multiple input tangential interpolation
Vibration-based damage detection relies on identifying modal parameters, such as natural frequencies and mode shapes, to be used as structural integrity indicators. However, traditional comparisons of these parameters are often ambiguous in complex systems, complicating damage detection and assessment. The modified total modal assurance criterion (MTMAC), a metric well-known in the field of finite element model updating, is extended to address this challenge and is proposed as a metric for damage identification and severity assessment. To support the requirement for precise and robust modal identification of Structural Health Monitoring (SHM), the improved Loewner Framework (iLF), known for its reliability and computational performance, is pioneeringly employed within SHM. Since the MTMAC is proposed solely as a damage identification and severity assessment metric, the coordinate modal assurance criterion (COMAC), also a well-established tool, but for damage localisation using mode shapes, is used for completeness. The iLF SHM capabilities are validated through comparisons with traditional methods, including least-squares complex exponential (LSCE) and stochastic subspace identification with canonical variate analysis (SSI-CVA) on a numerical case study of a cantilever beam. Furthermore, the MTMAC is validated against the traditional vibration-based approach, which involves directly comparing natural frequencies and mode shapes. Finally, an experimental dataset from a BAE Systems Hawk T1A trainer jet ground vibration tests is used to demonstrate the iLF and MTMAC capabilities on real-life, real-size SHM problem, showing their effectiveness in detecting and assessing damage.
♻ ☆ Deep-Reinforcement-Learning-Based Adaptive State-Feedback Control for Inter-Area Oscillation Damping with Continuous Eigenvalue Configurations
Controlling inter-area oscillation (IAO) across wide areas is crucial for the stability of modern power systems. Recent advances in deep learning, combined with the extensive deployment of phasor measurement units (PMUs) and generator sensors, have catalyzed the development of data-driven IAO damping controllers. In this paper, a novel IAO damping control framework is presented by modeling the control problem as a Markov Decision Process (MDP) and solving it through deep reinforcement learning (DRL). The DRL-based controller is trained in the state space with continuous eigenvalue configurations. To optimize control performance and cost-efficiency, only a subset of generators, identified by global participation factors, are selected for control. In addition, a switching control strategy (SCS) is introduced that effectively integrates the DRL-based controller with power system stabilizers (PSSs) to enhance overall performance. The simulation results on the IEEE 39-bus New England power system show that the proposed method outperforms two benchmark methods regarding the transient response. The DRL-based controller trained on the linear state-space environment can be directly tested in the nonlinear differential-algebraic environment. The robustness of the proposed method against communication delays has been thoroughly investigated.
comment: Accepted by CSEE Journal of Power and Energy Systems in Jul. 2024
Robotics 52
AC-DiT: Adaptive Coordination Diffusion Transformer for Mobile Manipulation
Recently, mobile manipulation has attracted increasing attention for enabling language-conditioned robotic control in household tasks. However, existing methods still face challenges in coordinating mobile base and manipulator, primarily due to two limitations. On the one hand, they fail to explicitly model the influence of the mobile base on manipulator control, which easily leads to error accumulation under high degrees of freedom. On the other hand, they treat the entire mobile manipulation process with the same visual observation modality (e.g., either all 2D or all 3D), overlooking the distinct multimodal perception requirements at different stages during mobile manipulation. To address this, we propose the Adaptive Coordination Diffusion Transformer (AC-DiT), which enhances mobile base and manipulator coordination for end-to-end mobile manipulation. First, since the motion of the mobile base directly influences the manipulator's actions, we introduce a mobility-to-body conditioning mechanism that guides the model to first extract base motion representations, which are then used as context prior for predicting whole-body actions. This enables whole-body control that accounts for the potential impact of the mobile base's motion. Second, to meet the perception requirements at different stages of mobile manipulation, we design a perception-aware multimodal conditioning strategy that dynamically adjusts the fusion weights between various 2D visual images and 3D point clouds, yielding visual features tailored to the current perceptual needs. This allows the model to, for example, adaptively rely more on 2D inputs when semantic information is crucial for action prediction, while placing greater emphasis on 3D geometric information when precise spatial understanding is required. We validate AC-DiT through extensive experiments on both simulated and real-world mobile manipulation tasks.
☆ Large Language Model-Driven Closed-Loop UAV Operation with Semantic Observations
Large Language Models (LLMs) have revolutionized robotic autonomy, including Unmanned Aerial Vehicles (UAVs). Recent studies have demonstrated the potential of LLMs for translating human instructions into executable control code for UAV operations. However, LLMs still face challenges from logical reasoning and complex decision-making, leading to concerns about the reliability of LLM-driven UAV operations. In this paper, we propose a LLM-driven closed-loop control framework that enables reliable UAV operations powered by effective feedback and refinement using two LLM modules, i.e., a Code Generator and an Evaluator. Our framework transforms numerical state observations from UAV operations into natural language trajectory descriptions to enhance the evaluator LLM's understanding of UAV dynamics for precise feedback generation. Our framework also enables a simulation-based refinement process, and hence eliminates the risks to physical UAVs caused by incorrect code execution during the refinement. Extensive experiments on UAV control tasks with different complexities are conducted. The experimental results show that our framework can achieve reliable UAV operations using LLMs, which significantly outperforms baseline approaches in terms of success rate and completeness with the increase of task complexity.
comment: 10 pages
☆ A Survey on Vision-Language-Action Models: An Action Tokenization Perspective
The remarkable advancements of vision and language foundation models in multimodal understanding, reasoning, and generation has sparked growing efforts to extend such intelligence to the physical world, fueling the flourishing of vision-language-action (VLA) models. Despite seemingly diverse approaches, we observe that current VLA models can be unified under a single framework: vision and language inputs are processed by a series of VLA modules, producing a chain of \textit{action tokens} that progressively encode more grounded and actionable information, ultimately generating executable actions. We further determine that the primary design choice distinguishing VLA models lies in how action tokens are formulated, which can be categorized into language description, code, affordance, trajectory, goal state, latent representation, raw action, and reasoning. However, there remains a lack of comprehensive understanding regarding action tokens, significantly impeding effective VLA development and obscuring future directions. Therefore, this survey aims to categorize and interpret existing VLA research through the lens of action tokenization, distill the strengths and limitations of each token type, and identify areas for improvement. Through this systematic review and analysis, we offer a synthesized outlook on the broader evolution of VLA models, highlight underexplored yet promising directions, and contribute guidance for future research, hoping to bring the field closer to general-purpose intelligence.
comment: 70 pages, 5 figures
☆ TypeTele: Releasing Dexterity in Teleoperation by Dexterous Manipulation Types
Dexterous teleoperation plays a crucial role in robotic manipulation for real-world data collection and remote robot control. Previous dexterous teleoperation mostly relies on hand retargeting to closely mimic human hand postures. However, these approaches may fail to fully leverage the inherent dexterity of dexterous hands, which can execute unique actions through their structural advantages compared to human hands. To address this limitation, we propose TypeTele, a type-guided dexterous teleoperation system, which enables dexterous hands to perform actions that are not constrained by human motion patterns. This is achieved by introducing dexterous manipulation types into the teleoperation system, allowing operators to employ appropriate types to complete specific tasks. To support this system, we build an extensible dexterous manipulation type library to cover comprehensive dexterous postures used in manipulation tasks. During teleoperation, we employ a MLLM (Multi-modality Large Language Model)-assisted type retrieval module to identify the most suitable manipulation type based on the specific task and operator commands. Extensive experiments of real-world teleoperation and imitation learning demonstrate that the incorporation of manipulation types significantly takes full advantage of the dexterous robot's ability to perform diverse and complex tasks with higher success rates.
comment: Project Page: https://isee-laboratory.github.io/TypeTele
☆ MoIRA: Modular Instruction Routing Architecture for Multi-Task Robotics
Mixture-of-Experts (MoE) approaches have recently gained traction in robotics applications due to their ability to dynamically allocate computational resources and specialize sub-networks for distinct tasks or environmental contexts, enabling more efficient decision-making. Such systems often comprise sparsely activated experts combined under a single monolithic architecture and require a well-configured internal routing mechanism, which does not allow for selective low-level expert and router customization and requires additional training. We propose MoIRA, an architecture-agnostic modular MoE framework designed to coordinate existing experts with an external text-based router. MoIRA incorporates two zero-shot routing options: embedding-based similarity and prompt-driven language model inference. In our experiments, we choose large Vision-Language-Action models, gr00t-N1 and $\pi_0$, as the underlying experts, and train low-rank adapters for low-overhead inference. We evaluate MoIRA on various GR1 Humanoid tasks and LIBERO Spatial and Goal benchmarks, where it consistently outperforms generalist models and competes with other MoE pipelines. Additionally, we analyse the robustness of the proposed approach to the variations of the instructions. While relying solely on textual descriptions of tasks and experts, MoIRA demonstrates the practical viability of modular deployment with precise, low-effort routing and provides an alternative, scalable foundation for future multi-expert robotic systems.
comment: Preprint of a manuscript submitted for peer review
☆ TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.
comment: Preprint of a manuscript submitted for peer review
☆ Towards Design and Development of a Concentric Tube Steerable Drilling Robot for Creating S-shape Tunnels for Pelvic Fixation Procedures
Current pelvic fixation techniques rely on rigid drilling tools, which inherently constrain the placement of rigid medical screws in the complex anatomy of pelvis. These constraints prevent medical screws from following anatomically optimal pathways and force clinicians to fixate screws in linear trajectories. This suboptimal approach, combined with the unnatural placement of the excessively long screws, lead to complications such as screw misplacement, extended surgery times, and increased radiation exposure due to repeated X-ray images taken ensure to safety of procedure. To address these challenges, in this paper, we present the design and development of a unique 4 degree-of-freedom (DoF) pelvic concentric tube steerable drilling robot (pelvic CT-SDR). The pelvic CT-SDR is capable of creating long S-shaped drilling trajectories that follow the natural curvatures of the pelvic anatomy. The performance of the pelvic CT-SDR was thoroughly evaluated through several S-shape drilling experiments in simulated bone phantoms.
☆ S3D: A Spatial Steerable Surgical Drilling Framework for Robotic Spinal Fixation Procedures
In this paper, we introduce S3D: A Spatial Steerable Surgical Drilling Framework for Robotic Spinal Fixation Procedures. S3D is designed to enable realistic steerable drilling while accounting for the anatomical constraints associated with vertebral access in spinal fixation (SF) procedures. To achieve this, we first enhanced our previously designed concentric tube Steerable Drilling Robot (CT-SDR) to facilitate steerable drilling across all vertebral levels of the spinal column. Additionally, we propose a four-Phase calibration, registration, and navigation procedure to perform realistic SF procedures on a spine holder phantom by integrating the CT-SDR with a seven-degree-of-freedom robotic manipulator. The functionality of this framework is validated through planar and out-of-plane steerable drilling experiments in vertebral phantoms.
☆ Augmented Bridge Spinal Fixation: A New Concept for Addressing Pedicle Screw Pullout via a Steerable Drilling Robot and Flexible Pedicle Screws
To address the screw loosening and pullout limitations of rigid pedicle screws in spinal fixation procedures, and to leverage our recently developed Concentric Tube Steerable Drilling Robot (CT-SDR) and Flexible Pedicle Screw (FPS), in this paper, we introduce the concept of Augmented Bridge Spinal Fixation (AB-SF). In this concept, two connecting J-shape tunnels are first drilled through pedicles of vertebra using the CT-SDR. Next, two FPSs are passed through this tunnel and bone cement is then injected through the cannulated region of the FPS to form an augmented bridge between two pedicles and reinforce strength of the fixated spine. To experimentally analyze and study the feasibility of AB-SF technique, we first used our robotic system (i.e., a CT-SDR integrated with a robotic arm) to create two different fixation scenarios in which two J-shape tunnels, forming a bridge, were drilled at different depth of a vertebral phantom. Next, we implanted two FPSs within the drilled tunnels and then successfully simulated the bone cement augmentation process.
☆ SE(3)-Equivariant Diffusion Policy in Spherical Fourier Space ICML 2025
Diffusion Policies are effective at learning closed-loop manipulation policies from human demonstrations but generalize poorly to novel arrangements of objects in 3D space, hurting real-world performance. To address this issue, we propose Spherical Diffusion Policy (SDP), an SE(3) equivariant diffusion policy that adapts trajectories according to 3D transformations of the scene. Such equivariance is achieved by embedding the states, actions, and the denoising process in spherical Fourier space. Additionally, we employ novel spherical FiLM layers to condition the action denoising process equivariantly on the scene embeddings. Lastly, we propose a spherical denoising temporal U-net that achieves spatiotemporal equivariance with computational efficiency. In the end, SDP is end-to-end SE(3) equivariant, allowing robust generalization across transformed 3D scenes. SDP demonstrates a large performance improvement over strong baselines in 20 simulation tasks and 5 physical robot tasks including single-arm and bi-manual embodiments. Code is available at https://github.com/amazon-science/Spherical_Diffusion_Policy.
comment: Accepted at ICML 2025
☆ Efficient Collision Detection for Long and Slender Robotic Links in Euclidean Distance Fields: Application to a Forestry Crane IROS 2025
Collision-free motion planning in complex outdoor environments relies heavily on perceiving the surroundings through exteroceptive sensors. A widely used approach represents the environment as a voxelized Euclidean distance field, where robots are typically approximated by spheres. However, for large-scale manipulators such as forestry cranes, which feature long and slender links, this conventional spherical approximation becomes inefficient and inaccurate. This work presents a novel collision detection algorithm specifically designed to exploit the elongated structure of such manipulators, significantly enhancing the computational efficiency of motion planning algorithms. Unlike traditional sphere decomposition methods, our approach not only improves computational efficiency but also naturally eliminates the need to fine-tune the approximation accuracy as an additional parameter. We validate the algorithm's effectiveness using real-world LiDAR data from a forestry crane application, as well as simulated environment data.
comment: Accepted at IROS 2025
☆ An RRT* algorithm based on Riemannian metric model for optimal path planning
This paper presents a Riemannian metric-based model to solve the optimal path planning problem on two-dimensional smooth submanifolds in high-dimensional space. Our model is based on constructing a new Riemannian metric on a two-dimensional projection plane, which is induced by the high-dimensional Euclidean metric on two-dimensional smooth submanifold and reflects the environmental information of the robot. The optimal path planning problem in high-dimensional space is therefore transformed into a geometric problem on the two-dimensional plane with new Riemannian metric. Based on the new Riemannian metric, we proposed an incremental algorithm RRT*-R on the projection plane. The experimental results show that the proposed algorithm is suitable for scenarios with uneven fields in multiple dimensions. The proposed algorithm can help the robot to effectively avoid areas with drastic changes in height, ground resistance and other environmental factors. More importantly, the RRT*-R algorithm shows better smoothness and optimization properties compared with the original RRT* algorithm using Euclidean distance in high-dimensional workspace. The length of the entire path by RRT*-R is a good approximation of the theoretical minimum geodesic distance on projection plane.
comment: 27 pages
☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In a large study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extend. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
☆ Time-Varying Coverage Control: A Distributed Tracker-Planner MPC Framework
Time-varying coverage control addresses the challenge of coordinating multiple agents covering an environment where regions of interest change over time. This problem has broad applications, including the deployment of autonomous taxis and coordination in search and rescue operations. The achievement of effective coverage is complicated by the presence of time-varying density functions, nonlinear agent dynamics, and stringent system and safety constraints. In this paper, we present a distributed multi-agent control framework for time-varying coverage under nonlinear constrained dynamics. Our approach integrates a reference trajectory planner and a tracking model predictive control (MPC) scheme, which operate at different frequencies within a multi-rate framework. For periodic density functions, we demonstrate closed-loop convergence to an optimal configuration of trajectories and provide formal guarantees regarding constraint satisfaction, collision avoidance, and recursive feasibility. Additionally, we propose an efficient algorithm capable of handling nonperiodic density functions, making the approach suitable for practical applications. Finally, we validate our method through hardware experiments using a fleet of four miniature race cars.
☆ Self-Closing Suction Grippers for Industrial Grasping via Form-Flexible Design
Shape-morphing robots have shown benefits in industrial grasping. We propose form-flexible grippers for adaptive grasping. The design is based on the hybrid jamming and suction mechanism, which deforms to handle objects that vary significantly in size from the aperture, including both larger and smaller parts. Compared with traditional grippers, the gripper achieves self-closing to form an airtight seal. Under a vacuum, a wide range of grasping is realized through the passive morphing mechanism at the interface that harmonizes pressure and flow rate. This hybrid gripper showcases the capability to securely grasp an egg, as small as 54.5% of its aperture, while achieving a maximum load-to-mass ratio of 94.3.
comment: This manuscript has been submitted for potential consideration at IEEE publication venues
Dynamic System Model Generation for Online Fault Detection and Diagnosis of Robotic Systems
With the rapid development of more complex robots, Fault Detection and Diagnosis (FDD) becomes increasingly harder. Especially the need for predetermined models and historic data is problematic because they do not encompass the dynamic and fast-changing nature of such systems. To this end, we propose a concept that actively generates a dynamic system model at runtime and utilizes it to locate root causes. The goal is to be applicable to all kinds of robotic systems that share a similar software design. Additionally, it should exhibit minimal overhead and enhance independence from expert attention.
comment: Accepted for publication in Ada User Journal
☆ BioMARS: A Multi-Agent Robotic System for Autonomous Biological Experiments
Large language models (LLMs) and vision-language models (VLMs) have the potential to transform biological research by enabling autonomous experimentation. Yet, their application remains constrained by rigid protocol design, limited adaptability to dynamic lab conditions, inadequate error handling, and high operational complexity. Here we introduce BioMARS (Biological Multi-Agent Robotic System), an intelligent platform that integrates LLMs, VLMs, and modular robotics to autonomously design, plan, and execute biological experiments. BioMARS uses a hierarchical architecture: the Biologist Agent synthesizes protocols via retrieval-augmented generation; the Technician Agent translates them into executable robotic pseudo-code; and the Inspector Agent ensures procedural integrity through multimodal perception and anomaly detection. The system autonomously conducts cell passaging and culture tasks, matching or exceeding manual performance in viability, consistency, and morphological integrity. It also supports context-aware optimization, outperforming conventional strategies in differentiating retinal pigment epithelial cells. A web interface enables real-time human-AI collaboration, while a modular backend allows scalable integration with laboratory hardware. These results highlight the feasibility of generalizable, AI-driven laboratory automation and the transformative role of language-based reasoning in biological research.
☆ Quantum-Assisted Automatic Path-Planning for Robotic Quality Inspection in Industry 4.0
This work explores the application of hybrid quantum-classical algorithms to optimize robotic inspection trajectories derived from Computer-Aided Design (CAD) models in industrial settings. By modeling the task as a 3D variant of the Traveling Salesman Problem, incorporating incomplete graphs and open-route constraints, this study evaluates the performance of two D-Wave-based solvers against classical methods such as GUROBI and Google OR-Tools. Results across five real-world cases demonstrate competitive solution quality with significantly reduced computation times, highlighting the potential of quantum approaches in automation under Industry 4.0.
comment: 2 pages, 1 figure, paper accepted for presentation at the IEEE International Conference on Quantum Computing and Engineering (QCE)
☆ Approximation-free Control of Unknown Euler-Lagrangian Systems under Input Constraints
In this paper, we present a novel funnel-based tracking control algorithm for robotic systems with unknown dynamics and prescribed input constraints. The Euler-Lagrange formulation, a common modeling approach for robotic systems, has been adopted in this study to address the trade-off between performance and actuator safety. We establish feasibility conditions that ensure tracking errors evolve within predefined funnel bounds while maintaining bounded control efforts, a crucial consideration for robots with limited actuation capabilities. We propose two approximation-free control strategies for scenarios where these conditions are violated: one actively corrects the error, and the other stops further deviation. Finally, we demonstrate the robust performance and safety of the approach through simulations and experimental validations. This work represents a significant advancement in funnel-based control, enhancing its applicability to real-world robotics systems with input constraints.
☆ TriVLA: A Unified Triple-System-Based Unified Vision-Language-Action Model for General Robot Control
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods design a specific architecture like dual-system to leverage large-scale pretrained knowledge, they tend to capture static information, often neglecting the dynamic aspects vital for embodied tasks. To this end, we propose TriVLA, a unified Vision-Language-Action model with a triple-system architecture for general robot control. The vision-language module (System 2) interprets the environment through vision and language instructions. The dynamics perception module (System 3) inherently produces visual representations that encompass both current static information and predicted future dynamics, thereby providing valuable guidance for policy learning. TriVLA utilizes pre-trained VLM model and fine-tunes pre-trained video foundation model on robot datasets along with internet human manipulation data. The subsequent policy learning module (System 1) generates fluid motor actions in real time. Experimental evaluation demonstrates that TriVLA operates at approximately 36 Hz and surpasses state-of-the-art imitation learning baselines on standard simulation benchmarks as well as challenging real-world manipulation tasks.
☆ RALLY: Role-Adaptive LLM-Driven Yoked Navigation for Agentic UAV Swarms
Intelligent control of Unmanned Aerial Vehicles (UAVs) swarms has emerged as a critical research focus, and it typically requires the swarm to navigate effectively while avoiding obstacles and achieving continuous coverage over multiple mission targets. Although traditional Multi-Agent Reinforcement Learning (MARL) approaches offer dynamic adaptability, they are hindered by the semantic gap in numerical communication and the rigidity of homogeneous role structures, resulting in poor generalization and limited task scalability. Recent advances in Large Language Model (LLM)-based control frameworks demonstrate strong semantic reasoning capabilities by leveraging extensive prior knowledge. However, due to the lack of online learning and over-reliance on static priors, these works often struggle with effective exploration, leading to reduced individual potential and overall system performance. To address these limitations, we propose a Role-Adaptive LLM-Driven Yoked navigation algorithm RALLY. Specifically, we first develop an LLM-driven semantic decision framework that uses structured natural language for efficient semantic communication and collaborative reasoning. Afterward, we introduce a dynamic role-heterogeneity mechanism for adaptive role switching and personalized decision-making. Furthermore, we propose a Role-value Mixing Network (RMIX)-based assignment strategy that integrates LLM offline priors with MARL online policies to enable semi-offline training of role selection strategies. Experiments in the Multi-Agent Particle Environment (MPE) environment and a Software-In-The-Loop (SITL) platform demonstrate that RALLY outperforms conventional approaches in terms of task coverage, convergence speed, and generalization, highlighting its strong potential for collaborative navigation in agentic multi-UAV systems.
☆ Cooperative Target Capture in 3D Engagements over Switched Dynamic Graphs
This paper presents a leaderless cooperative guidance strategy for simultaneous time-constrained interception of a stationary target when the interceptors exchange information over switched dynamic graphs. We specifically focus on scenarios when the interceptors lack radial acceleration capabilities, relying solely on their lateral acceleration components. This consideration aligns with their inherent kinematic turn constraints. The proposed strategy explicitly addresses the complexities of coupled 3D engagements, thereby mitigating performance degradation that typically arises when the pitch and yaw channels are decoupled into two separate, mutually orthogonal planar engagements. Moreover, our formulation incorporates modeling uncertainties associated with the time-to-go estimation into the derivation of cooperative guidance commands to ensure robustness against inaccuracies in dynamic engagement scenarios. To optimize control efficiency, we analytically derive the lateral acceleration components in the orthogonal pitch and yaw channels by solving an instantaneous optimization problem, subject to an affine constraint. We show that the proposed cooperative guidance commands guarantee consensus in time-to-go values within a predefined time, which can be prescribed as a design parameter, regardless of the interceptors' initial configurations. We provide simulations to attest to the efficacy of the proposed method.
☆ LANet: A Lane Boundaries-Aware Approach For Robust Trajectory Prediction
Accurate motion forecasting is critical for safe and efficient autonomous driving, enabling vehicles to predict future trajectories and make informed decisions in complex traffic scenarios. Most of the current designs of motion prediction models are based on the major representation of lane centerlines, which limits their capability to capture critical road environments and traffic rules and constraints. In this work, we propose an enhanced motion forecasting model informed by multiple vector map elements, including lane boundaries and road edges, that facilitates a richer and more complete representation of driving environments. An effective feature fusion strategy is developed to merge information in different vector map components, where the model learns holistic information on road structures and their interactions with agents. Since encoding more information about the road environment increases memory usage and is computationally expensive, we developed an effective pruning mechanism that filters the most relevant map connections to the target agent, ensuring computational efficiency while maintaining essential spatial and semantic relationships for accurate trajectory prediction. Overcoming the limitations of lane centerline-based models, our method provides a more informative and efficient representation of the driving environment and advances the state of the art for autonomous vehicle motion forecasting. We verify our approach with extensive experiments on the Argoverse 2 motion forecasting dataset, where our method maintains competitiveness on AV2 while achieving improved performance. Index Terms-Autonomous driving, trajectory prediction, vector map elements, road topology, connection pruning, Argoverse 2.
comment: Accepted at the 17th IEEE International Conference on Advanced Computational Intelligence (ICACI 2025)
☆ Optimal Dispersion Under Asynchrony
We study the dispersion problem in anonymous port-labeled graphs: $k \leq n$ mobile agents, each with a unique ID and initially located arbitrarily on the nodes of an $n$-node graph with maximum degree $\Delta$, must autonomously relocate so that no node hosts more than one agent. Dispersion serves as a fundamental task in distributed computing of mobile agents, and its complexity stems from key challenges in local coordination under anonymity and limited memory. The goal is to minimize both the time to achieve dispersion and the memory required per agent. It is known that any algorithm requires $\Omega(k)$ time in the worst case, and $\Omega(\log k)$ bits of memory per agent. A recent result [SPAA'25] gives an optimal $O(k)$-time algorithm in the synchronous setting and an $O(k \log k)$-time algorithm in the asynchronous setting, both using $O(\log(k+\Delta))$ bits. In this paper, we close the complexity gap in the asynchronous setting by presenting the first dispersion algorithm that runs in optimal $O(k)$ time using $O(\log(k+\Delta))$ bits of memory per agent. Our solution is based on a novel technique we develop in this paper that constructs a port-one tree in anonymous graphs, which may be of independent interest.
comment: 35 pages, 5 figures, 2 tables, and 6 pseudocodes
☆ VLAD: A VLM-Augmented Autonomous Driving Framework with Hierarchical Planning and Interpretable Decision Process SC
Recent advancements in open-source Visual Language Models (VLMs) such as LLaVA, Qwen-VL, and Llama have catalyzed extensive research on their integration with diverse systems. The internet-scale general knowledge encapsulated within these models presents significant opportunities for enhancing autonomous driving perception, prediction, and planning capabilities. In this paper we propose VLAD, a vision-language autonomous driving model, which integrates a fine-tuned VLM with VAD, a state-of-the-art end-to-end system. We implement a specialized fine-tuning approach using custom question-answer datasets designed specifically to improve the spatial reasoning capabilities of the model. The enhanced VLM generates high-level navigational commands that VAD subsequently processes to guide vehicle operation. Additionally, our system produces interpretable natural language explanations of driving decisions, thereby increasing transparency and trustworthiness of the traditionally black-box end-to-end architecture. Comprehensive evaluation on the real-world nuScenes dataset demonstrates that our integrated system reduces average collision rates by 31.82% compared to baseline methodologies, establishing a new benchmark for VLM-augmented autonomous driving systems.
comment: 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC)
☆ LLM-based Realistic Safety-Critical Driving Video Generation
Designing diverse and safety-critical driving scenarios is essential for evaluating autonomous driving systems. In this paper, we propose a novel framework that leverages Large Language Models (LLMs) for few-shot code generation to automatically synthesize driving scenarios within the CARLA simulator, which has flexibility in scenario scripting, efficient code-based control of traffic participants, and enforcement of realistic physical dynamics. Given a few example prompts and code samples, the LLM generates safety-critical scenario scripts that specify the behavior and placement of traffic participants, with a particular focus on collision events. To bridge the gap between simulation and real-world appearance, we integrate a video generation pipeline using Cosmos-Transfer1 with ControlNet, which converts rendered scenes into realistic driving videos. Our approach enables controllable scenario generation and facilitates the creation of rare but critical edge cases, such as pedestrian crossings under occlusion or sudden vehicle cut-ins. Experimental results demonstrate the effectiveness of our method in generating a wide range of realistic, diverse, and safety-critical scenarios, offering a promising tool for simulation-based testing of autonomous vehicles.
☆ GPS-DRIFT: Marine Surface Robot Localization using IMU-GPS Fusion and Invariant Filtering
This paper presents an extension of the DRIFT invariant state estimation framework, enabling robust fusion of GPS and IMU data for accurate pose and heading estimation. Originally developed for testing and usage on a marine autonomous surface vehicle (ASV), this approach can also be utilized on other mobile systems. Building upon the original proprioceptive only DRIFT algorithm, we develop a symmetry-preserving sensor fusion pipeline utilizing the invariant extended Kalman filter (InEKF) to integrate global position updates from GPS directly into the correction step. Crucially, we introduce a novel heading correction mechanism that leverages GPS course-over-ground information in conjunction with IMU orientation, overcoming the inherent unobservability of yaw in dead-reckoning. The system was deployed and validated on a customized Blue Robotics BlueBoat, but the methodological focus is on the algorithmic approach to fusing exteroceptive and proprioceptive sensors for drift-free localization and reliable orientation estimation. This work provides an open source solution for accurate yaw observation and localization in challenging or GPS-degraded conditions, and lays the groundwork for future experimental and comparative studies.
comment: 6 pages
☆ cVLA: Towards Efficient Camera-Space VLAs
Vision-Language-Action (VLA) models offer a compelling framework for tackling complex robotic manipulation tasks, but they are often expensive to train. In this paper, we propose a novel VLA approach that leverages the competitive performance of Vision Language Models (VLMs) on 2D images to directly infer robot end-effector poses in image frame coordinates. Unlike prior VLA models that output low-level controls, our model predicts trajectory waypoints, making it both more efficient to train and robot embodiment agnostic. Despite its lightweight design, our next-token prediction architecture effectively learns meaningful and executable robot trajectories. We further explore the underutilized potential of incorporating depth images, inference-time techniques such as decoding strategies, and demonstration-conditioned action generation. Our model is trained on a simulated dataset and exhibits strong sim-to-real transfer capabilities. We evaluate our approach using a combination of simulated and real data, demonstrating its effectiveness on a real robotic system.
comment: 20 pages, 10 figures
☆ Towards Bio-Inspired Robotic Trajectory Planning via Self-Supervised RNN ICANN
Trajectory planning in robotics is understood as generating a sequence of joint configurations that will lead a robotic agent, or its manipulator, from an initial state to the desired final state, thus completing a manipulation task while considering constraints like robot kinematics and the environment. Typically, this is achieved via sampling-based planners, which are computationally intensive. Recent advances demonstrate that trajectory planning can also be performed by supervised sequence learning of trajectories, often requiring only a single or fixed number of passes through a neural architecture, thus ensuring a bounded computation time. Such fully supervised approaches, however, perform imitation learning; they do not learn based on whether the trajectories can successfully reach a goal, but try to reproduce observed trajectories. In our work, we build on this approach and propose a cognitively inspired self-supervised learning scheme based on a recurrent architecture for building a trajectory model. We evaluate the feasibility of the proposed method on a task of kinematic planning for a robotic arm. The results suggest that the model is able to learn to generate trajectories only using given paired forward and inverse kinematics models, and indicate that this novel method could facilitate planning for more complex manipulation tasks requiring adaptive solutions.
comment: 12 pages, 4 figures, 2 tables. To be published in 2025 International Conference on Artificial Neural Networks (ICANN) proceedings. This research was funded by the Horizon Europe project TERAIS, GA no. 101079338, and in part by the Slovak Grant Agency for Science (VEGA), project 1/0373/23
☆ RoboBrain 2.0 Technical Report
We introduce RoboBrain 2.0, our latest generation of embodied vision-language foundation models, designed to unify perception, reasoning, and planning for complex embodied tasks in physical environments. It comes in two variants: a lightweight 7B model and a full-scale 32B model, featuring a heterogeneous architecture with a vision encoder and a language model. Despite its compact size, RoboBrain 2.0 achieves strong performance across a wide spectrum of embodied reasoning tasks. On both spatial and temporal benchmarks, the 32B variant achieves leading results, surpassing prior open-source and proprietary models. In particular, it supports key real-world embodied AI capabilities, including spatial understanding (e.g., affordance prediction, spatial referring, trajectory forecasting) and temporal decision-making (e.g., closed-loop interaction, multi-agent long-horizon planning, and scene graph updating). This report details the model architecture, data construction, multi-stage training strategies, infrastructure and practical applications. We hope RoboBrain 2.0 advances embodied AI research and serves as a practical step toward building generalist embodied agents. The code, checkpoint and benchmark are available at https://superrobobrain.github.io.
☆ Effective Explanations for Belief-Desire-Intention Robots: When and What to Explain
When robots perform complex and context-dependent tasks in our daily lives, deviations from expectations can confuse users. Explanations of the robot's reasoning process can help users to understand the robot intentions. However, when to provide explanations and what they contain are important to avoid user annoyance. We have investigated user preferences for explanation demand and content for a robot that helps with daily cleaning tasks in a kitchen. Our results show that users want explanations in surprising situations and prefer concise explanations that clearly state the intention behind the confusing action and the contextual factors that were relevant to this decision. Based on these findings, we propose two algorithms to identify surprising actions and to construct effective explanations for Belief-Desire-Intention (BDI) robots. Our algorithms can be easily integrated in the BDI reasoning process and pave the way for better human-robot interaction with context- and user-specific explanations.
comment: Paper accepted at IEEE RO-MAN 2025; 6 pages
♻ ☆ CU-Multi: A Dataset for Multi-Robot Data Association
Multi-robot systems (MRSs) are valuable for tasks such as search and rescue due to their ability to coordinate over shared observations. A central challenge in these systems is aligning independently collected perception data across space and time, i.e., multi-robot data association. While recent advances in collaborative SLAM (C-SLAM), map merging, and inter-robot loop closure detection have significantly progressed the field, evaluation strategies still predominantly rely on splitting a single trajectory from single-robot SLAM datasets into multiple segments to simulate multiple robots. Without careful consideration to how a single trajectory is split, this approach will fail to capture realistic pose-dependent variation in observations of a scene inherent to multi-robot systems. To address this gap, we present CU-Multi, a multi-robot dataset collected over multiple days at two locations on the University of Colorado Boulder campus. Using a single robotic platform, we generate four synchronized runs with aligned start times and deliberate percentages of trajectory overlap. CU-Multi includes RGB-D, GPS with accurate geospatial heading, and semantically annotated LiDAR data. By introducing controlled variations in trajectory overlap and dense lidar annotations, CU-Multi offers a compelling alternative for evaluating methods in multi-robot data association. Instructions on accessing the dataset, support code, and the latest updates are publicly available at https://arpg.github.io/cumulti
comment: 8 pages, 6 figures, 4 tables
♻ ☆ World-aware Planning Narratives Enhance Large Vision-Language Model Planner
Large Vision-Language Models (LVLMs) show promise for embodied planning tasks but struggle with complex scenarios involving unfamiliar environments and multi-step goals. Current approaches rely on environment-agnostic imitation learning that disconnects instructions from environmental contexts, causing models to struggle with context-sensitive instructions and rely on supplementary cues rather than visual reasoning during long-horizon interactions. In this work, we propose World-Aware Planning Narrative Enhancement (WAP), a framework that infuses LVLMs with comprehensive environmental understanding through four cognitive capabilities (visual appearance modeling, spatial reasoning, functional abstraction, and syntactic grounding) while developing and evaluating models using only raw visual observations through curriculum learning. Evaluations on the EB-ALFRED benchmark demonstrate substantial improvements, with Qwen2.5-VL achieving a 60.7 absolute improvement in task success rates, particularly in commonsense reasoning (+60.0) and long-horizon planning (+70.0). Notably, our enhanced open-source models outperform proprietary systems like GPT-4o and Claude-3.5-Sonnet by a large margin.
♻ ☆ Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
In remote control systems, transmitting large data volumes (e.g., images, video frames) from wireless sensors to remote controllers is challenging when uplink capacity is limited (e.g., RedCap devices or massive wireless sensor networks). Furthermore, controllers often need only information-rich representations of the original data. To address this, we propose a semantic-driven predictive control combined with a channel-aware scheduling to enhance control performance for multiple devices under limited network capacity. At its core, the proposed framework, coined Time-Series Joint Embedding Predictive Architecture (TS-JEPA), encodes high-dimensional sensory data into low-dimensional semantic embeddings at the sensor, reducing communication overhead. Furthermore, TS-JEPA enables predictive inference by predicting future embeddings from current ones and predicted commands, which are directly used by a semantic actor model to compute control commands within the embedding space, eliminating the need to reconstruct raw data. To further enhance reliability and communication efficiency, a channel-aware scheduling is integrated to dynamically prioritize device transmissions based on channel conditions and age of information (AoI). Simulations on inverted cart-pole systems show that the proposed framework significantly outperforms conventional control baselines in communication efficiency, control cost, and predictive accuracy. It enables robust and scalable control under limited network capacity compared to traditional scheduling schemes.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Co-design of magnetic soft robots with large deformation and contacts via material point method and topology optimization
Magnetic soft robots embedded with hard magnetic particles enable untethered actuation via external magnetic fields, offering remote, rapid, and precise control, which is highly promising for biomedical applications. However, designing such systems is challenging due to the complex interplay of magneto-elastic dynamics, large deformation, solid contacts, time-varying stimuli, and posture-dependent loading. As a result, most existing research relies on heuristics and trial-and-error methods or focuses on the independent design of stimuli or structures under static conditions. We propose a topology optimization framework for magnetic soft robots that simultaneously designs structures, location-specific material magnetization and time-varying magnetic stimuli, accounting for large deformations, dynamic motion, and solid contacts. This is achieved by integrating generalized topology optimization with the magneto-elastic material point method, which supports GPU-accelerated parallel simulations and auto-differentiation for sensitivity analysis. We applied this framework to design magnetic robots for various tasks, including multi-task shape morphing and locomotion, in both 2D and 3D. The method autonomously generates optimized robotic systems to achieve target behaviors without requiring human intervention. Despite the nonlinear physics and large design space, it demonstrates high computational efficiency, completing all cases within minutes. The framework provides a computational foundation for the autonomous co-design of active soft materials in applications such as metasurfaces, drug delivery, and minimally invasive procedures.
♻ ☆ Co-Optimizing Reconfigurable Environments and Policies for Decentralized Multi-Agent Navigation
This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in a cluttered environment, where we assume that the layout of the environment is reconfigurable. By introducing two sub-objectives -- multi-agent navigation and environment optimization -- we propose an agent-environment co-optimization problem and develop a coordinated algorithm that alternates between these sub-objectives to search for an optimal synthesis of agent actions and environment configurations; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between the agents, the environment and their performance therein, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum solution of an associated time-varying non-convex optimization problem. Experiments corroborate theoretical findings and show the benefits of co-optimization. Interestingly, the results also indicate that optimized environments can offer structural guidance to de-conflict agents in motion.
♻ ☆ Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets and algorithms approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered in the research field. In this work, we address this shortcoming by introducing: (1) Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes. Articulate3D provides 8 types of annotations for articulated objects, covering parts and detailed motion information, all stored in a standardized scene representation format designed for scalable 3D content creation, exchange and seamless integration into simulation environments. (2) USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects. We evaluate USDNet on Articulate3D as well as two existing datasets, demonstrating the advantage of our unified dense prediction approach. Furthermore, we highlight the value of Articulate3D through cross-dataset and cross-domain evaluations and showcase its applicability in downstream tasks such as scene editing through LLM prompting and robotic policy training for articulated object manipulation. We provide open access to our dataset, benchmark, and method's source code.
♻ ☆ Legged Robot State Estimation Using Invariant Neural-Augmented Kalman Filter with a Neural Compensator IROS 2025
This paper presents an algorithm to improve state estimation for legged robots. Among existing model-based state estimation methods for legged robots, the contact-aided invariant extended Kalman filter defines the state on a Lie group to preserve invariance, thereby significantly accelerating convergence. It achieves more accurate state estimation by leveraging contact information as measurements for the update step. However, when the model exhibits strong nonlinearity, the estimation accuracy decreases. Such nonlinearities can cause initial errors to accumulate and lead to large drifts over time. To address this issue, we propose compensating for errors by augmenting the Kalman filter with an artificial neural network serving as a nonlinear function approximator. Furthermore, we design this neural network to respect the Lie group structure to ensure invariance, resulting in our proposed Invariant Neural-Augmented Kalman Filter (InNKF). The proposed algorithm offers improved state estimation performance by combining the strengths of model-based and learning-based approaches. Project webpage: https://seokju-lee.github.io/innkf_webpage
comment: 8 pages, 10 figures, Accepted to IROS 2025
♻ ☆ SKIL: Semantic Keypoint Imitation Learning for Generalizable Data-efficient Manipulation
Real-world tasks such as garment manipulation and table rearrangement demand robots to perform generalizable, highly precise, and long-horizon actions. Although imitation learning has proven to be an effective approach for teaching robots new skills, large amounts of expert demonstration data are still indispensible for these complex tasks, resulting in high sample complexity and costly data collection. To address this, we propose Semantic Keypoint Imitation Learning (SKIL), a framework which automatically obtains semantic keypoints with the help of vision foundation models, and forms the descriptor of semantic keypoints that enables efficient imitation learning of complex robotic tasks with significantly lower sample complexity. In real-world experiments, SKIL doubles the performance of baseline methods in tasks such as picking a cup or mouse, while demonstrating exceptional robustness to variations in objects, environmental changes, and distractors. For long-horizon tasks like hanging a towel on a rack where previous methods fail completely, SKIL achieves a mean success rate of 70\% with as few as 30 demonstrations. Furthermore, SKIL naturally supports cross-embodiment learning due to its semantic keypoints abstraction. Our experiments demonstrate that even human videos bring considerable improvement to the learning performance. All these results demonstrate the great success of SKIL in achieving data-efficient generalizable robotic learning. Visualizations and code are available at: https://skil-robotics.github.io/SKIL-robotics/.
comment: 22 pages, 22 figures
♻ ☆ Embodied Instruction Following in Unknown Environments
Enabling embodied agents to complete complex human instructions from natural language is crucial to autonomous systems in household services. Conventional methods can only accomplish human instructions in the known environment where all interactive objects are provided to the embodied agent, and directly deploying the existing approaches for the unknown environment usually generates infeasible plans that manipulate non-existing objects. On the contrary, we propose an embodied instruction following (EIF) method for complex tasks in the unknown environment, where the agent efficiently explores the unknown environment to generate feasible plans with existing objects to accomplish abstract instructions. Specifically, we build a hierarchical embodied instruction following framework including the high-level task planner and the low-level exploration controller with multimodal large language models. We then construct a semantic representation map of the scene with dynamic region attention to demonstrate the known visual clues, where the goal of task planning and scene exploration is aligned for human instruction. For the task planner, we generate the feasible step-by-step plans for human goal accomplishment according to the task completion process and the known visual clues. For the exploration controller, the optimal navigation or object interaction policy is predicted based on the generated step-wise plans and the known visual clues. The experimental results demonstrate that our method can achieve 45.09% success rate in 204 complex human instructions such as making breakfast and tidying rooms in large house-level scenes. Code and supplementary are available at https://gary3410.github.io/eif_unknown.
comment: Project Page: https://gary3410.github.io/eif_unknown/
♻ ☆ Anyview: Generalizable Indoor 3D Object Detection with Variable Frames
In this paper, we propose a novel network framework for indoor 3D object detection to handle variable input frame numbers in practical scenarios. Existing methods only consider fixed frames of input data for a single detector, such as monocular RGB-D images or point clouds reconstructed from dense multi-view RGB-D images. While in practical application scenes such as robot navigation and manipulation, the raw input to the 3D detectors is the RGB-D images with variable frame numbers instead of the reconstructed scene point cloud. However, the previous approaches can only handle fixed frame input data and have poor performance with variable frame input. In order to facilitate 3D object detection methods suitable for practical tasks, we present a novel 3D detection framework named AnyView for our practical applications, which generalizes well across different numbers of input frames with a single model. To be specific, we propose a geometric learner to mine the local geometric features of each input RGB-D image frame and implement local-global feature interaction through a designed spatial mixture module. Meanwhile, we further utilize a dynamic token strategy to adaptively adjust the number of extracted features for each frame, which ensures consistent global feature density and further enhances the generalization after fusion. Extensive experiments on the ScanNet dataset show our method achieves both great generalizability and high detection accuracy with a simple and clean architecture containing a similar amount of parameters with the baselines.
comment: 11 pages, 7 figures
♻ ☆ DexH2R: A Benchmark for Dynamic Dexterous Grasping in Human-to-Robot Handover ICCV 2025
Handover between a human and a dexterous robotic hand is a fundamental yet challenging task in human-robot collaboration. It requires handling dynamic environments and a wide variety of objects and demands robust and adaptive grasping strategies. However, progress in developing effective dynamic dexterous grasping methods is limited by the absence of high-quality, real-world human-to-robot handover datasets. Existing datasets primarily focus on grasping static objects or rely on synthesized handover motions, which differ significantly from real-world robot motion patterns, creating a substantial gap in applicability. In this paper, we introduce DexH2R, a comprehensive real-world dataset for human-to-robot handovers, built on a dexterous robotic hand. Our dataset captures a diverse range of interactive objects, dynamic motion patterns, rich visual sensor data, and detailed annotations. Additionally, to ensure natural and human-like dexterous motions, we utilize teleoperation for data collection, enabling the robot's movements to align with human behaviors and habits, which is a crucial characteristic for intelligent humanoid robots. Furthermore, we propose an effective solution, DynamicGrasp, for human-to-robot handover and evaluate various state-of-the-art approaches, including auto-regressive models and diffusion policy methods, providing a thorough comparison and analysis. We believe our benchmark will drive advancements in human-to-robot handover research by offering a high-quality dataset, effective solutions, and comprehensive evaluation metrics.
comment: Comments: Accepted by ICCV 2025. Project page: https://dexh2r.github.io/
♻ ☆ High-Precision Transformer-Based Visual Servoing for Humanoid Robots in Aligning Tiny Objects
High-precision tiny object alignment remains a common and critical challenge for humanoid robots in real-world. To address this problem, this paper proposes a vision-based framework for precisely estimating and controlling the relative position between a handheld tool and a target object for humanoid robots, e.g., a screwdriver tip and a screw head slot. By fusing images from the head and torso cameras on a robot with its head joint angles, the proposed Transformer-based visual servoing method can correct the handheld tool's positional errors effectively, especially at a close distance. Experiments on M4-M8 screws demonstrate an average convergence error of 0.8-1.3 mm and a success rate of 93\%-100\%. Through comparative analysis, the results validate that this capability of high-precision tiny object alignment is enabled by the Distance Estimation Transformer architecture and the Multi-Perception-Head mechanism proposed in this paper.
comment: for associated video, see https://b23.tv/cklF7aK
♻ ☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters, 2025
♻ ☆ Real-is-Sim: Bridging the Sim-to-Real Gap with a Dynamic Digital Twin
We introduce real-is-sim, a new approach to integrating simulation into behavior cloning pipelines. In contrast to real-only methods, which lack the ability to safely test policies before deployment, and sim-to-real methods, which require complex adaptation to cross the sim-to-real gap, our framework allows policies to seamlessly switch between running on real hardware and running in parallelized virtual environments. At the center of real-is-sim is a dynamic digital twin, powered by the Embodied Gaussian simulator, that synchronizes with the real world at 60Hz. This twin acts as a mediator between the behavior cloning policy and the real robot. Policies are trained using representations derived from simulator states and always act on the simulated robot, never the real one. During deployment, the real robot simply follows the simulated robot's joint states, and the simulation is continuously corrected with real world measurements. This setup, where the simulator drives all policy execution and maintains real-time synchronization with the physical world, shifts the responsibility of crossing the sim-to-real gap to the digital twin's synchronization mechanisms, instead of the policy itself. We demonstrate real-is-sim on a long-horizon manipulation task (PushT), showing that virtual evaluations are consistent with real-world results. We further show how real-world data can be augmented with virtual rollouts and compare to policies trained on different representations derived from the simulator state including object poses and rendered images from both static and robot-mounted cameras. Our results highlight the flexibility of the real-is-sim framework across training, evaluation, and deployment stages. Videos available at https://real-is-sim.github.io.
NeRFs in Robotics: A Survey
Detailed and realistic 3D environment representations have been a long-standing goal in the fields of computer vision and robotics. The recent emergence of neural implicit representations has introduced significant advances to these domains, enabling numerous novel capabilities. Among these, Neural Radiance Fields (NeRFs) have gained considerable attention because of their considerable representational advantages, such as simplified mathematical models, low memory footprint, and continuous scene representations. In addition to computer vision, NeRFs have demonstrated significant potential in robotics. Thus, we present this survey to provide a comprehensive understanding of NeRFs in the field of robotics. By exploring the advantages and limitations of NeRF as well as its current applications and future potential, we aim to provide an overview of this promising area of research. Our survey is divided into two main sections: \textit{Applications of NeRFs in Robotics} and \textit{Advances for NeRFs in Robotics}, from the perspective of how NeRF enters the field of robotics. In the first section, we introduce and analyze some works that have been or could be used in robotics for perception and interaction tasks. In the second section, we show some works related to improving NeRF's own properties, which are essential for deploying NeRFs in robotics. In the discussion section of the review, we summarize the existing challenges and provide valuable future research directions.
comment: 31 pages, 19 figures, accepted by The International Journal of Robotics Research, 2025
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ Modular Soft Wearable Glove for Real-Time Gesture Recognition and Dynamic 3D Shape Reconstruction
With the increasing demand for human-computer interaction (HCI), flexible wearable gloves have emerged as a promising solution in virtual reality, medical rehabilitation, and industrial automation. However, the current technology still has problems like insufficient sensitivity and limited durability, which hinder its wide application. This paper presents a highly sensitive, modular, and flexible capacitive sensor based on line-shaped electrodes and liquid metal (EGaIn), integrated into a sensor module tailored to the human hand's anatomy. The proposed system independently captures bending information from each finger joint, while additional measurements between adjacent fingers enable the recording of subtle variations in inter-finger spacing. This design enables accurate gesture recognition and dynamic hand morphological reconstruction of complex movements using point clouds. Experimental results demonstrate that our classifier based on Convolution Neural Network (CNN) and Multilayer Perceptron (MLP) achieves an accuracy of 99.15% across 30 gestures. Meanwhile, a transformer-based Deep Neural Network (DNN) accurately reconstructs dynamic hand shapes with an Average Distance (AD) of 2.076\pm3.231 mm, with the reconstruction accuracy at individual key points surpassing SOTA benchmarks by 9.7% to 64.9%. The proposed glove shows excellent accuracy, robustness and scalability in gesture recognition and hand reconstruction, making it a promising solution for next-generation HCI systems.
♻ ☆ Image-Based Roadmaps for Vision-Only Planning and Control of Robotic Manipulators
This work presents a motion planning framework for robotic manipulators that computes collision-free paths directly in image space. The generated paths can then be tracked using vision-based control, eliminating the need for an explicit robot model or proprioceptive sensing. At the core of our approach is the construction of a roadmap entirely in image space. To achieve this, we explicitly define sampling, nearest-neighbor selection, and collision checking based on visual features rather than geometric models. We first collect a set of image-space samples by moving the robot within its workspace, capturing keypoints along its body at different configurations. These samples serve as nodes in the roadmap, which we construct using either learned or predefined distance metrics. At runtime, the roadmap generates collision-free paths directly in image space, removing the need for a robot model or joint encoders. We validate our approach through an experimental study in which a robotic arm follows planned paths using an adaptive vision-based control scheme to avoid obstacles. The results show that paths generated with the learned-distance roadmap achieved 100% success in control convergence, whereas the predefined image-space distance roadmap enabled faster transient responses but had a lower success rate in convergence.
♻ ☆ CRESSim-MPM: A Material Point Method Library for Surgical Soft Body Simulation with Cutting and Suturing IROS
A number of recent studies have focused on developing surgical simulation platforms to train machine learning (ML) agents or models with synthetic data for surgical assistance. While existing platforms excel at tasks such as rigid body manipulation and soft body deformation, they struggle to simulate more complex soft body behaviors like cutting and suturing. A key challenge lies in modeling soft body fracture and splitting using the finite-element method (FEM), which is the predominant approach in current platforms. Additionally, the two-way suture needle/thread contact inside a soft body is further complicated when using FEM. In this work, we use the material point method (MPM) for such challenging simulations and propose new rigid geometries and soft-rigid contact methods specifically designed for them. We introduce CRESSim-MPM, a GPU-accelerated MPM library that integrates multiple MPM solvers and incorporates surgical geometries for cutting and suturing, serving as a specialized physics engine for surgical applications. It is further integrated into Unity, requiring minimal modifications to existing projects for soft body simulation. We demonstrate the simulator's capabilities in real-time simulation of cutting and suturing on soft tissue and provide an initial performance evaluation of different MPM solvers when simulating varying numbers of particles. The source code is available at https://github.com/yafei-ou/CRESSim-MPM.
comment: 8 pages, 13 figures, accepted for IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Adaptive Koopman Model Predictive Control of Simple Serial Robots
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint. Planned for resubmission after revision; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
Vision 150
☆ Locality-aware Parallel Decoding for Efficient Autoregressive Image Generation
We present Locality-aware Parallel Decoding (LPD) to accelerate autoregressive image generation. Traditional autoregressive image generation relies on next-patch prediction, a memory-bound process that leads to high latency. Existing works have tried to parallelize next-patch prediction by shifting to multi-patch prediction to accelerate the process, but only achieved limited parallelization. To achieve high parallelization while maintaining generation quality, we introduce two key techniques: (1) Flexible Parallelized Autoregressive Modeling, a novel architecture that enables arbitrary generation ordering and degrees of parallelization. It uses learnable position query tokens to guide generation at target positions while ensuring mutual visibility among concurrently generated tokens for consistent parallel decoding. (2) Locality-aware Generation Ordering, a novel schedule that forms groups to minimize intra-group dependencies and maximize contextual support, enhancing generation quality. With these designs, we reduce the generation steps from 256 to 20 (256$\times$256 res.) and 1024 to 48 (512$\times$512 res.) without compromising quality on the ImageNet class-conditional generation, and achieving at least 3.4$\times$ lower latency than previous parallelized autoregressive models.
comment: The first two authors contributed equally to this work
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ FreeMorph: Tuning-Free Generalized Image Morphing with Diffusion Model ICCV 2025
We present FreeMorph, the first tuning-free method for image morphing that accommodates inputs with different semantics or layouts. Unlike existing methods that rely on finetuning pre-trained diffusion models and are limited by time constraints and semantic/layout discrepancies, FreeMorph delivers high-fidelity image morphing without requiring per-instance training. Despite their efficiency and potential, tuning-free methods face challenges in maintaining high-quality results due to the non-linear nature of the multi-step denoising process and biases inherited from the pre-trained diffusion model. In this paper, we introduce FreeMorph to address these challenges by integrating two key innovations. 1) We first propose a guidance-aware spherical interpolation design that incorporates explicit guidance from the input images by modifying the self-attention modules, thereby addressing identity loss and ensuring directional transitions throughout the generated sequence. 2) We further introduce a step-oriented variation trend that blends self-attention modules derived from each input image to achieve controlled and consistent transitions that respect both inputs. Our extensive evaluations demonstrate that FreeMorph outperforms existing methods, being 10x ~ 50x faster and establishing a new state-of-the-art for image morphing.
comment: ICCV 2025. Project page: https://yukangcao.github.io/FreeMorph/
☆ Kwai Keye-VL Technical Report
While Multimodal Large Language Models (MLLMs) demonstrate remarkable capabilities on static images, they often fall short in comprehending dynamic, information-dense short-form videos, a dominant medium in today's digital landscape. To bridge this gap, we introduce \textbf{Kwai Keye-VL}, an 8-billion-parameter multimodal foundation model engineered for leading-edge performance in short-video understanding while maintaining robust general-purpose vision-language abilities. The development of Keye-VL rests on two core pillars: a massive, high-quality dataset exceeding 600 billion tokens with a strong emphasis on video, and an innovative training recipe. This recipe features a four-stage pre-training process for solid vision-language alignment, followed by a meticulous two-phase post-training process. The first post-training stage enhances foundational capabilities like instruction following, while the second phase focuses on stimulating advanced reasoning. In this second phase, a key innovation is our five-mode ``cold-start'' data mixture, which includes ``thinking'', ``non-thinking'', ``auto-think'', ``think with image'', and high-quality video data. This mixture teaches the model to decide when and how to reason. Subsequent reinforcement learning (RL) and alignment steps further enhance these reasoning capabilities and correct abnormal model behaviors, such as repetitive outputs. To validate our approach, we conduct extensive evaluations, showing that Keye-VL achieves state-of-the-art results on public video benchmarks and remains highly competitive on general image-based tasks (Figure 1). Furthermore, we develop and release the \textbf{KC-MMBench}, a new benchmark tailored for real-world short-video scenarios, where Keye-VL shows a significant advantage.
comment: Technical Report: https://github.com/Kwai-Keye/Keye
☆ LongAnimation: Long Animation Generation with Dynamic Global-Local Memory
Animation colorization is a crucial part of real animation industry production. Long animation colorization has high labor costs. Therefore, automated long animation colorization based on the video generation model has significant research value. Existing studies are limited to short-term colorization. These studies adopt a local paradigm, fusing overlapping features to achieve smooth transitions between local segments. However, the local paradigm neglects global information, failing to maintain long-term color consistency. In this study, we argue that ideal long-term color consistency can be achieved through a dynamic global-local paradigm, i.e., dynamically extracting global color-consistent features relevant to the current generation. Specifically, we propose LongAnimation, a novel framework, which mainly includes a SketchDiT, a Dynamic Global-Local Memory (DGLM), and a Color Consistency Reward. The SketchDiT captures hybrid reference features to support the DGLM module. The DGLM module employs a long video understanding model to dynamically compress global historical features and adaptively fuse them with the current generation features. To refine the color consistency, we introduce a Color Consistency Reward. During inference, we propose a color consistency fusion to smooth the video segment transition. Extensive experiments on both short-term (14 frames) and long-term (average 500 frames) animations show the effectiveness of LongAnimation in maintaining short-term and long-term color consistency for open-domain animation colorization task. The code can be found at https://cn-makers.github.io/long_animation_web/.
☆ CI-VID: A Coherent Interleaved Text-Video Dataset
Text-to-video (T2V) generation has recently attracted considerable attention, resulting in the development of numerous high-quality datasets that have propelled progress in this area. However, existing public datasets are primarily composed of isolated text-video (T-V) pairs and thus fail to support the modeling of coherent multi-clip video sequences. To address this limitation, we introduce CI-VID, a dataset that moves beyond isolated text-to-video (T2V) generation toward text-and-video-to-video (TV2V) generation, enabling models to produce coherent, multi-scene video sequences. CI-VID contains over 340,000 samples, each featuring a coherent sequence of video clips with text captions that capture both the individual content of each clip and the transitions between them, enabling visually and textually grounded generation. To further validate the effectiveness of CI-VID, we design a comprehensive, multi-dimensional benchmark incorporating human evaluation, VLM-based assessment, and similarity-based metrics. Experimental results demonstrate that models trained on CI-VID exhibit significant improvements in both accuracy and content consistency when generating video sequences. This facilitates the creation of story-driven content with smooth visual transitions and strong temporal coherence, underscoring the quality and practical utility of the CI-VID dataset We release the CI-VID dataset and the accompanying code for data construction and evaluation at: https://github.com/ymju-BAAI/CI-VID
☆ evMLP: An Efficient Event-Driven MLP Architecture for Vision
Deep neural networks have achieved remarkable results in computer vision tasks. In the early days, Convolutional Neural Networks (CNNs) were the mainstream architecture. In recent years, Vision Transformers (ViTs) have become increasingly popular. In addition, exploring applications of multi-layer perceptrons (MLPs) has provided new perspectives for research into vision model architectures. In this paper, we present evMLP accompanied by a simple event-driven local update mechanism. The proposed evMLP can independently process patches on images or feature maps via MLPs. We define changes between consecutive frames as "events". Under the event-driven local update mechanism, evMLP selectively processes patches where events occur. For sequential image data (e.g., video processing), this approach improves computational performance by avoiding redundant computations. Through ImageNet image classification experiments, evMLP attains accuracy competitive with state-of-the-art models. More significantly, experimental results on multiple video datasets demonstrate that evMLP reduces computational cost via its event-driven local update mechanism while maintaining output consistency with its non-event-driven baseline. The code and trained models are available at https://github.com/i-evi/evMLP.
☆ IC-Custom: Diverse Image Customization via In-Context Learning
Image customization, a crucial technique for industrial media production, aims to generate content that is consistent with reference images. However, current approaches conventionally separate image customization into position-aware and position-free customization paradigms and lack a universal framework for diverse customization, limiting their applications across various scenarios. To overcome these limitations, we propose IC-Custom, a unified framework that seamlessly integrates position-aware and position-free image customization through in-context learning. IC-Custom concatenates reference images with target images to a polyptych, leveraging DiT's multi-modal attention mechanism for fine-grained token-level interactions. We introduce the In-context Multi-Modal Attention (ICMA) mechanism with learnable task-oriented register tokens and boundary-aware positional embeddings to enable the model to correctly handle different task types and distinguish various inputs in polyptych configurations. To bridge the data gap, we carefully curated a high-quality dataset of 12k identity-consistent samples with 8k from real-world sources and 4k from high-quality synthetic data, avoiding the overly glossy and over-saturated synthetic appearance. IC-Custom supports various industrial applications, including try-on, accessory placement, furniture arrangement, and creative IP customization. Extensive evaluations on our proposed ProductBench and the publicly available DreamBench demonstrate that IC-Custom significantly outperforms community workflows, closed-source models, and state-of-the-art open-source approaches. IC-Custom achieves approximately 73% higher human preference across identity consistency, harmonicity, and text alignment metrics, while training only 0.4% of the original model parameters. Project page: https://liyaowei-stu.github.io/project/IC_Custom
comment: Project page: https://liyaowei-stu.github.io/project/IC_Custom
☆ 3D Reconstruction and Information Fusion between Dormant and Canopy Seasons in Commercial Orchards Using Deep Learning and Fast GICP
In orchard automation, dense foliage during the canopy season severely occludes tree structures, minimizing visibility to various canopy parts such as trunks and branches, which limits the ability of a machine vision system. However, canopy structure is more open and visible during the dormant season when trees are defoliated. In this work, we present an information fusion framework that integrates multi-seasonal structural data to support robotic and automated crop load management during the entire growing season. The framework combines high-resolution RGB-D imagery from both dormant and canopy periods using YOLOv9-Seg for instance segmentation, Kinect Fusion for 3D reconstruction, and Fast Generalized Iterative Closest Point (Fast GICP) for model alignment. Segmentation outputs from YOLOv9-Seg were used to extract depth-informed masks, which enabled accurate 3D point cloud reconstruction via Kinect Fusion; these reconstructed models from each season were subsequently aligned using Fast GICP to achieve spatially coherent multi-season fusion. The YOLOv9-Seg model, trained on manually annotated images, achieved a mean squared error (MSE) of 0.0047 and segmentation mAP@50 scores up to 0.78 for trunks in dormant season dataset. Kinect Fusion enabled accurate reconstruction of tree geometry, validated with field measurements resulting in root mean square errors (RMSE) of 5.23 mm for trunk diameter, 4.50 mm for branch diameter, and 13.72 mm for branch spacing. Fast GICP achieved precise cross-seasonal registration with a minimum fitness score of 0.00197, allowing integrated, comprehensive tree structure modeling despite heavy occlusions during the growing season. This fused structural representation enables robotic systems to access otherwise obscured architectural information, improving the precision of pruning, thinning, and other automated orchard operations.
comment: 17 pages, 4 tables, 11 figures
☆ Modality Agnostic, patient-specific digital twins modeling temporally varying digestive motion
Objective: Clinical implementation of deformable image registration (DIR) requires voxel-based spatial accuracy metrics such as manually identified landmarks, which are challenging to implement for highly mobile gastrointestinal (GI) organs. To address this, patient-specific digital twins (DT) modeling temporally varying motion were created to assess the accuracy of DIR methods. Approach: 21 motion phases simulating digestive GI motion as 4D sequences were generated from static 3D patient scans using published analytical GI motion models through a semi-automated pipeline. Eleven datasets, including six T2w FSE MRI (T2w MRI), two T1w 4D golden-angle stack-of-stars, and three contrast-enhanced CT scans. The motion amplitudes of the DTs were assessed against real patient stomach motion amplitudes extracted from independent 4D MRI datasets. The generated DTs were then used to assess six different DIR methods using target registration error, Dice similarity coefficient, and the 95th percentile Hausdorff distance using summary metrics and voxel-level granular visualizations. Finally, for a subset of T2w MRI scans from patients treated with MR-guided radiation therapy, dose distributions were warped and accumulated to assess dose warping errors, including evaluations of DIR performance in both low- and high-dose regions for patient-specific error estimation. Main results: Our proposed pipeline synthesized DTs modeling realistic GI motion, achieving mean and maximum motion amplitudes and a mean log Jacobian determinant within 0.8 mm and 0.01, respectively, similar to published real-patient gastric motion data. It also enables the extraction of detailed quantitative DIR performance metrics and rigorous validation of dose mapping accuracy. Significance: The pipeline enables rigorously testing DIR tools for dynamic, anatomically complex regions enabling granular spatial and dosimetric accuracies.
comment: 7 Pages, 6 figures, 4 tables
☆ Reasoning to Edit: Hypothetical Instruction-Based Image Editing with Visual Reasoning
Instruction-based image editing (IIE) has advanced rapidly with the success of diffusion models. However, existing efforts primarily focus on simple and explicit instructions to execute editing operations such as adding, deleting, moving, or swapping objects. They struggle to handle more complex implicit hypothetical instructions that require deeper reasoning to infer plausible visual changes and user intent. Additionally, current datasets provide limited support for training and evaluating reasoning-aware editing capabilities. Architecturally, these methods also lack mechanisms for fine-grained detail extraction that support such reasoning. To address these limitations, we propose Reason50K, a large-scale dataset specifically curated for training and evaluating hypothetical instruction reasoning image editing, along with ReasonBrain, a novel framework designed to reason over and execute implicit hypothetical instructions across diverse scenarios. Reason50K includes over 50K samples spanning four key reasoning scenarios: Physical, Temporal, Causal, and Story reasoning. ReasonBrain leverages Multimodal Large Language Models (MLLMs) for editing guidance generation and a diffusion model for image synthesis, incorporating a Fine-grained Reasoning Cue Extraction (FRCE) module to capture detailed visual and textual semantics essential for supporting instruction reasoning. To mitigate the semantic loss, we further introduce a Cross-Modal Enhancer (CME) that enables rich interactions between the fine-grained cues and MLLM-derived features. Extensive experiments demonstrate that ReasonBrain consistently outperforms state-of-the-art baselines on reasoning scenarios while exhibiting strong zero-shot generalization to conventional IIE tasks. Our dataset and code will be released publicly.
☆ Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation for Semi-Supervised Lifelong Person Re-Identification ICCV 2025
Current lifelong person re-identification (LReID) methods predominantly rely on fully labeled data streams. However, in real-world scenarios where annotation resources are limited, a vast amount of unlabeled data coexists with scarce labeled samples, leading to the Semi-Supervised LReID (Semi-LReID) problem where LReID methods suffer severe performance degradation. Existing LReID methods, even when combined with semi-supervised strategies, suffer from limited long-term adaptation performance due to struggling with the noisy knowledge occurring during unlabeled data utilization. In this paper, we pioneer the investigation of Semi-LReID, introducing a novel Self-Reinforcing Prototype Evolution with Dual-Knowledge Cooperation framework (SPRED). Our key innovation lies in establishing a self-reinforcing cycle between dynamic prototype-guided pseudo-label generation and new-old knowledge collaborative purification to enhance the utilization of unlabeled data. Specifically, learnable identity prototypes are introduced to dynamically capture the identity distributions and generate high-quality pseudo-labels. Then, the dual-knowledge cooperation scheme integrates current model specialization and historical model generalization, refining noisy pseudo-labels. Through this cyclic design, reliable pseudo-labels are progressively mined to improve current-stage learning and ensure positive knowledge propagation over long-term learning. Experiments on the established Semi-LReID benchmarks show that our SPRED achieves state-of-the-art performance. Our source code is available at https://github.com/zhoujiahuan1991/ICCV2025-SPRED
comment: Accepted by ICCV 2025
☆ Future Slot Prediction for Unsupervised Object Discovery in Surgical Video MICCAI2025
Object-centric slot attention is an emerging paradigm for unsupervised learning of structured, interpretable object-centric representations (slots). This enables effective reasoning about objects and events at a low computational cost and is thus applicable to critical healthcare applications, such as real-time interpretation of surgical video. The heterogeneous scenes in real-world applications like surgery are, however, difficult to parse into a meaningful set of slots. Current approaches with an adaptive slot count perform well on images, but their performance on surgical videos is low. To address this challenge, we propose a dynamic temporal slot transformer (DTST) module that is trained both for temporal reasoning and for predicting the optimal future slot initialization. The model achieves state-of-the-art performance on multiple surgical databases, demonstrating that unsupervised object-centric methods can be applied to real-world data and become part of the common arsenal in healthcare applications.
comment: Accepted by MICCAI2025
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ MobileIE: An Extremely Lightweight and Effective ConvNet for Real-Time Image Enhancement on Mobile Devices ICCV 2025
Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.
comment: Accepted by ICCV 2025
☆ Modulate and Reconstruct: Learning Hyperspectral Imaging from Misaligned Smartphone Views
Hyperspectral reconstruction (HSR) from RGB images is a fundamentally ill-posed problem due to severe spectral information loss. Existing approaches typically rely on a single RGB image, limiting reconstruction accuracy. In this work, we propose a novel multi-image-to-hyperspectral reconstruction (MI-HSR) framework that leverages a triple-camera smartphone system, where two lenses are equipped with carefully selected spectral filters. Our configuration, grounded in theoretical and empirical analysis, enables richer and more diverse spectral observations than conventional single-camera setups. To support this new paradigm, we introduce Doomer, the first dataset for MI-HSR, comprising aligned images from three smartphone cameras and a hyperspectral reference camera across diverse scenes. We show that the proposed HSR model achieves consistent improvements over existing methods on the newly proposed benchmark. In a nutshell, our setup allows 30% towards more accurately estimated spectra compared to an ordinary RGB camera. Our findings suggest that multi-view spectral filtering with commodity hardware can unlock more accurate and practical hyperspectral imaging solutions.
☆ Autoadaptive Medical Segment Anything Model
Medical image segmentation is a key task in the imaging workflow, influencing many image-based decisions. Traditional, fully-supervised segmentation models rely on large amounts of labeled training data, typically obtained through manual annotation, which can be an expensive, time-consuming, and error-prone process. This signals a need for accurate, automatic, and annotation-efficient methods of training these models. We propose ADA-SAM (automated, domain-specific, and adaptive segment anything model), a novel multitask learning framework for medical image segmentation that leverages class activation maps from an auxiliary classifier to guide the predictions of the semi-supervised segmentation branch, which is based on the Segment Anything (SAM) framework. Additionally, our ADA-SAM model employs a novel gradient feedback mechanism to create a learnable connection between the segmentation and classification branches by using the segmentation gradients to guide and improve the classification predictions. We validate ADA-SAM on real-world clinical data collected during rehabilitation trials, and demonstrate that our proposed method outperforms both fully-supervised and semi-supervised baselines by double digits in limited label settings. Our code is available at: https://github.com/tbwa233/ADA-SAM.
comment: 11 pages, 2 figures, 3 tables
☆ Empowering Manufacturers with Privacy-Preserving AI Tools: A Case Study in Privacy-Preserving Machine Learning to Solve Real-World Problems
Small- and medium-sized manufacturers need innovative data tools but, because of competition and privacy concerns, often do not want to share their proprietary data with researchers who might be interested in helping. This paper introduces a privacy-preserving platform by which manufacturers may safely share their data with researchers through secure methods, so that those researchers then create innovative tools to solve the manufacturers' real-world problems, and then provide tools that execute solutions back onto the platform for others to use with privacy and confidentiality guarantees. We illustrate this problem through a particular use case which addresses an important problem in the large-scale manufacturing of food crystals, which is that quality control relies on image analysis tools. Previous to our research, food crystals in the images were manually counted, which required substantial and time-consuming human efforts, but we have developed and deployed a crystal analysis tool which makes this process both more rapid and accurate. The tool enables automatic characterization of the crystal size distribution and numbers from microscope images while the natural imperfections from the sample preparation are automatically removed; a machine learning model to count high resolution translucent crystals and agglomeration of crystals was also developed to aid in these efforts. The resulting algorithm was then packaged for real-world use on the factory floor via a web-based app secured through the originating privacy-preserving platform, allowing manufacturers to use it while keeping their proprietary data secure. After demonstrating this full process, future directions are also explored.
comment: 20 pages, 11 figures, 30 references
AMD: Adaptive Momentum and Decoupled Contrastive Learning Framework for Robust Long-Tail Trajectory Prediction
Accurately predicting the future trajectories of traffic agents is essential in autonomous driving. However, due to the inherent imbalance in trajectory distributions, tail data in natural datasets often represents more complex and hazardous scenarios. Existing studies typically rely solely on a base model's prediction error, without considering the diversity and uncertainty of long-tail trajectory patterns. We propose an adaptive momentum and decoupled contrastive learning framework (AMD), which integrates unsupervised and supervised contrastive learning strategies. By leveraging an improved momentum contrast learning (MoCo-DT) and decoupled contrastive learning (DCL) module, our framework enhances the model's ability to recognize rare and complex trajectories. Additionally, we design four types of trajectory random augmentation methods and introduce an online iterative clustering strategy, allowing the model to dynamically update pseudo-labels and better adapt to the distributional shifts in long-tail data. We propose three different criteria to define long-tail trajectories and conduct extensive comparative experiments on the nuScenes and ETH$/$UCY datasets. The results show that AMD not only achieves optimal performance in long-tail trajectory prediction but also demonstrates outstanding overall prediction accuracy.
HCNQA: Enhancing 3D VQA with Hierarchical Concentration Narrowing Supervision ICANN 2025
3D Visual Question-Answering (3D VQA) is pivotal for models to perceive the physical world and perform spatial reasoning. Answer-centric supervision is a commonly used training method for 3D VQA models. Many models that utilize this strategy have achieved promising results in 3D VQA tasks. However, the answer-centric approach only supervises the final output of models and allows models to develop reasoning pathways freely. The absence of supervision on the reasoning pathway enables the potential for developing superficial shortcuts through common patterns in question-answer pairs. Moreover, although slow-thinking methods advance large language models, they suffer from underthinking. To address these issues, we propose \textbf{HCNQA}, a 3D VQA model leveraging a hierarchical concentration narrowing supervision method. By mimicking the human process of gradually focusing from a broad area to specific objects while searching for answers, our method guides the model to perform three phases of concentration narrowing through hierarchical supervision. By supervising key checkpoints on a general reasoning pathway, our method can ensure the development of a rational and effective reasoning pathway. Extensive experimental results demonstrate that our method can effectively ensure that the model develops a rational reasoning pathway and performs better. The code is available at https://github.com/JianuoZhu/HCNQA.
comment: ICANN 2025
☆ Robust brain age estimation from structural MRI with contrastive learning
Estimating brain age from structural MRI has emerged as a powerful tool for characterizing normative and pathological aging. In this work, we explore contrastive learning as a scalable and robust alternative to supervised approaches for brain age estimation. We introduce a novel contrastive loss function, $\mathcal{L}^{exp}$, and evaluate it across multiple public neuroimaging datasets comprising over 20,000 scans. Our experiments reveal four key findings. First, scaling pre-training on diverse, multi-site data consistently improves generalization performance, cutting external mean absolute error (MAE) nearly in half. Second, $\mathcal{L}^{exp}$ is robust to site-related confounds, maintaining low scanner-predictability as training size increases. Third, contrastive models reliably capture accelerated aging in patients with cognitive impairment and Alzheimer's disease, as shown through brain age gap analysis, ROC curves, and longitudinal trends. Lastly, unlike supervised baselines, $\mathcal{L}^{exp}$ maintains a strong correlation between brain age accuracy and downstream diagnostic performance, supporting its potential as a foundation model for neuroimaging. These results position contrastive learning as a promising direction for building generalizable and clinically meaningful brain representations.
comment: 11 pages
☆ FreeLoRA: Enabling Training-Free LoRA Fusion for Autoregressive Multi-Subject Personalization
Subject-driven image generation plays a crucial role in applications such as virtual try-on and poster design. Existing approaches typically fine-tune pretrained generative models or apply LoRA-based adaptations for individual subjects. However, these methods struggle with multi-subject personalization, as combining independently adapted modules often requires complex re-tuning or joint optimization. We present FreeLoRA, a simple and generalizable framework that enables training-free fusion of subject-specific LoRA modules for multi-subject personalization. Each LoRA module is adapted on a few images of a specific subject using a Full Token Tuning strategy, where it is applied across all tokens in the prompt to encourage weakly supervised token-content alignment. At inference, we adopt Subject-Aware Inference, activating each module only on its corresponding subject tokens. This enables training-free fusion of multiple personalized subjects within a single image, while mitigating overfitting and mutual interference between subjects. Extensive experiments show that FreeLoRA achieves strong performance in both subject fidelity and prompt consistency.
☆ Boosting Adversarial Transferability Against Defenses via Multi-Scale Transformation
The transferability of adversarial examples poses a significant security challenge for deep neural networks, which can be attacked without knowing anything about them. In this paper, we propose a new Segmented Gaussian Pyramid (SGP) attack method to enhance the transferability, particularly against defense models. Unlike existing methods that generally focus on single-scale images, our approach employs Gaussian filtering and three types of downsampling to construct a series of multi-scale examples. Then, the gradients of the loss function with respect to each scale are computed, and their average is used to determine the adversarial perturbations. The proposed SGP can be considered an input transformation with high extensibility that is easily integrated into most existing adversarial attacks. Extensive experiments demonstrate that in contrast to the state-of-the-art methods, SGP significantly enhances attack success rates against black-box defense models, with average attack success rates increasing by 2.3% to 32.6%, based only on transferability.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Are Vision Transformer Representations Semantically Meaningful? A Case Study in Medical Imaging
Vision transformers (ViTs) have rapidly gained prominence in medical imaging tasks such as disease classification, segmentation, and detection due to their superior accuracy compared to conventional deep learning models. However, due to their size and complex interactions via the self-attention mechanism, they are not well understood. In particular, it is unclear whether the representations produced by such models are semantically meaningful. In this paper, using a projected gradient-based algorithm, we show that their representations are not semantically meaningful and they are inherently vulnerable to small changes. Images with imperceptible differences can have very different representations; on the other hand, images that should belong to different semantic classes can have nearly identical representations. Such vulnerability can lead to unreliable classification results; for example, unnoticeable changes cause the classification accuracy to be reduced by over 60\%. %. To the best of our knowledge, this is the first work to systematically demonstrate this fundamental lack of semantic meaningfulness in ViT representations for medical image classification, revealing a critical challenge for their deployment in safety-critical systems.
comment: 9 pages
☆ A Hybrid Ensemble Learning Framework for Image-Based Solar Panel Classification
The installation of solar energy systems is on the rise, and therefore, appropriate maintenance techniques are required to be used in order to maintain maximum performance levels. One of the major challenges is the automated discrimination between clean and dirty solar panels. This paper presents a novel Dual Ensemble Neural Network (DENN) to classify solar panels using image-based features. The suggested approach utilizes the advantages offered by various ensemble models by integrating them into a dual framework, aimed at improving both classification accuracy and robustness. The DENN model is evaluated in comparison to current ensemble methods, showcasing its superior performance across a range of assessment metrics. The proposed approach performs the best compared to other methods and reaches state-of-the-art accuracy on experimental results for the Deep Solar Eye dataset, effectively serving predictive maintenance purposes in solar energy systems. It reveals the potential of hybrid ensemble learning techniques to further advance the prospects of automated solar panel inspections as a scalable solution to real-world challenges.
comment: 6 pages
☆ Rethinking Discrete Tokens: Treating Them as Conditions for Continuous Autoregressive Image Synthesis
Recent advances in large language models (LLMs) have spurred interests in encoding images as discrete tokens and leveraging autoregressive (AR) frameworks for visual generation. However, the quantization process in AR-based visual generation models inherently introduces information loss that degrades image fidelity. To mitigate this limitation, recent studies have explored to autoregressively predict continuous tokens. Unlike discrete tokens that reside in a structured and bounded space, continuous representations exist in an unbounded, high-dimensional space, making density estimation more challenging and increasing the risk of generating out-of-distribution artifacts. Based on the above findings, this work introduces DisCon (Discrete-Conditioned Continuous Autoregressive Model), a novel framework that reinterprets discrete tokens as conditional signals rather than generation targets. By modeling the conditional probability of continuous representations conditioned on discrete tokens, DisCon circumvents the optimization challenges of continuous token modeling while avoiding the information loss caused by quantization. DisCon achieves a gFID score of 1.38 on ImageNet 256$\times$256 generation, outperforming state-of-the-art autoregressive approaches by a clear margin.
comment: accepted by iccv 2025
☆ SSL4SAR: Self-Supervised Learning for Glacier Calving Front Extraction from SAR Imagery
Glaciers are losing ice mass at unprecedented rates, increasing the need for accurate, year-round monitoring to understand frontal ablation, particularly the factors driving the calving process. Deep learning models can extract calving front positions from Synthetic Aperture Radar imagery to track seasonal ice losses at the calving fronts of marine- and lake-terminating glaciers. The current state-of-the-art model relies on ImageNet-pretrained weights. However, they are suboptimal due to the domain shift between the natural images in ImageNet and the specialized characteristics of remote sensing imagery, in particular for Synthetic Aperture Radar imagery. To address this challenge, we propose two novel self-supervised multimodal pretraining techniques that leverage SSL4SAR, a new unlabeled dataset comprising 9,563 Sentinel-1 and 14 Sentinel-2 images of Arctic glaciers, with one optical image per glacier in the dataset. Additionally, we introduce a novel hybrid model architecture that combines a Swin Transformer encoder with a residual Convolutional Neural Network (CNN) decoder. When pretrained on SSL4SAR, this model achieves a mean distance error of 293 m on the "CAlving Fronts and where to Find thEm" (CaFFe) benchmark dataset, outperforming the prior best model by 67 m. Evaluating an ensemble of the proposed model on a multi-annotator study of the benchmark dataset reveals a mean distance error of 75 m, approaching the human performance of 38 m. This advancement enables precise monitoring of seasonal changes in glacier calving fronts.
comment: in IEEE Transactions on Geoscience and Remote Sensing. arXiv admin note: text overlap with arXiv:2501.05281
☆ Calibrated Self-supervised Vision Transformers Improve Intracranial Arterial Calcification Segmentation from Clinical CT Head Scans
Vision Transformers (ViTs) have gained significant popularity in the natural image domain but have been less successful in 3D medical image segmentation. Nevertheless, 3D ViTs are particularly interesting for large medical imaging volumes due to their efficient self-supervised training within the masked autoencoder (MAE) framework, which enables the use of imaging data without the need for expensive manual annotations. intracranial arterial calcification (IAC) is an imaging biomarker visible on routinely acquired CT scans linked to neurovascular diseases such as stroke and dementia, and automated IAC quantification could enable their large-scale risk assessment. We pre-train ViTs with MAE and fine-tune them for IAC segmentation for the first time. To develop our models, we use highly heterogeneous data from a large clinical trial, the third International Stroke Trial (IST-3). We evaluate key aspects of MAE pre-trained ViTs in IAC segmentation, and analyse the clinical implications. We show: 1) our calibrated self-supervised ViT beats a strong supervised nnU-Net baseline by 3.2 Dice points, 2) low patch sizes are crucial for ViTs for IAC segmentation and interpolation upsampling with regular convolutions is preferable to transposed convolutions for ViT-based models, and 3) our ViTs increase robustness to higher slice thicknesses and improve risk group classification in a clinical scenario by 46%. Our code is available online.
☆ DeRIS: Decoupling Perception and Cognition for Enhanced Referring Image Segmentation through Loopback Synergy ICCV 2025
Referring Image Segmentation (RIS) is a challenging task that aims to segment objects in an image based on natural language expressions. While prior studies have predominantly concentrated on improving vision-language interactions and achieving fine-grained localization, a systematic analysis of the fundamental bottlenecks in existing RIS frameworks remains underexplored. To bridge this gap, we propose DeRIS, a novel framework that decomposes RIS into two key components: perception and cognition. This modular decomposition facilitates a systematic analysis of the primary bottlenecks impeding RIS performance. Our findings reveal that the predominant limitation lies not in perceptual deficiencies, but in the insufficient multi-modal cognitive capacity of current models. To mitigate this, we propose a Loopback Synergy mechanism, which enhances the synergy between the perception and cognition modules, thereby enabling precise segmentation while simultaneously improving robust image-text comprehension. Additionally, we analyze and introduce a simple non-referent sample conversion data augmentation to address the long-tail distribution issue related to target existence judgement in general scenarios. Notably, DeRIS demonstrates inherent adaptability to both non- and multi-referents scenarios without requiring specialized architectural modifications, enhancing its general applicability. The codes and models are available at https://github.com/Dmmm1997/DeRIS.
comment: ICCV 2025
☆ HOI-Dyn: Learning Interaction Dynamics for Human-Object Motion Diffusion
Generating realistic 3D human-object interactions (HOIs) remains a challenging task due to the difficulty of modeling detailed interaction dynamics. Existing methods treat human and object motions independently, resulting in physically implausible and causally inconsistent behaviors. In this work, we present HOI-Dyn, a novel framework that formulates HOI generation as a driver-responder system, where human actions drive object responses. At the core of our method is a lightweight transformer-based interaction dynamics model that explicitly predicts how objects should react to human motion. To further enforce consistency, we introduce a residual-based dynamics loss that mitigates the impact of dynamics prediction errors and prevents misleading optimization signals. The dynamics model is used only during training, preserving inference efficiency. Through extensive qualitative and quantitative experiments, we demonstrate that our approach not only enhances the quality of HOI generation but also establishes a feasible metric for evaluating the quality of generated interactions.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ When Does Pruning Benefit Vision Representations?
Pruning is widely used to reduce the complexity of deep learning models, but its effects on interpretability and representation learning remain poorly understood. This paper investigates how pruning influences vision models across three key dimensions: (i) interpretability, (ii) unsupervised object discovery, and (iii) alignment with human perception. We first analyze different vision network architectures to examine how varying sparsity levels affect feature attribution interpretability methods. Additionally, we explore whether pruning promotes more succinct and structured representations, potentially improving unsupervised object discovery by discarding redundant information while preserving essential features. Finally, we assess whether pruning enhances the alignment between model representations and human perception, investigating whether sparser models focus on more discriminative features similarly to humans. Our findings also reveal the presence of sweet spots, where sparse models exhibit higher interpretability, downstream generalization and human alignment. However, these spots highly depend on the network architectures and their size in terms of trainable parameters. Our results suggest a complex interplay between these three dimensions, highlighting the importance of investigating when and how pruning benefits vision representations.
☆ Soft Self-labeling and Potts Relaxations for Weakly-Supervised Segmentation CVPR 2025
We consider weakly supervised segmentation where only a fraction of pixels have ground truth labels (scribbles) and focus on a self-labeling approach optimizing relaxations of the standard unsupervised CRF/Potts loss on unlabeled pixels. While WSSS methods can directly optimize such losses via gradient descent, prior work suggests that higher-order optimization can improve network training by introducing hidden pseudo-labels and powerful CRF sub-problem solvers, e.g. graph cut. However, previously used hard pseudo-labels can not represent class uncertainty or errors, which motivates soft self-labeling. We derive a principled auxiliary loss and systematically evaluate standard and new CRF relaxations (convex and non-convex), neighborhood systems, and terms connecting network predictions with soft pseudo-labels. We also propose a general continuous sub-problem solver. Using only standard architectures, soft self-labeling consistently improves scribble-based training and outperforms significantly more complex specialized WSSS systems. It can outperform full pixel-precise supervision. Our general ideas apply to other weakly-supervised problems/systems.
comment: published at CVPR 2025
☆ Using Wavelet Domain Fingerprints to Improve Source Camera Identification
Camera fingerprint detection plays a crucial role in source identification and image forensics, with wavelet denoising approaches proving to be particularly effective in extracting sensor pattern noise (SPN). In this article, we propose a modification to wavelet-based SPN extraction. Rather than constructing the fingerprint as an image, we introduce the notion of a wavelet domain fingerprint. This avoids the final inversion step of the denoising algorithm and allows fingerprint comparisons to be made directly in the wavelet domain. As such, our modification streamlines the extraction and comparison process. Experimental results on real-world datasets demonstrate that our method not only achieves higher detection accuracy but can also significantly improve processing speed.
☆ Component Adaptive Clustering for Generalized Category Discovery ICME 2025
Generalized Category Discovery (GCD) tackles the challenging problem of categorizing unlabeled images into both known and novel classes within a partially labeled dataset, without prior knowledge of the number of unknown categories. Traditional methods often rely on rigid assumptions, such as predefining the number of classes, which limits their ability to handle the inherent variability and complexity of real-world data. To address these shortcomings, we propose AdaGCD, a cluster-centric contrastive learning framework that incorporates Adaptive Slot Attention (AdaSlot) into the GCD framework. AdaSlot dynamically determines the optimal number of slots based on data complexity, removing the need for predefined slot counts. This adaptive mechanism facilitates the flexible clustering of unlabeled data into known and novel categories by dynamically allocating representational capacity. By integrating adaptive representation with dynamic slot allocation, our method captures both instance-specific and spatially clustered features, improving class discovery in open-world scenarios. Extensive experiments on public and fine-grained datasets validate the effectiveness of our framework, emphasizing the advantages of leveraging spatial local information for category discovery in unlabeled image datasets.
comment: Accepted by IEEE ICME 2025
☆ Facial Emotion Learning with Text-Guided Multiview Fusion via Vision-Language Model for 3D/4D Facial Expression Recognition
Facial expression recognition (FER) in 3D and 4D domains presents a significant challenge in affective computing due to the complexity of spatial and temporal facial dynamics. Its success is crucial for advancing applications in human behavior understanding, healthcare monitoring, and human-computer interaction. In this work, we propose FACET-VLM, a vision-language framework for 3D/4D FER that integrates multiview facial representation learning with semantic guidance from natural language prompts. FACET-VLM introduces three key components: Cross-View Semantic Aggregation (CVSA) for view-consistent fusion, Multiview Text-Guided Fusion (MTGF) for semantically aligned facial emotions, and a multiview consistency loss to enforce structural coherence across views. Our model achieves state-of-the-art accuracy across multiple benchmarks, including BU-3DFE, Bosphorus, BU-4DFE, and BP4D-Spontaneous. We further extend FACET-VLM to 4D micro-expression recognition (MER) on the 4DME dataset, demonstrating strong performance in capturing subtle, short-lived emotional cues. The extensive experimental results confirm the effectiveness and substantial contributions of each individual component within the framework. Overall, FACET-VLM offers a robust, extensible, and high-performing solution for multimodal FER in both posed and spontaneous settings.
☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In a large study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extend. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ RobuSTereo: Robust Zero-Shot Stereo Matching under Adverse Weather ICCV25
Learning-based stereo matching models struggle in adverse weather conditions due to the scarcity of corresponding training data and the challenges in extracting discriminative features from degraded images. These limitations significantly hinder zero-shot generalization to out-of-distribution weather conditions. In this paper, we propose \textbf{RobuSTereo}, a novel framework that enhances the zero-shot generalization of stereo matching models under adverse weather by addressing both data scarcity and feature extraction challenges. First, we introduce a diffusion-based simulation pipeline with a stereo consistency module, which generates high-quality stereo data tailored for adverse conditions. By training stereo matching models on our synthetic datasets, we reduce the domain gap between clean and degraded images, significantly improving the models' robustness to unseen weather conditions. The stereo consistency module ensures structural alignment across synthesized image pairs, preserving geometric integrity and enhancing depth estimation accuracy. Second, we design a robust feature encoder that combines a specialized ConvNet with a denoising transformer to extract stable and reliable features from degraded images. The ConvNet captures fine-grained local structures, while the denoising transformer refines global representations, effectively mitigating the impact of noise, low visibility, and weather-induced distortions. This enables more accurate disparity estimation even under challenging visual conditions. Extensive experiments demonstrate that \textbf{RobuSTereo} significantly improves the robustness and generalization of stereo matching models across diverse adverse weather scenarios.
comment: accepted by ICCV25
☆ Autoregressive Image Generation with Linear Complexity: A Spatial-Aware Decay Perspective
Autoregressive (AR) models have garnered significant attention in image generation for their ability to effectively capture both local and global structures within visual data. However, prevalent AR models predominantly rely on the transformer architectures, which are beset by quadratic computational complexity concerning input sequence length and substantial memory overhead due to the necessity of maintaining key-value caches. Although linear attention mechanisms have successfully reduced this burden in language models, our initial experiments reveal that they significantly degrade image generation quality because of their inability to capture critical long-range dependencies in visual data. We propose Linear Attention with Spatial-Aware Decay (LASAD), a novel attention mechanism that explicitly preserves genuine 2D spatial relationships within the flattened image sequences by computing position-dependent decay factors based on true 2D spatial location rather than 1D sequence positions. Based on this mechanism, we present LASADGen, an autoregressive image generator that enables selective attention to relevant spatial contexts with linear complexity. Experiments on ImageNet show LASADGen achieves state-of-the-art image generation performance and computational efficiency, bridging the gap between linear attention's efficiency and spatial understanding needed for high-quality generation.
☆ SAILViT: Towards Robust and Generalizable Visual Backbones for MLLMs via Gradual Feature Refinement
Vision Transformers (ViTs) are essential as foundation backbones in establishing the visual comprehension capabilities of Multimodal Large Language Models (MLLMs). Although most ViTs achieve impressive performance through image-text pair-based contrastive learning or self-supervised mechanisms, they struggle to engage in connector-based co-training directly with LLMs due to potential parameter initialization conflicts and modality semantic gaps. To address the above challenges, this paper proposes SAILViT, a gradual feature learning-enhanced ViT for facilitating MLLMs to break through performance bottlenecks in complex multimodal interactions. SAILViT achieves coarse-to-fine-grained feature alignment and world knowledge infusion with gradual feature refinement, which better serves target training demands. We perform thorough empirical analyses to confirm the powerful robustness and generalizability of SAILViT across different dimensions, including parameter sizes, model architectures, training strategies, and data scales. Equipped with SAILViT, existing MLLMs show significant and consistent performance improvements on the OpenCompass benchmark across extensive downstream tasks. SAILViT series models are released at https://huggingface.co/BytedanceDouyinContent.
comment: We release SAILViT, a series of versatile vision foundation models
☆ Depth Anything at Any Condition
We present Depth Anything at Any Condition (DepthAnything-AC), a foundation monocular depth estimation (MDE) model capable of handling diverse environmental conditions. Previous foundation MDE models achieve impressive performance across general scenes but not perform well in complex open-world environments that involve challenging conditions, such as illumination variations, adverse weather, and sensor-induced distortions. To overcome the challenges of data scarcity and the inability of generating high-quality pseudo-labels from corrupted images, we propose an unsupervised consistency regularization finetuning paradigm that requires only a relatively small amount of unlabeled data. Furthermore, we propose the Spatial Distance Constraint to explicitly enforce the model to learn patch-level relative relationships, resulting in clearer semantic boundaries and more accurate details. Experimental results demonstrate the zero-shot capabilities of DepthAnything-AC across diverse benchmarks, including real-world adverse weather benchmarks, synthetic corruption benchmarks, and general benchmarks. Project Page: https://ghost233lism.github.io/depthanything-AC-page Code: https://github.com/HVision-NKU/DepthAnythingAC
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
☆ Prompt Guidance and Human Proximal Perception for HOT Prediction with Regional Joint Loss ICCV 2025
The task of Human-Object conTact (HOT) detection involves identifying the specific areas of the human body that are touching objects. Nevertheless, current models are restricted to just one type of image, often leading to too much segmentation in areas with little interaction, and struggling to maintain category consistency within specific regions. To tackle this issue, a HOT framework, termed \textbf{P3HOT}, is proposed, which blends \textbf{P}rompt guidance and human \textbf{P}roximal \textbf{P}erception. To begin with, we utilize a semantic-driven prompt mechanism to direct the network's attention towards the relevant regions based on the correlation between image and text. Then a human proximal perception mechanism is employed to dynamically perceive key depth range around the human, using learnable parameters to effectively eliminate regions where interactions are not expected. Calculating depth resolves the uncertainty of the overlap between humans and objects in a 2D perspective, providing a quasi-3D viewpoint. Moreover, a Regional Joint Loss (RJLoss) has been created as a new loss to inhibit abnormal categories in the same area. A new evaluation metric called ``AD-Acc.'' is introduced to address the shortcomings of existing methods in addressing negative samples. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art performance in four metrics across two benchmark datasets. Specifically, our model achieves an improvement of \textbf{0.7}$\uparrow$, \textbf{2.0}$\uparrow$, \textbf{1.6}$\uparrow$, and \textbf{11.0}$\uparrow$ in SC-Acc., mIoU, wIoU, and AD-Acc. metrics, respectively, on the HOT-Annotated dataset. Code is available at https://github.com/YuxiaoWang-AI/P3HOT.
comment: Accepted by ICCV 2025
☆ Perception-Oriented Latent Coding for High-Performance Compressed Domain Semantic Inference ICME
In recent years, compressed domain semantic inference has primarily relied on learned image coding models optimized for mean squared error (MSE). However, MSE-oriented optimization tends to yield latent spaces with limited semantic richness, which hinders effective semantic inference in downstream tasks. Moreover, achieving high performance with these models often requires fine-tuning the entire vision model, which is computationally intensive, especially for large models. To address these problems, we introduce Perception-Oriented Latent Coding (POLC), an approach that enriches the semantic content of latent features for high-performance compressed domain semantic inference. With the semantically rich latent space, POLC requires only a plug-and-play adapter for fine-tuning, significantly reducing the parameter count compared to previous MSE-oriented methods. Experimental results demonstrate that POLC achieves rate-perception performance comparable to state-of-the-art generative image coding methods while markedly enhancing performance in vision tasks, with minimal fine-tuning overhead. Code is available at https://github.com/NJUVISION/POLC.
comment: International Conference on Multimedia and Expo (ICME), 2025
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ DepthSync: Diffusion Guidance-Based Depth Synchronization for Scale- and Geometry-Consistent Video Depth Estimation ICCV 2025
Diffusion-based video depth estimation methods have achieved remarkable success with strong generalization ability. However, predicting depth for long videos remains challenging. Existing methods typically split videos into overlapping sliding windows, leading to accumulated scale discrepancies across different windows, particularly as the number of windows increases. Additionally, these methods rely solely on 2D diffusion priors, overlooking the inherent 3D geometric structure of video depths, which results in geometrically inconsistent predictions. In this paper, we propose DepthSync, a novel, training-free framework using diffusion guidance to achieve scale- and geometry-consistent depth predictions for long videos. Specifically, we introduce scale guidance to synchronize the depth scale across windows and geometry guidance to enforce geometric alignment within windows based on the inherent 3D constraints in video depths. These two terms work synergistically, steering the denoising process toward consistent depth predictions. Experiments on various datasets validate the effectiveness of our method in producing depth estimates with improved scale and geometry consistency, particularly for long videos.
comment: Accepted by ICCV 2025
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ Towards Controllable Real Image Denoising with Camera Parameters ICIP 2025
Recent deep learning-based image denoising methods have shown impressive performance; however, many lack the flexibility to adjust the denoising strength based on the noise levels, camera settings, and user preferences. In this paper, we introduce a new controllable denoising framework that adaptively removes noise from images by utilizing information from camera parameters. Specifically, we focus on ISO, shutter speed, and F-number, which are closely related to noise levels. We convert these selected parameters into a vector to control and enhance the performance of the denoising network. Experimental results show that our method seamlessly adds controllability to standard denoising neural networks and improves their performance. Code is available at https://github.com/OBAKSA/CPADNet.
comment: Accepted for publication in ICIP 2025, IEEE International Conference on Image Processing
☆ SketchColour: Channel Concat Guided DiT-based Sketch-to-Colour Pipeline for 2D Animation
The production of high-quality 2D animation is highly labor-intensive process, as animators are currently required to draw and color a large number of frames by hand. We present SketchColour, the first sketch-to-colour pipeline for 2D animation built on a diffusion transformer (DiT) backbone. By replacing the conventional U-Net denoiser with a DiT-style architecture and injecting sketch information via lightweight channel-concatenation adapters accompanied with LoRA finetuning, our method natively integrates conditioning without the parameter and memory bloat of a duplicated ControlNet, greatly reducing parameter count and GPU memory usage. Evaluated on the SAKUGA dataset, SketchColour outperforms previous state-of-the-art video colourization methods across all metrics, despite using only half the training data of competing models. Our approach produces temporally coherent animations with minimal artifacts such as colour bleeding or object deformation. Our code is available at: https://bconstantine.github.io/SketchColour .
comment: Project page and code: https://bconstantine.github.io/SketchColour
☆ A Gift from the Integration of Discriminative and Diffusion-based Generative Learning: Boundary Refinement Remote Sensing Semantic Segmentation
Remote sensing semantic segmentation must address both what the ground objects are within an image and where they are located. Consequently, segmentation models must ensure not only the semantic correctness of large-scale patches (low-frequency information) but also the precise localization of boundaries between patches (high-frequency information). However, most existing approaches rely heavily on discriminative learning, which excels at capturing low-frequency features, while overlooking its inherent limitations in learning high-frequency features for semantic segmentation. Recent studies have revealed that diffusion generative models excel at generating high-frequency details. Our theoretical analysis confirms that the diffusion denoising process significantly enhances the model's ability to learn high-frequency features; however, we also observe that these models exhibit insufficient semantic inference for low-frequency features when guided solely by the original image. Therefore, we integrate the strengths of both discriminative and generative learning, proposing the Integration of Discriminative and diffusion-based Generative learning for Boundary Refinement (IDGBR) framework. The framework first generates a coarse segmentation map using a discriminative backbone model. This map and the original image are fed into a conditioning guidance network to jointly learn a guidance representation subsequently leveraged by an iterative denoising diffusion process refining the coarse segmentation. Extensive experiments across five remote sensing semantic segmentation datasets (binary and multi-class segmentation) confirm our framework's capability of consistent boundary refinement for coarse results from diverse discriminative architectures. The source code will be available at https://github.com/KeyanHu-git/IDGBR.
comment: 20 pages, 14 figures
☆ Multi Source COVID-19 Detection via Kernel-Density-based Slice Sampling
We present our solution for the Multi-Source COVID-19 Detection Challenge, which classifies chest CT scans from four distinct medical centers. To address multi-source variability, we employ the Spatial-Slice Feature Learning (SSFL) framework with Kernel-Density-based Slice Sampling (KDS). Our preprocessing pipeline combines lung region extraction, quality control, and adaptive slice sampling to select eight representative slices per scan. We compare EfficientNet and Swin Transformer architectures on the validation set. The EfficientNet model achieves an F1-score of 94.68%, compared to the Swin Transformer's 93.34%. The results demonstrate the effectiveness of our KDS-based pipeline on multi-source data and highlight the importance of dataset balance in multi-institutional medical imaging evaluation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Interpolation-Based Event Visual Data Filtering Algorithms CVPR
The field of neuromorphic vision is developing rapidly, and event cameras are finding their way into more and more applications. However, the data stream from these sensors is characterised by significant noise. In this paper, we propose a method for event data that is capable of removing approximately 99\% of noise while preserving the majority of the valid signal. We have proposed four algorithms based on the matrix of infinite impulse response (IIR) filters method. We compared them on several event datasets that were further modified by adding artificially generated noise and noise recorded with dynamic vision sensor. The proposed methods use about 30KB of memory for a sensor with a resolution of 1280 x 720 and is therefore well suited for implementation in embedded devices.
comment: This paper has been accepted for publication at the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Vancouver, 2023. Copyright IEEE
☆ A Multi-Centric Anthropomorphic 3D CT Phantom-Based Benchmark Dataset for Harmonization
Artificial intelligence (AI) has introduced numerous opportunities for human assistance and task automation in medicine. However, it suffers from poor generalization in the presence of shifts in the data distribution. In the context of AI-based computed tomography (CT) analysis, significant data distribution shifts can be caused by changes in scanner manufacturer, reconstruction technique or dose. AI harmonization techniques can address this problem by reducing distribution shifts caused by various acquisition settings. This paper presents an open-source benchmark dataset containing CT scans of an anthropomorphic phantom acquired with various scanners and settings, which purpose is to foster the development of AI harmonization techniques. Using a phantom allows fixing variations attributed to inter- and intra-patient variations. The dataset includes 1378 image series acquired with 13 scanners from 4 manufacturers across 8 institutions using a harmonized protocol as well as several acquisition doses. Additionally, we present a methodology, baseline results and open-source code to assess image- and feature-level stability and liver tissue classification, promoting the development of AI harmonization strategies.
☆ TrackingMiM: Efficient Mamba-in-Mamba Serialization for Real-time UAV Object Tracking
The Vision Transformer (ViT) model has long struggled with the challenge of quadratic complexity, a limitation that becomes especially critical in unmanned aerial vehicle (UAV) tracking systems, where data must be processed in real time. In this study, we explore the recently proposed State-Space Model, Mamba, leveraging its computational efficiency and capability for long-sequence modeling to effectively process dense image sequences in tracking tasks. First, we highlight the issue of temporal inconsistency in existing Mamba-based methods, specifically the failure to account for temporal continuity in the Mamba scanning mechanism. Secondly, building upon this insight,we propose TrackingMiM, a Mamba-in-Mamba architecture, a minimal-computation burden model for handling image sequence of tracking problem. In our framework, the mamba scan is performed in a nested way while independently process temporal and spatial coherent patch tokens. While the template frame is encoded as query token and utilized for tracking in every scan. Extensive experiments conducted on five UAV tracking benchmarks confirm that the proposed TrackingMiM achieves state-of-the-art precision while offering noticeable higher speed in UAV tracking.
comment: 12 pages
☆ Exploring Pose-based Sign Language Translation: Ablation Studies and Attention Insights CVPR2025
Sign Language Translation (SLT) has evolved significantly, moving from isolated recognition approaches to complex, continuous gloss-free translation systems. This paper explores the impact of pose-based data preprocessing techniques - normalization, interpolation, and augmentation - on SLT performance. We employ a transformer-based architecture, adapting a modified T5 encoder-decoder model to process pose representations. Through extensive ablation studies on YouTubeASL and How2Sign datasets, we analyze how different preprocessing strategies affect translation accuracy. Our results demonstrate that appropriate normalization, interpolation, and augmentation techniques can significantly improve model robustness and generalization abilities. Additionally, we provide a deep analysis of the model's attentions and reveal interesting behavior suggesting that adding a dedicated register token can improve overall model performance. We publish our code on our GitHub repository, including the preprocessed YouTubeASL data.
comment: 8 pages, 9 figures, supplementary, SLRTP2025, CVPR2025
☆ SafePTR: Token-Level Jailbreak Defense in Multimodal LLMs via Prune-then-Restore Mechanism
By incorporating visual inputs, Multimodal Large Language Models (MLLMs) extend LLMs to support visual reasoning. However, this integration also introduces new vulnerabilities, making MLLMs susceptible to multimodal jailbreak attacks and hindering their safe deployment.Existing defense methods, including Image-to-Text Translation, Safe Prompting, and Multimodal Safety Tuning, attempt to address this by aligning multimodal inputs with LLMs' built-in safeguards.Yet, they fall short in uncovering root causes of multimodal vulnerabilities, particularly how harmful multimodal tokens trigger jailbreak in MLLMs? Consequently, they remain vulnerable to text-driven multimodal jailbreaks, often exhibiting overdefensive behaviors and imposing heavy training overhead.To bridge this gap, we present an comprehensive analysis of where, how and which harmful multimodal tokens bypass safeguards in MLLMs. Surprisingly, we find that less than 1% tokens in early-middle layers are responsible for inducing unsafe behaviors, highlighting the potential of precisely removing a small subset of harmful tokens, without requiring safety tuning, can still effectively improve safety against jailbreaks. Motivated by this, we propose Safe Prune-then-Restore (SafePTR), an training-free defense framework that selectively prunes harmful tokens at vulnerable layers while restoring benign features at subsequent layers.Without incurring additional computational overhead, SafePTR significantly enhances the safety of MLLMs while preserving efficiency. Extensive evaluations across three MLLMs and five benchmarks demonstrate SafePTR's state-of-the-art performance in mitigating jailbreak risks without compromising utility.
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence SC 2025
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Integrating Traditional and Deep Learning Methods to Detect Tree Crowns in Satellite Images
Global warming, loss of biodiversity, and air pollution are among the most significant problems facing Earth. One of the primary challenges in addressing these issues is the lack of monitoring forests to protect them. To tackle this problem, it is important to leverage remote sensing and computer vision methods to automate monitoring applications. Hence, automatic tree crown detection algorithms emerged based on traditional and deep learning methods. In this study, we first introduce two different tree crown detection methods based on these approaches. Then, we form a novel rule-based approach that integrates these two methods to enhance robustness and accuracy of tree crown detection results. While traditional methods are employed for feature extraction and segmentation of forested areas, deep learning methods are used to detect tree crowns in our method. With the proposed rule-based approach, we post-process these results, aiming to increase the number of detected tree crowns through neighboring trees and localized operations. We compare the obtained results with the proposed method in terms of the number of detected tree crowns and report the advantages, disadvantages, and areas for improvement of the obtained outcomes.
comment: 11 pages, 4 figures, journal manuscript
☆ ReFlex: Text-Guided Editing of Real Images in Rectified Flow via Mid-Step Feature Extraction and Attention Adaptation ICCV 2025
Rectified Flow text-to-image models surpass diffusion models in image quality and text alignment, but adapting ReFlow for real-image editing remains challenging. We propose a new real-image editing method for ReFlow by analyzing the intermediate representations of multimodal transformer blocks and identifying three key features. To extract these features from real images with sufficient structural preservation, we leverage mid-step latent, which is inverted only up to the mid-step. We then adapt attention during injection to improve editability and enhance alignment to the target text. Our method is training-free, requires no user-provided mask, and can be applied even without a source prompt. Extensive experiments on two benchmarks with nine baselines demonstrate its superior performance over prior methods, further validated by human evaluations confirming a strong user preference for our approach.
comment: Published at ICCV 2025. Project page: https://wlaud1001.github.io/ReFlex/
☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
☆ AVC-DPO: Aligned Video Captioning via Direct Preference Optimization
Although video multimodal large language models (video MLLMs) have achieved substantial progress in video captioning tasks, it remains challenging to adjust the focal emphasis of video captions according to human preferences. To address this limitation, we propose Aligned Video Captioning via Direct Preference Optimization (AVC-DPO), a post-training framework designed to enhance captioning capabilities in video MLLMs through preference alignment. Our approach designs enhanced prompts that specifically target temporal dynamics and spatial information-two key factors that humans care about when watching a video-thereby incorporating human-centric preferences. AVC-DPO leverages the same foundation model's caption generation responses under varied prompt conditions to conduct preference-aware training and caption alignment. Using this framework, we have achieved exceptional performance in the LOVE@CVPR'25 Workshop Track 1A: Video Detailed Captioning Challenge, achieving first place on the Video Detailed Captioning (VDC) benchmark according to the VDCSCORE evaluation metric.
☆ What Really Matters for Robust Multi-Sensor HD Map Construction? IROS 2025
High-definition (HD) map construction methods are crucial for providing precise and comprehensive static environmental information, which is essential for autonomous driving systems. While Camera-LiDAR fusion techniques have shown promising results by integrating data from both modalities, existing approaches primarily focus on improving model accuracy and often neglect the robustness of perception models, which is a critical aspect for real-world applications. In this paper, we explore strategies to enhance the robustness of multi-modal fusion methods for HD map construction while maintaining high accuracy. We propose three key components: data augmentation, a novel multi-modal fusion module, and a modality dropout training strategy. These components are evaluated on a challenging dataset containing 10 days of NuScenes data. Our experimental results demonstrate that our proposed methods significantly enhance the robustness of baseline methods. Furthermore, our approach achieves state-of-the-art performance on the clean validation set of the NuScenes dataset. Our findings provide valuable insights for developing more robust and reliable HD map construction models, advancing their applicability in real-world autonomous driving scenarios. Project website: https://robomap-123.github.io.
comment: Accepted by IROS 2025
☆ Active Control Points-based 6DoF Pose Tracking for Industrial Metal Objects
Visual pose tracking is playing an increasingly vital role in industrial contexts in recent years. However, the pose tracking for industrial metal objects remains a challenging task especially in the real world-environments, due to the reflection characteristic of metal objects. To address this issue, we propose a novel 6DoF pose tracking method based on active control points. The method uses image control points to generate edge feature for optimization actively instead of 6DoF pose-based rendering, and serve them as optimization variables. We also introduce an optimal control point regression method to improve robustness. The proposed tracking method performs effectively in both dataset evaluation and real world tasks, providing a viable solution for real-time tracking of industrial metal objects. Our source code is made publicly available at: https://github.com/tomatoma00/ACPTracking.
comment: preprint version
☆ Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
comment: This is a preprint of a paper accepted for the EDHPC 2025 Conference
☆ Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models, through alignment between the noisy hidden projections of denoising networks and foundational clean image representations. We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations. In this work, we propose a straightforward method called Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising. REG acquires the capability to produce coherent image-class pairs directly from pure noise, substantially improving both generation quality and training efficiency. This is accomplished with negligible additional inference overhead, requiring only one single additional token for denoising (<0.5\% increase in FLOPs and latency). The inference process concurrently reconstructs both image latents and their corresponding global semantics, where the acquired semantic knowledge actively guides and enhances the image generation process. On ImageNet 256$\times$256, SiT-XL/2 + REG demonstrates remarkable convergence acceleration, achieving $\textbf{63}\times$ and $\textbf{23}\times$ faster training than SiT-XL/2 and SiT-XL/2 + REPA, respectively. More impressively, SiT-L/2 + REG trained for merely 400K iterations outperforms SiT-XL/2 + REPA trained for 4M iterations ($\textbf{10}\times$ longer). Code is available at: https://github.com/Martinser/REG.
☆ NOCTIS: Novel Object Cyclic Threshold based Instance Segmentation NeurIPS 2025
Instance segmentation of novel objects instances in RGB images, given some example images for each object, is a well known problem in computer vision. Designing a model general enough to be employed, for all kinds of novel objects, without (re-) training, has proven to be a difficult task. To handle this, we propose a simple, yet powerful, framework, called: Novel Object Cyclic Threshold based Instance Segmentation (NOCTIS). This work stems from and improves upon previous ones like CNOS, SAM-6D and NIDS-Net; thus, it also leverages on recent vision foundation models, namely: Grounded-SAM 2 and DINOv2. It utilises Grounded-SAM 2 to obtain object proposals with precise bounding boxes and their corresponding segmentation masks; while DINOv2's zero-shot capabilities are employed to generate the image embeddings. The quality of those masks, together with their embeddings, is of vital importance to our approach; as the proposal-object matching is realized by determining an object matching score based on the similarity of the class embeddings and the average maximum similarity of the patch embeddings. Differently to SAM-6D, calculating the latter involves a prior patch filtering based on the distance between each patch and its corresponding cyclic/roundtrip patch in the image grid. Furthermore, the average confidence of the proposals' bounding box and mask is used as an additional weighting factor for the object matching score. We empirically show that NOCTIS, without further training/fine tuning, outperforms the best RGB and RGB-D methods on the seven core datasets of the BOP 2023 challenge for the "Model-based 2D segmentation of unseen objects" task.
comment: 10 pages, 3 figures, 3 tables, NeurIPS 2025 preprint
☆ OoDDINO:A Multi-level Framework for Anomaly Segmentation on Complex Road Scenes
Anomaly segmentation aims to identify Out-of-Distribution (OoD) anomalous objects within images. Existing pixel-wise methods typically assign anomaly scores individually and employ a global thresholding strategy to segment anomalies. Despite their effectiveness, these approaches encounter significant challenges in real-world applications: (1) neglecting spatial correlations among pixels within the same object, resulting in fragmented segmentation; (2) variabil ity in anomaly score distributions across image regions, causing global thresholds to either generate false positives in background areas or miss segments of anomalous objects. In this work, we introduce OoDDINO, a novel multi-level anomaly segmentation framework designed to address these limitations through a coarse-to-fine anomaly detection strategy. OoDDINO combines an uncertainty-guided anomaly detection model with a pixel-level segmentation model within a two-stage cascade architecture. Initially, we propose an Orthogonal Uncertainty-Aware Fusion Strategy (OUAFS) that sequentially integrates multiple uncertainty metrics with visual representations, employing orthogonal constraints to strengthen the detection model's capacity for localizing anomalous regions accurately. Subsequently, we develop an Adaptive Dual-Threshold Network (ADT-Net), which dynamically generates region-specific thresholds based on object-level detection outputs and pixel-wise anomaly scores. This approach allows for distinct thresholding strategies within foreground and background areas, achieving fine-grained anomaly segmentation. The proposed framework is compatible with other pixel-wise anomaly detection models, which acts as a plug-in to boost the performance. Extensive experiments on two benchmark datasets validate our framework's superiority and compatibility over state-of-the-art methods.
comment: 12 pages, 5 figures
☆ TurboReg: TurboClique for Robust and Efficient Point Cloud Registration ICCV-2025
Robust estimation is essential in correspondence-based Point Cloud Registration (PCR). Existing methods using maximal clique search in compatibility graphs achieve high recall but suffer from exponential time complexity, limiting their use in time-sensitive applications. To address this challenge, we propose a fast and robust estimator, TurboReg, built upon a novel lightweight clique, TurboClique, and a highly parallelizable Pivot-Guided Search (PGS) algorithm. First, we define the TurboClique as a 3-clique within a highly-constrained compatibility graph. The lightweight nature of the 3-clique allows for efficient parallel searching, and the highly-constrained compatibility graph ensures robust spatial consistency for stable transformation estimation. Next, PGS selects matching pairs with high SC$^2$ scores as pivots, effectively guiding the search toward TurboCliques with higher inlier ratios. Moreover, the PGS algorithm has linear time complexity and is significantly more efficient than the maximal clique search with exponential time complexity. Extensive experiments show that TurboReg achieves state-of-the-art performance across multiple real-world datasets, with substantial speed improvements. For example, on the 3DMatch+FCGF dataset, TurboReg (1K) operates $208.22\times$ faster than 3DMAC while also achieving higher recall. Our code is accessible at \href{https://github.com/Laka-3DV/TurboReg}{\texttt{TurboReg}}.
comment: ICCV-2025 Accepted Paper
☆ DiffMark: Diffusion-based Robust Watermark Against Deepfakes
Deepfakes pose significant security and privacy threats through malicious facial manipulations. While robust watermarking can aid in authenticity verification and source tracking, existing methods often lack the sufficient robustness against Deepfake manipulations. Diffusion models have demonstrated remarkable performance in image generation, enabling the seamless fusion of watermark with image during generation. In this study, we propose a novel robust watermarking framework based on diffusion model, called DiffMark. By modifying the training and sampling scheme, we take the facial image and watermark as conditions to guide the diffusion model to progressively denoise and generate corresponding watermarked image. In the construction of facial condition, we weight the facial image by a timestep-dependent factor that gradually reduces the guidance intensity with the decrease of noise, thus better adapting to the sampling process of diffusion model. To achieve the fusion of watermark condition, we introduce a cross information fusion (CIF) module that leverages a learnable embedding table to adaptively extract watermark features and integrates them with image features via cross-attention. To enhance the robustness of the watermark against Deepfake manipulations, we integrate a frozen autoencoder during training phase to simulate Deepfake manipulations. Additionally, we introduce Deepfake-resistant guidance that employs specific Deepfake model to adversarially guide the diffusion sampling process to generate more robust watermarked images. Experimental results demonstrate the effectiveness of the proposed DiffMark on typical Deepfakes. Our code will be available at https://github.com/vpsg-research/DiffMark.
☆ DocShaDiffusion: Diffusion Model in Latent Space for Document Image Shadow Removal
Document shadow removal is a crucial task in the field of document image enhancement. However, existing methods tend to remove shadows with constant color background and ignore color shadows. In this paper, we first design a diffusion model in latent space for document image shadow removal, called DocShaDiffusion. It translates shadow images from pixel space to latent space, enabling the model to more easily capture essential features. To address the issue of color shadows, we design a shadow soft-mask generation module (SSGM). It is able to produce accurate shadow mask and add noise into shadow regions specially. Guided by the shadow mask, a shadow mask-aware guided diffusion module (SMGDM) is proposed to remove shadows from document images by supervising the diffusion and denoising process. We also propose a shadow-robust perceptual feature loss to preserve details and structures in document images. Moreover, we develop a large-scale synthetic document color shadow removal dataset (SDCSRD). It simulates the distribution of realistic color shadows and provides powerful supports for the training of models. Experiments on three public datasets validate the proposed method's superiority over state-of-the-art. Our code and dataset will be publicly available.
☆ Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention ICCV 2025
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
comment: Accepted to ICCV 2025
☆ Age Sensitive Hippocampal Functional Connectivity: New Insights from 3D CNNs and Saliency Mapping
Grey matter loss in the hippocampus is a hallmark of neurobiological aging, yet understanding the corresponding changes in its functional connectivity remains limited. Seed-based functional connectivity (FC) analysis enables voxel-wise mapping of the hippocampus's synchronous activity with cortical regions, offering a window into functional reorganization during aging. In this study, we develop an interpretable deep learning framework to predict brain age from hippocampal FC using a three-dimensional convolutional neural network (3D CNN) combined with LayerCAM saliency mapping. This approach maps key hippocampal-cortical connections, particularly with the precuneus, cuneus, posterior cingulate cortex, parahippocampal cortex, left superior parietal lobule, and right superior temporal sulcus, that are highly sensitive to age. Critically, disaggregating anterior and posterior hippocampal FC reveals distinct mapping aligned with their known functional specializations. These findings provide new insights into the functional mechanisms of hippocampal aging and demonstrate the power of explainable deep learning to uncover biologically meaningful patterns in neuroimaging data.
☆ CaptionSmiths: Flexibly Controlling Language Pattern in Image Captioning ICCV2025
An image captioning model flexibly switching its language pattern, e.g., descriptiveness and length, should be useful since it can be applied to diverse applications. However, despite the dramatic improvement in generative vision-language models, fine-grained control over the properties of generated captions is not easy due to two reasons: (i) existing models are not given the properties as a condition during training and (ii) existing models cannot smoothly transition its language pattern from one state to the other. Given this challenge, we propose a new approach, CaptionSmiths, to acquire a single captioning model that can handle diverse language patterns. First, our approach quantifies three properties of each caption, length, descriptiveness, and uniqueness of a word, as continuous scalar values, without human annotation. Given the values, we represent the conditioning via interpolation between two endpoint vectors corresponding to the extreme states, e.g., one for a very short caption and one for a very long caption. Empirical results demonstrate that the resulting model can smoothly change the properties of the output captions and show higher lexical alignment than baselines. For instance, CaptionSmiths reduces the error in controlling caption length by 506\% despite better lexical alignment. Code will be available on https://github.com/omron-sinicx/captionsmiths.
comment: Accepted to ICCV2025
☆ Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound MICCAI 2025
Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.
comment: Accepted by MICCAI 2025
☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
☆ FixTalk: Taming Identity Leakage for High-Quality Talking Head Generation in Extreme Cases
Talking head generation is gaining significant importance across various domains, with a growing demand for high-quality rendering. However, existing methods often suffer from identity leakage (IL) and rendering artifacts (RA), particularly in extreme cases. Through an in-depth analysis of previous approaches, we identify two key insights: (1) IL arises from identity information embedded within motion features, and (2) this identity information can be leveraged to address RA. Building on these findings, this paper introduces FixTalk, a novel framework designed to simultaneously resolve both issues for high-quality talking head generation. Firstly, we propose an Enhanced Motion Indicator (EMI) to effectively decouple identity information from motion features, mitigating the impact of IL on generated talking heads. To address RA, we introduce an Enhanced Detail Indicator (EDI), which utilizes the leaked identity information to supplement missing details, thus fixing the artifacts. Extensive experiments demonstrate that FixTalk effectively mitigates IL and RA, achieving superior performance compared to state-of-the-art methods.
☆ BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.
☆ MUG: Pseudo Labeling Augmented Audio-Visual Mamba Network for Audio-Visual Video Parsing ICCV 2025
The weakly-supervised audio-visual video parsing (AVVP) aims to predict all modality-specific events and locate their temporal boundaries. Despite significant progress, due to the limitations of the weakly-supervised and the deficiencies of the model architecture, existing methods are lacking in simultaneously improving both the segment-level prediction and the event-level prediction. In this work, we propose a audio-visual Mamba network with pseudo labeling aUGmentation (MUG) for emphasising the uniqueness of each segment and excluding the noise interference from the alternate modalities. Specifically, we annotate some of the pseudo-labels based on previous work. Using unimodal pseudo-labels, we perform cross-modal random combinations to generate new data, which can enhance the model's ability to parse various segment-level event combinations. For feature processing and interaction, we employ a audio-visual mamba network. The AV-Mamba enhances the ability to perceive different segments and excludes additional modal noise while sharing similar modal information. Our extensive experiments demonstrate that MUG improves state-of-the-art results on LLP dataset in all metrics (e.g,, gains of 2.1% and 1.2% in terms of visual Segment-level and audio Segment-level metrics). Our code is available at https://github.com/WangLY136/MUG.
comment: Accpted by ICCV 2025
☆ Active Measurement: Efficient Estimation at Scale
AI has the potential to transform scientific discovery by analyzing vast datasets with little human effort. However, current workflows often do not provide the accuracy or statistical guarantees that are needed. We introduce active measurement, a human-in-the-loop AI framework for scientific measurement. An AI model is used to predict measurements for individual units, which are then sampled for human labeling using importance sampling. With each new set of human labels, the AI model is improved and an unbiased Monte Carlo estimate of the total measurement is refined. Active measurement can provide precise estimates even with an imperfect AI model, and requires little human effort when the AI model is very accurate. We derive novel estimators, weighting schemes, and confidence intervals, and show that active measurement reduces estimation error compared to alternatives in several measurement tasks.
☆ Activation Reward Models for Few-Shot Model Alignment
Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
☆ 3D Gaussian Splatting Driven Multi-View Robust Physical Adversarial Camouflage Generation ICCV 2025
Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.
comment: Accepted by ICCV 2025
☆ Long-Tailed Distribution-Aware Router For Mixture-of-Experts in Large Vision-Language Model
The mixture-of-experts (MoE), which replaces dense models with sparse architectures, has gained attention in large vision-language models (LVLMs) for achieving comparable performance with fewer activated parameters. Existing MoE frameworks for LVLMs focus on token-to-expert routing (TER), encouraging different experts to specialize in processing distinct tokens. However, these frameworks often rely on the load balancing mechanism, overlooking the inherent distributional differences between vision and language. To this end, we propose a Long-Tailed Distribution-aware Router (LTDR) for vision-language TER, tackling two challenges: (1) Distribution-aware router for modality-specific routing. We observe that language TER follows a uniform distribution, whereas vision TER exhibits a long-tailed distribution. This discrepancy necessitates distinct routing strategies tailored to each modality. (2) Enhancing expert activation for vision tail tokens. Recognizing the importance of vision tail tokens, we introduce an oversampling-like strategy by increasing the number of activated experts for these tokens. Experiments on extensive benchmarks validate the effectiveness of our approach.
☆ Learning from Random Subspace Exploration: Generalized Test-Time Augmentation with Self-supervised Distillation
We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA forms robust ensembles at test time in which, due to sound statistical properties, the structural and systematic noises in the initial input data is filtered out and final estimator errors are reduced. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost, at no loss in accuracy. Our tests and comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.
☆ Learning Camera-Agnostic White-Balance Preferences
The image signal processor (ISP) pipeline in modern cameras consists of several modules that transform raw sensor data into visually pleasing images in a display color space. Among these, the auto white balance (AWB) module is essential for compensating for scene illumination. However, commercial AWB systems often strive to compute aesthetic white-balance preferences rather than accurate neutral color correction. While learning-based methods have improved AWB accuracy, they typically struggle to generalize across different camera sensors -- an issue for smartphones with multiple cameras. Recent work has explored cross-camera AWB, but most methods remain focused on achieving neutral white balance. In contrast, this paper is the first to address aesthetic consistency by learning a post-illuminant-estimation mapping that transforms neutral illuminant corrections into aesthetically preferred corrections in a camera-agnostic space. Once trained, our mapping can be applied after any neutral AWB module to enable consistent and stylized color rendering across unseen cameras. Our proposed model is lightweight -- containing only $\sim$500 parameters -- and runs in just 0.024 milliseconds on a typical flagship mobile CPU. Evaluated on a dataset of 771 smartphone images from three different cameras, our method achieves state-of-the-art performance while remaining fully compatible with existing cross-camera AWB techniques, introducing minimal computational and memory overhead.
☆ Physics-informed Ground Reaction Dynamics from Human Motion Capture
Body dynamics are crucial information for the analysis of human motions in important research fields, ranging from biomechanics, sports science to computer vision and graphics. Modern approaches collect the body dynamics, external reactive force specifically, via force plates, synchronizing with human motion capture data, and learn to estimate the dynamics from a black-box deep learning model. Being specialized devices, force plates can only be installed in laboratory setups, imposing a significant limitation on the learning of human dynamics. To this end, we propose a novel method for estimating human ground reaction dynamics directly from the more reliable motion capture data with physics laws and computational simulation as constrains. We introduce a highly accurate and robust method for computing ground reaction forces from motion capture data using Euler's integration scheme and PD algorithm. The physics-based reactive forces are used to inform the learning model about the physics-informed motion dynamics thus improving the estimation accuracy. The proposed approach was tested on the GroundLink dataset, outperforming the baseline model on: 1) the ground reaction force estimation accuracy compared to the force plates measurement; and 2) our simulated root trajectory precision. The implementation code is available at https://github.com/cuongle1206/Phys-GRD
comment: 6 pages, 4 figures, 4 tables, HSI 2025
☆ Structure and Smoothness Constrained Dual Networks for MR Bias Field Correction MICCAI
MR imaging techniques are of great benefit to disease diagnosis. However, due to the limitation of MR devices, significant intensity inhomogeneity often exists in imaging results, which impedes both qualitative and quantitative medical analysis. Recently, several unsupervised deep learning-based models have been proposed for MR image improvement. However, these models merely concentrate on global appearance learning, and neglect constraints from image structures and smoothness of bias field, leading to distorted corrected results. In this paper, novel structure and smoothness constrained dual networks, named S2DNets, are proposed aiming to self-supervised bias field correction. S2DNets introduce piece-wise structural constraints and smoothness of bias field for network training to effectively remove non-uniform intensity and retain much more structural details. Extensive experiments executed on both clinical and simulated MR datasets show that the proposed model outperforms other conventional and deep learning-based models. In addition to comparison on visual metrics, downstream MR image segmentation tasks are also used to evaluate the impact of the proposed model. The source code is available at: https://github.com/LeongDong/S2DNets}{https://github.com/LeongDong/S2DNets.
comment: 11 pages, 3 figures, accepted by MICCAI
SWinMamba: Serpentine Window State Space Model for Vascular Segmentation
Vascular segmentation in medical images is crucial for disease diagnosis and surgical navigation. However, the segmented vascular structure is often discontinuous due to its slender nature and inadequate prior modeling. In this paper, we propose a novel Serpentine Window Mamba (SWinMamba) to achieve accurate vascular segmentation. The proposed SWinMamba innovatively models the continuity of slender vascular structures by incorporating serpentine window sequences into bidirectional state space models. The serpentine window sequences enable efficient feature capturing by adaptively guiding global visual context modeling to the vascular structure. Specifically, the Serpentine Window Tokenizer (SWToken) adaptively splits the input image using overlapping serpentine window sequences, enabling flexible receptive fields (RFs) for vascular structure modeling. The Bidirectional Aggregation Module (BAM) integrates coherent local features in the RFs for vascular continuity representation. In addition, dual-domain learning with Spatial-Frequency Fusion Unit (SFFU) is designed to enhance the feature representation of vascular structure. Extensive experiments on three challenging datasets demonstrate that the proposed SWinMamba achieves superior performance with complete and connected vessels.
♻ ☆ Graph-Based Deep Learning for Component Segmentation of Maize Plants
In precision agriculture, one of the most important tasks when exploring crop production is identifying individual plant components. There are several attempts to accomplish this task by the use of traditional 2D imaging, 3D reconstructions, and Convolutional Neural Networks (CNN). However, they have several drawbacks when processing 3D data and identifying individual plant components. Therefore, in this work, we propose a novel Deep Learning architecture to detect components of individual plants on Light Detection and Ranging (LiDAR) 3D Point Cloud (PC) data sets. This architecture is based on the concept of Graph Neural Networks (GNN), and feature enhancing with Principal Component Analysis (PCA). For this, each point is taken as a vertex and by the use of a K-Nearest Neighbors (KNN) layer, the edges are established, thus representing the 3D PC data set. Subsequently, Edge-Conv layers are used to further increase the features of each point. Finally, Graph Attention Networks (GAT) are applied to classify visible phenotypic components of the plant, such as the leaf, stem, and soil. This study demonstrates that our graph-based deep learning approach enhances segmentation accuracy for identifying individual plant components, achieving percentages above 80% in the IoU average, thus outperforming other existing models based on point clouds.
♻ ☆ Real-Time Blind Defocus Deblurring for Earth Observation: The IMAGIN-e Mission Approach
This work addresses mechanical defocus in Earth observation images from the IMAGIN-e mission aboard the ISS, proposing a blind deblurring approach adapted to space-based edge computing constraints. Leveraging Sentinel-2 data, our method estimates the defocus kernel and trains a restoration model within a GAN framework, effectively operating without reference images. On Sentinel-2 images with synthetic degradation, SSIM improved by 72.47% and PSNR by 25.00%, confirming the model's ability to recover lost details when the original clean image is known. On IMAGIN-e, where no reference images exist, perceptual quality metrics indicate a substantial enhancement, with NIQE improving by 60.66% and BRISQUE by 48.38%, validating real-world onboard restoration. The approach is currently deployed aboard the IMAGIN-e mission, demonstrating its practical application in an operational space environment. By efficiently handling high-resolution images under edge computing constraints, the method enables applications such as water body segmentation and contour detection while maintaining processing viability despite resource limitations.
comment: Accepted for presentation at the European Space Agency's Big Data from Space (BiDS) 2025 Conference (https://www.bigdatafromspace2025.org/)
GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling ICCV 2025
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2$\times$ times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
comment: ICCV 2025
♻ ☆ ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor that originates from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative analysis but remains a challenge due to blurred lesion boundaries, gradual color changes, and irregular shapes. To address this, we propose ScaleFusionNet, a hybrid model that integrates a Cross-Attention Transformer Module (CATM) and adaptive fusion block (AFB) to enhance feature extraction and fusion by capturing both local and global features. We introduce CATM, which utilizes Swin transformer blocks and Cross Attention Fusion (CAF) to adaptively refine feature fusion and reduce semantic gaps in the encoder-decoder to improve segmentation accuracy. Additionally, the AFB uses Swin Transformer-based attention and deformable convolution-based adaptive feature extraction to help the model gather local and global contextual information through parallel pathways. This enhancement refines the lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94\% and 91.80\% on the ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Simultaneously, independent validation experiments were conducted on the PH$^2$ dataset using the pretrained model weights. The results show that ScaleFusionNet demonstrates significant performance improvements compared with other state-of-the-art methods. Our code implementation is publicly available at GitHub.
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ Just Noticeable Difference for Large Multimodal Models
Just noticeable difference (JND), the minimum change that the human visual system (HVS) can perceive, has been studied for decades. Although recent work has extended this line of research into machine vision, there has been a scarcity of studies systematically exploring its perceptual boundaries across multiple tasks and stimulus types, particularly in the current era of rapidly advancing large multimodal models (LMMs), where studying the multifaceted capabilities of models has become a mainstream focus. Moreover, the perceptual defects of LMMs are not investigated thoroughly, resulting in potential security issues and suboptimal response efficiency. In this paper, we take an initial attempt and demonstrate that there exist significant visual blind spots in current LMMs. To systemically quantify this characteristic, we propose a new concept, {\bf LMM-JND}, together with its determination pipeline. Targeting uncovering the behavior commonalities in HVS-aligned visual perception tasks, we delve into several LMM families and construct a large-scale dataset, named VPA-JND, which contains 21.5k reference images with over 489k stimuli across 12 distortion types, to facilitate LMM-JND studies. VPA-JND exposes areas where state-of-the-art LMMs, including GPT-4o and the InternVL2.5 series, struggle with basic comparison queries and fall significantly short of human-level visual performance. We further explore the effects of vision and language backbones and find a notable correlation between their design philosophy that may instruct the future refinement of LMMs for their visual acuity. Together, our research underscores the significance of LMM-JND as a unique perspective for studying LMMs, and predictable LMM-JND is crucial for security concerns. This work will be available at https://github.com/zijianchen98/LMM-JND.
comment: 19 pages, 19 figures
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ GraphGSOcc: Semantic-Geometric Graph Transformer with Dynamic-Static Decoupling for 3D Gaussian Splatting-based Occupancy Prediction
Addressing the task of 3D semantic occupancy prediction for autonomous driving, we tackle two key issues in existing 3D Gaussian Splatting (3DGS) methods: (1) unified feature aggregation neglecting semantic correlations among similar categories and across regions, (2) boundary ambiguities caused by the lack of geometric constraints in MLP iterative optimization and (3) biased issues in dynamic-static object coupling optimization. We propose the GraphGSOcc model, a novel framework that combines semantic and geometric graph Transformer and decouples dynamic-static objects optimization for 3D Gaussian Splatting-based Occupancy Prediction. We propose the Dual Gaussians Graph Attenntion, which dynamically constructs dual graph structures: a geometric graph adaptively calculating KNN search radii based on Gaussian poses, enabling large-scale Gaussians to aggregate features from broader neighborhoods while compact Gaussians focus on local geometric consistency; a semantic graph retaining top-M highly correlated nodes via cosine similarity to explicitly encode semantic relationships within and across instances. Coupled with the Multi-scale Graph Attention framework, fine-grained attention at lower layers optimizes boundary details, while coarsegrained attention at higher layers models object-level topology. On the other hand, we decouple dynamic and static objects by leveraging semantic probability distributions and design a Dynamic-Static Decoupled Gaussian Attention mechanism to optimize the prediction performance for both dynamic objects and static scenes. GraphGSOcc achieves state-ofthe-art performance on the SurroundOcc-nuScenes, Occ3D-nuScenes, OpenOcc and KITTI occupancy benchmarks. Experiments on the SurroundOcc dataset achieve an mIoU of 25.20%, reducing GPU memory to 6.8 GB, demonstrating a 1.97% mIoU improvement and 13.7% memory reduction compared to GaussianWorld.
♻ ☆ DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction ICCV 2025
Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments. Project page: https://batfacewayne.github.io/DeGauss.io/
comment: Accepted by ICCV 2025
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack a low-dimensional latent space that encodes the data into meaningful features. Inversion-based methods address this by reversing the denoising trajectory, mapping each image back to its approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. As a consequence of this divergence, we present that the space of image inversions is notably less manipulative than the original Gaussian noise. Next, we explain the origin of the phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. As a surprisingly simple solution, we propose to replace the first DDIM Inversion steps with a forward diffusion process, which successfully decorrelates latent encodings, leading to higher quality editions and interpolations. The code is available at https://github.com/luk-st/taba.
comment: Preprint
♻ ☆ DCBM: Data-Efficient Visual Concept Bottleneck Models
Concept Bottleneck Models (CBMs) enhance the interpretability of neural networks by basing predictions on human-understandable concepts. However, current CBMs typically rely on concept sets extracted from large language models or extensive image corpora, limiting their effectiveness in data-sparse scenarios. We propose Data-efficient CBMs (DCBMs), which reduce the need for large sample sizes during concept generation while preserving interpretability. DCBMs define concepts as image regions detected by segmentation or detection foundation models, allowing each image to generate multiple concepts across different granularities. This removes reliance on textual descriptions and large-scale pre-training, making DCBMs applicable for fine-grained classification and out-of-distribution tasks. Attribution analysis using Grad-CAM demonstrates that DCBMs deliver visual concepts that can be localized in test images. By leveraging dataset-specific concepts instead of predefined ones, DCBMs enhance adaptability to new domains.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
♻ ☆ Mod-Adapter: Tuning-Free and Versatile Multi-concept Personalization via Modulation Adapter
Personalized text-to-image generation aims to synthesize images of user-provided concepts in diverse contexts. Despite recent progress in multi-concept personalization, most are limited to object concepts and struggle to customize abstract concepts (e.g., pose, lighting). Some methods have begun exploring multi-concept personalization supporting abstract concepts, but they require test-time fine-tuning for each new concept, which is time-consuming and prone to overfitting on limited training images. In this work, we propose a novel tuning-free method for multi-concept personalization that can effectively customize both object and abstract concepts without test-time fine-tuning. Our method builds upon the modulation mechanism in pretrained Diffusion Transformers (DiTs) model, leveraging the localized and semantically meaningful properties of the modulation space. Specifically, we propose a novel module, Mod-Adapter, to predict concept-specific modulation direction for the modulation process of concept-related text tokens. It incorporates vision-language cross-attention for extracting concept visual features, and Mixture-of-Experts (MoE) layers that adaptively map the concept features into the modulation space. Furthermore, to mitigate the training difficulty caused by the large gap between the concept image space and the modulation space, we introduce a VLM-guided pretraining strategy that leverages the strong image understanding capabilities of vision-language models to provide semantic supervision signals. For a comprehensive comparison, we extend a standard benchmark by incorporating abstract concepts. Our method achieves state-of-the-art performance in multi-concept personalization, supported by quantitative, qualitative, and human evaluations.
comment: Project page: https://weizhi-zhong.github.io/Mod-Adapter
♻ ☆ TC-Light: Temporally Coherent Generative Rendering for Realistic World Transfer
Illumination and texture editing are critical dimensions for world-to-world transfer, which is valuable for applications including sim2real and real2real visual data scaling up for embodied AI. Existing techniques generatively re-render the input video to realize the transfer, such as video relighting models and conditioned world generation models. Nevertheless, these models are predominantly limited to the domain of training data (e.g., portrait) or fall into the bottleneck of temporal consistency and computation efficiency, especially when the input video involves complex dynamics and long durations. In this paper, we propose TC-Light, a novel generative renderer to overcome these problems. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible re-rendering results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
comment: Project Page: https://dekuliutesla.github.io/tclight/ Code: https://github.com/Linketic/TC-Light
♻ ☆ Robust 6DoF Pose Tracking Considering Contour and Interior Correspondence Uncertainty for AR Assembly Guidance
Augmented reality assembly guidance is essential for intelligent manufacturing and medical applications, requiring continuous measurement of the 6DoF poses of manipulated objects. Although current tracking methods have made significant advancements in accuracy and efficiency, they still face challenges in robustness when dealing with cluttered backgrounds, rotationally symmetric objects, and noisy sequences. In this paper, we first propose a robust contour-based pose tracking method that addresses error-prone contour correspondences and improves noise tolerance. It utilizes a fan-shaped search strategy to refine correspondences and models local contour shape and noise uncertainty as mixed probability distribution, resulting in a highly robust contour energy function. Secondly, we introduce a CPU-only strategy to better track rotationally symmetric objects and assist the contour-based method in overcoming local minima by exploring sparse interior correspondences. This is achieved by pre-sampling interior points from sparse viewpoint templates offline and using the DIS optical flow algorithm to compute their correspondences during tracking. Finally, we formulate a unified energy function to fuse contour and interior information, which is solvable using a re-weighted least squares algorithm. Experiments on public datasets and real scenarios demonstrate that our method significantly outperforms state-of-the-art monocular tracking methods and can achieve more than 100 FPS using only a CPU.
comment: Accepted by IEEE Transactions on Instrumentation and Measurement
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ Admitting Ignorance Helps the Video Question Answering Models to Answer
Significant progress has been made in the field of video question answering (VideoQA) thanks to deep learning and large-scale pretraining. Despite the presence of sophisticated model structures and powerful video-text foundation models, most existing methods focus solely on maximizing the correlation between answers and video-question pairs during training. We argue that these models often establish shortcuts, resulting in spurious correlations between questions and answers, especially when the alignment between video and text data is suboptimal. To address these spurious correlations, we propose a novel training framework in which the model is compelled to acknowledge its ignorance when presented with an intervened question, rather than making guesses solely based on superficial question-answer correlations. We introduce methodologies for intervening in questions, utilizing techniques such as displacement and perturbation, and design frameworks for the model to admit its lack of knowledge in both multi-choice VideoQA and open-ended settings. In practice, we integrate a state-of-the-art model into our framework to validate its effectiveness. The results clearly demonstrate that our framework can significantly enhance the performance of VideoQA models with minimal structural modifications.
♻ ☆ Reducing Variability of Multiple Instance Learning Methods for Digital Pathology MICCAI 2025
Digital pathology has revolutionized the field by enabling the digitization of tissue samples into whole slide images (WSIs). However, the high resolution and large size of WSIs present significant challenges when it comes to applying Deep Learning models. As a solution, WSIs are often divided into smaller patches with a global label (\textit{i.e., diagnostic}) per slide, instead of a (too) costly pixel-wise annotation. By treating each slide as a bag of patches, Multiple Instance Learning (MIL) methods have emerged as a suitable solution for WSI classification. A major drawback of MIL methods is their high variability in performance across different runs, which can reach up to 10-15 AUC points on the test set, making it difficult to compare different MIL methods reliably. This variability mainly comes from three factors: i) weight initialization, ii) batch (shuffling) ordering, iii) and learning rate. To address that, we introduce a Multi-Fidelity, Model Fusion strategy for MIL methods. We first train multiple models for a few epochs and average the most stable and promising ones based on validation scores. This approach can be applied to any existing MIL model to reduce performance variability. It also simplifies hyperparameter tuning and improves reproducibility while maintaining computational efficiency. We extensively validate our approach on WSI classification tasks using 2 different datasets, 3 initialization strategies and 5 MIL methods, for a total of more than 2000 experiments.
comment: MICCAI 2025 - This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in LNCS, Springer
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ Articulate3D: Holistic Understanding of 3D Scenes as Universal Scene Description
3D scene understanding is a long-standing challenge in computer vision and a key component in enabling mixed reality, wearable computing, and embodied AI. Providing a solution to these applications requires a multifaceted approach that covers scene-centric, object-centric, as well as interaction-centric capabilities. While there exist numerous datasets and algorithms approaching the former two problems, the task of understanding interactable and articulated objects is underrepresented and only partly covered in the research field. In this work, we address this shortcoming by introducing: (1) Articulate3D, an expertly curated 3D dataset featuring high-quality manual annotations on 280 indoor scenes. Articulate3D provides 8 types of annotations for articulated objects, covering parts and detailed motion information, all stored in a standardized scene representation format designed for scalable 3D content creation, exchange and seamless integration into simulation environments. (2) USDNet, a novel unified framework capable of simultaneously predicting part segmentation along with a full specification of motion attributes for articulated objects. We evaluate USDNet on Articulate3D as well as two existing datasets, demonstrating the advantage of our unified dense prediction approach. Furthermore, we highlight the value of Articulate3D through cross-dataset and cross-domain evaluations and showcase its applicability in downstream tasks such as scene editing through LLM prompting and robotic policy training for articulated object manipulation. We provide open access to our dataset, benchmark, and method's source code.
♻ ☆ Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs
The utilisation of event cameras represents an important and swiftly evolving trend aimed at addressing the constraints of traditional video systems. Particularly within the automotive domain, these cameras find significant relevance for their integration into embedded real-time systems due to lower latency and energy consumption. One effective approach to ensure the necessary throughput and latency for event processing is through the utilisation of graph convolutional networks (GCNs). In this study, we introduce a custom EFGCN (Event-based FPGA-accelerated Graph Convolutional Network) designed with a series of hardware-aware optimisations tailored for PointNetConv, a graph convolution designed for point cloud processing. The proposed techniques result in up to 100-fold reduction in model size compared to Asynchronous Event-based GNN (AEGNN), one of the most recent works in the field, with a relatively small decrease in accuracy (2.9% for the N-Caltech101 classification task, 2.2% for the N-Cars classification task), thus following the TinyML trend. We implemented EFGCN on a ZCU104 SoC FPGA platform without any external memory resources, achieving a throughput of 13.3 million events per second (MEPS) and real-time partially asynchronous processing with low latency. Our approach achieves state-of-the-art performance across multiple event-based classification benchmarks while remaining highly scalable, customisable and resource-efficient. We publish both software and hardware source code in an open repository: https://github.com/vision-agh/gcnn-dvs-fpga
comment: Submitted to the IEEE Transactions on Very Large Scale Integration Systems. This manuscript was first submitted for publication on March 31, 2024. It has since been revised three times: on 22 Mau 2024, 10 June 2024 and 19 June 2025 (major update)
♻ ☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs variational autoencoders to extract image features, which are then concatenated with video latents along the sequence dimension. It relies exclusively on inherent 3D self-attention mechanisms to incorporate them, eliminating the need for additional parameters or modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
♻ ☆ Semantic Alignment and Reinforcement for Data-Free Quantization of Vision Transformers ICCV2025
Data-free quantization (DFQ) enables model quantization without accessing real data, addressing concerns regarding data security and privacy. With the growing adoption of Vision Transformers (ViTs), DFQ for ViTs has garnered significant attention. However, existing DFQ methods exhibit two limitations: (1) semantic distortion, where the semantics of synthetic images deviate substantially from those of real images, and (2) semantic inadequacy, where synthetic images contain extensive regions with limited content and oversimplified textures, leading to suboptimal quantization performance. To address these limitations, we propose SARDFQ, a novel Semantics Alignment and Reinforcement Data-Free Quantization method for ViTs. To address semantic distortion, SARDFQ incorporates Attention Priors Alignment (APA), which optimizes synthetic images to follow randomly generated structure attention priors. To mitigate semantic inadequacy, SARDFQ introduces Multi-Semantic Reinforcement (MSR), leveraging localized patch optimization to enhance semantic richness across synthetic images. Furthermore, SARDFQ employs Soft-Label Learning (SL), wherein multiple semantic targets are adapted to facilitate the learning of multi-semantic images augmented by MSR. Extensive experiments demonstrate the effectiveness of SARDFQ, significantly surpassing existing methods. For example, SARDFQ improves top-1 accuracy on ImageNet by 15.52% for W4A4 ViT-B. The code is at https://github.com/zysxmu/SARDFQ.
comment: ICCV2025
♻ ☆ ExPaMoE: An Expandable Parallel Mixture of Experts for Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to enable models to adapt on-the-fly to a stream of unlabeled data under evolving distribution shifts. However, existing CTTA methods typically rely on shared model parameters across all domains, making them vulnerable to feature entanglement and catastrophic forgetting in the presence of large or non-stationary domain shifts. To address this limitation, we propose ExPaMoE, a novel framework based on an Expandable Parallel Mixture-of-Experts architecture. ExPaMoE decouples domain-general and domain-specific knowledge via a dual-branch expert design with token-guided feature separation, and dynamically expands its expert pool based on a Spectral-Aware Online Domain Discriminator (SODD) that detects distribution changes in real-time using frequency-domain cues. Extensive experiments demonstrate the superiority of ExPaMoE across diverse CTTA scenarios. We evaluate our method on standard benchmarks including CIFAR-10C, CIFAR-100C, ImageNet-C, and Cityscapes-to-ACDC for semantic segmentation. Additionally, we introduce ImageNet++, a large-scale and realistic CTTA benchmark built from multiple ImageNet-derived datasets, to better reflect long-term adaptation under complex domain evolution. ExPaMoE consistently outperforms prior arts, showing strong robustness, scalability, and resistance to forgetting.
♻ ☆ TARO: Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning for Synchronized Video-to-Audio Synthesis ICCV 2025
This paper introduces Timestep-Adaptive Representation Alignment with Onset-Aware Conditioning (TARO), a novel framework for high-fidelity and temporally coherent video-to-audio synthesis. Built upon flow-based transformers, which offer stable training and continuous transformations for enhanced synchronization and audio quality, TARO introduces two key innovations: (1) Timestep-Adaptive Representation Alignment (TRA), which dynamically aligns latent representations by adjusting alignment strength based on the noise schedule, ensuring smooth evolution and improved fidelity, and (2) Onset-Aware Conditioning (OAC), which integrates onset cues that serve as sharp event-driven markers of audio-relevant visual moments to enhance synchronization with dynamic visual events. Extensive experiments on the VGGSound and Landscape datasets demonstrate that TARO outperforms prior methods, achieving relatively 53% lower Frechet Distance (FD), 29% lower Frechet Audio Distance (FAD), and a 97.19% Alignment Accuracy, highlighting its superior audio quality and synchronization precision.
comment: Accepted to ICCV 2025
♻ ☆ NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Scaling Open-Vocabulary Action Detection
In this work, we focus on scaling open-vocabulary action detection. Existing approaches for action detection are predominantly limited to closed-set scenarios and rely on complex, parameter-heavy architectures. Extending these models to the open-vocabulary setting poses two key challenges: (1) the lack of large-scale datasets with many action classes for robust training, and (2) parameter-heavy adaptations to a pretrained vision-language contrastive model to convert it for detection, risking overfitting the additional non-pretrained parameters to base action classes. Firstly, we introduce an encoder-only multimodal model for video action detection, reducing the reliance on parameter-heavy additions for video action detection. Secondly, we introduce a simple weakly supervised training strategy to exploit an existing closed-set action detection dataset for pretraining. Finally, we depart from the ill-posed base-to-novel benchmark used by prior works in open-vocabulary action detection and devise a new benchmark to evaluate on existing closed-set action detection datasets without ever using them for training, showing novel results to serve as baselines for future work.
♻ ☆ SimVecVis: A Dataset for Enhancing MLLMs in Visualization Understanding
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a novel simplified vector format that encodes chart elements such as mark type, position, and size. The effectiveness of SimVec is demonstrated by using MLLMs to reconstruct chart information from SimVec formats. Then, we build a new visualization dataset, SimVecVis, to enhance the performance of MLLMs in visualization understanding, which consists of three key dimensions: bitmap images of charts, their SimVec representations, and corresponding data-centric question-answering (QA) pairs with explanatory chain-of-thought (CoT) descriptions. We finetune state-of-the-art MLLMs (e.g., MiniCPM and Qwen-VL), using SimVecVis with different dataset dimensions. The experimental results show that it leads to substantial performance improvements of MLLMs with good spatial perception capabilities (e.g., MiniCPM) in data-centric QA tasks. Our dataset and source code are available at: https://github.com/VIDA-Lab/SimVecVis.
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
♻ ☆ Is Visual in-Context Learning for Compositional Medical Tasks within Reach? ICCV 2025
In this paper, we explore the potential of visual in-context learning to enable a single model to handle multiple tasks and adapt to new tasks during test time without re-training. Unlike previous approaches, our focus is on training in-context learners to adapt to sequences of tasks, rather than individual tasks. Our goal is to solve complex tasks that involve multiple intermediate steps using a single model, allowing users to define entire vision pipelines flexibly at test time. To achieve this, we first examine the properties and limitations of visual in-context learning architectures, with a particular focus on the role of codebooks. We then introduce a novel method for training in-context learners using a synthetic compositional task generation engine. This engine bootstraps task sequences from arbitrary segmentation datasets, enabling the training of visual in-context learners for compositional tasks. Additionally, we investigate different masking-based training objectives to gather insights into how to train models better for solving complex, compositional tasks. Our exploration not only provides important insights especially for multi-modal medical task sequences but also highlights challenges that need to be addressed.
comment: Accepted to ICCV 2025
♻ ☆ Sequential keypoint density estimator: an overlooked baseline of skeleton-based video anomaly detection ICCV 2025
Detecting anomalous human behaviour is an important visual task in safety-critical applications such as healthcare monitoring, workplace safety, or public surveillance. In these contexts, abnormalities are often reflected with unusual human poses. Thus, we propose SeeKer, a method for detecting anomalies in sequences of human skeletons. Our method formulates the skeleton sequence density through autoregressive factorization at the keypoint level. The corresponding conditional distributions represent probable keypoint locations given prior skeletal motion. We formulate the joint distribution of the considered skeleton as causal prediction of conditional Gaussians across its constituent keypoints. A skeleton is flagged as anomalous if its keypoint locations surprise our model (i.e. receive a low density). In practice, our anomaly score is a weighted sum of per-keypoint log-conditionals, where the weights account for the confidence of the underlying keypoint detector. Despite its conceptual simplicity, SeeKer surpasses all previous methods on the UBnormal and MSAD-HR datasets while delivering competitive performance on the ShanghaiTech dataset.
comment: Accepted to ICCV 2025
♻ ☆ Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment
Obstetric ultrasound image quality is crucial for accurate diagnosis and monitoring of fetal health. However, acquiring high-quality standard planes is difficult, influenced by the sonographer's expertise and factors like the maternal BMI or fetus dynamics. In this work, we explore diffusion-based counterfactual explainable AI to generate realistic, high-quality standard planes from low-quality non-standard ones. Through quantitative and qualitative evaluation, we demonstrate the effectiveness of our approach in generating plausible counterfactuals of increased quality. This shows future promise for enhancing training of clinicians by providing visual feedback and potentially improving standard plane quality and acquisition for downstream diagnosis and monitoring.
♻ ☆ FE-LWS: Refined Image-Text Representations via Decoder Stacking and Fused Encodings for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate descriptive text from remote sensing images, typically employing an encoder-decoder framework. In this setup, a convolutional neural network (CNN) extracts feature representations from the input image, which then guide the decoder in a sequence-to-sequence caption generation process. Although much research has focused on refining the decoder, the quality of image representations from the encoder remains crucial for accurate captioning. This paper introduces a novel approach that integrates features from two distinct CNN based encoders, capturing complementary information to enhance caption generation. Additionally, we propose a weighted averaging technique to combine the outputs of all GRUs in the stacked decoder. Furthermore, a comparison-based beam search strategy is incorporated to refine caption selection. The results demonstrate that our fusion-based approach, along with the enhanced stacked decoder, significantly outperforms both the transformer-based state-of-the-art model and other LSTM-based baselines.
♻ ☆ Advancing Textual Prompt Learning with Anchored Attributes ICCV 2025
Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-anchored Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. Additionally, we introduce a straightforward differentiable attribute search method to identify representative and suitable attributes for downstream tasks. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing basic prompt format in textual-based methods, providing general improvements at a negligible computational cost. Extensive experiments across 11 datasets validate the effectiveness of our method. Code is publicly available at https://github.com/zhengli97/ATPrompt.
comment: ICCV 2025. Code: https://github.com/zhengli97/ATPrompt. Project Page: https://zhengli97.github.io/ATPrompt/
♻ ☆ Anyview: Generalizable Indoor 3D Object Detection with Variable Frames
In this paper, we propose a novel network framework for indoor 3D object detection to handle variable input frame numbers in practical scenarios. Existing methods only consider fixed frames of input data for a single detector, such as monocular RGB-D images or point clouds reconstructed from dense multi-view RGB-D images. While in practical application scenes such as robot navigation and manipulation, the raw input to the 3D detectors is the RGB-D images with variable frame numbers instead of the reconstructed scene point cloud. However, the previous approaches can only handle fixed frame input data and have poor performance with variable frame input. In order to facilitate 3D object detection methods suitable for practical tasks, we present a novel 3D detection framework named AnyView for our practical applications, which generalizes well across different numbers of input frames with a single model. To be specific, we propose a geometric learner to mine the local geometric features of each input RGB-D image frame and implement local-global feature interaction through a designed spatial mixture module. Meanwhile, we further utilize a dynamic token strategy to adaptively adjust the number of extracted features for each frame, which ensures consistent global feature density and further enhances the generalization after fusion. Extensive experiments on the ScanNet dataset show our method achieves both great generalizability and high detection accuracy with a simple and clean architecture containing a similar amount of parameters with the baselines.
comment: 11 pages, 7 figures
♻ ☆ Perceiving Beyond Language Priors: Enhancing Visual Comprehension and Attention in Multimodal Models
Achieving deep alignment between vision and language remains a central challenge for Multimodal Large Language Models (MLLMs). These models often fail to fully leverage visual input, defaulting to strong language priors. Our approach first provides insights into how MLLMs internally build visual understanding of image regions and then introduces techniques to amplify this capability. Specifically, we explore techniques designed both to deepen the model's understanding of visual content and to ensure that these visual insights actively guide language generation. We demonstrate the superior multimodal understanding of our resultant model through a detailed upstream analysis quantifying its ability to predict visually-dependent tokens as well as 10 pt boost on visually challenging tasks.
♻ ☆ A Baseline Method for Removing Invisible Image Watermarks using Deep Image Prior
Image watermarks have been considered a promising technique to help detect AI-generated content, which can be used to protect copyright or prevent fake image abuse. In this work, we present a black-box method for removing invisible image watermarks, without the need of any dataset of watermarked images or any knowledge about the watermark system. Our approach is simple to implement: given a single watermarked image, we regress it by deep image prior (DIP). We show that from the intermediate steps of DIP one can reliably find an evasion image that can remove invisible watermarks while preserving high image quality. Due to its unique working mechanism and practical effectiveness, we advocate including DIP as a baseline invasion method for benchmarking the robustness of watermarking systems. Finally, by showing the limited ability of DIP and other existing black-box methods in evading training-based visible watermarks, we discuss the positive implications on the practical use of training-based visible watermarks to prevent misinformation abuse.
comment: Pulished in Transaction of Machine Learning Research (TMLR): https://openreview.net/forum?id=g85Vxlrq0O
♻ ☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
♻ ☆ DreamCinema: Cinematic Transfer with Free Camera and 3D Character
We are living in a flourishing era of digital media, where everyone has the potential to become a personal filmmaker. Current research on video generation suggests a promising avenue for controllable film creation in pixel space using Diffusion models. However, the reliance on overly verbose prompts and insufficient focus on cinematic elements (e.g., camera movement) results in videos that lack cinematic quality. Furthermore, the absence of 3D modeling often leads to failures in video generation, such as inconsistent character models at different frames, ultimately hindering the immersive experience for viewers. In this paper, we propose a new framework for film creation, Dream-Cinema, which is designed for user-friendly, 3D space-based film creation with generative models. Specifically, we decompose 3D film creation into four key elements: 3D character, driven motion, camera movement, and environment. We extract the latter three elements from user-specified film shots and generate the 3D character using a generative model based on a provided image. To seamlessly recombine these elements and ensure smooth film creation, we propose structure-guided character animation, shape-aware camera movement optimization, and environment-aware generative refinement. Extensive experiments demonstrate the effectiveness of our method in generating high-quality films with free camera and 3D characters.
comment: Project page: https://liuff19.github.io/DreamCinema
♻ ☆ High-Precision Transformer-Based Visual Servoing for Humanoid Robots in Aligning Tiny Objects
High-precision tiny object alignment remains a common and critical challenge for humanoid robots in real-world. To address this problem, this paper proposes a vision-based framework for precisely estimating and controlling the relative position between a handheld tool and a target object for humanoid robots, e.g., a screwdriver tip and a screw head slot. By fusing images from the head and torso cameras on a robot with its head joint angles, the proposed Transformer-based visual servoing method can correct the handheld tool's positional errors effectively, especially at a close distance. Experiments on M4-M8 screws demonstrate an average convergence error of 0.8-1.3 mm and a success rate of 93\%-100\%. Through comparative analysis, the results validate that this capability of high-precision tiny object alignment is enabled by the Distance Estimation Transformer architecture and the Multi-Perception-Head mechanism proposed in this paper.
comment: for associated video, see https://b23.tv/cklF7aK
♻ ☆ Convergent and divergent connectivity patterns of the arcuate fasciculus in macaques and humans
The organization and connectivity of the arcuate fasciculus (AF) in nonhuman primates remain contentious, especially concerning how its anatomy diverges from that of humans. Here, we combined cross-scale single-neuron tracing - using viral-based genetic labeling and fluorescence micro-optical sectioning tomography in macaques (n = 4; age 3 - 11 years) - with whole-brain tractography from 11.7T diffusion MRI. Complemented by spectral embedding analysis of 7.0T MRI in humans, we performed a comparative connectomic analysis of the AF across species. We demonstrate that the macaque AF originates in the temporal-parietal cortex, traverses the auditory cortex and parietal operculum, and projects into prefrontal regions. In contrast, the human AF exhibits greater expansion into the middle temporal gyrus and stronger prefrontal and parietal operculum connectivity - divergences quantified by Kullback-Leibler analysis that likely underpin the evolutionary specialization of human language networks. These interspecies differences - particularly the human AF's broader temporal integration and strengthened frontoparietal linkages - suggest a connectivity-based substrate for the emergence of advanced language processing unique to humans. Furthermore, our findings offer a neuroanatomical framework for understanding AF-related disorders such as aphasia and dyslexia, where aberrant connectivity disrupts language function.
comment: 34 pages, 6 figures
♻ ☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing ICCV 2025
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: ICCV 2025. Project page: https://github.com/sincostanx/LUSD
♻ ☆ Three-Stream Temporal-Shift Attention Network Based on Self-Knowledge Distillation for Micro-Expression Recognition
Micro-expressions are subtle facial movements that occur spontaneously when people try to conceal real emotions. Micro-expression recognition is crucial in many fields, including criminal analysis and psychotherapy. However, micro-expression recognition is challenging since micro-expressions have low intensity and public datasets are small in size. To this end, a three-stream temporal-shift attention network based on self-knowledge distillation is proposed in this paper. Firstly, to address the low intensity of muscle movements, we utilize learning-based motion magnification modules to enhance the intensity of muscle movements. Secondly, we employ efficient channel attention modules in the local-spatial stream to make the network focus on facial regions that are highly relevant to micro-expressions. In addition, temporal shift modules are used in the dynamic-temporal stream, which enables temporal modeling with no additional parameters by mixing motion information from two different temporal domains. Furthermore, we introduce self-knowledge distillation into the micro-expression recognition task by introducing auxiliary classifiers and using the deepest section of the network for supervision, encouraging all blocks to fully explore the features of the training set. Finally, extensive experiments are conducted on five publicly available micro-expression datasets. The experimental results demonstrate that our network outperforms other existing methods and achieves new state-of-the-art performance. Our code is available at https://github.com/GuanghaoZhu663/SKD-TSTSAN.
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ UniGlyph: Unified Segmentation-Conditioned Diffusion for Precise Visual Text Synthesis ICCV 2025
Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.
comment: Accepted by ICCV 2025
♻ ☆ Real-Time AIoT for AAV Antenna Interference Detection via Edge-Cloud Collaboration
In the fifth-generation (5G) era, eliminating communication interference sources is crucial for maintaining network performance. Interference often originates from unauthorized or malfunctioning antennas, and radio monitoring agencies must address numerous sources of such antennas annually. Unmanned aerial vehicles (UAVs) can improve inspection efficiency. However, the data transmission delay in the existing cloud-only (CO) artificial intelligence (AI) mode fails to meet the low latency requirements for real-time performance. Therefore, we propose a computer vision-based AI of Things (AIoT) system to detect antenna interference sources for UAVs. The system adopts an optimized edge-cloud collaboration (ECC+) mode, combining a keyframe selection algorithm (KSA), focusing on reducing end-to-end latency (E2EL) and ensuring reliable data transmission, which aligns with the core principles of ultra-reliable low-latency communication (URLLC). At the core of our approach is an end-to-end antenna localization scheme based on the tracking-by-detection (TBD) paradigm, including a detector (EdgeAnt) and a tracker (AntSort). EdgeAnt achieves state-of-the-art (SOTA) performance with a mean average precision (mAP) of 42.1% on our custom antenna interference source dataset, requiring only 3 million parameters and 14.7 GFLOPs. On the COCO dataset, EdgeAnt achieves 38.9% mAP with 5.4 GFLOPs. We deployed EdgeAnt on Jetson Xavier NX (TRT) and Raspberry Pi 4B (NCNN), achieving real-time inference speeds of 21.1 (1088) and 4.8 (640) frames per second (FPS), respectively. Compared with CO mode, the ECC+ mode reduces E2EL by 88.9%, increases accuracy by 28.2%. Additionally, the system offers excellent scalability for coordinated multiple UAVs inspections. The detector code is publicly available at https://github.com/SCNU-RISLAB/EdgeAnt.
♻ ☆ Semantic Equitable Clustering: A Simple and Effective Strategy for Clustering Vision Tokens ICCV2025
The Vision Transformer (ViT) has gained prominence for its superior relational modeling prowess. However, its global attention mechanism's quadratic complexity poses substantial computational burdens. A common remedy spatially groups tokens for self-attention, reducing computational requirements. Nonetheless, this strategy neglects semantic information in tokens, possibly scattering semantically-linked tokens across distinct groups, thus compromising the efficacy of self-attention intended for modeling inter-token dependencies. Motivated by these insights, we introduce a fast and balanced clustering method, named Semantic Equitable Clustering (SEC). SEC clusters tokens based on their global semantic relevance in an efficient, straightforward manner. In contrast to traditional clustering methods requiring multiple iterations, our method achieves token clustering in a single pass. Additionally, SEC regulates the number of tokens per cluster, ensuring a balanced distribution for effective parallel processing on current computational platforms without necessitating further optimization. Capitalizing on SEC, we propose a versatile vision backbone, SECViT. Comprehensive experiments in image classification, object detection, instance segmentation, and semantic segmentation validate the effectiveness of SECViT. Moreover, SEC can be conveniently and swiftly applied to multimodal large language models (MLLM), such as LLaVA, to serve as a vision language connector, effectively accelerating the model's efficiency while maintaining unchanged or better performance.
comment: Accepted by ICCV2025
♻ ☆ Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32$\times$ storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-$p\%$ most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into $b$-bit strings ($b=\lceil\log_2 K\rceil$), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
comment: 9 pages
♻ ☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
♻ ☆ On Efficient Variants of Segment Anything Model: A Survey
The Segment Anything Model (SAM) is a foundational model for image segmentation tasks, known for its strong generalization across diverse applications. However, its impressive performance comes with significant computational and resource demands, making it challenging to deploy in resource-limited environments such as edge devices. To address this, a variety of SAM variants have been proposed to enhance efficiency while keeping accuracy. This survey provides the first comprehensive review of these efficient SAM variants. We begin by exploring the motivations driving this research. We then present core techniques used in SAM and model acceleration. This is followed by a detailed exploration of SAM acceleration strategies, categorized by approach, and a discussion of several future research directions. Finally, we offer a unified and extensive evaluation of these methods across various hardware, assessing their efficiency and accuracy on representative benchmarks, and providing a clear comparison of their overall performance.
Machine Learning 150
☆ How Well Does GPT-4o Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks
Multimodal foundation models, such as GPT-4o, have recently made remarkable progress, but it is not clear where exactly these models stand in terms of understanding vision. In this paper, we benchmark the performance of popular multimodal foundation models (GPT-4o, o4-mini, Gemini 1.5 Pro and Gemini 2.0 Flash, Claude 3.5 Sonnet, Qwen2-VL, Llama 3.2) on standard computer vision tasks (semantic segmentation, object detection, image classification, depth and surface normal prediction) using established datasets (e.g., COCO, ImageNet and its variants, etc). The main challenges to performing this are: 1) most models are trained to output text and cannot natively express versatile domains, such as segments or 3D geometry, and 2) many leading models are proprietary and accessible only at an API level, i.e., there is no weight access to adapt them. We address these challenges by translating standard vision tasks into equivalent text-promptable and API-compatible tasks via prompt chaining to create a standardized benchmarking framework. We observe that 1) the models are not close to the state-of-the-art specialist models at any task. However, 2) they are respectable generalists; this is remarkable as they are presumably trained on primarily image-text-based tasks. 3) They perform semantic tasks notably better than geometric ones. 4) While the prompt-chaining techniques affect performance, better models exhibit less sensitivity to prompt variations. 5) GPT-4o performs the best among non-reasoning models, securing the top position in 4 out of 6 tasks, 6) reasoning models, e.g. o3, show improvements in geometric tasks, and 7) a preliminary analysis of models with native image generation, like the latest GPT-4o, shows they exhibit quirks like hallucinations and spatial misalignments.
comment: Project page at https://fm-vision-evals.epfl.ch/
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ Characterizing control between interacting subsystems with deep Jacobian estimation
Biological function arises through the dynamical interactions of multiple subsystems, including those between brain areas, within gene regulatory networks, and more. A common approach to understanding these systems is to model the dynamics of each subsystem and characterize communication between them. An alternative approach is through the lens of control theory: how the subsystems control one another. This approach involves inferring the directionality, strength, and contextual modulation of control between subsystems. However, methods for understanding subsystem control are typically linear and cannot adequately describe the rich contextual effects enabled by nonlinear complex systems. To bridge this gap, we devise a data-driven nonlinear control-theoretic framework to characterize subsystem interactions via the Jacobian of the dynamics. We address the challenge of learning Jacobians from time-series data by proposing the JacobianODE, a deep learning method that leverages properties of the Jacobian to directly estimate it for arbitrary dynamical systems from data alone. We show that JacobianODEs outperform existing Jacobian estimation methods on challenging systems, including high-dimensional chaos. Applying our approach to a multi-area recurrent neural network (RNN) trained on a working memory selection task, we show that the "sensory" area gains greater control over the "cognitive" area over learning. Furthermore, we leverage the JacobianODE to directly control the trained RNN, enabling precise manipulation of its behavior. Our work lays the foundation for a theoretically grounded and data-driven understanding of interactions among biological subsystems.
comment: 10 pages, 6 figures
☆ SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
In recent years, large language models (LLMs) have transformed natural language understanding through vast datasets and large-scale parameterization. Inspired by this success, we present SpecCLIP, a foundation model framework that extends LLM-inspired methodologies to stellar spectral analysis. Stellar spectra, akin to structured language, encode rich physical and chemical information about stars. By training foundation models on large-scale spectral datasets, our goal is to learn robust and informative embeddings that support diverse downstream applications. As a proof of concept, SpecCLIP involves pre-training on two spectral types--LAMOST low-resolution and Gaia XP--followed by contrastive alignment using the CLIP (Contrastive Language-Image Pre-training) framework, adapted to associate spectra from different instruments. This alignment is complemented by auxiliary decoders that preserve spectrum-specific information and enable translation (prediction) between spectral types, with the former achieved by maximizing mutual information between embeddings and input spectra. The result is a cross-spectrum framework enabling intrinsic calibration and flexible applications across instruments. We demonstrate that fine-tuning these models on moderate-sized labeled datasets improves adaptability to tasks such as stellar-parameter estimation and chemical-abundance determination. SpecCLIP also enhances the accuracy and precision of parameter estimates benchmarked against external survey data. Additionally, its similarity search and cross-spectrum prediction capabilities offer potential for anomaly detection. Our results suggest that contrastively trained foundation models enriched with spectrum-aware decoders can advance precision stellar spectroscopy.
comment: 26 pages, 6 figures, 5 tables. To be submitted to AAS Journals. Comments welcome
☆ A first-order method for nonconvex-nonconcave minimax problems under a local Kurdyka-Łojasiewicz condition
We study a class of nonconvex-nonconcave minimax problems in which the inner maximization problem satisfies a local Kurdyka-{\L}ojasiewicz (KL) condition that may vary with the outer minimization variable. In contrast to the global KL or Polyak-{\L}ojasiewicz (PL) conditions commonly assumed in the literature -- which are significantly stronger and often too restrictive in practice -- this local KL condition accommodates a broader range of practical scenarios. However, it also introduces new analytical challenges. In particular, as an optimization algorithm progresses toward a stationary point of the problem, the region over which the KL condition holds may shrink, resulting in a more intricate and potentially ill-conditioned landscape. To address this challenge, we show that the associated maximal function is locally H\"older smooth. Leveraging this key property, we develop an inexact proximal gradient method for solving the minimax problem, where the inexact gradient of the maximal function is computed by applying a proximal gradient method to a KL-structured subproblem. Under mild assumptions, we establish complexity guarantees for computing an approximate stationary point of the minimax problem.
comment: 26 pages
☆ Exploring a Hybrid Deep Learning Approach for Anomaly Detection in Mental Healthcare Provider Billing: Addressing Label Scarcity through Semi-Supervised Anomaly Detection
The complexity of mental healthcare billing enables anomalies, including fraud. While machine learning methods have been applied to anomaly detection, they often struggle with class imbalance, label scarcity, and complex sequential patterns. This study explores a hybrid deep learning approach combining Long Short-Term Memory (LSTM) networks and Transformers, with pseudo-labeling via Isolation Forests (iForest) and Autoencoders (AE). Prior work has not evaluated such hybrid models trained on pseudo-labeled data in the context of healthcare billing. The approach is evaluated on two real-world billing datasets related to mental healthcare. The iForest LSTM baseline achieves the highest recall (0.963) on declaration-level data. On the operation-level data, the hybrid iForest-based model achieves the highest recall (0.744), though at the cost of lower precision. These findings highlight the potential of combining pseudo-labeling with hybrid deep learning in complex, imbalanced anomaly detection settings.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ Advancing Magnetic Materials Discovery -- A structure-based machine learning approach for magnetic ordering and magnetic moment prediction
Accurately predicting magnetic behavior across diverse materials systems remains a longstanding challenge due to the complex interplay of structural and electronic factors and is pivotal for the accelerated discovery and design of next-generation magnetic materials. In this work, a refined descriptor is proposed that significantly improves the prediction of two critical magnetic properties -- magnetic ordering (Ferromagnetic vs. Ferrimagnetic) and magnetic moment per atom -- using only the structural information of materials. Unlike previous models limited to Mn-based or lanthanide-transition metal compounds, the present approach generalizes across a diverse dataset of 5741 stable, binary and ternary, ferromagnetic and ferrimagnetic compounds sourced from the Materials Project. Leveraging an enriched elemental vector representation and advanced feature engineering, including nonlinear terms and reduced matrix sparsity, the LightGBM-based model achieves an accuracy of 82.4% for magnetic ordering classification and balanced recall across FM and FiM classes, addressing a key limitation in prior studies. The model predicts magnetic moment per atom with a correlation coefficient of 0.93, surpassing the Hund's matrix and orbital field matrix descriptors. Additionally, it accurately estimates formation energy per atom, enabling assessment of both magnetic behavior and material stability. This generalized and computationally efficient framework offers a robust tool for high-throughput screening of magnetic materials with tailored properties.
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ STEM Diffraction Pattern Analysis with Deep Learning Networks
Accurate grain orientation mapping is essential for understanding and optimizing the performance of polycrystalline materials, particularly in energy-related applications. Lithium nickel oxide (LiNiO$_{2}$) is a promising cathode material for next-generation lithium-ion batteries, and its electrochemical behaviour is closely linked to microstructural features such as grain size and crystallographic orientations. Traditional orientation mapping methods--such as manual indexing, template matching (TM), or Hough transform-based techniques--are often slow and noise-sensitive when handling complex or overlapping patterns, creating a bottleneck in large-scale microstructural analysis. This work presents a machine learning-based approach for predicting Euler angles directly from scanning transmission electron microscopy (STEM) diffraction patterns (DPs). This enables the automated generation of high-resolution crystal orientation maps, facilitating the analysis of internal microstructures at the nanoscale. Three deep learning architectures--convolutional neural networks (CNNs), Dense Convolutional Networks (DenseNets), and Shifted Windows (Swin) Transformers--are evaluated, using an experimentally acquired dataset labelled via a commercial TM algorithm. While the CNN model serves as a baseline, both DenseNets and Swin Transformers demonstrate superior performance, with the Swin Transformer achieving the highest evaluation scores and the most consistent microstructural predictions. The resulting crystal maps exhibit clear grain boundary delineation and coherent intra-grain orientation distributions, underscoring the potential of attention-based architectures for analyzing diffraction-based image data. These findings highlight the promise of combining advanced machine learning models with STEM data for robust, high-throughput microstructural characterization.
☆ A computationally frugal open-source foundation model for thoracic disease detection in lung cancer screening programs
Low-dose computed tomography (LDCT) imaging employed in lung cancer screening (LCS) programs is increasing in uptake worldwide. LCS programs herald a generational opportunity to simultaneously detect cancer and non-cancer-related early-stage lung disease. Yet these efforts are hampered by a shortage of radiologists to interpret scans at scale. Here, we present TANGERINE, a computationally frugal, open-source vision foundation model for volumetric LDCT analysis. Designed for broad accessibility and rapid adaptation, TANGERINE can be fine-tuned off the shelf for a wide range of disease-specific tasks with limited computational resources and training data. Relative to models trained from scratch, TANGERINE demonstrates fast convergence during fine-tuning, thereby requiring significantly fewer GPU hours, and displays strong label efficiency, achieving comparable or superior performance with a fraction of fine-tuning data. Pretrained using self-supervised learning on over 98,000 thoracic LDCTs, including the UK's largest LCS initiative to date and 27 public datasets, TANGERINE achieves state-of-the-art performance across 14 disease classification tasks, including lung cancer and multiple respiratory diseases, while generalising robustly across diverse clinical centres. By extending a masked autoencoder framework to 3D imaging, TANGERINE offers a scalable solution for LDCT analysis, departing from recent closed, resource-intensive models by combining architectural simplicity, public availability, and modest computational requirements. Its accessible, open-source lightweight design lays the foundation for rapid integration into next-generation medical imaging tools that could transform LCS initiatives, allowing them to pivot from a singular focus on lung cancer detection to comprehensive respiratory disease management in high-risk populations.
☆ Evolving HPC services to enable ML workloads on HPE Cray EX
The Alps Research Infrastructure leverages GH200 technology at scale, featuring 10,752 GPUs. Accessing Alps provides a significant computational advantage for researchers in Artificial Intelligence (AI) and Machine Learning (ML). While Alps serves a broad range of scientific communities, traditional HPC services alone are not sufficient to meet the dynamic needs of the ML community. This paper presents an initial investigation into extending HPC service capabilities to better support ML workloads. We identify key challenges and gaps we have observed since the early-access phase (2023) of Alps by the Swiss AI community and propose several technological enhancements. These include a user environment designed to facilitate the adoption of HPC for ML workloads, balancing performance with flexibility; a utility for rapid performance screening of ML applications during development; observability capabilities and data products for inspecting ongoing large-scale ML workloads; a utility to simplify the vetting of allocated nodes for compute readiness; a service plane infrastructure to deploy various types of workloads, including support and inference services; and a storage infrastructure tailored to the specific needs of ML workloads. These enhancements aim to facilitate the execution of ML workloads on HPC systems, increase system usability and resilience, and better align with the needs of the ML community. We also discuss our current approach to security aspects. This paper concludes by placing these proposals in the broader context of changes in the communities served by HPC infrastructure like ours.
comment: Presented at the Cray User Group 2025 (CUG'25)
☆ Towards Foundation Auto-Encoders for Time-Series Anomaly Detection KDD 2024
We investigate a novel approach to time-series modeling, inspired by the successes of large pretrained foundation models. We introduce FAE (Foundation Auto-Encoders), a foundation generative-AI model for anomaly detection in time-series data, based on Variational Auto-Encoders (VAEs). By foundation, we mean a model pretrained on massive amounts of time-series data which can learn complex temporal patterns useful for accurate modeling, forecasting, and detection of anomalies on previously unseen datasets. FAE leverages VAEs and Dilated Convolutional Neural Networks (DCNNs) to build a generic model for univariate time-series modeling, which could eventually perform properly in out-of-the-box, zero-shot anomaly detection applications. We introduce the main concepts of FAE, and present preliminary results in different multi-dimensional time-series datasets from various domains, including a real dataset from an operational mobile ISP, and the well known KDD 2021 Anomaly Detection dataset.
comment: Presented at ACM KDD 2024, MiLeTS 2024 Workshop, August 25, 2024, Barcelona, Spain
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Automatic Rank Determination for Low-Rank Adaptation via Submodular Function Maximization
In this paper, we propose SubLoRA, a rank determination method for Low-Rank Adaptation (LoRA) based on submodular function maximization. In contrast to prior approaches, such as AdaLoRA, that rely on first-order (linearized) approximations of the loss function, SubLoRA utilizes second-order information to capture the potentially complex loss landscape by incorporating the Hessian matrix. We show that the linearization becomes inaccurate and ill-conditioned when the LoRA parameters have been well optimized, motivating the need for a more reliable and nuanced second-order formulation. To this end, we reformulate the rank determination problem as a combinatorial optimization problem with a quadratic objective. However, solving this problem exactly is NP-hard in general. To overcome the computational challenge, we introduce a submodular function maximization framework and devise a greedy algorithm with approximation guarantees. We derive a sufficient and necessary condition under which the rank-determination objective becomes submodular, and construct a closed-form projection of the Hessian matrix that satisfies this condition while maintaining computational efficiency. Our method combines solid theoretical foundations, second-order accuracy, and practical computational efficiency. We further extend SubLoRA to a joint optimization setting, alternating between LoRA parameter updates and rank determination under a rank budget constraint. Extensive experiments on fine-tuning physics-informed neural networks (PINNs) for solving partial differential equations (PDEs) demonstrate the effectiveness of our approach. Results show that SubLoRA outperforms existing methods in both rank determination and joint training performance.
☆ Out-of-Distribution Detection Methods Answer the Wrong Questions ICML 2025
To detect distribution shifts and improve model safety, many out-of-distribution (OOD) detection methods rely on the predictive uncertainty or features of supervised models trained on in-distribution data. In this paper, we critically re-examine this popular family of OOD detection procedures, and we argue that these methods are fundamentally answering the wrong questions for OOD detection. There is no simple fix to this misalignment, since a classifier trained only on in-distribution classes cannot be expected to identify OOD points; for instance, a cat-dog classifier may confidently misclassify an airplane if it contains features that distinguish cats from dogs, despite generally appearing nothing alike. We find that uncertainty-based methods incorrectly conflate high uncertainty with being OOD, while feature-based methods incorrectly conflate far feature-space distance with being OOD. We show how these pathologies manifest as irreducible errors in OOD detection and identify common settings where these methods are ineffective. Additionally, interventions to improve OOD detection such as feature-logit hybrid methods, scaling of model and data size, epistemic uncertainty representation, and outlier exposure also fail to address this fundamental misalignment in objectives. We additionally consider unsupervised density estimation and generative models for OOD detection, which we show have their own fundamental limitations.
comment: Extended version of ICML 2025 paper
☆ mGRADE: Minimal Recurrent Gating Meets Delay Convolutions for Lightweight Sequence Modeling
Edge devices for temporal processing demand models that capture both short- and long- range dynamics under tight memory constraints. While Transformers excel at sequence modeling, their quadratic memory scaling with sequence length makes them impractical for such settings. Recurrent Neural Networks (RNNs) offer constant memory but train sequentially, and Temporal Convolutional Networks (TCNs), though efficient, scale memory with kernel size. To address this, we propose mGRADE (mininally Gated Recurrent Architecture with Delay Embedding), a hybrid-memory system that integrates a temporal 1D-convolution with learnable spacings followed by a minimal gated recurrent unit (minGRU). This design allows the convolutional layer to realize a flexible delay embedding that captures rapid temporal variations, while the recurrent module efficiently maintains global context with minimal memory overhead. We validate our approach on two synthetic tasks, demonstrating that mGRADE effectively separates and preserves multi-scale temporal features. Furthermore, on challenging pixel-by-pixel image classification benchmarks, mGRADE consistently outperforms both pure convolutional and pure recurrent counterparts using approximately 20% less memory footprint, highlighting its suitability for memory-constrained temporal processing at the edge. This highlights mGRADE's promise as an efficient solution for memory-constrained multi-scale temporal processing at the edge.
☆ MILP-SAT-GNN: Yet Another Neural SAT Solver
We proposes a novel method that enables Graph Neural Networks (GNNs) to solve SAT problems by leveraging a technique developed for applying GNNs to Mixed Integer Linear Programming (MILP). Specifically, k-CNF formulae are mapped into MILP problems, which are then encoded as weighted bipartite graphs and subsequently fed into a GNN for training and testing. From a theoretical perspective: (i) we establish permutation and equivalence invariance results, demonstrating that the method produces outputs that are stable under reordering of clauses and variables; (ii) we identify a theoretical limitation, showing that for a class of formulae called foldable formulae, standard GNNs cannot always distinguish satisfiable from unsatisfiable instances; (iii) we prove a universal approximation theorem, establishing that with Random Node Initialization (RNI), the method can approximate SAT solving to arbitrary precision on finite datasets, that is, the GNN becomes approximately sound and complete on such datasets. Furthermore, we show that for unfoldable formulae, the same approximation guarantee can be achieved without the need for RNI. Finally, we conduct an experimental evaluation of our approach, which show that, despite the simplicity of the neural architecture, the method achieves promising results.
☆ TD-MPC-Opt: Distilling Model-Based Multi-Task Reinforcement Learning Agents
We present a novel approach to knowledge transfer in model-based reinforcement learning, addressing the critical challenge of deploying large world models in resource-constrained environments. Our method efficiently distills a high-capacity multi-task agent (317M parameters) into a compact model (1M parameters) on the MT30 benchmark, significantly improving performance across diverse tasks. Our distilled model achieves a state-of-the-art normalized score of 28.45, surpassing the original 1M parameter model score of 18.93. This improvement demonstrates the ability of our distillation technique to capture and consolidate complex multi-task knowledge. We further optimize the distilled model through FP16 post-training quantization, reducing its size by $\sim$50\%. Our approach addresses practical deployment limitations and offers insights into knowledge representation in large world models, paving the way for more efficient and accessible multi-task reinforcement learning systems in robotics and other resource-constrained applications. Code available at https://github.com/dmytro-kuzmenko/td-mpc-opt.
comment: Preprint of a manuscript submitted for peer review
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ Towards Decentralized and Sustainable Foundation Model Training with the Edge
Foundation models are at the forefront of AI research, appealing for their ability to learn from vast datasets and cater to diverse tasks. Yet, their significant computational demands raise issues of environmental impact and the risk of centralized control in their development. We put forward a vision towards decentralized and sustainable foundation model training that leverages the collective compute of sparingly used connected edge AI devices. We present the rationale behind our vision, particularly in support of its sustainability benefit. We further outline a set of challenges that need to be addressed to turn this vision into reality.
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ Neural Entropy-stable conservative flux form neural networks for learning hyperbolic conservation laws
We propose a neural entropy-stable conservative flux form neural network (NESCFN) for learning hyperbolic conservation laws and their associated entropy functions directly from solution trajectories, without requiring any predefined numerical discretization. While recent neural network architectures have successfully integrated classical numerical principles into learned models, most rely on prior knowledge of the governing equations or assume a fixed discretization. Our approach removes this dependency by embedding entropy-stable design principles into the learning process itself, enabling the discovery of physically consistent dynamics in a fully data-driven setting. By jointly learning both the numerical flux function and a corresponding entropy, the proposed method ensures conservation and entropy dissipation, critical for long-term stability and fidelity in the system of hyperbolic conservation laws. Numerical results demonstrate that the method achieves stability and conservation over extended time horizons and accurately captures shock propagation speeds, even without oracle access to future-time solution profiles in the training data.
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ BranchNet: A Neuro-Symbolic Learning Framework for Structured Multi-Class Classification
We introduce BranchNet, a neuro-symbolic learning framework that transforms decision tree ensembles into sparse, partially connected neural networks. Each branch, defined as a decision path from root to a parent of leaves, is mapped to a hidden neuron, preserving symbolic structure while enabling gradient-based optimization. The resulting models are compact, interpretable, and require no manual architecture tuning. Evaluated on a suite of structured multi-class classification benchmarks, BranchNet consistently outperforms XGBoost in accuracy, with statistically significant gains. We detail the architecture, training procedure, and sparsity dynamics, and discuss the model's strengths in symbolic interpretability as well as its current limitations, particularly on binary tasks where further adaptive calibration may be beneficial.
comment: 18 pages, 3 figures (with two images each)
☆ Enhanced Generative Model Evaluation with Clipped Density and Coverage
Although generative models have made remarkable progress in recent years, their use in critical applications has been hindered by their incapacity to reliably evaluate sample quality. Quality refers to at least two complementary concepts: fidelity and coverage. Current quality metrics often lack reliable, interpretable values due to an absence of calibration or insufficient robustness to outliers. To address these shortcomings, we introduce two novel metrics, Clipped Density and Clipped Coverage. By clipping individual sample contributions and, for fidelity, the radii of nearest neighbor balls, our metrics prevent out-of-distribution samples from biasing the aggregated values. Through analytical and empirical calibration, these metrics exhibit linear score degradation as the proportion of poor samples increases. Thus, they can be straightforwardly interpreted as equivalent proportions of good samples. Extensive experiments on synthetic and real-world datasets demonstrate that Clipped Density and Clipped Coverage outperform existing methods in terms of robustness, sensitivity, and interpretability for evaluating generative models.
☆ Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ A Real-Time Digital Twin for Type 1 Diabetes using Simulation-Based Inference
Accurately estimating parameters of physiological models is essential to achieving reliable digital twins. For Type 1 Diabetes, this is particularly challenging due to the complexity of glucose-insulin interactions. Traditional methods based on Markov Chain Monte Carlo struggle with high-dimensional parameter spaces and fit parameters from scratch at inference time, making them slow and computationally expensive. In this study, we propose a Simulation-Based Inference approach based on Neural Posterior Estimation to efficiently capture the complex relationships between meal intake, insulin, and glucose level, providing faster, amortized inference. Our experiments demonstrate that SBI not only outperforms traditional methods in parameter estimation but also generalizes better to unseen conditions, offering real-time posterior inference with reliable uncertainty quantification.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
☆ Token Communication in the Era of Large Models: An Information Bottleneck-Based Approach
This letter proposes UniToCom, a unified token communication paradigm that treats tokens as the fundamental units for both processing and wireless transmission. Specifically, to enable efficient token representations, we propose a generative information bottleneck (GenIB) principle, which facilitates the learning of tokens that preserve essential information while supporting reliable generation across multiple modalities. By doing this, GenIB-based tokenization is conducive to improving the communication efficiency and reducing computational complexity. Additionally, we develop $\sigma$-GenIB to address the challenges of variance collapse in autoregressive modeling, maintaining representational diversity and stability. Moreover, we employ a causal Transformer-based multimodal large language model (MLLM) at the receiver to unify the processing of both discrete and continuous tokens under the next-token prediction paradigm. Simulation results validate the effectiveness and superiority of the proposed UniToCom compared to baselines under dynamic channel conditions. By integrating token processing with MLLMs, UniToCom enables scalable and generalizable communication in favor of multimodal understanding and generation, providing a potential solution for next-generation intelligent communications.
☆ Revisiting Learning Rate Control
The learning rate is one of the most important hyperparameters in deep learning, and how to control it is an active area within both AutoML and deep learning research. Approaches for learning rate control span from classic optimization to online scheduling based on gradient statistics. This paper compares paradigms to assess the current state of learning rate control. We find that methods from multi-fidelity hyperparameter optimization, fixed-hyperparameter schedules, and hyperparameter-free learning often perform very well on selected deep learning tasks but are not reliable across settings. This highlights the need for algorithm selection methods in learning rate control, which have been neglected so far by both the AutoML and deep learning communities. We also observe a trend of hyperparameter optimization approaches becoming less effective as models and tasks grow in complexity, even when combined with multi-fidelity approaches for more expensive model trainings. A focus on more relevant test tasks and new promising directions like finetunable methods and meta-learning will enable the AutoML community to significantly strengthen its impact on this crucial factor in deep learning.
☆ Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ B-PL-PINN: Stabilizing PINN Training with Bayesian Pseudo Labeling
Training physics-informed neural networks (PINNs) for forward problems often suffers from severe convergence issues, hindering the propagation of information from regions where the desired solution is well-defined. Haitsiukevich and Ilin (2023) proposed an ensemble approach that extends the active training domain of each PINN based on i) ensemble consensus and ii) vicinity to (pseudo-)labeled points, thus ensuring that the information from the initial condition successfully propagates to the interior of the computational domain. In this work, we suggest replacing the ensemble by a Bayesian PINN, and consensus by an evaluation of the PINN's posterior variance. Our experiments show that this mathematically principled approach outperforms the ensemble on a set of benchmark problems and is competitive with PINN ensembles trained with combinations of Adam and LBFGS.
☆ Relational Causal Discovery with Latent Confounders UAI 2025
Estimating causal effects from real-world relational data can be challenging when the underlying causal model and potential confounders are unknown. While several causal discovery algorithms exist for learning causal models with latent confounders from data, they assume that the data is independent and identically distributed (i.i.d.) and are not well-suited for learning from relational data. Similarly, existing relational causal discovery algorithms assume causal sufficiency, which is unrealistic for many real-world datasets. To address this gap, we propose RelFCI, a sound and complete causal discovery algorithm for relational data with latent confounders. Our work builds upon the Fast Causal Inference (FCI) and Relational Causal Discovery (RCD) algorithms and it defines new graphical models, necessary to support causal discovery in relational domains. We also establish soundness and completeness guarantees for relational d-separation with latent confounders. We present experimental results demonstrating the effectiveness of RelFCI in identifying the correct causal structure in relational causal models with latent confounders.
comment: 30 pages, 19 figures. Accepted for publication at the 41st Conference on Uncertainty in Artificial Intelligence (UAI 2025). Andrea Piras and Matteo Negro contributed equally to this work
☆ Variational Graph Convolutional Neural Networks
Estimation of model uncertainty can help improve the explainability of Graph Convolutional Networks and the accuracy of the models at the same time. Uncertainty can also be used in critical applications to verify the results of the model by an expert or additional models. In this paper, we propose Variational Neural Network versions of spatial and spatio-temporal Graph Convolutional Networks. We estimate uncertainty in both outputs and layer-wise attentions of the models, which has the potential for improving model explainability. We showcase the benefits of these models in the social trading analysis and the skeleton-based human action recognition tasks on the Finnish board membership, NTU-60, NTU-120 and Kinetics datasets, where we show improvement in model accuracy in addition to estimated model uncertainties.
comment: This work has been submitted to the IEEE for possible publication. 9 pages, 6 figures
Dynamic Similarity Graph Construction with Kernel Density Estimation ICML'25
In the kernel density estimation (KDE) problem, we are given a set $X$ of data points in $\mathbb{R}^d$, a kernel function $k: \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, and a query point $\mathbf{q} \in \mathbb{R}^d$, and the objective is to quickly output an estimate of $\sum_{\mathbf{x} \in X} k(\mathbf{q}, \mathbf{x})$. In this paper, we consider $\textsf{KDE}$ in the dynamic setting, and introduce a data structure that efficiently maintains the estimates for a set of query points as data points are added to $X$ over time. Based on this, we design a dynamic data structure that maintains a sparse approximation of the fully connected similarity graph on $X$, and develop a fast dynamic spectral clustering algorithm. We further evaluate the effectiveness of our algorithms on both synthetic and real-world datasets.
comment: ICML'25
☆ PERTINENCE: Input-based Opportunistic Neural Network Dynamic Execution
Deep neural networks (DNNs) have become ubiquitous thanks to their remarkable ability to model complex patterns across various domains such as computer vision, speech recognition, robotics, etc. While large DNN models are often more accurate than simpler, lightweight models, they are also resource- and energy-hungry. Hence, it is imperative to design methods to reduce reliance on such large models without significant degradation in output accuracy. The high computational cost of these models is often necessary only for a reduced set of challenging inputs, while lighter models can handle most simple ones. Thus, carefully combining properties of existing DNN models in a dynamic, input-based way opens opportunities to improve efficiency without impacting accuracy. In this work, we introduce PERTINENCE, a novel online method designed to analyze the complexity of input features and dynamically select the most suitable model from a pre-trained set to process a given input effectively. To achieve this, we employ a genetic algorithm to explore the training space of an ML-based input dispatcher, enabling convergence towards the Pareto front in the solution space that balances overall accuracy and computational efficiency. We showcase our approach on state-of-the-art Convolutional Neural Networks (CNNs) trained on the CIFAR-10 and CIFAR-100, as well as Vision Transformers (ViTs) trained on TinyImageNet dataset. We report results showing PERTINENCE's ability to provide alternative solutions to existing state-of-the-art models in terms of trade-offs between accuracy and number of operations. By opportunistically selecting among models trained for the same task, PERTINENCE achieves better or comparable accuracy with up to 36% fewer operations.
☆ GPT, But Backwards: Exactly Inverting Language Model Outputs ICML 2025
While existing auditing techniques attempt to identify potential unwanted behaviours in large language models (LLMs), we address the complementary forensic problem of reconstructing the exact input that led to an existing LLM output - enabling post-incident analysis and potentially the detection of fake output reports. We formalize exact input reconstruction as a discrete optimisation problem with a unique global minimum and introduce SODA, an efficient gradient-based algorithm that operates on a continuous relaxation of the input search space with periodic restarts and parameter decay. Through comprehensive experiments on LLMs ranging in size from 33M to 3B parameters, we demonstrate that SODA significantly outperforms existing approaches. We succeed in fully recovering 79.5% of shorter out-of-distribution inputs from next-token logits, without a single false positive, but struggle to extract private information from the outputs of longer (15+ token) input sequences. This suggests that standard deployment practices may currently provide adequate protection against malicious use of our method. Our code is available at https://doi.org/10.5281/zenodo.15539879.
comment: 9 pages, ICML 2025 Workshop on Reliable and Responsible Foundation Models
☆ A generative modeling / Physics-Informed Neural Network approach to random differential equations
The integration of Scientific Machine Learning (SciML) techniques with uncertainty quantification (UQ) represents a rapidly evolving frontier in computational science. This work advances Physics-Informed Neural Networks (PINNs) by incorporating probabilistic frameworks to effectively model uncertainty in complex systems. Our approach enhances the representation of uncertainty in forward problems by combining generative modeling techniques with PINNs. This integration enables in a systematic fashion uncertainty control while maintaining the predictive accuracy of the model. We demonstrate the utility of this method through applications to random differential equations and random partial differential equations (PDEs).
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ AsyncFlow: An Asynchronous Streaming RL Framework for Efficient LLM Post-Training
Reinforcement learning (RL) has become a pivotal technology in the post-training phase of large language models (LLMs). Traditional task-colocated RL frameworks suffer from significant scalability bottlenecks, while task-separated RL frameworks face challenges in complex dataflows and the corresponding resource idling and workload imbalance. Moreover, most existing frameworks are tightly coupled with LLM training or inference engines, making it difficult to support custom-designed engines. To address these challenges, we propose AsyncFlow, an asynchronous streaming RL framework for efficient post-training. Specifically, we introduce a distributed data storage and transfer module that provides a unified data management and fine-grained scheduling capability in a fully streamed manner. This architecture inherently facilitates automated pipeline overlapping among RL tasks and dynamic load balancing. Moreover, we propose a producer-consumer-based asynchronous workflow engineered to minimize computational idleness by strategically deferring parameter update process within staleness thresholds. Finally, the core capability of AsynFlow is architecturally decoupled from underlying training and inference engines and encapsulated by service-oriented user interfaces, offering a modular and customizable user experience. Extensive experiments demonstrate an average of 1.59 throughput improvement compared with state-of-the-art baseline. The presented architecture in this work provides actionable insights for next-generation RL training system designs.
☆ SPoT: Subpixel Placement of Tokens in Vision Transformers ICCV 2025
Vision Transformers naturally accommodate sparsity, yet standard tokenization methods confine features to discrete patch grids. This constraint prevents models from fully exploiting sparse regimes, forcing awkward compromises. We propose Subpixel Placement of Tokens (SPoT), a novel tokenization strategy that positions tokens continuously within images, effectively sidestepping grid-based limitations. With our proposed oracle-guided search, we uncover substantial performance gains achievable with ideal subpixel token positioning, drastically reducing the number of tokens necessary for accurate predictions during inference. SPoT provides a new direction for flexible, efficient, and interpretable ViT architectures, redefining sparsity as a strategic advantage rather than an imposed limitation.
comment: To appear in Workshop on Efficient Computing under Limited Resources: Visual Computing (ICCV 2025). Code available at https://github.com/dsb-ifi/SPoT
☆ GradMetaNet: An Equivariant Architecture for Learning on Gradients
Gradients of neural networks encode valuable information for optimization, editing, and analysis of models. Therefore, practitioners often treat gradients as inputs to task-specific algorithms, e.g. for pruning or optimization. Recent works explore learning algorithms that operate directly on gradients but use architectures that are not specifically designed for gradient processing, limiting their applicability. In this paper, we present a principled approach for designing architectures that process gradients. Our approach is guided by three principles: (1) equivariant design that preserves neuron permutation symmetries, (2) processing sets of gradients across multiple data points to capture curvature information, and (3) efficient gradient representation through rank-1 decomposition. Based on these principles, we introduce GradMetaNet, a novel architecture for learning on gradients, constructed from simple equivariant blocks. We prove universality results for GradMetaNet, and show that previous approaches cannot approximate natural gradient-based functions that GradMetaNet can. We then demonstrate GradMetaNet's effectiveness on a diverse set of gradient-based tasks on MLPs and transformers, such as learned optimization, INR editing, and estimating loss landscape curvature.
☆ Dance Dance ConvLSTM
\textit{Dance Dance Revolution} is a rhythm game consisting of songs and accompanying choreography, referred to as charts. Players press arrows on a device referred to as a dance pad in time with steps determined by the song's chart. In 2017, the authors of Dance Dance Convolution (DDC) developed an algorithm for the automatic generation of \textit{Dance Dance Revolution} charts, utilizing a CNN-LSTM architecture. We introduce Dance Dance ConvLSTM (DDCL), a new method for the automatic generation of DDR charts using a ConvLSTM based model, which improves upon the DDC methodology and substantially increases the accuracy of chart generation.
comment: 15 pages, 9 figures, 4 tables
☆ Kernel Recursive Least Squares Dictionary Learning Algorithm
We propose an efficient online dictionary learning algorithm for kernel-based sparse representations. In this framework, input signals are nonlinearly mapped to a high-dimensional feature space and represented sparsely using a virtual dictionary. At each step, the dictionary is updated recursively using a novel algorithm based on the recursive least squares (RLS) method. This update mechanism works with single samples or mini-batches and maintains low computational complexity. Experiments on four datasets across different domains show that our method not only outperforms existing online kernel dictionary learning approaches but also achieves classification accuracy close to that of batch-trained models, while remaining significantly more efficient.
comment: Published in Digital Signal Processing, Volume 141, 2023. DOI: https://doi.org/10.1016/j.dsp.2023.104159 12 pages, 8 figures. Code and data available at: https://github.com/G-Alipoor/kernel-rls-dictionary-learning
☆ Tile and Slide : A New Framework for Scaling NeRF from Local to Global 3D Earth Observation ICCV 2025
Neural Radiance Fields (NeRF) have recently emerged as a paradigm for 3D reconstruction from multiview satellite imagery. However, state-of-the-art NeRF methods are typically constrained to small scenes due to the memory footprint during training, which we study in this paper. Previous work on large-scale NeRFs palliate this by dividing the scene into NeRFs. This paper introduces Snake-NeRF, a framework that scales to large scenes. Our out-of-core method eliminates the need to load all images and networks simultaneously, and operates on a single device. We achieve this by dividing the region of interest into NeRFs that 3D tile without overlap. Importantly, we crop the images with overlap to ensure each NeRFs is trained with all the necessary pixels. We introduce a novel $2\times 2$ 3D tile progression strategy and segmented sampler, which together prevent 3D reconstruction errors along the tile edges. Our experiments conclude that large satellite images can effectively be processed with linear time complexity, on a single GPU, and without compromise in quality.
comment: Accepted at ICCV 2025 Workshop 3D-VAST (From street to space: 3D Vision Across Altitudes). Version before camera ready. Our code will be made public after the conference
☆ When Less Is More: Binary Feedback Can Outperform Ordinal Comparisons in Ranking Recovery
Paired comparison data, where users evaluate items in pairs, play a central role in ranking and preference learning tasks. While ordinal comparison data intuitively offer richer information than binary comparisons, this paper challenges that conventional wisdom. We propose a general parametric framework for modeling ordinal paired comparisons without ties. The model adopts a generalized additive structure, featuring a link function that quantifies the preference difference between two items and a pattern function that governs the distribution over ordinal response levels. This framework encompasses classical binary comparison models as special cases, by treating binary responses as binarized versions of ordinal data. Within this framework, we show that binarizing ordinal data can significantly improve the accuracy of ranking recovery. Specifically, we prove that under the counting algorithm, the ranking error associated with binary comparisons exhibits a faster exponential convergence rate than that of ordinal data. Furthermore, we characterize a substantial performance gap between binary and ordinal data in terms of a signal-to-noise ratio (SNR) determined by the pattern function. We identify the pattern function that minimizes the SNR and maximizes the benefit of binarization. Extensive simulations and a real application on the MovieLens dataset further corroborate our theoretical findings.
☆ Survivability of Backdoor Attacks on Unconstrained Face Recognition Systems
The widespread use of deep learning face recognition raises several security concerns. Although prior works point at existing vulnerabilities, DNN backdoor attacks against real-life, unconstrained systems dealing with images captured in the wild remain a blind spot of the literature. This paper conducts the first system-level study of backdoors in deep learning-based face recognition systems. This paper yields four contributions by exploring the feasibility of DNN backdoors on these pipelines in a holistic fashion. We demonstrate for the first time two backdoor attacks on the face detection task: face generation and face landmark shift attacks. We then show that face feature extractors trained with large margin losses also fall victim to backdoor attacks. Combining our models, we then show using 20 possible pipeline configurations and 15 attack cases that a single backdoor enables an attacker to bypass the entire function of a system. Finally, we provide stakeholders with several best practices and countermeasures.
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ Analysis of Muon's Convergence and Critical Batch Size
This paper presents a theoretical analysis of Muon, a new optimizer that leverages the inherent matrix structure of neural network parameters. We provide convergence proofs for four practical variants of Muon: with and without Nesterov momentum, and with and without weight decay. We then show that adding weight decay leads to strictly tighter bounds on both the parameter and gradient norms, and we clarify the relationship between the weight decay coefficient and the learning rate. Finally, we derive Muon's critical batch size minimizing the stochastic first-order oracle (SFO) complexity, which is the stochastic computational cost, and validate our theoretical findings with experiments.
☆ Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)
☆ A Privacy-Preserving Indoor Localization System based on Hierarchical Federated Learning
Location information serves as the fundamental element for numerous Internet of Things (IoT) applications. Traditional indoor localization techniques often produce significant errors and raise privacy concerns due to centralized data collection. In response, Machine Learning (ML) techniques offer promising solutions by capturing indoor environment variations. However, they typically require central data aggregation, leading to privacy, bandwidth, and server reliability issues. To overcome these challenges, in this paper, we propose a Federated Learning (FL)-based approach for dynamic indoor localization using a Deep Neural Network (DNN) model. Experimental results show that FL has the nearby performance to Centralized Model (CL) while keeping the data privacy, bandwidth efficiency and server reliability. This research demonstrates that our proposed FL approach provides a viable solution for privacy-enhanced indoor localization, paving the way for advancements in secure and efficient indoor localization systems.
☆ Transfer Learning for VLC-based indoor Localization: Addressing Environmental Variability
Accurate indoor localization is crucial in industrial environments. Visible Light Communication (VLC) has emerged as a promising solution, offering high accuracy, energy efficiency, and minimal electromagnetic interference. However, VLC-based indoor localization faces challenges due to environmental variability, such as lighting fluctuations and obstacles. To address these challenges, we propose a Transfer Learning (TL)-based approach for VLC-based indoor localization. Using real-world data collected at a BOSCH factory, the TL framework integrates a deep neural network (DNN) to improve localization accuracy by 47\%, reduce energy consumption by 32\%, and decrease computational time by 40\% compared to the conventional models. The proposed solution is highly adaptable under varying environmental conditions and achieves similar accuracy with only 30\% of the dataset, making it a cost-efficient and scalable option for industrial applications in Industry 4.0.
comment: Accepted for publication in the IEEE VTC2025-Spring Conference, 7 pages
☆ On the Effect of Ruleset Tuning and Data Imbalance on Explainable Network Security Alert Classifications: a Case-Study on DeepCASE
Automation in Security Operations Centers (SOCs) plays a prominent role in alert classification and incident escalation. However, automated methods must be robust in the presence of imbalanced input data, which can negatively affect performance. Additionally, automated methods should make explainable decisions. In this work, we evaluate the effect of label imbalance on the classification of network intrusion alerts. As our use-case we employ DeepCASE, the state-of-the-art method for automated alert classification. We show that label imbalance impacts both classification performance and correctness of the classification explanations offered by DeepCASE. We conclude tuning the detection rules used in SOCs can significantly reduce imbalance and may benefit the performance and explainability offered by alert post-processing methods such as DeepCASE. Therefore, our findings suggest that traditional methods to improve the quality of input data can benefit automation.
☆ How Weight Resampling and Optimizers Shape the Dynamics of Continual Learning and Forgetting in Neural Networks
Recent work in continual learning has highlighted the beneficial effect of resampling weights in the last layer of a neural network (``zapping"). Although empirical results demonstrate the effectiveness of this approach, the underlying mechanisms that drive these improvements remain unclear. In this work, we investigate in detail the pattern of learning and forgetting that take place inside a convolutional neural network when trained in challenging settings such as continual learning and few-shot transfer learning, with handwritten characters and natural images. Our experiments show that models that have undergone zapping during training more quickly recover from the shock of transferring to a new domain. Furthermore, to better observe the effect of continual learning in a multi-task setting we measure how each individual task is affected. This shows that, not only zapping, but the choice of optimizer can also deeply affect the dynamics of learning and forgetting, causing complex patterns of synergy/interference between tasks to emerge when the model learns sequentially at transfer time.
☆ Self-Guided Process Reward Optimization with Masked Step Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
☆ AI and Remote Sensing for Resilient and Sustainable Built Environments: A Review of Current Methods, Open Data and Future Directions
Critical infrastructure, such as transport networks, underpins economic growth by enabling mobility and trade. However, ageing assets, climate change impacts (e.g., extreme weather, rising sea levels), and hybrid threats ranging from natural disasters to cyber attacks and conflicts pose growing risks to their resilience and functionality. This review paper explores how emerging digital technologies, specifically Artificial Intelligence (AI), can enhance damage assessment and monitoring of transport infrastructure. A systematic literature review examines existing AI models and datasets for assessing damage in roads, bridges, and other critical infrastructure impacted by natural disasters. Special focus is given to the unique challenges and opportunities associated with bridge damage detection due to their structural complexity and critical role in connectivity. The integration of SAR (Synthetic Aperture Radar) data with AI models is also discussed, with the review revealing a critical research gap: a scarcity of studies applying AI models to SAR data for comprehensive bridge damage assessment. Therefore, this review aims to identify the research gaps and provide foundations for AI-driven solutions for assessing and monitoring critical transport infrastructures.
☆ MARVIS: Modality Adaptive Reasoning over VISualizations
Scientific applications of machine learning often rely on small, specialized models tuned to particular domains. Such models often achieve excellent performance, but lack flexibility. Foundation models offer versatility, but typically underperform specialized approaches, especially on non-traditional modalities and long-tail domains. We propose MARVIS (Modality Adaptive Reasoning over VISualizations), a training-free method that enables even small vision-language models to predict any data modality with high accuracy. MARVIS transforms latent embedding spaces into visual representations and then leverages the spatial and fine-grained reasoning skills of VLMs to successfully interpret and utilize them. MARVIS achieves competitive performance on vision, audio, biological, and tabular domains using a single 3B parameter model, achieving results that beat Gemini by 16\% on average and approach specialized methods, without exposing personally identifiable information (P.I.I.) or requiring any domain-specific training. We open source our code and datasets at https://github.com/penfever/marvis
☆ Parsimonious Gaussian mixture models with piecewise-constant eigenvalue profiles
Gaussian mixture models (GMMs) are ubiquitous in statistical learning, particularly for unsupervised problems. While full GMMs suffer from the overparameterization of their covariance matrices in high-dimensional spaces, spherical GMMs (with isotropic covariance matrices) certainly lack flexibility to fit certain anisotropic distributions. Connecting these two extremes, we introduce a new family of parsimonious GMMs with piecewise-constant covariance eigenvalue profiles. These extend several low-rank models like the celebrated mixtures of probabilistic principal component analyzers (MPPCA), by enabling any possible sequence of eigenvalue multiplicities. If the latter are prespecified, then we can naturally derive an expectation-maximization (EM) algorithm to learn the mixture parameters. Otherwise, to address the notoriously-challenging issue of jointly learning the mixture parameters and hyperparameters, we propose a componentwise penalized EM algorithm, whose monotonicity is proven. We show the superior likelihood-parsimony tradeoffs achieved by our models on a variety of unsupervised experiments: density fitting, clustering and single-image denoising.
☆ Consistency of Learned Sparse Grid Quadrature Rules using NeuralODEs
This paper provides a proof of the consistency of sparse grid quadrature for numerical integration of high dimensional distributions. In a first step, a transport map is learned that normalizes the distribution to a noise distribution on the unit cube. This step is built on the statistical learning theory of neural ordinary differential equations, which has been established recently. Secondly, the composition of the generative map with the quantity of interest is integrated numerically using the Clenshaw-Curtis sparse grid quadrature. A decomposition of the total numerical error in quadrature error and statistical error is provided. As main result it is proven in the framework of empirical risk minimization that all error terms can be controlled in the sense of PAC (probably approximately correct) learning and with high probability the numerical integral approximates the theoretical value up to an arbitrary small error in the limit where the data set size is growing and the network capacity is increased adaptively.
☆ Chargax: A JAX Accelerated EV Charging Simulator
Deep Reinforcement Learning can play a key role in addressing sustainable energy challenges. For instance, many grid systems are heavily congested, highlighting the urgent need to enhance operational efficiency. However, reinforcement learning approaches have traditionally been slow due to the high sample complexity and expensive simulation requirements. While recent works have effectively used GPUs to accelerate data generation by converting environments to JAX, these works have largely focussed on classical toy problems. This paper introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle charging stations designed for accelerated training of RL agents. We validate our environment in a variety of scenarios based on real data, comparing reinforcement learning agents against baselines. Chargax delivers substantial computational performance improvements of over 100x-1000x over existing environments. Additionally, Chargax' modular architecture enables the representation of diverse real-world charging station configurations.
comment: Accepted at RLC 2025
☆ Loss Functions in Diffusion Models: A Comparative Study ECML 2025
Diffusion models have emerged as powerful generative models, inspiring extensive research into their underlying mechanisms. One of the key questions in this area is the loss functions these models shall train with. Multiple formulations have been introduced in the literature over the past several years with some links and some critical differences stemming from various initial considerations. In this paper, we explore the different target objectives and corresponding loss functions in detail. We present a systematic overview of their relationships, unifying them under the framework of the variational lower bound objective. We complement this theoretical analysis with an empirical study providing insights into the conditions under which these objectives diverge in performance and the underlying factors contributing to such deviations. Additionally, we evaluate how the choice of objective impacts the model ability to achieve specific goals, such as generating high-quality samples or accurately estimating likelihoods. This study offers a unified understanding of loss functions in diffusion models, contributing to more efficient and goal-oriented model designs in future research.
comment: Accepted to ECML 2025
☆ Mamba Guided Boundary Prior Matters: A New Perspective for Generalized Polyp Segmentation MICCAI-2025
Polyp segmentation in colonoscopy images is crucial for early detection and diagnosis of colorectal cancer. However, this task remains a significant challenge due to the substantial variations in polyp shape, size, and color, as well as the high similarity between polyps and surrounding tissues, often compounded by indistinct boundaries. While existing encoder-decoder CNN and transformer-based approaches have shown promising results, they struggle with stable segmentation performance on polyps with weak or blurry boundaries. These methods exhibit limited abilities to distinguish between polyps and non-polyps and capture essential boundary cues. Moreover, their generalizability still falls short of meeting the demands of real-time clinical applications. To address these limitations, we propose SAM-MaGuP, a groundbreaking approach for robust polyp segmentation. By incorporating a boundary distillation module and a 1D-2D Mamba adapter within the Segment Anything Model (SAM), SAM-MaGuP excels at resolving weak boundary challenges and amplifies feature learning through enriched global contextual interactions. Extensive evaluations across five diverse datasets reveal that SAM-MaGuP outperforms state-of-the-art methods, achieving unmatched segmentation accuracy and robustness. Our key innovations, a Mamba-guided boundary prior and a 1D-2D Mamba block, set a new benchmark in the field, pushing the boundaries of polyp segmentation to new heights.
comment: 11 pages, 2 figures, MICCAI-2025
☆ Meteoroid stream identification with HDBSCAN unsupervised clustering algorithm
Accurate identification of meteoroid streams is central to understanding their origins and evolution. However, overlapping clusters and background noise hinder classification, an issue amplified for missions such as ESA's LUMIO that rely on meteor shower observations to infer lunar meteoroid impact parameters. This study evaluates the performance of the Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm for unsupervised meteoroid stream identification, comparing its outcomes with the established Cameras for All-Sky Meteor Surveillance (CAMS) look-up table method. We analyze the CAMS Meteoroid Orbit Database v3.0 using three feature vectors: LUTAB (CAMS geocentric parameters), ORBIT (heliocentric orbital elements), and GEO (adapted geocentric parameters). HDBSCAN is applied with varying minimum cluster sizes and two cluster selection methods (eom and leaf). To align HDBSCAN clusters with CAMS classifications, the Hungarian algorithm determines the optimal mapping. Clustering performance is assessed via the Silhouette score, Normalized Mutual Information, and F1 score, with Principal Component Analysis further supporting the analysis. With the GEO vector, HDBSCAN confirms 39 meteoroid streams, 21 strongly aligning with CAMS. The ORBIT vector identifies 30 streams, 13 with high matching scores. Less active showers pose identification challenges. The eom method consistently yields superior performance and agreement with CAMS. Although HDBSCAN requires careful selection of the minimum cluster size, it delivers robust, internally consistent clusters and outperforms the look-up table method in statistical coherence. These results underscore HDBSCAN's potential as a mathematically consistent alternative for meteoroid stream identification, although further validation is needed to assess physical validity.
comment: Accepted in The Astronomical Journal
☆ How to Securely Shuffle? A survey about Secure Shufflers for privacy-preserving computations
Ishai et al. (FOCS'06) introduced secure shuffling as an efficient building block for private data aggregation. Recently, the field of differential privacy has revived interest in secure shufflers by highlighting the privacy amplification they can provide in various computations. Although several works argue for the utility of secure shufflers, they often treat them as black boxes; overlooking the practical vulnerabilities and performance trade-offs of existing implementations. This leaves a central question open: what makes a good secure shuffler? This survey addresses that question by identifying, categorizing, and comparing 26 secure protocols that realize the necessary shuffling functionality. To enable a meaningful comparison, we adapt and unify existing security definitions into a consistent set of properties. We also present an overview of privacy-preserving technologies that rely on secure shufflers, offer practical guidelines for selecting appropriate protocols, and outline promising directions for future work.
☆ Optimizing Methane Detection On Board Satellites: Speed, Accuracy, and Low-Power Solutions for Resource-Constrained Hardware
Methane is a potent greenhouse gas, and detecting its leaks early via hyperspectral satellite imagery can help mitigate climate change. Meanwhile, many existing missions operate in manual tasking regimes only, thus missing potential events of interest. To overcome slow downlink rates cost-effectively, onboard detection is a viable solution. However, traditional methane enhancement methods are too computationally demanding for resource-limited onboard hardware. This work accelerates methane detection by focusing on efficient, low-power algorithms. We test fast target detection methods (ACE, CEM) that have not been previously used for methane detection and propose a Mag1c-SAS - a significantly faster variant of the current state-of-the-art algorithm for methane detection: Mag1c. To explore their true detection potential, we integrate them with a machine learning model (U-Net, LinkNet). Our results identify two promising candidates (Mag1c-SAS and CEM), both acceptably accurate for the detection of strong plumes and computationally efficient enough for onboard deployment: one optimized more for accuracy, the other more for speed, achieving up to ~100x and ~230x faster computation than original Mag1c on resource-limited hardware. Additionally, we propose and evaluate three band selection strategies. One of them can outperform the method traditionally used in the field while using fewer channels, leading to even faster processing without compromising accuracy. This research lays the foundation for future advancements in onboard methane detection with minimal hardware requirements, improving timely data delivery. The produced code, data, and models are open-sourced and can be accessed from https://github.com/zaitra/methane-filters-benchmark.
comment: This is a preprint of a paper accepted for the EDHPC 2025 Conference
☆ Zero-Incentive Dynamics: a look at reward sparsity through the lens of unrewarded subgoals
This work re-examines the commonly held assumption that the frequency of rewards is a reliable measure of task difficulty in reinforcement learning. We identify and formalize a structural challenge that undermines the effectiveness of current policy learning methods: when essential subgoals do not directly yield rewards. We characterize such settings as exhibiting zero-incentive dynamics, where transitions critical to success remain unrewarded. We show that state-of-the-art deep subgoal-based algorithms fail to leverage these dynamics and that learning performance is highly sensitive to the temporal proximity between subgoal completion and eventual reward. These findings reveal a fundamental limitation in current approaches and point to the need for mechanisms that can infer latent task structure without relying on immediate incentives.
comment: Accepted at "Finding the Frame 2025", workshop at RLC
☆ Cross-platform Smartphone Positioning at Museums
Indoor Positioning Systems (IPSs) hold significant potential for enhancing visitor experiences in cultural heritage institutions. By enabling personalized navigation, efficient artifact organization, and better interaction with exhibits, IPSs can transform the modalities of how individuals engage with museums, galleries and libraries. However, these institutions face several challenges in implementing IPSs, including environmental constraints, technical limits, and limited experimentation. In other contexts, Received Signal Strength (RSS)-based approaches using Bluetooth Low Energy (BLE) and WiFi have emerged as preferred solutions due to their non-invasive nature and minimal infrastructure requirements. Nevertheless, the lack of publicly available RSS datasets that specifically reflect museum environments presents a substantial barrier to developing and evaluating positioning algorithms designed for the intricate spatial characteristics typical of cultural heritage sites. To address this limitation, we present BAR, a novel RSS dataset collected in front of 90 artworks across 13 museum rooms using two different platforms, i.e., Android and iOS. Additionally, we provide an advanced position classification baseline taking advantage of a proximity-based method and $k$-NN algorithms. In our analysis, we discuss the results and offer suggestions for potential research directions.
comment: Accepted at the 2025 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Tampere, Finland, September 15-18, 2025
☆ Symbolic identification of tensor equations in multidimensional physical fields
Recently, data-driven methods have shown great promise for discovering governing equations from simulation or experimental data. However, most existing approaches are limited to scalar equations, with few capable of identifying tensor relationships. In this work, we propose a general data-driven framework for identifying tensor equations, referred to as Symbolic Identification of Tensor Equations (SITE). The core idea of SITE--representing tensor equations using a host-plasmid structure--is inspired by the multidimensional gene expression programming (M-GEP) approach. To improve the robustness of the evolutionary process, SITE adopts a genetic information retention strategy. Moreover, SITE introduces two key innovations beyond conventional evolutionary algorithms. First, it incorporates a dimensional homogeneity check to restrict the search space and eliminate physically invalid expressions. Second, it replaces traditional linear scaling with a tensor linear regression technique, greatly enhancing the efficiency of numerical coefficient optimization. We validate SITE using two benchmark scenarios, where it accurately recovers target equations from synthetic data, showing robustness to noise and small sample sizes. Furthermore, SITE is applied to identify constitutive relations directly from molecular simulation data, which are generated without reliance on macroscopic constitutive models. It adapts to both compressible and incompressible flow conditions and successfully identifies the corresponding macroscopic forms, highlighting its potential for data-driven discovery of tensor equation.
☆ Tensor Program Optimization for the RISC-V Vector Extension Using Probabilistic Programs
RISC-V provides a flexible and scalable platform for applications ranging from embedded devices to high-performance computing clusters. Particularly, its RISC-V Vector Extension (RVV) becomes of interest for the acceleration of AI workloads. But writing software that efficiently utilizes the vector units of RISC-V CPUs without expert knowledge requires the programmer to rely on the autovectorization features of compilers or hand-crafted libraries like muRISCV-NN. Smarter approaches, like autotuning frameworks, have been missing the integration with the RISC-V RVV extension, thus heavily limiting the efficient deployment of complex AI workloads. In this paper, we present a workflow based on the TVM compiler to efficiently map AI workloads onto RISC-V vector units. Instead of relying on hand-crafted libraries, we integrated the RVV extension into TVM's MetaSchedule framework, a probabilistic program framework for tensor operation tuning. We implemented different RISC-V SoCs on an FPGA and tuned a wide range of AI workloads on them. We found that our proposal shows a mean improvement of 46% in execution latency when compared against the autovectorization feature of GCC, and 29% against muRISCV-NN. Moreover, the binary resulting from our proposal has a smaller code memory footprint, making it more suitable for embedded devices. Finally, we also evaluated our solution on a commercially available RISC-V SoC implementing the RVV 1.0 Vector Extension and found our solution is able to find mappings that are 35% faster on average than the ones proposed by LLVM. We open-sourced our proposal for the community to expand it to target other RISC-V extensions.
comment: 9 pages, 10 figures, 2 algorithms
☆ EdgeLoRA: An Efficient Multi-Tenant LLM Serving System on Edge Devices
Large Language Models (LLMs) have gained significant attention due to their versatility across a wide array of applications. Fine-tuning LLMs with parameter-efficient adapters, such as Low-Rank Adaptation (LoRA), enables these models to efficiently adapt to downstream tasks without extensive retraining. Deploying fine-tuned LLMs on multi-tenant edge devices offers substantial benefits, such as reduced latency, enhanced privacy, and personalized responses. However, serving LLMs efficiently on resource-constrained edge devices presents critical challenges, including the complexity of adapter selection for different tasks and memory overhead from frequent adapter swapping. Moreover, given the multiple requests in multi-tenant settings, processing requests sequentially results in underutilization of computational resources and increased latency. This paper introduces EdgeLoRA, an efficient system for serving LLMs on edge devices in multi-tenant environments. EdgeLoRA incorporates three key innovations: (1) an adaptive adapter selection mechanism to streamline the adapter configuration process; (2) heterogeneous memory management, leveraging intelligent adapter caching and pooling to mitigate memory operation overhead; and (3) batch LoRA inference, enabling efficient batch processing to significantly reduce computational latency. Comprehensive evaluations using the Llama3.1-8B model demonstrate that EdgeLoRA significantly outperforms the status quo (i.e., llama.cpp) in terms of both latency and throughput. The results demonstrate that EdgeLoRA can achieve up to a 4 times boost in throughput. Even more impressively, it can serve several orders of magnitude more adapters simultaneously. These results highlight EdgeLoRA's potential to transform edge deployment of LLMs in multi-tenant scenarios, offering a scalable and efficient solution for resource-constrained environments.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
☆ Gradient Short-Circuit: Efficient Out-of-Distribution Detection via Feature Intervention ICCV 2025
Out-of-Distribution (OOD) detection is critical for safely deploying deep models in open-world environments, where inputs may lie outside the training distribution. During inference on a model trained exclusively with In-Distribution (ID) data, we observe a salient gradient phenomenon: around an ID sample, the local gradient directions for "enhancing" that sample's predicted class remain relatively consistent, whereas OOD samples--unseen in training--exhibit disorganized or conflicting gradient directions in the same neighborhood. Motivated by this observation, we propose an inference-stage technique to short-circuit those feature coordinates that spurious gradients exploit to inflate OOD confidence, while leaving ID classification largely intact. To circumvent the expense of recomputing the logits after this gradient short-circuit, we further introduce a local first-order approximation that accurately captures the post-modification outputs without a second forward pass. Experiments on standard OOD benchmarks show our approach yields substantial improvements. Moreover, the method is lightweight and requires minimal changes to the standard inference pipeline, offering a practical path toward robust OOD detection in real-world applications.
comment: Accepted to ICCV 2025
☆ Decomposing Prediction Mechanisms for In-Context Recall
We introduce a new family of toy problems that combine features of linear-regression-style continuous in-context learning (ICL) with discrete associative recall. We pretrain transformer models on sample traces from this toy, specifically symbolically-labeled interleaved state observations from randomly drawn linear deterministic dynamical systems. We study if the transformer models can recall the state of a sequence previously seen in its context when prompted to do so with the corresponding in-context label. Taking a closer look at this task, it becomes clear that the model must perform two functions: (1) identify which system's state should be recalled and apply that system to its last seen state, and (2) continuing to apply the correct system to predict the subsequent states. Training dynamics reveal that the first capability emerges well into a model's training. Surprisingly, the second capability, of continuing the prediction of a resumed sequence, develops much earlier. Via out-of-distribution experiments, and a mechanistic analysis on model weights via edge pruning, we find that next-token prediction for this toy problem involves at least two separate mechanisms. One mechanism uses the discrete symbolic labels to do the associative recall required to predict the start of a resumption of a previously seen sequence. The second mechanism, which is largely agnostic to the discrete symbolic labels, performs a "Bayesian-style" prediction based on the previous token and the context. These two mechanisms have different learning dynamics. To confirm that this multi-mechanism (manifesting as separate phase transitions) phenomenon is not just an artifact of our toy setting, we used OLMo training checkpoints on an ICL translation task to see a similar phenomenon: a decisive gap in the emergence of first-task-token performance vs second-task-token performance.
comment: 44 pages, 47 figures, 2 tables
☆ Evaluating LLM Agent Collusion in Double Auctions
Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
☆ Coherent Online Road Topology Estimation and Reasoning with Standard-Definition Maps IROS 2025
Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
comment: Accepted at IROS 2025
☆ Surrogate Modeling via Factorization Machine and Ising Model with Enhanced Higher-Order Interaction Learning
Recently, a surrogate model was proposed that employs a factorization machine to approximate the underlying input-output mapping of the original system, with quantum annealing used to optimize the resulting surrogate function. Inspired by this approach, we propose an enhanced surrogate model that incorporates additional slack variables into both the factorization machine and its associated Ising representation thereby unifying what was by design a two-step process into a single, integrated step. During the training phase, the slack variables are iteratively updated, enabling the model to account for higher-order feature interactions. We apply the proposed method to the task of predicting drug combination effects. Experimental results indicate that the introduction of slack variables leads to a notable improvement of performance. Our algorithm offers a promising approach for building efficient surrogate models that exploit potential quantum advantages.
☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10\% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
☆ Active Measurement: Efficient Estimation at Scale
AI has the potential to transform scientific discovery by analyzing vast datasets with little human effort. However, current workflows often do not provide the accuracy or statistical guarantees that are needed. We introduce active measurement, a human-in-the-loop AI framework for scientific measurement. An AI model is used to predict measurements for individual units, which are then sampled for human labeling using importance sampling. With each new set of human labels, the AI model is improved and an unbiased Monte Carlo estimate of the total measurement is refined. Active measurement can provide precise estimates even with an imperfect AI model, and requires little human effort when the AI model is very accurate. We derive novel estimators, weighting schemes, and confidence intervals, and show that active measurement reduces estimation error compared to alternatives in several measurement tasks.
☆ Activation Reward Models for Few-Shot Model Alignment
Aligning Large Language Models (LLMs) and Large Multimodal Models (LMMs) to human preferences is a central challenge in improving the quality of the models' generative outputs for real-world applications. A common approach is to use reward modeling to encode preferences, enabling alignment via post-training using reinforcement learning. However, traditional reward modeling is not easily adaptable to new preferences because it requires a separate reward model, commonly trained on large preference datasets. To address this, we introduce Activation Reward Models (Activation RMs) -- a novel few-shot reward modeling method that leverages activation steering to construct well-aligned reward signals using minimal supervision and no additional model finetuning. Activation RMs outperform existing few-shot reward modeling approaches such as LLM-as-a-judge with in-context learning, voting-based scoring, and token probability scoring on standard reward modeling benchmarks. Furthermore, we demonstrate the effectiveness of Activation RMs in mitigating reward hacking behaviors, highlighting their utility for safety-critical applications. Toward this end, we propose PreferenceHack, a novel few-shot setting benchmark, the first to test reward models on reward hacking in a paired preference format. Finally, we show that Activation RM achieves state-of-the-art performance on this benchmark, surpassing even GPT-4o.
☆ Efficient Kilometer-Scale Precipitation Downscaling with Conditional Wavelet Diffusion
Effective hydrological modeling and extreme weather analysis demand precipitation data at a kilometer-scale resolution, which is significantly finer than the 10 km scale offered by standard global products like IMERG. To address this, we propose the Wavelet Diffusion Model (WDM), a generative framework that achieves 10x spatial super-resolution (downscaling to 1 km) and delivers a 9x inference speedup over pixel-based diffusion models. WDM is a conditional diffusion model that learns the learns the complex structure of precipitation from MRMS radar data directly in the wavelet domain. By focusing on high-frequency wavelet coefficients, it generates exceptionally realistic and detailed 1-km precipitation fields. This wavelet-based approach produces visually superior results with fewer artifacts than pixel-space models, and delivers a significant gains in sampling efficiency. Our results demonstrate that WDM provides a robust solution to the dual challenges of accuracy and speed in geoscience super-resolution, paving the way for more reliable hydrological forecasts.
☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Distribution Matching for Self-Supervised Transfer Learning
In this paper, we propose a novel self-supervised transfer learning method called \underline{\textbf{D}}istribution \underline{\textbf{M}}atching (DM), which drives the representation distribution toward a predefined reference distribution while preserving augmentation invariance. DM results in a learned representation space that is intuitively structured and therefore easy to interpret. Experimental results across multiple real-world datasets and evaluation metrics demonstrate that DM performs competitively on target classification tasks compared to existing self-supervised transfer learning methods. Additionally, we provide robust theoretical guarantees for DM, including a population theorem and an end-to-end sample theorem. The population theorem bridges the gap between the self-supervised learning task and target classification accuracy, while the sample theorem shows that, even with a limited number of samples from the target domain, DM can deliver exceptional classification performance, provided the unlabeled sample size is sufficiently large.
GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, a vision-language model (VLM) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document understanding. We open-source GLM-4.1V-9B-Thinking, which achieves state-of-the-art performance among models of comparable size. In a comprehensive evaluation across 28 public benchmarks, our model outperforms Qwen2.5-VL-7B on nearly all tasks and achieves comparable or even superior performance on 18 benchmarks relative to the significantly larger Qwen2.5-VL-72B. Notably, GLM-4.1V-9B-Thinking also demonstrates competitive or superior performance compared to closed-source models such as GPT-4o on challenging tasks including long document understanding and STEM reasoning, further underscoring its strong capabilities. Code, models and more information are released at https://github.com/THUDM/GLM-4.1V-Thinking.
♻ ☆ Generalization performance of narrow one-hidden layer networks in the teacher-student setting
Understanding the generalization abilities of neural networks for simple input-output distributions is crucial to account for their learning performance on real datasets. The classical teacher-student setting, where a network is trained from data obtained thanks to a label-generating teacher model, serves as a perfect theoretical test bed. In this context, a complete theoretical account of the performance of fully connected one-hidden layer networks in the presence of generic activation functions is lacking. In this work, we develop such a general theory for narrow networks, i.e. networks with a large number of hidden units, yet much smaller than the input dimension. Using methods from statistical physics, we provide closed-form expressions for the typical performance of both finite temperature (Bayesian) and empirical risk minimization estimators, in terms of a small number of weight statistics. In doing so, we highlight the presence of a transition where hidden neurons specialize when the number of samples is sufficiently large and proportional to the number of parameters of the network. Our theory accurately predicts the generalization error of neural networks trained on regression or classification tasks with either noisy full-batch gradient descent (Langevin dynamics) or full-batch gradient descent.
comment: 34 pages, figures
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant advantage of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, by leveraging DRL, we can train the policy network towards optimizing the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Embedded AI Systems
Embedded AI systems are expected to incur low power/energy consumption for solving machine learning tasks, as these systems are usually power constrained (e.g., object recognition task in autonomous mobile agents with portable batteries). These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, and/or developed without considering memory budgets from the underlying processing hardware of embedded platforms. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from targeted embedded systems. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, developing a fast memory-aware search algorithm, and performing quantization. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy compared to state-of-the-art while meeting the given memory budgets (e.g., 29x, 117x, and 3.7x faster search for CIFAR10, CIFAR100, and TinyImageNet200 respectively, using an Nvidia RTX A6000 GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained embedded AI systems.
comment: To appear at the IEEE Transactions on Artificial Intelligence (TAI) 2025
♻ ☆ Beating Transformers using Synthetic Cognition
The road to Artificial General Intelligence goes through the generation of context-aware reactive behaviors, where the Transformer architecture has been proven to be the state-of-the-art. However, they still fail to develop reasoning. Recently, a novel approach for developing cognitive architectures, called Synthetic Cognition, has been proposed and implemented to develop instantaneous reactive behavior. In this study, we aim to explore the use of Synthetic Cognition to develop context-aware reactive behaviors. We propose a mechanism to deal with sequences for the recent implementation of Synthetic Cognition, and test it against DNA foundation models in DNA sequence classification tasks. In our experiments, our proposal clearly outperforms the DNA foundation models, obtaining the best score on more benchmark tasks than the alternatives. Thus, we achieve two goals: expanding Synthetic Cognition to deal with sequences, and beating the Transformer architecture for sequence classification.
♻ ☆ Retrieving snow depth distribution by downscaling ERA5 Reanalysis with ICESat-2 laser altimetry
Estimating the variability of seasonal snow cover, in particular snow depth in remote areas, poses significant challenges due to limited spatial and temporal data availability. This study uses snow depth measurements from the ICESat-2 satellite laser altimeter, which are sparse in both space and time, and incorporates them with climate reanalysis data into a downscaling-calibration scheme to produce monthly gridded snow depth maps at microscale (10 m). Snow surface elevation measurements from ICESat-2 along profiles are compared to a digital elevation model to determine snow depth at each point. To efficiently turn sparse measurements into snow depth maps, a regression model is fitted to establish a relationship between the retrieved snow depth and the corresponding ERA5 Land snow depth. This relationship, referred to as subgrid variability, is then applied to downscale the monthly ERA5 Land snow depth data. The method can provide timeseries of monthly snow depth maps for the entire ERA5 time range (since 1950). The validation of downscaled snow depth data was performed at an intermediate scale (100 m x 500 m) using datasets from airborne laser scanning (ALS) in the Hardangervidda region of southern Norway. Results show that snow depth prediction achieved R2 values ranging from 0.74 to 0.88 (post-calibration). The method relies on globally available data and is applicable to other snow regions above the treeline. Though requiring area-specific calibration, our approach has the potential to provide snow depth maps in areas where no such data exist and can be used to extrapolate existing snow surveys in time and over larger areas. With this, it can offer valuable input data for hydrological, ecological or permafrost modeling tasks.
♻ ☆ Long-Context Linear System Identification ICLR 2025
This paper addresses the problem of long-context linear system identification, where the state $x_t$ of a dynamical system at time $t$ depends linearly on previous states $x_s$ over a fixed context window of length $p$. We establish a sample complexity bound that matches the i.i.d. parametric rate up to logarithmic factors for a broad class of systems, extending previous works that considered only first-order dependencies. Our findings reveal a learning-without-mixing phenomenon, indicating that learning long-context linear autoregressive models is not hindered by slow mixing properties potentially associated with extended context windows. Additionally, we extend these results to (i) shared low-rank representations, where rank-regularized estimators improve the dependence of the rates on the dimensionality, and (ii) misspecified context lengths in strictly stable systems, where shorter contexts offer statistical advantages.
comment: Published at ICLR 2025. This version includes minor corrections and improved grammar from the published version. 34 pages, 4 figures
♻ ☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Published in Applied Soft Computing (ASOC), 49 pages, 14 figures
♻ ☆ Improving Consistency Models with Generator-Augmented Flows
Consistency models imitate the multi-step sampling of score-based diffusion in a single forward pass of a neural network. They can be learned in two ways: consistency distillation and consistency training. The former relies on the true velocity field of the corresponding differential equation, approximated by a pre-trained neural network. In contrast, the latter uses a single-sample Monte Carlo estimate of this velocity field. The related estimation error induces a discrepancy between consistency distillation and training that, we show, still holds in the continuous-time limit. To alleviate this issue, we propose a novel flow that transports noisy data towards their corresponding outputs derived from a consistency model. We prove that this flow reduces the previously identified discrepancy and the noise-data transport cost. Consequently, our method not only accelerates consistency training convergence but also enhances its overall performance. The code is available at: https://github.com/thibautissenhuth/consistency_GC.
♻ ☆ AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks
Monitoring real-time air quality is essential for safeguarding public health and fostering social progress. However, the widespread deployment of air quality monitoring stations is constrained by their significant costs. To address this limitation, we introduce \emph{AirRadar}, a deep neural network designed to accurately infer real-time air quality in locations lacking monitoring stations by utilizing data from existing ones. By leveraging learnable mask tokens, AirRadar reconstructs air quality features in unmonitored regions. Specifically, it operates in two stages: first capturing spatial correlations and then adjusting for distribution shifts. We validate AirRadar's efficacy using a year-long dataset from 1,085 monitoring stations across China, demonstrating its superiority over multiple baselines, even with varying degrees of unobserved data. The source code can be accessed at https://github.com/CityMind-Lab/AirRadar.
♻ ☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called \textit{SURE-VQA}, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ Time-Series JEPA for Predictive Remote Control under Capacity-Limited Networks
In remote control systems, transmitting large data volumes (e.g., images, video frames) from wireless sensors to remote controllers is challenging when uplink capacity is limited (e.g., RedCap devices or massive wireless sensor networks). Furthermore, controllers often need only information-rich representations of the original data. To address this, we propose a semantic-driven predictive control combined with a channel-aware scheduling to enhance control performance for multiple devices under limited network capacity. At its core, the proposed framework, coined Time-Series Joint Embedding Predictive Architecture (TS-JEPA), encodes high-dimensional sensory data into low-dimensional semantic embeddings at the sensor, reducing communication overhead. Furthermore, TS-JEPA enables predictive inference by predicting future embeddings from current ones and predicted commands, which are directly used by a semantic actor model to compute control commands within the embedding space, eliminating the need to reconstruct raw data. To further enhance reliability and communication efficiency, a channel-aware scheduling is integrated to dynamically prioritize device transmissions based on channel conditions and age of information (AoI). Simulations on inverted cart-pole systems show that the proposed framework significantly outperforms conventional control baselines in communication efficiency, control cost, and predictive accuracy. It enables robust and scalable control under limited network capacity compared to traditional scheduling schemes.
♻ ☆ Extracting Interpretable Models from Tree Ensembles: Computational and Statistical Perspectives
Tree ensembles are non-parametric methods widely recognized for their accuracy and ability to capture complex interactions. While these models excel at prediction, they are difficult to interpret and may fail to uncover useful relationships in the data. We propose an estimator to extract compact sets of decision rules from tree ensembles. The extracted models are accurate and can be manually examined to reveal relationships between the predictors and the response. A key novelty of our estimator is the flexibility to jointly control the number of rules extracted and the interaction depth of each rule, which improves accuracy. We develop a tailored exact algorithm to efficiently solve optimization problems underlying our estimator and an approximate algorithm for computing regularization paths, sequences of solutions that correspond to varying model sizes. We also establish novel non-asymptotic prediction error bounds for our proposed approach, comparing it to an oracle that chooses the best data-dependent linear combination of the rules in the ensemble subject to the same complexity constraint as our estimator. The bounds illustrate that the large-sample predictive performance of our estimator is on par with that of the oracle. Through experiments, we demonstrate that our estimator outperforms existing algorithms for rule extraction.
♻ ☆ Average Calibration Error: A Differentiable Loss for Improved Reliability in Image Segmentation
Deep neural networks for medical image segmentation often produce overconfident results misaligned with empirical observations. Such miscalibration, challenges their clinical translation. We propose to use marginal L1 average calibration error (mL1-ACE) as a novel auxiliary loss function to improve pixel-wise calibration without compromising segmentation quality. We show that this loss, despite using hard binning, is directly differentiable, bypassing the need for approximate but differentiable surrogate or soft binning approaches. Our work also introduces the concept of dataset reliability histograms which generalises standard reliability diagrams for refined visual assessment of calibration in semantic segmentation aggregated at the dataset level. Using mL1-ACE, we reduce average and maximum calibration error by 45% and 55% respectively, maintaining a Dice score of 87% on the BraTS 2021 dataset. We share our code here: https://github.com/cai4cai/ACE-DLIRIS
♻ ☆ Leveraging Genetic Algorithms for Efficient Demonstration Generation in Real-World Reinforcement Learning Environments
Reinforcement Learning (RL) has demonstrated significant potential in certain real-world industrial applications, yet its broader deployment remains limited by inherent challenges such as sample inefficiency and unstable learning dynamics. This study investigates the utilization of Genetic Algorithms (GAs) as a mechanism for improving RL performance in an industrially inspired sorting environment. We propose a novel approach in which GA-generated expert demonstrations are used to enhance policy learning. These demonstrations are incorporated into a Deep Q-Network (DQN) replay buffer for experience-based learning and utilized as warm-start trajectories for Proximal Policy Optimization (PPO) agents to accelerate training convergence. Our experiments compare standard RL training with rule-based heuristics, brute-force optimization, and demonstration data, revealing that GA-derived demonstrations significantly improve RL performance. Notably, PPO agents initialized with GA-generated data achieved superior cumulative rewards, highlighting the potential of hybrid learning paradigms, where heuristic search methods complement data-driven RL. The utilized framework is publicly available and enables further research into adaptive RL strategies for real-world applications.
comment: This manuscript corresponds to the submitted version to LOD 2025. The final Version of Record will appear in the official conference proceedings
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ 15,500 Seconds: Lean UAV Classification Leveraging PEFT and Pre-Trained Networks
Unmanned Aerial Vehicles (UAVs) pose an escalating security concerns as the market for consumer and military UAVs grows. This paper address the critical data scarcity challenges in deep UAV audio classification. We build upon our previous work expanding novel approaches such as: parameter efficient fine-tuning, data augmentation, and pre-trained networks. We achieve performance upwards of 95\% validation accuracy with EfficientNet-B0.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 31 pages of content, revised
♻ ☆ Enhancing Expressivity of Quantum Neural Networks Based on the SWAP test
Parameterized quantum circuits represent promising architectures for machine learning applications, yet many lack clear connections to classical models, potentially limiting their ability to translate the wide success of classical neural networks to the quantum realm. We examine a specific type of quantum neural network (QNN) built exclusively from SWAP test circuits, and discuss its mathematical equivalence to a classical two-layer feedforward network with quadratic activation functions under amplitude encoding. Our analysis across classical real-world and synthetic datasets reveals that while this architecture can successfully learn many practical tasks, it exhibits fundamental expressivity limitations due to violating the universal approximation theorem, particularly failing on harder problems like the parity check function. To address this limitation, we introduce a circuit modification using generalized SWAP test circuits that effectively implements classical neural networks with product layers. This enhancement enables successful learning of parity check functions in arbitrary dimensions which we analytically argue to be impossible for the original architecture beyond two dimensions regardless of network size. Our results establish a framework for enhancing QNN expressivity through classical task analysis and demonstrate that our SWAP test-based architecture offers broad representational capacity, suggesting potential promise also for quantum learning tasks.
comment: 15 pages, 7 figures, added code availability statement
♻ ☆ Grower-in-the-Loop Interactive Reinforcement Learning for Greenhouse Climate Control
Climate control is crucial for greenhouse production as it directly affects crop growth and resource use. Reinforcement learning (RL) has received increasing attention in this field, but still faces challenges, including limited training efficiency and high reliance on initial learning conditions. Interactive RL, which combines human (grower) input with the RL agent's learning, offers a potential solution to overcome these challenges. However, interactive RL has not yet been applied to greenhouse climate control and may face challenges related to imperfect inputs. Therefore, this paper aims to explore the possibility and performance of applying interactive RL with imperfect inputs into greenhouse climate control, by: (1) developing three representative interactive RL algorithms tailored for greenhouse climate control (reward shaping, policy shaping and control sharing); (2) analyzing how input characteristics are often contradicting, and how the trade-offs between them make grower's inputs difficult to perfect; (3) proposing a neural network-based approach to enhance the robustness of interactive RL agents under limited input availability; (4) conducting a comprehensive evaluation of the three interactive RL algorithms with imperfect inputs in a simulated greenhouse environment. The demonstration shows that interactive RL incorporating imperfect grower inputs has the potential to improve the performance of the RL agent. RL algorithms that influence action selection, such as policy shaping and control sharing, perform better when dealing with imperfect inputs, achieving 8.4% and 6.8% improvement in profit, respectively. In contrast, reward shaping, an algorithm that manipulates the reward function, is sensitive to imperfect inputs and leads to a 9.4% decrease in profit. This highlights the importance of selecting an appropriate mechanism when incorporating imperfect inputs.
♻ ☆ FAMES: Fast Approximate Multiplier Substitution for Mixed-Precision Quantized DNNs--Down to 2 Bits!
A widely-used technique in designing energy-efficient deep neural network (DNN) accelerators is quantization. Recent progress in this direction has reduced the bitwidths used in DNN down to 2. Meanwhile, many prior works apply approximate multipliers (AppMuls) in designing DNN accelerators to lower their energy consumption. Unfortunately, these works still assume a bitwidth much larger than 2, which falls far behind the state-of-the-art in quantization area and even challenges the meaningfulness of applying AppMuls in DNN accelerators, since a high-bitwidth AppMul consumes much more energy than a low-bitwidth exact multiplier! Thus, an important problem to study is: Can approximate multipliers be effectively applied to quantized DNN models with very low bitwidths? In this work, we give an affirmative answer to this question and present a systematic solution that achieves the answer: FAMES, a fast approximate multiplier substitution method for mixed-precision DNNs. Our experiments demonstrate an average 28.67% energy reduction on state-of-the-art mixed-precision quantized models with bitwidths as low as 2 bits and accuracy losses kept under 1%. Additionally, our approach is up to 300x faster than previous genetic algorithm-based methods.
♻ ☆ EP-Diffuser: An Efficient Diffusion Model for Traffic Scene Generation and Prediction via Polynomial Representations
As the prediction horizon increases, predicting the future evolution of traffic scenes becomes increasingly difficult due to the multi-modal nature of agent motion. Most state-of-the-art (SotA) prediction models primarily focus on forecasting the most likely future. However, for the safe operation of autonomous vehicles, it is equally important to cover the distribution for plausible motion alternatives. To address this, we introduce EP-Diffuser, a novel parameter-efficient diffusion-based generative model designed to capture the distribution of possible traffic scene evolutions. Conditioned on road layout and agent history, our model acts as a predictor and generates diverse, plausible scene continuations. We benchmark EP-Diffuser against two SotA models in terms of accuracy and plausibility of predictions on the Argoverse 2 dataset. Despite its significantly smaller model size, our approach achieves both highly accurate and plausible traffic scene predictions. We further evaluate model generalization ability in an out-of-distribution (OoD) test setting using Waymo Open dataset and show superior robustness of our approach.
♻ ☆ Enhancing Robustness to Missing Modalities through Clustered Federated Learning
In the era of big data, data mining has become indispensable for uncovering hidden patterns and insights from vast and complex datasets. The integration of multimodal data sources further enhances its potential. Multimodal Federated Learning (MFL) is a distributed approach that enhances the efficiency and quality of multimodal learning, ensuring collaborative work and privacy protection. However, missing modalities pose a significant challenge in MFL, often due to data quality issues or privacy policies across the clients. In this work, we present MMiC, a framework for Mitigating Modality incompleteness in MFL within the Clusters. MMiC replaces partial parameters within client models inside clusters to mitigate the impact of missing modalities. Furthermore, it leverages the Banzhaf Power Index to optimize client selection under these conditions. Finally, MMiC employs an innovative approach to dynamically control global aggregation by utilizing Markovitz Portfolio Optimization. Extensive experiments demonstrate that MMiC consistently outperforms existing federated learning architectures in both global and personalized performance on multimodal datasets with missing modalities, confirming the effectiveness of our proposed solution.
comment: 15 pages, 3 figures
♻ ☆ Co-Optimizing Reconfigurable Environments and Policies for Decentralized Multi-Agent Navigation
This work views the multi-agent system and its surrounding environment as a co-evolving system, where the behavior of one affects the other. The goal is to take both agent actions and environment configurations as decision variables, and optimize these two components in a coordinated manner to improve some measure of interest. Towards this end, we consider the problem of decentralized multi-agent navigation in a cluttered environment, where we assume that the layout of the environment is reconfigurable. By introducing two sub-objectives -- multi-agent navigation and environment optimization -- we propose an agent-environment co-optimization problem and develop a coordinated algorithm that alternates between these sub-objectives to search for an optimal synthesis of agent actions and environment configurations; ultimately, improving the navigation performance. Due to the challenge of explicitly modeling the relation between the agents, the environment and their performance therein, we leverage policy gradient to formulate a model-free learning mechanism within the coordinated framework. A formal convergence analysis shows that our coordinated algorithm tracks the local minimum solution of an associated time-varying non-convex optimization problem. Experiments corroborate theoretical findings and show the benefits of co-optimization. Interestingly, the results also indicate that optimized environments can offer structural guidance to de-conflict agents in motion.
♻ ☆ Contrastive Learning and Adversarial Disentanglement for Privacy-Aware Task-Oriented Semantic Communication
Task-oriented semantic communication systems have emerged as a promising approach to achieving efficient and intelligent data transmission in next-generation networks, where only information relevant to a specific task is communicated. This is particularly important in 6G-enabled Internet of Things (6G-IoT) scenarios, where bandwidth constraints, latency requirements, and data privacy are critical. However, existing methods struggle to fully disentangle task-relevant and task-irrelevant information, leading to privacy concerns and suboptimal performance. To address this, we propose an information-bottleneck inspired method, named CLAD (contrastive learning and adversarial disentanglement). CLAD utilizes contrastive learning to effectively capture task-relevant features while employing adversarial disentanglement to discard task-irrelevant information. Additionally, due to the absence of reliable and reproducible methods to quantify the minimality of encoded feature vectors, we introduce the Information Retention Index (IRI), a comparative metric used as a proxy for the mutual information between the encoded features and the input. The IRI reflects how minimal and informative the representation is, making it highly relevant for privacy-preserving and bandwidth-efficient 6G-IoT systems. Extensive experiments demonstrate that CLAD outperforms state-of-the-art baselines in terms of semantic extraction, task performance, privacy preservation, and IRI, making it a promising building block for responsible, efficient and trustworthy 6G-IoT services.
♻ ☆ NegMerge: Sign-Consensual Weight Merging for Machine Unlearning ICML 2025
Machine unlearning aims to selectively remove specific knowledge from a trained model. Existing approaches, such as Task Arithmetic, fine-tune the model on the forget set to create a task vector (i.e., a direction in weight space) for subtraction from the original model's weight. However, their effectiveness is highly sensitive to hyperparameter selection, requiring extensive validation to identify the optimal vector from many fine-tuned candidates. In this paper, we propose a novel method that utilizes all fine-tuned models trained with varying hyperparameters instead of a single selection. Specifically, we aggregate the computed task vectors by retaining only the elements with consistent shared signs. The merged task vector is then negated to induce unlearning on the original model. Evaluations on zero-shot and standard image recognition tasks across twelve datasets and four backbone architectures show that our approach outperforms state-of-the-art methods while requiring similar or fewer computational resources. Code is available at https://github.com/naver-ai/negmerge.
comment: Accepted to ICML 2025
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures. Accepted for publication in SIAM Journal on Control and Optimization (2025)
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Initialization Method for Factorization Machine Based on Low-Rank Approximation for Constructing a Corrected Approximate Ising Model
This paper presents an initialization method that can approximate a given approximate Ising model with a high degree of accuracy using a factorization machine (FM), a machine learning model. The construction of an Ising models using an FM is applied to black-box combinatorial optimization problems using factorization machine with quantum annealing (FMQA). It is anticipated that the optimization performance of FMQA will be enhanced through an implementation of the warm-start method. Nevertheless, the optimal initialization method for leveraging the warm-start approach in FMQA remains undetermined. Consequently, the present study compares initialization methods based on random initialization and low-rank approximation, and then identifies a suitable one for use with warm-start in FMQA through numerical experiments. Furthermore, the properties of the initialization method by the low-rank approximation for the FM are analyzed using random matrix theory, demonstrating that the approximation accuracy of the proposed method is not significantly influenced by the specific Ising model under consideration. The findings of this study will facilitate advancements of research in the field of black-box combinatorial optimization through the use of Ising machines.
comment: 31 pages, 5 figures
♻ ☆ Truthful Elicitation of Imprecise Forecasts UAI 2025
The quality of probabilistic forecasts is crucial for decision-making under uncertainty. While proper scoring rules incentivize truthful reporting of precise forecasts, they fall short when forecasters face epistemic uncertainty about their beliefs, limiting their use in safety-critical domains where decision-makers (DMs) prioritize proper uncertainty management. To address this, we propose a framework for scoring imprecise forecasts -- forecasts given as a set of beliefs. Despite existing impossibility results for deterministic scoring rules, we enable truthful elicitation by drawing connection to social choice theory and introducing a two-way communication framework where DMs first share their aggregation rules (e.g., averaging or min-max) used in downstream decisions for resolving forecast ambiguity. This, in turn, helps forecasters resolve indecision during elicitation. We further show that truthful elicitation of imprecise forecasts is achievable using proper scoring rules randomized over the aggregation procedure. Our approach allows DM to elicit and integrate the forecaster's epistemic uncertainty into their decision-making process, thus improving credibility.
comment: Accepted at UAI 2025 for Oral Presentation (fixed formatting)
♻ ☆ Non-collective Calibrating Strategy for Time Series Forecasting IJCAI 2025
Deep learning-based approaches have demonstrated significant advancements in time series forecasting. Despite these ongoing developments, the complex dynamics of time series make it challenging to establish the rule of thumb for designing the golden model architecture. In this study, we argue that refining existing advanced models through a universal calibrating strategy can deliver substantial benefits with minimal resource costs, as opposed to elaborating and training a new model from scratch. We first identify a multi-target learning conflict in the calibrating process, which arises when optimizing variables across time steps, leading to the underutilization of the model's learning capabilities. To address this issue, we propose an innovative calibrating strategy called Socket+Plug (SoP). This approach retains an exclusive optimizer and early-stopping monitor for each predicted target within each Plug while keeping the fully trained Socket backbone frozen. The model-agnostic nature of SoP allows it to directly calibrate the performance of any trained deep forecasting models, regardless of their specific architectures. Extensive experiments on various time series benchmarks and a spatio-temporal meteorological ERA5 dataset demonstrate the effectiveness of SoP, achieving up to a 22% improvement even when employing a simple MLP as the Plug (highlighted in Figure 1). Code is available at https://github.com/hanyuki23/SoP.
comment: Accepted by IJCAI 2025
♻ ☆ Adapting Rule Representation With Four-Parameter Beta Distribution for Learning Classifier Systems
Rule representations significantly influence the search capabilities and decision boundaries within the search space of Learning Classifier Systems (LCSs), a family of rule-based machine learning systems that evolve interpretable models through evolutionary processes. However, it is very difficult to choose an appropriate rule representation for each problem. Additionally, some problems benefit from using different representations for different subspaces within the input space. Thus, an adaptive mechanism is needed to choose an appropriate rule representation for each rule in LCSs. This article introduces a flexible rule representation using a four-parameter beta distribution and integrates it into a fuzzy-style LCS. The four-parameter beta distribution can form various function shapes, and this flexibility enables our LCS to automatically select appropriate representations for different subspaces. Our rule representation can represent crisp/fuzzy decision boundaries in various boundary shapes, such as rectangles and bells, by controlling four parameters, compared to the standard representations such as trapezoidal ones. Leveraging this flexibility, our LCS is designed to adapt the appropriate rule representation for each subspace. Moreover, our LCS incorporates a generalization bias favoring crisp rules where feasible, enhancing model interpretability without compromising accuracy. Experimental results on real-world classification tasks show that our LCS achieves significantly superior test accuracy and produces more compact rule sets. Our implementation is available at https://github.com/YNU-NakataLab/Beta4-UCS. An extended abstract related to this work is available at https://doi.org/10.36227/techrxiv.174900805.59801248/v1.
♻ ☆ Query Complexity of Classical and Quantum Channel Discrimination
Quantum channel discrimination has been studied from an information-theoretic perspective, wherein one is interested in the optimal decay rate of error probabilities as a function of the number of unknown channel accesses. In this paper, we study the query complexity of quantum channel discrimination, wherein the goal is to determine the minimum number of channel uses needed to reach a desired error probability. To this end, we show that the query complexity of binary channel discrimination depends logarithmically on the inverse error probability and inversely on the negative logarithm of the (geometric and Holevo) channel fidelity. As a special case of these findings, we precisely characterize the query complexity of discriminating two classical channels and two classical-quantum channels. Furthermore, by obtaining a tighter characterization of the sample complexity of quantum hypothesis testing, including prior probabilities, we provide a more precise characterization of query complexity when the error probability does not exceed a fixed threshold. We also provide lower and upper bounds on the query complexity of binary asymmetric channel discrimination and multiple quantum channel discrimination. For the former, the query complexity depends on the geometric R\'enyi and Petz R\'enyi channel divergences, while for the latter, it depends on the negative logarithm of the (geometric and Uhlmann) channel fidelity. For multiple channel discrimination, the upper bound scales as the logarithm of the number of channels.
comment: v2: 33 pages, Added tighter and precise characterization of sample and query complexity in Theorem 11 (for states), Theorem 12 (for general channels), and Corollaries 10 and 14 for classical-quantum channels; v1:22 pages; see also the independent work "Sampling complexity of quantum channel discrimination" DOI 10.1088/1572-9494/adcb9e
♻ ☆ Upper and lower bounds for the Lipschitz constant of random neural networks
Empirical studies have widely demonstrated that neural networks are highly sensitive to small, adversarial perturbations of the input. The worst-case robustness against these so-called adversarial examples can be quantified by the Lipschitz constant of the neural network. In this paper, we study upper and lower bounds for the Lipschitz constant of random ReLU neural networks. Specifically, we assume that the weights and biases follow a generalization of the He initialization, where general symmetric distributions for the biases are permitted. For deep networks of fixed depth and sufficiently large width, our established upper bound is larger than the lower bound by a factor that is logarithmic in the width. In contrast, for shallow neural networks we characterize the Lipschitz constant up to an absolute numerical constant that is independent of all parameters.
♻ ☆ Efficiently Vectorized MCMC on Modern Accelerators
With the advent of automatic vectorization tools (e.g., JAX's $\texttt{vmap}$), writing multi-chain MCMC algorithms is often now as simple as invoking those tools on single-chain code. Whilst convenient, for various MCMC algorithms this results in a synchronization problem -- loosely speaking, at each iteration all chains running in parallel must wait until the last chain has finished drawing its sample. In this work, we show how to design single-chain MCMC algorithms in a way that avoids synchronization overheads when vectorizing with tools like $\texttt{vmap}$ by using the framework of finite state machines (FSMs). Using a simplified model, we derive an exact theoretical form of the obtainable speed-ups using our approach, and use it to make principled recommendations for optimal algorithm design. We implement several popular MCMC algorithms as FSMs, including Elliptical Slice Sampling, HMC-NUTS, and Delayed Rejection, demonstrating speed-ups of up to an order of magnitude in experiments.
♻ ☆ Is merging worth it? Securely evaluating the information gain for causal dataset acquisition AISTATS 2025
Merging datasets across institutions is a lengthy and costly procedure, especially when it involves private information. Data hosts may therefore want to prospectively gauge which datasets are most beneficial to merge with, without revealing sensitive information. For causal estimation this is particularly challenging as the value of a merge depends not only on reduction in epistemic uncertainty but also on improvement in overlap. To address this challenge, we introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge in the context of heterogeneous treatment effect estimation. We do this by evaluating the Expected Information Gain (EIG) using multi-party computation to ensure that no raw data is revealed. We further demonstrate that our approach can be combined with differential privacy (DP) to meet arbitrary privacy requirements whilst preserving more accurate computation compared to DP alone. To the best of our knowledge, this work presents the first privacy-preserving method for dataset acquisition tailored to causal estimation. We demonstrate the effectiveness and reliability of our method on a range of simulated and realistic benchmarks. Code is publicly available: https://github.com/LucileTerminassian/causal_prospective_merge.
comment: Published at AISTATS 2025
♻ ☆ TRACED: Transition-aware Regret Approximation with Co-learnability for Environment Design
Generalizing deep reinforcement learning agents to unseen environments remains a significant challenge. One promising solution is Unsupervised Environment Design (UED), a co-evolutionary framework in which a teacher adaptively generates tasks with high learning potential, while a student learns a robust policy from this evolving curriculum. Existing UED methods typically measure learning potential via regret, the gap between optimal and current performance, approximated solely by value-function loss. Building on these approaches, we introduce the transition prediction error as an additional term in our regret approximation. To capture how training on one task affects performance on others, we further propose a lightweight metric called co-learnability. By combining these two measures, we present Transition-aware Regret Approximation with Co-learnability for Environment Design (TRACED). Empirical evaluations show that TRACED yields curricula that improve zero-shot generalization across multiple benchmarks while requiring up to 2x fewer environment interactions than strong baselines. Ablation studies confirm that the transition prediction error drives rapid complexity ramp-up and that co-learnability delivers additional gains when paired with the transition prediction error. These results demonstrate how refined regret approximation and explicit modeling of task relationships can be leveraged for sample-efficient curriculum design in UED.
♻ ☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal a new direction for reusing vision representations in a non-visual domain. Code is available at https://github.com/ExplainableML/TiViT.
comment: Preprint
♻ ☆ Unsupervised Panoptic Interpretation of Latent Spaces in GANs Using Space-Filling Vector Quantization
Generative adversarial networks (GANs) learn a latent space whose samples can be mapped to real-world images. Such latent spaces are difficult to interpret. Some earlier supervised methods aim to create an interpretable latent space or discover interpretable directions, which requires exploiting data labels or annotated synthesized samples for training. However, we propose using a modification of vector quantization called space-filling vector quantization (SFVQ), which quantizes the data on a piece-wise linear curve. SFVQ can capture the underlying morphological structure of the latent space, making it interpretable. We apply this technique to model the latent space of pre-trained StyleGAN2 and BigGAN networks on various datasets. Our experiments show that the SFVQ curve yields a general interpretable model of the latent space such that it determines which parts of the latent space correspond to specific generative factors. Furthermore, we demonstrate that each line of the SFVQ curve can potentially refer to an interpretable direction for applying intelligible image transformations. We also demonstrate that the points located on an SFVQ line can be used for controllable data augmentation.
♻ ☆ Who Should I Listen To? Adaptive Collaboration in Personalized Federated Learning
Data heterogeneity is a central challenge in federated learning, and personalized federated learning (PFL) aims to address it by tailoring models to each client's distribution. Yet many PFL methods fail to outperform local or centralized baselines, suggesting a mismatch between the collaboration they enforce and the structure of the data. We propose an approach based on adaptive collaboration, where clients decide adaptively not only how much to rely on others, but also whom to trust at the level of individual examples. We instantiate this principle in FEDMOSAIC, a federated co-training method in which clients exchange predictions over a shared unlabeled dataset. This enables fine-grained trust decisions that are difficult to achieve with parameter sharing alone. Each client adjusts its loss weighting based on the agreement between private and public data, and contributes to global pseudo-labels in proportion to its estimated per-example confidence. Empirically, FEDMOSAIC improves upon state-of-the-art PFL methods across diverse non-IID settings, and we provide convergence guarantees under standard assumptions. Our results demonstrate the potential of data-aware collaboration for robust and effective personalization.
♻ ☆ Learned-Database Systems Security
A learned database system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned database systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned components currently being explored in the database community. To empirically validate the vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against these. We show that the use of ML cause leakage of past queries in a database, enable a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enable index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is an universal threat against learned components in database systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
comment: Accepted at TMLR
♻ ☆ ZeCO: Zero Communication Overhead Sequence Parallelism for Linear Attention
Linear attention mechanisms deliver significant advantages for Large Language Models (LLMs) by providing linear computational complexity, enabling efficient processing of ultra-long sequences (e.g., 1M context). However, existing Sequence Parallelism (SP) methods, essential for distributing these workloads across devices, become the primary bottleneck due to substantial communication overhead. In this paper, we introduce ZeCO (Zero Communication Overhead) sequence parallelism for linear attention models, a new SP method designed to overcome these limitations and achieve end-to-end near-linear scalability for long sequence training. For example, training a model with a 1M sequence length across 64 devices using ZeCO takes roughly the same time as training with an 16k sequence on a single device. At the heart of ZeCO lies All-Scan, a new collective communication primitive. All-Scan provides each SP rank with precisely the initial operator state it requires while maintaining a minimal communication footprint, effectively eliminating communication overhead. Theoretically, we prove the optimaity of ZeCO, showing that it introduces only negligible time and space overhead. Empirically, we compare the communication costs of different sequence parallelism strategies and demonstrate that All-Scan achieves the fastest communication in SP scenarios. Specifically, on 256 GPUs with an 8M sequence length, ZeCO achieves a 60\% speedup compared to the current state-of-the-art (SOTA) SP method. We believe ZeCO establishes a clear path toward efficiently training next-generation LLMs on previously intractable sequence lengths.
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{nonlinear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing the state-transition matrix to be diagonal and learned at every step, the full sequence can be solved in parallel with a single prefix-scan, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Lastly, for network depth $L$, as the forward and backward passes cost $\Theta(T\,D\,L)$ FLOPs, with its low sequential depth and parameter count $\Theta(D\,L)$, the model follows the compute-optimal scaling law regime ($\beta \approx 0.42$) recently observed for Mamba, outperforming quadratic-attention Transformers at equal compute while avoiding the memory overhead of FFT-based long convolutions. We show that on a series of long-range forecasting tasks, LrcSSM outperforms LRU, S5 and Mamba.
♻ ☆ SimBank: from Simulation to Solution in Prescriptive Process Monitoring
Prescriptive Process Monitoring (PresPM) is an emerging area within Process Mining, focused on optimizing processes through real-time interventions for effective decision-making. PresPM holds significant promise for organizations seeking enhanced operational performance. However, the current literature faces two key limitations: a lack of extensive comparisons between techniques and insufficient evaluation approaches. To address these gaps, we introduce SimBank: a simulator designed for accurate benchmarking of PresPM methods. Modeled after a bank's loan application process, SimBank enables extensive comparisons of both online and offline PresPM methods. It incorporates a variety of intervention optimization problems with differing levels of complexity and supports experiments on key causal machine learning challenges, such as assessing a method's robustness to confounding in data. SimBank additionally offers a comprehensive evaluation capability: for each test case, it can generate the true outcome under each intervention action, which is not possible using recorded datasets. The simulator incorporates parallel activities and loops, drawing from common logs to generate cases that closely resemble real-life process instances. Our proof of concept demonstrates SimBank's benchmarking capabilities through experiments with various PresPM methods across different interventions, highlighting its value as a publicly available simulator for advancing research and practice in PresPM.
♻ ☆ optimizn: a Python Library for Developing Customized Optimization Algorithms
Combinatorial optimization problems are prevalent across a wide variety of domains. These problems are often nuanced, their optimal solutions might not be efficiently obtainable, and they may require lots of time and compute resources to solve (they are NP-hard). It follows that the best course of action for solving these problems is to use general optimization algorithm paradigms to quickly and easily develop algorithms that are customized to these problems and can produce good solutions in a reasonable amount of time. In this paper, we present optimizn, a Python library for developing customized optimization algorithms under general optimization algorithm paradigms (simulated annealing, branch and bound). Additionally, optimizn offers continuous training, with which users can run their algorithms on a regular cadence, retain the salient aspects of previous runs, and use them in subsequent runs to potentially produce solutions that get closer and closer to optimality. An earlier version of this paper was peer reviewed and published internally at Microsoft.
♻ ☆ Diffusion-based Iterative Counterfactual Explanations for Fetal Ultrasound Image Quality Assessment
Obstetric ultrasound image quality is crucial for accurate diagnosis and monitoring of fetal health. However, acquiring high-quality standard planes is difficult, influenced by the sonographer's expertise and factors like the maternal BMI or fetus dynamics. In this work, we explore diffusion-based counterfactual explainable AI to generate realistic, high-quality standard planes from low-quality non-standard ones. Through quantitative and qualitative evaluation, we demonstrate the effectiveness of our approach in generating plausible counterfactuals of increased quality. This shows future promise for enhancing training of clinicians by providing visual feedback and potentially improving standard plane quality and acquisition for downstream diagnosis and monitoring.
♻ ☆ On the Trade-off between Flatness and Optimization in Distributed Learning
This paper proposes a theoretical framework to evaluate and compare the performance of stochastic gradient algorithms for distributed learning in relation to their behavior around local minima in nonconvex environments. Previous works have noticed that convergence toward flat local minima tend to enhance the generalization ability of learning algorithms. This work discovers three interesting results. First, it shows that decentralized learning strategies are able to escape faster away from local minima and favor convergence toward flatter minima relative to the centralized solution. Second, in decentralized methods, the consensus strategy has a worse excess-risk performance than diffusion, giving it a better chance of escaping from local minima and favoring flatter minima. Third, and importantly, the ultimate classification accuracy is not solely dependent on the flatness of the local minimum but also on how well a learning algorithm can approach that minimum. In other words, the classification accuracy is a function of both flatness and optimization performance. In this regard, since diffusion has a lower excess-risk than consensus, when both algorithms are trained starting from random initial points, diffusion enhances the classification accuracy. The paper examines the interplay between the two measures of flatness and optimization error closely. One important conclusion is that decentralized strategies deliver in general enhanced classification accuracy because they strike a more favorable balance between flatness and optimization performance compared to the centralized solution.
♻ ☆ Adaptive NAD: Online and Self-adaptive Unsupervised Network Anomaly Detector
The widespread usage of the Internet of Things (IoT) has raised the risks of cyber threats, thus developing Anomaly Detection Systems (ADSs) that can adapt to evolving or new attacks is critical. Previous studies primarily focused on offline unsupervised learning methods to safeguard ADSs, which is not applicable in practical real-world applications. Besides, most of them strongly rely on assumptions of known legitimates and fail to satisfy the interpretable requirements in security applications, creating barriers to the adoption in practice. In this paper, we design Adaptive NAD, a general framework to improve and interpret online unsupervised anomaly detection in security domains. An interpretable two-layer anomaly detection strategy is proposed to generate reliable high-confidence pseudo-labels. Then, an online learning scheme is introduced to update Adaptive NAD by a novel threshold calculation technique to adapt to new threats. Experimental results demonstrate that Adaptive NAD achieves more than 5.4%, 23.0%, and 3.2% improvements in SPAUC compared with state-of-the-art solutions on the CIC-Darknet2020, CIC-DoHBrw-2020, and Edge-IIoTset datasets, respectively. The code is released at https://github.com/MyLearnCodeSpace/Adaptive-NAD.
♻ ☆ Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data
The modern paradigm in machine learning involves pre-training on diverse data, followed by task-specific fine-tuning. In reinforcement learning (RL), this translates to learning via offline RL on a diverse historical dataset, followed by rapid online RL fine-tuning using interaction data. Most RL fine-tuning methods require continued training on offline data for stability and performance. However, this is undesirable because training on diverse offline data is slow and expensive for large datasets, and in principle, also limit the performance improvement possible because of constraints or pessimism on offline data. In this paper, we show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL initializations. To build this approach, we start by analyzing the role of retaining offline data in online fine-tuning. We find that continued training on offline data is mostly useful for preventing a sudden divergence in the value function at the onset of fine-tuning, caused by a distribution mismatch between the offline data and online rollouts. This divergence typically results in unlearning and forgetting the benefits of offline pre-training. Our approach, Warm-start RL (WSRL), mitigates the catastrophic forgetting of pre-trained initializations using a very simple idea. WSRL employs a warmup phase that seeds the online RL run with a very small number of rollouts from the pre-trained policy to do fast online RL. The data collected during warmup helps ``recalibrate'' the offline Q-function to the online distribution, allowing us to completely discard offline data without destabilizing the online RL fine-tuning. We show that WSRL is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms irrespective of whether they retain offline data or not.
♻ ☆ FE-LWS: Refined Image-Text Representations via Decoder Stacking and Fused Encodings for Remote Sensing Image Captioning
Remote sensing image captioning aims to generate descriptive text from remote sensing images, typically employing an encoder-decoder framework. In this setup, a convolutional neural network (CNN) extracts feature representations from the input image, which then guide the decoder in a sequence-to-sequence caption generation process. Although much research has focused on refining the decoder, the quality of image representations from the encoder remains crucial for accurate captioning. This paper introduces a novel approach that integrates features from two distinct CNN based encoders, capturing complementary information to enhance caption generation. Additionally, we propose a weighted averaging technique to combine the outputs of all GRUs in the stacked decoder. Furthermore, a comparison-based beam search strategy is incorporated to refine caption selection. The results demonstrate that our fusion-based approach, along with the enhanced stacked decoder, significantly outperforms both the transformer-based state-of-the-art model and other LSTM-based baselines.
♻ ☆ Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization NeurIPS 2023
The nonconvex formulation of the matrix completion problem has received significant attention in recent years due to its affordable complexity compared to the convex formulation. Gradient Descent (GD) is a simple yet efficient baseline algorithm for solving nonconvex optimization problems. The success of GD has been witnessed in many different problems in both theory and practice when it is combined with random initialization. However, previous works on matrix completion require either careful initialization or regularizers to prove the convergence of GD. In this paper, we study the rank-1 symmetric matrix completion and prove that GD converges to the ground truth when small random initialization is used. We show that in a logarithmic number of iterations, the trajectory enters the region where local convergence occurs. We provide an upper bound on the initialization size that is sufficient to guarantee the convergence, and show that a larger initialization can be used as more samples are available. We observe that the implicit regularization effect of GD plays a critical role in the analysis, and for the entire trajectory, it prevents each entry from becoming much larger than the others.
comment: NeurIPS 2023
♻ ☆ Efficient Split Federated Learning for Large Language Models over Communication Networks
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks. To address this challenge, we propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques. By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices. Furthermore, the introduction of a federated server facilitates parallel training and enhances data privacy. To accommodate heterogeneous communication conditions and diverse computational capabilities of edge devices, as well as the impact of LoRA rank selection on model convergence and training cost, we formulate a joint optimization problem of both communication and computation resource. The formulated problem jointly optimizes subchannel allocation, power control, model splitting point selection, and LoRA rank configuration, aimed at minimizing total training delay. An iterative optimization algorithm is proposed to solve this problem efficiently. Specifically, a greedy heuristic is employed for subchannel allocation, the power control subproblem is reformulated as a convex optimization problem using auxiliary variables, and an exhaustive search is adopted for optimal split position and rank selection. Simulation results demonstrate that the proposed SflLLM framework achieves comparable model accuracy while significantly reducing client-side computational requirements. Furthermore, the proposed resource allocation scheme and adaptive LoRA rank selection strategy notably reduce the training latency compared to conventional approaches.
♻ ☆ A deep solver for backward stochastic Volterra integral equations
We present the first deep-learning solver for backward stochastic Volterra integral equations (BSVIEs) and their fully-coupled forward-backward variants. The method trains a neural network to approximate the two solution fields in a single stage, avoiding the use of nested time-stepping cycles that limit classical algorithms. For the decoupled case we prove a non-asymptotic error bound composed of an a posteriori residual plus the familiar square root dependence on the time step. Numerical experiments confirm this rate and reveal two key properties: \emph{scalability}, in the sense that accuracy remains stable from low dimension up to 500 spatial variables while GPU batching keeps wall-clock time nearly constant; and \emph{generality}, since the same method handles coupled systems whose forward dynamics depend on the backward solution. These results open practical access to a family of high-dimensional, path-dependent problems in stochastic control and quantitative finance.
comment: 25 pages, 10 figures
♻ ☆ DeFusion: An Effective Decoupling Fusion Network for Multi-Modal Pregnancy Prediction
Temporal embryo images and parental fertility table indicators are both valuable for pregnancy prediction in \textbf{in vitro fertilization embryo transfer} (IVF-ET). However, current machine learning models cannot make full use of the complementary information between the two modalities to improve pregnancy prediction performance. In this paper, we propose a Decoupling Fusion Network called DeFusion to effectively integrate the multi-modal information for IVF-ET pregnancy prediction. Specifically, we propose a decoupling fusion module that decouples the information from the different modalities into related and unrelated information, thereby achieving a more delicate fusion. And we fuse temporal embryo images with a spatial-temporal position encoding, and extract fertility table indicator information with a table transformer. To evaluate the effectiveness of our model, we use a new dataset including 4046 cases collected from Southern Medical University. The experiments show that our model outperforms state-of-the-art methods. Meanwhile, the performance on the eye disease prediction dataset reflects the model's good generalization. Our code is available at https://github.com/Ou-Young-1999/DFNet.
♻ ☆ Momentum Does Not Reduce Stochastic Noise in Stochastic Gradient Descent
For nonconvex objective functions, including those found in training deep neural networks, stochastic gradient descent (SGD) with momentum is said to converge faster and have better generalizability than SGD without momentum. In particular, adding momentum is thought to reduce stochastic noise. To verify this, we estimated the magnitude of gradient noise by using convergence analysis and an optimal batch size estimation formula and found that momentum does not reduce gradient noise. We also analyzed the effect of search direction noise, which is stochastic noise defined as the error between the search direction of the optimizer and the steepest descent direction, and found that it inherently smooths the objective function and that momentum does not reduce search direction noise either. Finally, an analysis of the degree of smoothing introduced by search direction noise revealed that adding momentum offers limited advantage to SGD.
comment: We retract this paper due to an irrecoverable and critical error in its content
♻ ☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing ICCV 2025
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: ICCV 2025. Project page: https://github.com/sincostanx/LUSD
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ Can Large Language Models Develop Strategic Reasoning? Post-training Insights from Learning Chess
While reinforcement learning (RL) for large language models (LLMs) has shown promise in mathematical reasoning, strategic reasoning for LLMs using RL remains largely unexplored. We investigate whether LLMs can develop strategic reasoning capabilities through RL in chess. To this end, we leverage a chess-pretrained action-value network to provide dense reward on the LLM's output move quality, which can be seen as a form of knowledge distillation. Our experiments show that our distillation-based dense rewards often outperform sparse binary rewards. However, surprisingly, all models plateau far below expert levels. We provide SFT and RL ablations on chess reasoning training and find evidence that this limitation stems from a deficit in the pretrained models' internal understanding of chess--a deficit which RL alone may not be able to fully overcome.
comment: 27 pages
♻ ☆ Feature Reweighting for EEG-based Motor Imagery Classification
Classification of motor imagery (MI) using non-invasive electroencephalographic (EEG) signals is a critical objective as it is used to predict the intention of limb movements of a subject. In recent research, convolutional neural network (CNN) based methods have been widely utilized for MI-EEG classification. The challenges of training neural networks for MI-EEG signals classification include low signal-to-noise ratio, non-stationarity, non-linearity, and high complexity of EEG signals. The features computed by CNN-based networks on the highly noisy MI-EEG signals contain irrelevant information. Subsequently, the feature maps of the CNN-based network computed from the noisy and irrelevant features contain irrelevant information. Thus, many non-contributing features often mislead the neural network training and degrade the classification performance. Hence, a novel feature reweighting approach is proposed to address this issue. The proposed method gives a noise reduction mechanism named feature reweighting module that suppresses irrelevant temporal and channel feature maps. The feature reweighting module of the proposed method generates scores that reweight the feature maps to reduce the impact of irrelevant information. Experimental results show that the proposed method significantly improved the classification of MI-EEG signals of Physionet EEG-MMIDB and BCI Competition IV 2a datasets by a margin of 9.34% and 3.82%, respectively, compared to the state-of-the-art methods.
♻ ☆ Continual Learning with Strategic Selection and Forgetting for Network Intrusion Detection
Intrusion Detection Systems (IDS) are crucial for safeguarding digital infrastructure. In dynamic network environments, both threat landscapes and normal operational behaviors are constantly changing, resulting in concept drift. While continuous learning mitigates the adverse effects of concept drift, insufficient attention to drift patterns and excessive preservation of outdated knowledge can still hinder the IDS's adaptability. In this paper, we propose SSF (Strategic Selection and Forgetting), a novel continual learning method for IDS, providing continuous model updates with a constantly refreshed memory buffer. Our approach features a strategic sample selection algorithm to select representative new samples and a strategic forgetting mechanism to drop outdated samples. The proposed strategic sample selection algorithm prioritizes new samples that cause the `drifted' pattern, enabling the model to better understand the evolving landscape. Additionally, we introduce strategic forgetting upon detecting significant drift by discarding outdated samples to free up memory, allowing the incorporation of more recent data. SSF captures evolving patterns effectively and ensures the model is aligned with the change of data patterns, significantly enhancing the IDS's adaptability to concept drift. The state-of-the-art performance of SSF on NSL-KDD and UNSW-NB15 datasets demonstrates its superior adaptability to concept drift for network intrusion detection. The code is released at https://github.com/xinchen930/SSF-Strategic-Selection-and-Forgetting.
comment: Accepted by IEEE International Conference on Computer Communications (INFOCOM) 2025
♻ ☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters, 2025
♻ ☆ Dataset Distillation via the Wasserstein Metric ICCV 2025
Dataset Distillation (DD) aims to generate a compact synthetic dataset that enables models to achieve performance comparable to training on the full large dataset, significantly reducing computational costs. Drawing from optimal transport theory, we introduce WMDD (Wasserstein Metric-based Dataset Distillation), a straightforward yet powerful method that employs the Wasserstein metric to enhance distribution matching. We compute the Wasserstein barycenter of features from a pretrained classifier to capture essential characteristics of the original data distribution. By optimizing synthetic data to align with this barycenter in feature space and leveraging per-class BatchNorm statistics to preserve intra-class variations, WMDD maintains the efficiency of distribution matching approaches while achieving state-of-the-art results across various high-resolution datasets. Our extensive experiments demonstrate WMDD's effectiveness and adaptability, highlighting its potential for advancing machine learning applications at scale.
comment: Accepted to ICCV 2025. Project page at https://liu-hy.github.io/WMDD/ and code is available at https://github.com/Liu-Hy/WMDD
♻ ☆ Aitomia: Your Intelligent Assistant for AI-Driven Atomistic and Quantum Chemical Simulations
We have developed Aitomia - a platform powered by AI to assist in performing AI-driven atomistic and quantum chemical (QC) simulations. This evolving intelligent assistant platform is equipped with chatbots and AI agents to help experts and guide non-experts in setting up and running the atomistic simulations, monitoring their computation status, analyzing the simulation results, and summarizing them for the user in text and graphical forms. We achieve these goals by exploiting open-source large language models (LLMs, original and fine-tuned), rule-based agents, and a retrieval-augmented generation (RAG) system. Aitomia leverages the versatility of our MLatom ecosystem, supporting AI-enhanced computational chemistry tasks ranging from ground- to excited-state calculations such as geometry optimizations, thermochemistry, and spectra calculations. Aitomia is the first intelligent assistant publicly accessible online on a cloud computing platform for atomistic simulations of broad scope (Aitomistic Hub at https://aitomistic.xyz), while it may also be deployed locally as described at http://mlatom.com/aitomia. Aitomia is expected to lower the barrier to performing atomistic simulations, democratizing simulations, and accelerating research and development in the relevant fields.
System/Control 32
☆ Auto-optimization of Energy Generation for Wave Energy Converters with Active Learning
This paper presents an auto-optimization control framework for wave energy converters (WECs) to maximize energy generation under unknown and changing ocean conditions. The proposed control framework consists of two levels. The high-level controller operating at a longer time scale aims to maximize the average energy generation over several wave periods. The generated Power Take-Off (PTO) profile as the reference for the low-level physical system to follow. The new auto-optimization process leverages the parameterization of the non-stationary operation condition in WECs, establishing the relationship between the average energy generation and the key design parameters of the PTO force subject to the unknown wave parameters. The high-level controller is designed based on the concept of Dual Control for Exploration and Exploitation (DCEE) to quickly learn the unknown wave parameters by actively probing the ocean condition, while generating the optimal PTO profile. During this process, the uncertainty of the estimated wave condition is quantified and embedded in the optimization cost function to enable active learning. Simulation results under unknown regular and irregular waves demonstrate the effectiveness and robustness of this novel auto-optimization WEC systems with active learning, outperforming model predictive control, extremum seeking and classic Bang-Bang control approaches.
Graph Representation-based Model Poisoning on Federated LLMs in CyberEdge Networks
Federated large language models (FedLLMs) provide powerful generative capabilities in CyberEdge networks while protecting data privacy. However, FedLLMs remains highly vulnerable to model poisoning attacks. This article first reviews recent model poisoning techniques and existing defense mechanisms for FedLLMs, highlighting critical limitations, particularly under non-IID text distributions. In particular, current defenses primarily utilize distance-based outlier detection or norm constraints, operating under the assumption that adversarial updates significantly diverge from benign statistics. This assumption can fail when facing adaptive attackers targeting billionparameter LLMs. Next, this article investigates emerging Graph Representation-Based Model Poisoning (GRMP), a novel attack paradigm that leverages higher-order correlations among honest client gradients to synthesize malicious updates indistinguishable from legitimate model updates. GRMP can effectively evade advanced defenses, resulting in substantial accuracy loss and performance degradation. Moreover, this article outlines a research roadmap emphasizing the importance of graph-aware secure aggregation methods, FedLLMs-specific vulnerability metrics, and evaluation frameworks to strengthen the robustness of future federated language model deployments.
comment: 7 pages, 5 figures
☆ Re-examining the Legendre-Gauss-Lobatto Pseudospectral Methods for Optimal Control
Pseudospectral methods represent an efficient approach for solving optimal control problems. While Legendre-Gauss-Lobatto (LGL) collocation points have traditionally been considered inferior to Legendre-Gauss (LG) and Legendre-Gauss-Radau (LGR) points in terms of convergence properties, this paper presents a rigorous re-examination of LGL-based methods. We introduce an augmented formulation that enhances the standard LGL collocation approach by incorporating an additional degree of freedom (DOF) into the interpolation structure. We demonstrate that this augmented formulation is mathematically equivalent to the integral formulation of the LGL collocation method. Through analytical derivation, we establish that the adjoint system in both the augmented differential and integral formulations corresponds to a Lobatto IIIB discontinuous collocation method for the costate vector, thereby resolving the previously reported convergence issues. Our comparative analysis of LG, LGR, and LGL collocation methods reveals significant advantages of the improved LGL approach in terms of discretized problem dimensionality and symplectic integration properties. Numerical examples validate our theoretical findings, demonstrating that the proposed LGL-based method achieves comparable accuracy to LG and LGR methods while offering superior computational performance for long-horizon optimal control problems due to the preservation of symplecticity.
☆ Vision-Aided ISAC in Low-Altitude Economy Networks via De-Diffused Visual Priors
Emerging low-altitude economy networks (LAENets) require agile and privacy-preserving resource control under dynamic agent mobility and limited infrastructure support. To meet these challenges, we propose a vision-aided integrated sensing and communication (ISAC) framework for UAV-assisted access systems, where onboard masked De-Diffusion models extract compact semantic tokens, including agent type, activity class, and heading orientation, while explicitly suppressing sensitive visual content. These tokens are fused with mmWave radar measurements to construct a semantic risk heatmap reflecting motion density, occlusion, and scene complexity, which guides access technology selection and resource scheduling. We formulate a multi-objective optimization problem to jointly maximize weighted energy and perception efficiency via radio access technology (RAT) assignment, power control, and beamforming, subject to agent-specific QoS constraints. To solve this, we develop De-Diffusion-driven vision-aided risk-aware resource optimization algorithm DeDiff-VARARO, a novel two-stage cross-modal control algorithm: the first stage reconstructs visual scenes from tokens via De-Diffusion model for semantic parsing, while the second stage employs a deep deterministic policy gradient (DDPG)-based policy to adapt RAT selection, power control, and beam assignment based on fused radar-visual states. Simulation results show that DeDiff-VARARO consistently outperforms baselines in reward convergence, link robustness, and semantic fidelity, achieving within $4\%$ of the performance of a raw-image upper bound while preserving user privacy and scalability in dense environments.
☆ Time-Varying Coverage Control: A Distributed Tracker-Planner MPC Framework
Time-varying coverage control addresses the challenge of coordinating multiple agents covering an environment where regions of interest change over time. This problem has broad applications, including the deployment of autonomous taxis and coordination in search and rescue operations. The achievement of effective coverage is complicated by the presence of time-varying density functions, nonlinear agent dynamics, and stringent system and safety constraints. In this paper, we present a distributed multi-agent control framework for time-varying coverage under nonlinear constrained dynamics. Our approach integrates a reference trajectory planner and a tracking model predictive control (MPC) scheme, which operate at different frequencies within a multi-rate framework. For periodic density functions, we demonstrate closed-loop convergence to an optimal configuration of trajectories and provide formal guarantees regarding constraint satisfaction, collision avoidance, and recursive feasibility. Additionally, we propose an efficient algorithm capable of handling nonperiodic density functions, making the approach suitable for practical applications. Finally, we validate our method through hardware experiments using a fleet of four miniature race cars.
☆ Approximate Solution Methods for the Average Reward Criterion in Optimal Tracking Control of Linear Systems
This paper studies optimal control under the average-reward/cost criterion for deterministic linear systems. We derive the value function and optimal policy, and propose an approximate solution using Model Predictive Control to enable practical implementation.
comment: 3 pages. 1 table
☆ Cybersecurity Issues in Local Energy Markets
Local Energy Markets (LEMs), though pivotal to the energy transition, face growing cybersecurity threats due to their reliance on smart grid communication standards and vulnerable Internet-of-Things (IoT)-enabled devices. This is a critical issue because such vulnerabilities can be exploited to manipulate market operations, compromise participants' privacy, and destabilize power distribution networks. This work maps LEM communication flows to existing standards, highlights potential impacts of key identified vulnerabilities, and simulates cyberattack scenarios on a privacy-preserving LEM model to assess their impacts. Findings reveal how attackers could distort pricing and demand patterns. We finally present recommendations for researchers, industry developers, policymakers, and LEM stakeholders to secure future LEM deployments.
☆ Chargax: A JAX Accelerated EV Charging Simulator
Deep Reinforcement Learning can play a key role in addressing sustainable energy challenges. For instance, many grid systems are heavily congested, highlighting the urgent need to enhance operational efficiency. However, reinforcement learning approaches have traditionally been slow due to the high sample complexity and expensive simulation requirements. While recent works have effectively used GPUs to accelerate data generation by converting environments to JAX, these works have largely focussed on classical toy problems. This paper introduces Chargax, a JAX-based environment for realistic simulation of electric vehicle charging stations designed for accelerated training of RL agents. We validate our environment in a variety of scenarios based on real data, comparing reinforcement learning agents against baselines. Chargax delivers substantial computational performance improvements of over 100x-1000x over existing environments. Additionally, Chargax' modular architecture enables the representation of diverse real-world charging station configurations.
comment: Accepted at RLC 2025
☆ Frequency Domain Design of a Reset-Based Filter: An Add-On Nonlinear Filter for Industrial Motion Control
This study introduces a modified version of the Constant-in-Gain, Lead-in-Phase (CgLp) filter, which incorporates a feedthrough term in the First-Order Reset Element (FORE) to reduce the undesirable nonlinearities and achieve an almost constant gain across all frequencies. A backward calculation approach is proposed to derive the additional parameter introduced by the feedthrough term, enabling designers to easily tune the filter to generate the required phase. The paper also presents an add-on filter structure that can enhance the performance of an existing LTI controller without altering its robustness margins. A sensitivity improvement indicator is proposed to guide the tuning process, enabling designers to visualize the improvements in closed-loop performance. The proposed methodology is demonstrated through a case study of an industrial wire bonder machine, showcasing its effectiveness in addressing low-frequency vibrations and improving overall control performance.
comment: 15 pages
☆ Robust Input Shaping Control for Flexible Structures Based on Unscented Kalman Filter
With the rapid development of industrial automation and smart manufacturing, the control of flexible structures and underactuated systems has become a critical research focus. Residual vibrations in these systems not only degrade operational efficiency but also pose risks to structural integrity and longevity. Traditional input shaping techniques, while effective, often suffer from performance degradation due to parameter inaccuracies and environmental disturbances. To address these challenges, this paper introduces an innovative unscented Kalman filter-based zero vibration derivative input shaping (UZS) method. The proposed approach combines two key innovations: 1) a data-driven Unscented Kalman Filterfor real-time system parameter identification, and 2) a zero-vibration derivative (ZVD) input shaper for robust vibration suppression. To validate the effectiveness of UZS, we conducted extensive experiments on a vertical flexible beam platform, and the results demonstrate significant improvements over state-of-the-art methods. Additionally, we have made the experimental datasets publicly available to facilitate further research. The findings highlight UZS's potential for practical applications in industrial automation, robotics, and precision engineering.
☆ Multi-Revolution Low-Thrust Trajectory Optimization With Very Sparse Mesh Pseudospectral Method
Multi-revolution low-thrust trajectory optimization problems are important and challenging in space mission design. In this paper, an efficient, accurate, and widely applicable pseudospectral method is proposed to solve multi-revolution low-thrust trajectory optimization problems with various objective functions and perturbations. The method is based on the Sundman transformation and pseudospectral method, together with a sparse mesh that is monotonic, near-uniformly spaced, and uniformly scattered on the unit circle. Two methods are proposed to construct the mesh: a deterministic method based on rotation mapping; a stochastic method utilizing autocorrelated random sequences. Core mechanisms ensuring the correctness of the method are analyzed, including the dual roles of mesh points as both integration points in the temporal domain and sampling points in the angular domain, the slow dynamics of the system excluding the fast angle variable, and the nearly commutative vector fields generated by applying different control inputs. The method is demonstrated through a multi-revolution low-thrust orbital rendezvous problem. Results show that the proposed method achieves high accuracy with only a few seconds of computational time for challenging problems.
☆ Approximation-free Control of Unknown Euler-Lagrangian Systems under Input Constraints
In this paper, we present a novel funnel-based tracking control algorithm for robotic systems with unknown dynamics and prescribed input constraints. The Euler-Lagrange formulation, a common modeling approach for robotic systems, has been adopted in this study to address the trade-off between performance and actuator safety. We establish feasibility conditions that ensure tracking errors evolve within predefined funnel bounds while maintaining bounded control efforts, a crucial consideration for robots with limited actuation capabilities. We propose two approximation-free control strategies for scenarios where these conditions are violated: one actively corrects the error, and the other stops further deviation. Finally, we demonstrate the robust performance and safety of the approach through simulations and experimental validations. This work represents a significant advancement in funnel-based control, enhancing its applicability to real-world robotics systems with input constraints.
☆ Cooperative Target Capture in 3D Engagements over Switched Dynamic Graphs
This paper presents a leaderless cooperative guidance strategy for simultaneous time-constrained interception of a stationary target when the interceptors exchange information over switched dynamic graphs. We specifically focus on scenarios when the interceptors lack radial acceleration capabilities, relying solely on their lateral acceleration components. This consideration aligns with their inherent kinematic turn constraints. The proposed strategy explicitly addresses the complexities of coupled 3D engagements, thereby mitigating performance degradation that typically arises when the pitch and yaw channels are decoupled into two separate, mutually orthogonal planar engagements. Moreover, our formulation incorporates modeling uncertainties associated with the time-to-go estimation into the derivation of cooperative guidance commands to ensure robustness against inaccuracies in dynamic engagement scenarios. To optimize control efficiency, we analytically derive the lateral acceleration components in the orthogonal pitch and yaw channels by solving an instantaneous optimization problem, subject to an affine constraint. We show that the proposed cooperative guidance commands guarantee consensus in time-to-go values within a predefined time, which can be prescribed as a design parameter, regardless of the interceptors' initial configurations. We provide simulations to attest to the efficacy of the proposed method.
☆ An Error Bound for Aggregation in Approximate Dynamic Programming
We consider a general aggregation framework for discounted finite-state infinite horizon dynamic programming (DP) problems. It defines an aggregate problem whose optimal cost function can be obtained off-line by exact DP and then used as a terminal cost approximation for an on-line reinforcement learning (RL) scheme. We derive a bound on the error between the optimal cost functions of the aggregate problem and the original problem. This bound was first derived by Tsitsiklis and van Roy [TvR96] for the special case of hard aggregation. Our bound is similar but applies far more broadly, including to soft aggregation and feature-based aggregation schemes.
☆ Synchronising DER inverters to weak grid using Kalman filter and LQR current controller
Grid-following (GFL) inverters are commonly used for integrating renewable energy sources into power grids. However, the dynamic performance of GFL models can be significantly impacted by the Phase-Locked Loop (PLL) in a weak grid, leading to instability due to inaccuracies in grid source phase angle estimation. The proposed method in this manuscript replaces the PLL with an Advanced Angle Estimation based Kalman Filter including a Linear Quadratic Regulator (LQR) controller of the GFL. This method is robust in incorporating grid impedance terms as part of state space models in the Kalman Filter approach to estimate instantaneous phase angle using {\alpha}-\b{eta} Synchronous Reference Frame equations. The stability performance of the proposed approach is validated through eigenvalue analysis in a two-source case. Additionally, an LQR controller is employed to regulate capacitor voltage, inverter current, and the current at the Point of Common Coupling (PCC). The proposed controller surpasses existing approaches in terms of accuracy and distortion reduction under abrupt grid impedance increases. Moreover, drop compensation is integrated into the Kalman Filter to enhance robustness of the inverter against external oscillation disturbances from a synchronous machine connected to the GFL via the PCC. The results in this paper demonstrate substantial improvement in oscillation damping across a range of frequencies compared with published research works.
comment: 8 pages, 8 figures, journal
☆ Optimality Loss Minimization in Distributed Control with Application to District Heating
This paper presents a novel partitioning method designed to minimize control performance degradation resulting from partitioning a system for distributed control while maintaining the computational benefits of these methods. A game-theoretic performance metric, the modified Price of Anarchy, is introduced and is used in a generalizable partitioning metric to quantify optimality losses in a distributed controller. By finding the partition that minimizes the partitioning metric, the best-performing distributed control design is chosen. The presented partitioning metric is control-design agnostic, making it broadly applicable to many control design problems. In this paper, the developed metric is used to minimize the performance losses in the distributed control of a demand-flexible District Heating Network. The final distributed controller is provably feasible and stable. In simulation, this novel partitioning performed similarly to the centralized controller, increasing overall heat losses by only 1.9%, as compared to a similarly-sized baseline partition, which resulted in a 22% increase in losses.
comment: Submitted to IEEE Transactions on Control Systems Technology
☆ Perturbed Gradient Descent Algorithms are Small-Disturbance Input-to-State Stable
This article investigates the robustness of gradient descent algorithms under perturbations. The concept of small-disturbance input-to-state stability (ISS) for discrete-time nonlinear dynamical systems is introduced, along with its Lyapunov characterization. The conventional linear Polyak-Lojasiewicz (PL) condition is then extended to a nonlinear version, and it is shown that the gradient descent algorithm is small-disturbance ISS provided the objective function satisfies the generalized nonlinear PL condition. This small-disturbance ISS property guarantees that the gradient descent algorithm converges to a small neighborhood of the optimum under sufficiently small perturbations. As a direct application of the developed framework, we demonstrate that the LQR cost satisfies the generalized nonlinear PL condition, thereby establishing that the policy gradient algorithm for LQR is small-disturbance ISS. Additionally, other popular policy gradient algorithms, including natural policy gradient and Gauss-Newton method, are also proven to be small-disturbance ISS.
comment: 16 pages
☆ A robust and adaptive MPC formulation for Gaussian process models
In this paper, we present a robust and adaptive model predictive control (MPC) framework for uncertain nonlinear systems affected by bounded disturbances and unmodeled nonlinearities. We use Gaussian Processes (GPs) to learn the uncertain dynamics based on noisy measurements, including those collected during system operation. As a key contribution, we derive robust predictions for GP models using contraction metrics, which are incorporated in the MPC formulation. The proposed design guarantees recursive feasibility, robust constraint satisfaction and convergence to a reference state, with high probability. We provide a numerical example of a planar quadrotor subject to difficult-to-model ground effects, which highlights significant improvements achieved through the proposed robust prediction method and through online learning.
☆ Enhancing Power Flow Estimation with Topology-Aware Gated Graph Neural Networks
Accurate and scalable surrogate models for AC power flow are essential for real-time grid monitoring, contingency analysis, and decision support in increasingly dynamic and inverter-dominated power systems. However, most existing surrogates fall short of practical deployment due to their limited capacity to capture long-range nonlinear dependencies in meshed transmission networks and their weak enforcement of physical laws. These models often require extensive hyperparameter tuning, exhibit poor generalization under topology changes or large load swings, and typically do not quantify uncertainty or scale well beyond a few hundred buses. To address these challenges, this paper proposes a \textit{gated graph neural network (GGNN)} surrogate for AC power-flow estimation under topological uncertainty. The model is trained across multiple IEEE benchmark networks of varying size and complexity, each incorporating randomized line contingencies and up to 40\% load variation. To improve robustness and generalization, we explore both conventional supervised learning and physics-informed self-supervised training strategies. Comparative evaluations show that the proposed GGNN consistently outperforms prior GNN-based surrogates, achieving predictions closely aligned with Newton--Raphson solutions. By embedding operational constraints directly into the architecture and loss function, the model ensures physical consistency and delivers a lightweight, accurate, and scalable tool for real-time grid operations.
♻ ☆ Adapting Probabilistic Risk Assessment for AI
Modern general-purpose artificial intelligence (AI) systems present an urgent risk management challenge, as their rapidly evolving capabilities and potential for catastrophic harm outpace our ability to reliably assess their risks. Current methods often rely on selective testing and undocumented assumptions about risk priorities, frequently failing to make a serious attempt at assessing the set of pathways through which AI systems pose direct or indirect risks to society and the biosphere. This paper introduces the probabilistic risk assessment (PRA) for AI framework, adapting established PRA techniques from high-reliability industries (e.g., nuclear power, aerospace) for the new challenges of advanced AI. The framework guides assessors in identifying potential risks, estimating likelihood and severity bands, and explicitly documenting evidence, underlying assumptions, and analyses at appropriate granularities. The framework's implementation tool synthesizes the results into a risk report card with aggregated risk estimates from all assessed risks. It introduces three methodological advances: (1) Aspect-oriented hazard analysis provides systematic hazard coverage guided by a first-principles taxonomy of AI system aspects (e.g. capabilities, domain knowledge, affordances); (2) Risk pathway modeling analyzes causal chains from system aspects to societal impacts using bidirectional analysis and incorporating prospective techniques; and (3) Uncertainty management employs scenario decomposition, reference scales, and explicit tracing protocols to structure credible projections with novelty or limited data. Additionally, the framework harmonizes diverse assessment methods by integrating evidence into comparable, quantified absolute risk estimates for lifecycle decisions. We have implemented this as a workbook tool for AI developers, evaluators, and regulators.
comment: Project website with workbook tool available at: https://pra-for-ai.github.io/pra/
♻ ☆ Progressive Barrier Lyapunov Functions for Nonlinear Constrained Control Systems
This paper introduces the Progressive Barrier Lyapunov Function (p-BLF) for output- and full-state-constrained nonlinear control systems. Unlike traditional BLF methods, where control effort continuously increases as the state approaches the constraint boundaries, the p-BLF maintains minimal control effort in unconstrained regions and increases it progressively toward the boundaries. In contrast to previous methods with predefined safe zones and abrupt control activation, the p-BLF provides a smooth transition, improving continuity in the control response and enhancing stability by reducing chattering. Two forms of the p-BLF, logarithmic-based and rational-based, are developed to handle systems with either output constraints or full-state constraints. Theoretical analysis guarantees that all system states remain within the defined constraints, ensuring boundedness and stability of the closed-loop system. Simulation results validate the effectiveness of the proposed method in constrained nonlinear control.
comment: 6 pages, 5 figures, submitted to American Control Conference 2025
♻ ☆ Long-Context Linear System Identification ICLR 2025
This paper addresses the problem of long-context linear system identification, where the state $x_t$ of a dynamical system at time $t$ depends linearly on previous states $x_s$ over a fixed context window of length $p$. We establish a sample complexity bound that matches the i.i.d. parametric rate up to logarithmic factors for a broad class of systems, extending previous works that considered only first-order dependencies. Our findings reveal a learning-without-mixing phenomenon, indicating that learning long-context linear autoregressive models is not hindered by slow mixing properties potentially associated with extended context windows. Additionally, we extend these results to (i) shared low-rank representations, where rank-regularized estimators improve the dependence of the rates on the dimensionality, and (ii) misspecified context lengths in strictly stable systems, where shorter contexts offer statistical advantages.
comment: Published at ICLR 2025. This version includes minor corrections and improved grammar from the published version. 34 pages, 4 figures
♻ ☆ Complex-Phase, Data-Driven Identification of Grid-Forming Inverter Dynamics
The increasing integration of renewable energy sources (RESs) into power systems requires the deployment of grid-forming inverters to ensure a stable operation. Accurate modeling of these devices is necessary. In this paper, a system identification approach to obtain low-dimensional models of grid-forming inverters is presented. The proposed approach is based on a Hammerstein-Wiener parametrization of the normal-form model. The normal-form is a gray-box model that utilizes complex frequency and phase to capture non-linear inverter dynamics. The model is validated on two well-known control strategies: droop-control and dispatchable virtual oscillators. Simulations and hardware-in-the-loop experiments demonstrate that the normal-form accurately models inverter dynamics across various operating conditions. The approach shows great potential for enhancing the modeling of RES-dominated power systems, especially when component models are unavailable or computationally expensive.
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 42 pages, 4 figures. Accepted for publication in SIAM Journal on Control and Optimization (2025)
♻ ☆ Small-signal stability of power systems with voltage droop
The stability of inverter-dominated power grids remains an active area of research. This paper presents novel sufficient conditions for ensuring small-signal stability in lossless and constant $R/X$ grids with highly heterogeneous mixes of grid-forming inverters that implement an adapted $V$-$q$ droop control. The proposed conditions can be evaluated in the neighborhood of each bus without information on the rest of the grid. Apart from the presence of $V$-$q$ droop, no additional assumptions are made regarding the inverter control strategies, nor is dynamical homogeneity across the system assumed. The analysis is enabled by recasting the node dynamics in terms of complex frequency and power, resulting in transfer functions that directly capture the small-signal frequency and amplitude responses to active and reactive power imbalances. These transfer functions are directly aligned with typical design considerations in grid-forming control. Building on an adapted small-phase theorem and viewing the system as a closed feedback loop between nodes and lines, the derived stability conditions also yield new insights when applied to established inverter control designs. We demonstrate in simulations that our conditions are not overly conservative and can identify individual inverters that are misconfigured and cause instability.
♻ ☆ Learning with Linear Function Approximations in Mean-Field Control
The paper focuses on mean-field type multi-agent control problems with finite state and action spaces where the dynamics and cost structures are symmetric and homogeneous, and are affected by the distribution of the agents. A standard solution method for these problems is to consider the infinite population limit as an approximation and use symmetric solutions of the limit problem to achieve near optimality. The control policies, and in particular the dynamics, depend on the population distribution in the finite population setting, or the marginal distribution of the state variable of a representative agent for the infinite population setting. Hence, learning and planning for these control problems generally require estimating the reaction of the system to all possible state distributions of the agents. To overcome this issue, we consider linear function approximation for the control problem and provide coordinated and independent learning methods. We rigorously establish error upper bounds for the performance of learned solutions. The performance gap stems from (i) the mismatch due to estimating the true model with a linear one, and (ii) using the infinite population solution in the finite population problem as an approximate control. The provided upper bounds quantify the impact of these error sources on the overall performance.
♻ ☆ Finite Sample Analysis of Subspace Identification for Stochastic Systems
The subspace identification method (SIM) has become a widely adopted approach for the identification of discrete-time linear time-invariant (LTI) systems. In this paper, we derive finite sample high-probability error bounds for the system matrices $A,C$, the Kalman filter gain $K$ and the estimation of system poles. Specifically, we demonstrate that, ignoring the logarithmic factors, for an $n$-dimensional LTI system with no external inputs, the estimation error of these matrices decreases at a rate of at least $ \mathcal{O}(\sqrt{1/N}) $, while the estimation error of the system poles decays at a rate of at least $ \mathcal{O}(N^{-1/2n}) $, where $ N $ represents the number of sample trajectories. Furthermore, we reveal that achieving a constant estimation error requires a super-polynomial sample size in $n/m $, where $n/m$ denotes the state-to-output dimension ratio. Finally, numerical experiments are conducted to validate the non-asymptotic results.
comment: 14 pages, 2 figures
♻ ☆ Design Tasks and Their Complexity for the European Train Control System with Hybrid Train Detection
Railway networks have become increasingly important in recent times, especially in moving freight and public transportation from road traffic and planes to more environmentally friendly trains. Since expanding the global railway network is time- and resource-consuming, maximizing the rail capacity of the existing infrastructure is desirable. However, simply running more trains is infeasible as certain constraints enforced by the train control system must be satisfied. The capacity of a network depends (amongst others) on the distance between trains allowed by this safety system. While most signaling systems rely on fixed blocks defined by costly hardware, new specifications provided by Level 2 with Hybrid Train Detection of the European Train Control System (ETCS L2 HTD), formerly known as ETCS Hybrid Level 3, allow the usage of virtual subsections. This additional degree of freedom allows for shorter train following times and, thus, more trains on existing railway tracks. On the other hand, new design tasks arise on which automated methods might be helpful for designers of modern railway networks. However, although first approaches exist that solve design problems arising within ETCS L2 HTD, neither formal descriptions nor results on the computational complexity of the corresponding design tasks exist. In this paper, we fill this gap by providing a formal description of design tasks for ETCS L2 HTD and proof that these tasks are NP-complete or NP-hard, respectively. By that, we are providing a solid basis for the future development of methods to solve those tasks, which will be integrated into the Munich Train Control Toolkit available open-source on GitHub at https://github.com/cda-tum/mtct.
comment: Accepted Version: EURO Journal on Transportation and Logistics; ORCIDs updated
♻ ☆ Power-Gas Infrastructure Planning under Weather-induced Supply and Demand Uncertainties
Implementing economy-wide decarbonization strategies based on decarbonizing the power grid via variable renewable energy (VRE) expansion and electrification of end-uses requires new approaches for energy infrastructure planning that consider, among other factors, weather-induced uncertainty in demand and VRE supply. An energy planning model that fails to account for these uncertainties can hinder the intended transition efforts to a low-carbon grid and increase the risk of supply shortage especially during extreme weather conditions. Here, we consider the generation and transmission expansion problem of joint power-gas infrastructure and operations planning under the uncertainty of both demand and renewable supply. We propose two distributionally robust optimization approaches based on moment (MDRO) and Wasserstein distance (WDRO) ambiguity sets to endogenize these uncertainties and account for the change in the underlying distribution of these parameters that is caused by the climate change, among other factors. Furthermore, our model considers the risk-aversion of the energy planners in the modeling framework via the conditional value-at-risk (CVaR) metric. An equivalent mixed-integer linear programming (MILP) reformulation of both modeling frameworks is presented, and a computationally efficient approximation scheme to obtain near-optimal solutions is proposed. We demonstrate the resulting DRO planning models and solution strategy via a New England case study under different levels of end-use electrification and decarbonization targets. Our experiments systematically explore different modeling aspects and compare the DRO models with stochastic programming (SP) results.
♻ ☆ Inverse Optimal Control for Linear Quadratic Tracking with Unknown Target States
This paper addresses the inverse optimal control for the linear quadratic tracking problem with a fixed but unknown target state, which aims to estimate the possible triplets comprising the target state, the state weight matrix, and the input weight matrix from observed optimal control input and the corresponding state trajectories. Sufficient conditions have been provided for the unique determination of both the linear quadratic cost function as well as the target state. A computationally efficient and numerically reliable parameter identification algorithm is proposed by equating optimal control strategies with a system of linear equations, and the associated relative error upper bound is derived in terms of data volume and signal-to-noise ratio. Moreover, the proposed inverse optimal control algorithm is applied for the joint cluster coordination and intent identification of a multi-agent system. By incorporating the structural constraint of the Laplace matrix, the relative error upper bound can be reduced accordingly. Finally, the algorithm's efficiency and accuracy are validated by a vehicle-on-a-lever example and a multi-agent formation control example.
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
♻ ☆ Adaptive Koopman Model Predictive Control of Simple Serial Robots
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint. Planned for resubmission after revision; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
Robotics 48
☆ Jump-Start Reinforcement Learning with Self-Evolving Priors for Extreme Monopedal Locomotion
Reinforcement learning (RL) has shown great potential in enabling quadruped robots to perform agile locomotion. However, directly training policies to simultaneously handle dual extreme challenges, i.e., extreme underactuation and extreme terrains, as in monopedal hopping tasks, remains highly challenging due to unstable early-stage interactions and unreliable reward feedback. To address this, we propose JumpER (jump-start reinforcement learning via self-evolving priors), an RL training framework that structures policy learning into multiple stages of increasing complexity. By dynamically generating self-evolving priors through iterative bootstrapping of previously learned policies, JumpER progressively refines and enhances guidance, thereby stabilizing exploration and policy optimization without relying on external expert priors or handcrafted reward shaping. Specifically, when integrated with a structured three-stage curriculum that incrementally evolves action modality, observation space, and task objective, JumpER enables quadruped robots to achieve robust monopedal hopping on unpredictable terrains for the first time. Remarkably, the resulting policy effectively handles challenging scenarios that traditional methods struggle to conquer, including wide gaps up to 60 cm, irregularly spaced stairs, and stepping stones with distances varying from 15 cm to 35 cm. JumpER thus provides a principled and scalable approach for addressing locomotion tasks under the dual challenges of extreme underactuation and extreme terrains.
☆ 2024 NASA SUITS Report: LLM-Driven Immersive Augmented Reality User Interface for Robotics and Space Exploration
As modern computing advances, new interaction paradigms have emerged, particularly in Augmented Reality (AR), which overlays virtual interfaces onto physical objects. This evolution poses challenges in machine perception, especially for tasks like 3D object pose estimation in complex, dynamic environments. Our project addresses critical issues in human-robot interaction within mobile AR, focusing on non-intrusive, spatially aware interfaces. We present URSA, an LLM-driven immersive AR system developed for NASA's 2023-2024 SUITS challenge, targeting future spaceflight needs such as the Artemis missions. URSA integrates three core technologies: a head-mounted AR device (e.g., HoloLens) for intuitive visual feedback, voice control powered by large language models for hands-free interaction, and robot tracking algorithms that enable accurate 3D localization in dynamic settings. To enhance precision, we leverage digital twin localization technologies, using datasets like DTTD-Mobile and specialized hardware such as the ZED2 camera for real-world tracking under noise and occlusion. Our system enables real-time robot control and monitoring via an AR interface, even in the absence of ground-truth sensors--vital for hazardous or remote operations. Key contributions include: (1) a non-intrusive AR interface with LLM-based voice input; (2) a ZED2-based dataset tailored for non-rigid robotic bodies; (3) a Local Mission Control Console (LMCC) for mission visualization; (4) a transformer-based 6DoF pose estimator (DTTDNet) optimized for depth fusion and real-time tracking; and (5) end-to-end integration for astronaut mission support. This work advances digital twin applications in robotics, offering scalable solutions for both aerospace and industrial domains.
☆ Search-Based Robot Motion Planning With Distance-Based Adaptive Motion Primitives
This work proposes a motion planning algorithm for robotic manipulators that combines sampling-based and search-based planning methods. The core contribution of the proposed approach is the usage of burs of free configuration space (C-space) as adaptive motion primitives within the graph search algorithm. Due to their feature to adaptively expand in free C-space, burs enable more efficient exploration of the configuration space compared to fixed-sized motion primitives, significantly reducing the time to find a valid path and the number of required expansions. The algorithm is implemented within the existing SMPL (Search-Based Motion Planning Library) library and evaluated through a series of different scenarios involving manipulators with varying number of degrees-of-freedom (DoF) and environment complexity. Results demonstrate that the bur-based approach outperforms fixed-primitive planning in complex scenarios, particularly for high DoF manipulators, while achieving comparable performance in simpler scenarios.
comment: 6 pages, 3 figures, submitted to a conference
☆ A Differentiable Distance Metric for Robotics Through Generalized Alternating Projection
In many robotics applications, it is necessary to compute not only the distance between the robot and the environment, but also its derivative - for example, when using control barrier functions. However, since the traditional Euclidean distance is not differentiable, there is a need for alternative distance metrics that possess this property. Recently, a metric with guaranteed differentiability was proposed [1]. This approach has some important drawbacks, which we address in this paper. We provide much simpler and practical expressions for the smooth projection for general convex polytopes. Additionally, as opposed to [1], we ensure that the distance vanishes as the objects overlap. We show the efficacy of the approach in experimental results. Our proposed distance metric is publicly available through the Python-based simulation package UAIBot.
comment: This work has been submitted to the IEEE for possible publication
☆ Imitation Learning for Satellite Attitude Control under Unknown Perturbations
This paper presents a novel satellite attitude control framework that integrates Soft Actor-Critic (SAC) reinforcement learning with Generative Adversarial Imitation Learning (GAIL) to achieve robust performance under various unknown perturbations. Traditional control techniques often rely on precise system models and are sensitive to parameter uncertainties and external perturbations. To overcome these limitations, we first develop a SAC-based expert controller that demonstrates improved resilience against actuator failures, sensor noise, and attitude misalignments, outperforming our previous results in several challenging scenarios. We then use GAIL to train a learner policy that imitates the expert's trajectories, thereby reducing training costs and improving generalization through expert demonstrations. Preliminary experiments under single and combined perturbations show that the SAC expert can rotate the antenna to a specified direction and keep the antenna orientation reliably stable in most of the listed perturbations. Additionally, the GAIL learner can imitate most of the features from the trajectories generated by the SAC expert. Comparative evaluations and ablation studies confirm the effectiveness of the SAC algorithm and reward shaping. The integration of GAIL further reduces sample complexity and demonstrates promising imitation capabilities, paving the way for more intelligent and autonomous spacecraft control systems.
comment: 2025 AAS/AIAA Astrodynamics Specialist Conference
☆ SonoGym: High Performance Simulation for Challenging Surgical Tasks with Robotic Ultrasound
Ultrasound (US) is a widely used medical imaging modality due to its real-time capabilities, non-invasive nature, and cost-effectiveness. Robotic ultrasound can further enhance its utility by reducing operator dependence and improving access to complex anatomical regions. For this, while deep reinforcement learning (DRL) and imitation learning (IL) have shown potential for autonomous navigation, their use in complex surgical tasks such as anatomy reconstruction and surgical guidance remains limited -- largely due to the lack of realistic and efficient simulation environments tailored to these tasks. We introduce SonoGym, a scalable simulation platform for complex robotic ultrasound tasks that enables parallel simulation across tens to hundreds of environments. Our framework supports realistic and real-time simulation of US data from CT-derived 3D models of the anatomy through both a physics-based and a generative modeling approach. Sonogym enables the training of DRL and recent IL agents (vision transformers and diffusion policies) for relevant tasks in robotic orthopedic surgery by integrating common robotic platforms and orthopedic end effectors. We further incorporate submodular DRL -- a recent method that handles history-dependent rewards -- for anatomy reconstruction and safe reinforcement learning for surgery. Our results demonstrate successful policy learning across a range of scenarios, while also highlighting the limitations of current methods in clinically relevant environments. We believe our simulation can facilitate research in robot learning approaches for such challenging robotic surgery applications. Dataset, codes, and videos are publicly available at https://sonogym.github.io/.
comment: 21 pages, 15 figures
☆ A Review on Sound Source Localization in Robotics: Focusing on Deep Learning Methods
Sound source localization (SSL) adds a spatial dimension to auditory perception, allowing a system to pinpoint the origin of speech, machinery noise, warning tones, or other acoustic events, capabilities that facilitate robot navigation, human-machine dialogue, and condition monitoring. While existing surveys provide valuable historical context, they typically address general audio applications and do not fully account for robotic constraints or the latest advancements in deep learning. This review addresses these gaps by offering a robotics-focused synthesis, emphasizing recent progress in deep learning methodologies. We start by reviewing classical methods such as Time Difference of Arrival (TDOA), beamforming, Steered-Response Power (SRP), and subspace analysis. Subsequently, we delve into modern machine learning (ML) and deep learning (DL) approaches, discussing traditional ML and neural networks (NNs), convolutional neural networks (CNNs), convolutional recurrent neural networks (CRNNs), and emerging attention-based architectures. The data and training strategy that are the two cornerstones of DL-based SSL are explored. Studies are further categorized by robot types and application domains to facilitate researchers in identifying relevant work for their specific contexts. Finally, we highlight the current challenges in SSL works in general, regarding environmental robustness, sound source multiplicity, and specific implementation constraints in robotics, as well as data and learning strategies in DL-based SSL. Also, we sketch promising directions to offer an actionable roadmap toward robust, adaptable, efficient, and explainable DL-based SSL for next-generation robots.
comment: 35 pages
☆ VISTA: Open-Vocabulary, Task-Relevant Robot Exploration with Online Semantic Gaussian Splatting
We present VISTA (Viewpoint-based Image selection with Semantic Task Awareness), an active exploration method for robots to plan informative trajectories that improve 3D map quality in areas most relevant for task completion. Given an open-vocabulary search instruction (e.g., "find a person"), VISTA enables a robot to explore its environment to search for the object of interest, while simultaneously building a real-time semantic 3D Gaussian Splatting reconstruction of the scene. The robot navigates its environment by planning receding-horizon trajectories that prioritize semantic similarity to the query and exploration of unseen regions of the environment. To evaluate trajectories, VISTA introduces a novel, efficient viewpoint-semantic coverage metric that quantifies both the geometric view diversity and task relevance in the 3D scene. On static datasets, our coverage metric outperforms state-of-the-art baselines, FisherRF and Bayes' Rays, in computation speed and reconstruction quality. In quadrotor hardware experiments, VISTA achieves 6x higher success rates in challenging maps, compared to baseline methods, while matching baseline performance in less challenging maps. Lastly, we show that VISTA is platform-agnostic by deploying it on a quadrotor drone and a Spot quadruped robot. Open-source code will be released upon acceptance of the paper.
comment: 9 pages, 4 figures
☆ Environment-Aware and Human-Cooperative Swing Control for Lower-Limb Prostheses in Diverse Obstacle Scenarios
Current control strategies for powered lower limb prostheses often lack awareness of the environment and the user's intended interactions with it. This limitation becomes particularly apparent in complex terrains. Obstacle negotiation, a critical scenario exemplifying such challenges, requires both real-time perception of obstacle geometry and responsiveness to user intention about when and where to step over or onto, to dynamically adjust swing trajectories. We propose a novel control strategy that fuses environmental awareness and human cooperativeness: an on-board depth camera detects obstacles ahead of swing phase, prompting an elevated early-swing trajectory to ensure clearance, while late-swing control defers to natural biomechanical cues from the user. This approach enables intuitive stepping strategies without requiring unnatural movement patterns. Experiments with three non-amputee participants demonstrated 100 percent success across more than 150 step-overs and 30 step-ons with randomly placed obstacles of varying heights (4-16 cm) and distances (15-70 cm). By effectively addressing obstacle navigation -- a gateway challenge for complex terrain mobility -- our system demonstrates adaptability to both environmental constraints and user intentions, with promising applications across diverse locomotion scenarios.
☆ Geometry-aware 4D Video Generation for Robot Manipulation
Understanding and predicting the dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of videos by supervising the model with cross-view pointmap alignment during training. This geometric supervision enables the model to learn a shared 3D representation of the scene, allowing it to predict future video sequences from novel viewpoints based solely on the given RGB-D observations, without requiring camera poses as inputs. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, supporting robust robot manipulation and generalization to novel camera viewpoints.
comment: Project website: https://robot4dgen.github.io
☆ VQ-VLA: Improving Vision-Language-Action Models via Scaling Vector-Quantized Action Tokenizers ICCV 2025
In this paper, we introduce an innovative vector quantization based action tokenizer built upon the largest-scale action trajectory dataset to date, leveraging over 100 times more data than previous approaches. This extensive dataset enables our tokenizer to capture rich spatiotemporal dynamics, resulting in a model that not only accelerates inference but also generates smoother and more coherent action outputs. Once trained, the tokenizer can be seamlessly adapted to a wide range of downstream tasks in a zero-shot manner, from short-horizon reactive behaviors to long-horizon planning. A key finding of our work is that the domain gap between synthetic and real action trajectories is marginal, allowing us to effectively utilize a vast amount of synthetic data during training without compromising real-world performance. To validate our approach, we conducted extensive experiments in both simulated environments and on real robotic platforms. The results demonstrate that as the volume of synthetic trajectory data increases, the performance of our tokenizer on downstream tasks improves significantly-most notably, achieving up to a 30% higher success rate on two real-world tasks in long-horizon scenarios. These findings highlight the potential of our action tokenizer as a robust and scalable solution for real-time embodied intelligence systems, paving the way for more efficient and reliable robotic control in diverse application domains.Project website: https://xiaoxiao0406.github.io/vqvla.github.io
comment: Accepted by ICCV 2025
☆ DexWrist: A Robotic Wrist for Constrained and Dynamic Manipulation
We present the DexWrist, a compliant robotic wrist designed to advance robotic manipulation in highly-constrained environments, enable dynamic tasks, and speed up data collection. DexWrist is designed to be close to the functional capabilities of the human wrist and achieves mechanical compliance and a greater workspace as compared to existing robotic wrist designs. The DexWrist can supercharge policy learning by (i) enabling faster teleoperation and therefore making data collection more scalable; (ii) completing tasks in fewer steps which reduces trajectory lengths and therefore can ease policy learning; (iii) DexWrist is designed to be torque transparent with easily simulatable kinematics for simulated data collection; and (iv) most importantly expands the workspace of manipulation for approaching highly cluttered scenes and tasks. More details about the wrist can be found at: dexwrist.csail.mit.edu.
comment: More details about the wrist can be found at: dexwrist.csail.mit.edu
☆ Robotic Manipulation by Imitating Generated Videos Without Physical Demonstrations
This work introduces Robots Imitating Generated Videos (RIGVid), a system that enables robots to perform complex manipulation tasks--such as pouring, wiping, and mixing--purely by imitating AI-generated videos, without requiring any physical demonstrations or robot-specific training. Given a language command and an initial scene image, a video diffusion model generates potential demonstration videos, and a vision-language model (VLM) automatically filters out results that do not follow the command. A 6D pose tracker then extracts object trajectories from the video, and the trajectories are retargeted to the robot in an embodiment-agnostic fashion. Through extensive real-world evaluations, we show that filtered generated videos are as effective as real demonstrations, and that performance improves with generation quality. We also show that relying on generated videos outperforms more compact alternatives such as keypoint prediction using VLMs, and that strong 6D pose tracking outperforms other ways to extract trajectories, such as dense feature point tracking. These findings suggest that videos produced by a state-of-the-art off-the-shelf model can offer an effective source of supervision for robotic manipulation.
comment: Project Page: https://rigvid-robot.github.io/
Box Pose and Shape Estimation and Domain Adaptation for Large-Scale Warehouse Automation
Modern warehouse automation systems rely on fleets of intelligent robots that generate vast amounts of data -- most of which remains unannotated. This paper develops a self-supervised domain adaptation pipeline that leverages real-world, unlabeled data to improve perception models without requiring manual annotations. Our work focuses specifically on estimating the pose and shape of boxes and presents a correct-and-certify pipeline for self-supervised box pose and shape estimation. We extensively evaluate our approach across a range of simulated and real industrial settings, including adaptation to a large-scale real-world dataset of 50,000 images. The self-supervised model significantly outperforms models trained solely in simulation and shows substantial improvements over a zero-shot 3D bounding box estimation baseline.
comment: 12 pages, 6 figures. This work will be presented at the 19th International Symposium on Experimental Robotics (ISER2025)
☆ Social Robots for People with Dementia: A Literature Review on Deception from Design to Perception
As social robots increasingly enter dementia care, concerns about deception, intentional or not, are gaining attention. Yet, how robotic design cues might elicit misleading perceptions in people with dementia, and how these perceptions arise, remains insufficiently understood. In this scoping review, we examined 26 empirical studies on interactions between people with dementia and physical social robots. We identify four key design cue categories that may influence deceptive impressions: cues resembling physiological signs (e.g., simulated breathing), social intentions (e.g., playful movement), familiar beings (e.g., animal-like form and sound), and, to a lesser extent, cues that reveal artificiality. Thematic analysis of user responses reveals that people with dementia often attribute biological, social, and mental capacities to robots, dynamically shifting between awareness and illusion. These findings underscore the fluctuating nature of ontological perception in dementia contexts. Existing definitions of robotic deception often rest on philosophical or behaviorist premises, but rarely engage with the cognitive mechanisms involved. We propose an empirically grounded definition: robotic deception occurs when Type 1 (automatic, heuristic) processing dominates over Type 2 (deliberative, analytic) reasoning, leading to misinterpretation of a robot's artificial nature. This dual-process perspective highlights the ethical complexity of social robots in dementia care and calls for design approaches that are not only engaging, but also epistemically respectful.
☆ RaGNNarok: A Light-Weight Graph Neural Network for Enhancing Radar Point Clouds on Unmanned Ground Vehicles IROS 2025
Low-cost indoor mobile robots have gained popularity with the increasing adoption of automation in homes and commercial spaces. However, existing lidar and camera-based solutions have limitations such as poor performance in visually obscured environments, high computational overhead for data processing, and high costs for lidars. In contrast, mmWave radar sensors offer a cost-effective and lightweight alternative, providing accurate ranging regardless of visibility. However, existing radar-based localization suffers from sparse point cloud generation, noise, and false detections. Thus, in this work, we introduce RaGNNarok, a real-time, lightweight, and generalizable graph neural network (GNN)-based framework to enhance radar point clouds, even in complex and dynamic environments. With an inference time of just 7.3 ms on the low-cost Raspberry Pi 5, RaGNNarok runs efficiently even on such resource-constrained devices, requiring no additional computational resources. We evaluate its performance across key tasks, including localization, SLAM, and autonomous navigation, in three different environments. Our results demonstrate strong reliability and generalizability, making RaGNNarok a robust solution for low-cost indoor mobile robots.
comment: 8 pages, accepted by IROS 2025
☆ A Survey: Learning Embodied Intelligence from Physical Simulators and World Models 3DV
The pursuit of artificial general intelligence (AGI) has placed embodied intelligence at the forefront of robotics research. Embodied intelligence focuses on agents capable of perceiving, reasoning, and acting within the physical world. Achieving robust embodied intelligence requires not only advanced perception and control, but also the ability to ground abstract cognition in real-world interactions. Two foundational technologies, physical simulators and world models, have emerged as critical enablers in this quest. Physical simulators provide controlled, high-fidelity environments for training and evaluating robotic agents, allowing safe and efficient development of complex behaviors. In contrast, world models empower robots with internal representations of their surroundings, enabling predictive planning and adaptive decision-making beyond direct sensory input. This survey systematically reviews recent advances in learning embodied AI through the integration of physical simulators and world models. We analyze their complementary roles in enhancing autonomy, adaptability, and generalization in intelligent robots, and discuss the interplay between external simulation and internal modeling in bridging the gap between simulated training and real-world deployment. By synthesizing current progress and identifying open challenges, this survey aims to provide a comprehensive perspective on the path toward more capable and generalizable embodied AI systems. We also maintain an active repository that contains up-to-date literature and open-source projects at https://github.com/NJU3DV-LoongGroup/Embodied-World-Models-Survey.
comment: https://github.com/NJU3DV-LoongGroup/Embodied-World-Models-Survey
☆ GaussianVLM: Scene-centric 3D Vision-Language Models using Language-aligned Gaussian Splats for Embodied Reasoning and Beyond
As multimodal language models advance, their application to 3D scene understanding is a fast-growing frontier, driving the development of 3D Vision-Language Models (VLMs). Current methods show strong dependence on object detectors, introducing processing bottlenecks and limitations in taxonomic flexibility. To address these limitations, we propose a scene-centric 3D VLM for 3D Gaussian splat scenes that employs language- and task-aware scene representations. Our approach directly embeds rich linguistic features into the 3D scene representation by associating language with each Gaussian primitive, achieving early modality alignment. To process the resulting dense representations, we introduce a dual sparsifier that distills them into compact, task-relevant tokens via task-guided and location-guided pathways, producing sparse, task-aware global and local scene tokens. Notably, we present the first Gaussian splatting-based VLM, leveraging photorealistic 3D representations derived from standard RGB images, demonstrating strong generalization: it improves performance of prior 3D VLM five folds, in out-of-the-domain settings.
☆ I Move Therefore I Learn: Experience-Based Traversability in Outdoor Robotics
Accurate traversability estimation is essential for safe and effective navigation of outdoor robots operating in complex environments. This paper introduces a novel experience-based method that allows robots to autonomously learn which terrains are traversable based on prior navigation experience, without relying on extensive pre-labeled datasets. The approach integrates elevation and texture data into multi-layered grid maps, which are processed using a variational autoencoder (VAE) trained on a generic texture dataset. During an initial teleoperated phase, the robot collects sensory data while moving around the environment. These experiences are encoded into compact feature vectors and clustered using the BIRCH algorithm to represent traversable terrain areas efficiently. In deployment, the robot compares new terrain patches to its learned feature clusters to assess traversability in real time. The proposed method does not require training with data from the targeted scenarios, generalizes across diverse surfaces and platforms, and dynamically adapts as new terrains are encountered. Extensive evaluations on both synthetic benchmarks and real-world scenarios with wheeled and legged robots demonstrate its effectiveness, robustness, and superior adaptability compared to state-of-the-art approaches.
☆ HumanoidGen: Data Generation for Bimanual Dexterous Manipulation via LLM Reasoning
For robotic manipulation, existing robotics datasets and simulation benchmarks predominantly cater to robot-arm platforms. However, for humanoid robots equipped with dual arms and dexterous hands, simulation tasks and high-quality demonstrations are notably lacking. Bimanual dexterous manipulation is inherently more complex, as it requires coordinated arm movements and hand operations, making autonomous data collection challenging. This paper presents HumanoidGen, an automated task creation and demonstration collection framework that leverages atomic dexterous operations and LLM reasoning to generate relational constraints. Specifically, we provide spatial annotations for both assets and dexterous hands based on the atomic operations, and perform an LLM planner to generate a chain of actionable spatial constraints for arm movements based on object affordances and scenes. To further improve planning ability, we employ a variant of Monte Carlo tree search to enhance LLM reasoning for long-horizon tasks and insufficient annotation. In experiments, we create a novel benchmark with augmented scenarios to evaluate the quality of the collected data. The results show that the performance of the 2D and 3D diffusion policies can scale with the generated dataset. Project page is https://openhumanoidgen.github.io.
comment: Project Page: https://openhumanoidgen.github.io
☆ PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor Dynamics Prediction in Unknown Environments
Accurate dynamics modeling is essential for quadrotors to achieve precise trajectory tracking in various applications. Traditional physical knowledge-driven modeling methods face substantial limitations in unknown environments characterized by variable payloads, wind disturbances, and external perturbations. On the other hand, data-driven modeling methods suffer from poor generalization when handling out-of-distribution (OoD) data, restricting their effectiveness in unknown scenarios. To address these challenges, we introduce the Physics-Informed Wind-Adaptive Network (PI-WAN), which combines knowledge-driven and data-driven modeling methods by embedding physical constraints directly into the training process for robust quadrotor dynamics learning. Specifically, PI-WAN employs a Temporal Convolutional Network (TCN) architecture that efficiently captures temporal dependencies from historical flight data, while a physics-informed loss function applies physical principles to improve model generalization and robustness across previously unseen conditions. By incorporating real-time prediction results into a model predictive control (MPC) framework, we achieve improvements in closed-loop tracking performance. Comprehensive simulations and real-world flight experiments demonstrate that our approach outperforms baseline methods in terms of prediction accuracy, tracking precision, and robustness to unknown environments.
☆ Towards Open-World Human Action Segmentation Using Graph Convolutional Networks IROS25
Human-object interaction segmentation is a fundamental task of daily activity understanding, which plays a crucial role in applications such as assistive robotics, healthcare, and autonomous systems. Most existing learning-based methods excel in closed-world action segmentation, they struggle to generalize to open-world scenarios where novel actions emerge. Collecting exhaustive action categories for training is impractical due to the dynamic diversity of human activities, necessitating models that detect and segment out-of-distribution actions without manual annotation. To address this issue, we formally define the open-world action segmentation problem and propose a structured framework for detecting and segmenting unseen actions. Our framework introduces three key innovations: 1) an Enhanced Pyramid Graph Convolutional Network (EPGCN) with a novel decoder module for robust spatiotemporal feature upsampling. 2) Mixup-based training to synthesize out-of-distribution data, eliminating reliance on manual annotations. 3) A novel Temporal Clustering loss that groups in-distribution actions while distancing out-of-distribution samples. We evaluate our framework on two challenging human-object interaction recognition datasets: Bimanual Actions and 2 Hands and Object (H2O) datasets. Experimental results demonstrate significant improvements over state-of-the-art action segmentation models across multiple open-set evaluation metrics, achieving 16.9% and 34.6% relative gains in open-set segmentation (F1@50) and out-of-distribution detection performances (AUROC), respectively. Additionally, we conduct an in-depth ablation study to assess the impact of each proposed component, identifying the optimal framework configuration for open-world action segmentation.
comment: 8 pages, 3 figures, accepted in IROS25, Hangzhou, China
☆ Multi-Modal Graph Convolutional Network with Sinusoidal Encoding for Robust Human Action Segmentation IROS25
Accurate temporal segmentation of human actions is critical for intelligent robots in collaborative settings, where a precise understanding of sub-activity labels and their temporal structure is essential. However, the inherent noise in both human pose estimation and object detection often leads to over-segmentation errors, disrupting the coherence of action sequences. To address this, we propose a Multi-Modal Graph Convolutional Network (MMGCN) that integrates low-frame-rate (e.g., 1 fps) visual data with high-frame-rate (e.g., 30 fps) motion data (skeleton and object detections) to mitigate fragmentation. Our framework introduces three key contributions. First, a sinusoidal encoding strategy that maps 3D skeleton coordinates into a continuous sin-cos space to enhance spatial representation robustness. Second, a temporal graph fusion module that aligns multi-modal inputs with differing resolutions via hierarchical feature aggregation, Third, inspired by the smooth transitions inherent to human actions, we design SmoothLabelMix, a data augmentation technique that mixes input sequences and labels to generate synthetic training examples with gradual action transitions, enhancing temporal consistency in predictions and reducing over-segmentation artifacts. Extensive experiments on the Bimanual Actions Dataset, a public benchmark for human-object interaction understanding, demonstrate that our approach outperforms state-of-the-art methods, especially in action segmentation accuracy, achieving F1@10: 94.5% and F1@25: 92.8%.
comment: 7 pages, 4 figures, accepted in IROS25, Hangzhou, China
☆ Learning Steerable Imitation Controllers from Unstructured Animal Motions
This paper presents a control framework for legged robots that leverages unstructured real-world animal motion data to generate animal-like and user-steerable behaviors. Our framework learns to follow velocity commands while reproducing the diverse gait patterns in the original dataset. To begin with, animal motion data is transformed into a robot-compatible database using constrained inverse kinematics and model predictive control, bridging the morphological and physical gap between the animal and the robot. Subsequently, a variational autoencoder-based motion synthesis module captures the diverse locomotion patterns in the motion database and generates smooth transitions between them in response to velocity commands. The resulting kinematic motions serve as references for a reinforcement learning-based feedback controller deployed on physical robots. We show that this approach enables a quadruped robot to adaptively switch gaits and accurately track user velocity commands while maintaining the stylistic coherence of the motion data. Additionally, we provide component-wise evaluations to analyze the system's behavior in depth and demonstrate the efficacy of our method for more accurate and reliable motion imitation.
comment: The supplementary video is available at https://youtu.be/DukyUGNYf5A
☆ Audio-3DVG: Unified Audio - Point Cloud Fusion for 3D Visual Grounding
3D Visual Grounding (3DVG) involves localizing target objects in 3D point clouds based on natural language. While prior work has made strides using textual descriptions, leveraging spoken language-known as Audio-based 3D Visual Grounding-remains underexplored and challenging. Motivated by advances in automatic speech recognition (ASR) and speech representation learning, we propose Audio-3DVG, a simple yet effective framework that integrates audio and spatial information for enhanced grounding. Rather than treating speech as a monolithic input, we decompose the task into two complementary components. First, we introduce Object Mention Detection, a multi-label classification task that explicitly identifies which objects are referred to in the audio, enabling more structured audio-scene reasoning. Second, we propose an Audio-Guided Attention module that captures interactions between candidate objects and relational speech cues, improving target discrimination in cluttered scenes. To support benchmarking, we synthesize audio descriptions for standard 3DVG datasets, including ScanRefer, Sr3D, and Nr3D. Experimental results demonstrate that Audio-3DVG not only achieves new state-of-the-art performance in audio-based grounding, but also competes with text-based methods-highlighting the promise of integrating spoken language into 3D vision tasks.
comment: Work in progress, 42 pages
☆ Parallel Transmission Aware Co-Design: Enhancing Manipulator Performance Through Actuation-Space Optimization
In robotics, structural design and behavior optimization have long been considered separate processes, resulting in the development of systems with limited capabilities. Recently, co-design methods have gained popularity, where bi-level formulations are used to simultaneously optimize the robot design and behavior for specific tasks. However, most implementations assume a serial or tree-type model of the robot, overlooking the fact that many robot platforms incorporate parallel mechanisms. In this paper, we present a novel co-design approach that explicitly incorporates parallel coupling constraints into the dynamic model of the robot. In this framework, an outer optimization loop focuses on the design parameters, in our case the transmission ratios of a parallel belt-driven manipulator, which map the desired torques from the joint space to the actuation space. An inner loop performs trajectory optimization in the actuation space, thus exploiting the entire dynamic range of the manipulator. We compare the proposed method with a conventional co-design approach based on a simplified tree-type model. By taking advantage of the actuation space representation, our approach leads to a significant increase in dynamic payload capacity compared to the conventional co-design implementation.
☆ Stable Tracking of Eye Gaze Direction During Ophthalmic Surgery ICRA 2025
Ophthalmic surgical robots offer superior stability and precision by reducing the natural hand tremors of human surgeons, enabling delicate operations in confined surgical spaces. Despite the advancements in developing vision- and force-based control methods for surgical robots, preoperative navigation remains heavily reliant on manual operation, limiting the consistency and increasing the uncertainty. Existing eye gaze estimation techniques in the surgery, whether traditional or deep learning-based, face challenges including dependence on additional sensors, occlusion issues in surgical environments, and the requirement for facial detection. To address these limitations, this study proposes an innovative eye localization and tracking method that combines machine learning with traditional algorithms, eliminating the requirements of landmarks and maintaining stable iris detection and gaze estimation under varying lighting and shadow conditions. Extensive real-world experiment results show that our proposed method has an average estimation error of 0.58 degrees for eye orientation estimation and 2.08-degree average control error for the robotic arm's movement based on the calculated orientation.
comment: Accepted by ICRA 2025
☆ Residual Reward Models for Preference-based Reinforcement Learning
Preference-based Reinforcement Learning (PbRL) provides a way to learn high-performance policies in environments where the reward signal is hard to specify, avoiding heuristic and time-consuming reward design. However, PbRL can suffer from slow convergence speed since it requires training in a reward model. Prior work has proposed learning a reward model from demonstrations and fine-tuning it using preferences. However, when the model is a neural network, using different loss functions for pre-training and fine-tuning can pose challenges to reliable optimization. In this paper, we propose a method to effectively leverage prior knowledge with a Residual Reward Model (RRM). An RRM assumes that the true reward of the environment can be split into a sum of two parts: a prior reward and a learned reward. The prior reward is a term available before training, for example, a user's ``best guess'' reward function, or a reward function learned from inverse reinforcement learning (IRL), and the learned reward is trained with preferences. We introduce state-based and image-based versions of RRM and evaluate them on several tasks in the Meta-World environment suite. Experimental results show that our method substantially improves the performance of a common PbRL method. Our method achieves performance improvements for a variety of different types of prior rewards, including proxy rewards, a reward obtained from IRL, and even a negated version of the proxy reward. We also conduct experiments with a Franka Panda to show that our method leads to superior performance on a real robot. It significantly accelerates policy learning for different tasks, achieving success in fewer steps than the baseline. The videos are presented at https://sunlighted.github.io/RRM-web/.
comment: 26 pages, 22 figures
☆ Generation of Indoor Open Street Maps for Robot Navigation from CAD Files
The deployment of autonomous mobile robots is predicated on the availability of environmental maps, yet conventional generation via SLAM (Simultaneous Localization and Mapping) suffers from significant limitations in time, labor, and robustness, particularly in dynamic, large-scale indoor environments where map obsolescence can lead to critical localization failures. To address these challenges, this paper presents a complete and automated system for converting architectural Computer-Aided Design (CAD) files into a hierarchical topometric OpenStreetMap (OSM) representation, tailored for robust life-long robot navigation. Our core methodology involves a multi-stage pipeline that first isolates key structural layers from the raw CAD data and then employs an AreaGraph-based topological segmentation to partition the building layout into a hierarchical graph of navigable spaces. This process yields a comprehensive and semantically rich map, further enhanced by automatically associating textual labels from the CAD source and cohesively merging multiple building floors into a unified, topologically-correct model. By leveraging the permanent structural information inherent in CAD files, our system circumvents the inefficiencies and fragility of SLAM, offering a practical and scalable solution for deploying robots in complex indoor spaces. The software is encapsulated within an intuitive Graphical User Interface (GUI) to facilitate practical use. The code and dataset are available at https://github.com/jiajiezhang7/osmAG-from-cad.
comment: 8 pages, 8 figures
☆ Edge Computing and its Application in Robotics: A Survey
The Edge computing paradigm has gained prominence in both academic and industry circles in recent years. By implementing edge computing facilities and services in robotics, it becomes a key enabler in the deployment of artificial intelligence applications to robots. Time-sensitive robotics applications benefit from the reduced latency, mobility, and location awareness provided by the edge computing paradigm, which enables real-time data processing and intelligence at the network's edge. While the advantages of integrating edge computing into robotics are numerous, there has been no recent survey that comprehensively examines these benefits. This paper aims to bridge that gap by highlighting important work in the domain of edge robotics, examining recent advancements, and offering deeper insight into the challenges and motivations behind both current and emerging solutions. In particular, this article provides a comprehensive evaluation of recent developments in edge robotics, with an emphasis on fundamental applications, providing in-depth analysis of the key motivations, challenges, and future directions in this rapidly evolving domain. It also explores the importance of edge computing in real-world robotics scenarios where rapid response times are critical. Finally, the paper outlines various open research challenges in the field of edge robotics.
☆ A Miniature High-Resolution Tension Sensor Based on a Photo-Reflector for Robotic Hands and Grippers
This paper presents a miniature tension sensor using a photo-reflector, designed for compact tendon-driven grippers and robotic hands. The proposed sensor has a small form factor of 13~mm x 7~mm x 6.5~mm and is capable of measuring tensile forces up to 200~N. A symmetric elastomer structure incorporating fillets and flexure hinges is designed based on Timoshenko beam theory and verified via FEM analysis, enabling improved sensitivity and mechanical durability while minimizing torsional deformation. The sensor utilizes a compact photo-reflector (VCNT2020) to measure displacement in the near-field region, eliminating the need for light-absorbing materials or geometric modifications required in photo-interrupter-based designs. A 16-bit analog-to-digital converter (ADC) and CAN-FD (Flexible Data-rate) communication enable efficient signal acquisition with up to 5~kHz sampling rate. Calibration experiments demonstrate a resolution of 9.9~mN (corresponding to over 14-bit accuracy) and a root mean square error (RMSE) of 0.455~N. Force control experiments using a twisted string actuator and PI control yield RMSEs as low as 0.073~N. Compared to previous research using photo-interrupter, the proposed method achieves more than tenfold improvement in resolution while also reducing nonlinearity and hysteresis. The design is mechanically simple, lightweight, easy to assemble, and suitable for integration into robotic and prosthetic systems requiring high-resolution force feedback.
☆ DIJE: Dense Image Jacobian Estimation for Robust Robotic Self-Recognition and Visual Servoing IROS
For robots to move in the real world, they must first correctly understand the state of its own body and the tools that it holds. In this research, we propose DIJE, an algorithm to estimate the image Jacobian for every pixel. It is based on an optical flow calculation and a simplified Kalman Filter that can be efficiently run on the whole image in real time. It does not rely on markers nor knowledge of the robotic structure. We use the DIJE in a self-recognition process which can robustly distinguish between movement by the robot and by external entities, even when the motion overlaps. We also propose a visual servoing controller based on DIJE, which can learn to control the robot's body to conduct reaching movements or bimanual tool-tip control. The proposed algorithms were implemented on a physical musculoskeletal robot and its performance was verified. We believe that such global estimation of the visuomotor policy has the potential to be extended into a more general framework for manipulation.
comment: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ Novel Pigeon-inspired 3D Obstacle Detection and Avoidance Maneuver for Multi-UAV Systems
Recent advances in multi-agent systems manipulation have demonstrated a rising demand for the implementation of multi-UAV systems in urban areas, which are always subjected to the presence of static and dynamic obstacles. Inspired by the collective behavior of tilapia fish and pigeons, the focus of the presented research is on the introduction of a nature-inspired collision-free formation control for a multi-UAV system, considering the obstacle avoidance maneuvers. The developed framework in this study utilizes a semi-distributed control approach, in which, based on a probabilistic Lloyd's algorithm, a centralized guidance algorithm works for optimal positioning of the UAVs, while a distributed control approach has been used for the intervehicle collision and obstacle avoidance. Further, the presented framework has been extended to the 3D space with a novel definition of 3D maneuvers. Finally, the presented framework has been applied to multi-UAV systems in 2D and 3D scenarios, and the obtained results demonstrated the validity of the presented method in dynamic environments with stationary and moving obstacles.
comment: 11 Pages, 11 Pictures, 1 Table, 3 Algorithms
☆ RoboEval: Where Robotic Manipulation Meets Structured and Scalable Evaluation
We present RoboEval, a simulation benchmark and structured evaluation framework designed to reveal the limitations of current bimanual manipulation policies. While prior benchmarks report only binary task success, we show that such metrics often conceal critical weaknesses in policy behavior -- such as poor coordination, slipping during grasping, or asymmetric arm usage. RoboEval introduces a suite of tiered, semantically grounded tasks decomposed into skill-specific stages, with variations that systematically challenge spatial, physical, and coordination capabilities. Tasks are paired with fine-grained diagnostic metrics and 3000+ human demonstrations to support imitation learning. Our experiments reveal that policies with similar success rates diverge in how tasks are executed -- some struggle with alignment, others with temporally consistent bimanual control. We find that behavioral metrics correlate with success in over half of task-metric pairs, and remain informative even when binary success saturates. By pinpointing when and how policies fail, RoboEval enables a deeper, more actionable understanding of robotic manipulation -- and highlights the need for evaluation tools that go beyond success alone.
comment: Project page: https://robo-eval.github.io
☆ Evo-0: Vision-Language-Action Model with Implicit Spatial Understanding
Vision-Language-Action (VLA) models have emerged as a promising framework for enabling generalist robots capable of perceiving, reasoning, and acting in the real world. These models usually build upon pretrained Vision-Language Models (VLMs), which excel at semantic understanding due to large-scale text pretraining. However, VLMs typically lack precise spatial understanding capabilities, as they are primarily tuned on 2D image-text pairs without 3D supervision. To address this limitation, recent approaches have incorporated explicit 3D inputs such as point clouds or depth maps, but this necessitates additional depth sensors or defective estimation. In contrast, our work introduces a plug-and-play module that implicitly injects 3D geometry features into VLA models by leveraging an off-the-shelf visual geometry foundation models. We design five spatially challenging tasks that require precise spatial understanding ability to validate effectiveness of our method. Extensive evaluations show that our method significantly improves the performance of state-of-the-art VLA models across diverse scenarios.
♻ ☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ ParticleFormer: A 3D Point Cloud World Model for Multi-Object, Multi-Material Robotic Manipulation
3D world models (i.e., learning-based 3D dynamics models) offer a promising approach to generalizable robotic manipulation by capturing the underlying physics of environment evolution conditioned on robot actions. However, existing 3D world models are primarily limited to single-material dynamics using a particle-based Graph Neural Network model, and often require time-consuming 3D scene reconstruction to obtain 3D particle tracks for training. In this work, we present ParticleFormer, a Transformer-based point cloud world model trained with a hybrid point cloud reconstruction loss, supervising both global and local dynamics features in multi-material, multi-object robot interactions. ParticleFormer captures fine-grained multi-object interactions between rigid, deformable, and flexible materials, trained directly from real-world robot perception data without an elaborate scene reconstruction. We demonstrate the model's effectiveness both in 3D scene forecasting tasks, and in downstream manipulation tasks using a Model Predictive Control (MPC) policy. In addition, we extend existing dynamics learning benchmarks to include diverse multi-material, multi-object interaction scenarios. We validate our method on six simulation and three real-world experiments, where it consistently outperforms leading baselines by achieving superior dynamics prediction accuracy and less rollout error in downstream visuomotor tasks. Experimental videos are available at https://particleformer.github.io/.
Building Rome with Convex Optimization
Global bundle adjustment is made easy by depth prediction and convex optimization. We (i) propose a scaled bundle adjustment (SBA) formulation that lifts 2D keypoint measurements to 3D with learned depth, (ii) design an empirically tight convex semidfinite program (SDP) relaxation that solves SBA to certfiable global optimality, (iii) solve the SDP relaxations at extreme scale with Burer-Monteiro factorization and a CUDA-based trust-region Riemannian optimizer (dubbed XM), (iv) build a structure from motion (SfM) pipeline with XM as the optimization engine and show that XM-SfM compares favorably with existing pipelines in terms of reconstruction quality while being significantly faster, more scalable, and initialization-free.
♻ ☆ Flatness-based Finite-Horizon Multi-UAV Formation Trajectory Planning and Directionally Aware Collision Avoidance Tracking
Optimal collision-free formation control of the unmanned aerial vehicle (UAV) is a challenge. The state-of-the-art optimal control approaches often rely on numerical methods sensitive to initial guesses. This paper presents an innovative collision-free finite-time formation control scheme for multiple UAVs leveraging the differential flatness of the UAV dynamics, eliminating the need for numerical methods. We formulate a finite-time optimal control problem to plan a formation trajectory for feasible initial states. This optimal control problem in formation trajectory planning involves a collective performance index to meet the formation requirements to achieve relative positions and velocity consensus. It is solved by applying Pontryagin's principle. Subsequently, a collision-constrained regulating problem is addressed to ensure collision-free tracking of the planned formation trajectory. The tracking problem incorporates a directionally aware collision avoidance strategy that prioritizes avoiding UAVs in the forward path and relative approach. It assigns lower priority to those on the sides with an oblique relative approach, disregarding UAVs behind and not in the relative approach. The high-fidelity simulation results validate the effectiveness of the proposed control scheme.
comment: Accepted for Journal of the Franklin Institute
♻ ☆ DexH2R: A Benchmark for Dynamic Dexterous Grasping in Human-to-Robot Handover
Handover between a human and a dexterous robotic hand is a fundamental yet challenging task in human-robot collaboration. It requires handling dynamic environments and a wide variety of objects and demands robust and adaptive grasping strategies. However, progress in developing effective dynamic dexterous grasping methods is limited by the absence of high-quality, real-world human-to-robot handover datasets. Existing datasets primarily focus on grasping static objects or rely on synthesized handover motions, which differ significantly from real-world robot motion patterns, creating a substantial gap in applicability. In this paper, we introduce DexH2R, a comprehensive real-world dataset for human-to-robot handovers, built on a dexterous robotic hand. Our dataset captures a diverse range of interactive objects, dynamic motion patterns, rich visual sensor data, and detailed annotations. Additionally, to ensure natural and human-like dexterous motions, we utilize teleoperation for data collection, enabling the robot's movements to align with human behaviors and habits, which is a crucial characteristic for intelligent humanoid robots. Furthermore, we propose an effective solution, DynamicGrasp, for human-to-robot handover and evaluate various state-of-the-art approaches, including auto-regressive models and diffusion policy methods, providing a thorough comparison and analysis. We believe our benchmark will drive advancements in human-to-robot handover research by offering a high-quality dataset, effective solutions, and comprehensive evaluation metrics.
♻ ☆ Unified Manipulability and Compliance Analysis of Modular Soft-Rigid Hybrid Fingers
This paper presents a unified framework to analyze the manipulability and compliance of modular soft-rigid hybrid robotic fingers. The approach applies to both hydraulic and pneumatic actuation systems. A Jacobian-based formulation maps actuator inputs to joint and task-space responses. Hydraulic actuators are modeled under incompressible assumptions, while pneumatic actuators are described using nonlinear pressure-volume relations. The framework enables consistent evaluation of manipulability ellipsoids and compliance matrices across actuation modes. We validate the analysis using two representative hands: DexCo (hydraulic) and Edgy-2 (pneumatic). Results highlight actuation-dependent trade-offs in dexterity and passive stiffness. These findings provide insights for structure-aware design and actuator selection in soft-rigid robotic fingers.
♻ ☆ Autonomous Robotic Bone Micro-Milling System with Automatic Calibration and 3D Surface Fitting
Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we address this challenge by integrating a Microscopic Stereo Camera System (MSCS) into the robotic bone micro-milling system and proposing a novel pre-measurement pipeline for the target surface. Starting from uncalibrated cameras, the pipeline enables automatic calibration and 3D surface fitting through a convolutional neural network (CNN)-based keypoint detection. Combined with the existing feedback-based system, we develop the world's first autonomous robotic bone micro-milling system capable of rapidly, in real-time, and accurately perceiving and adapting to surface unevenness and non-uniform thickness, thereby enabling an end-to-end autonomous cranial window creation workflow without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7% and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
comment: 8 pages, 8 figures, submitted to RA-L
♻ ☆ Adapt Your Body: Mitigating Proprioception Shifts in Imitation Learning
Imitation learning models for robotic tasks typically rely on multi-modal inputs, such as RGB images, language, and proprioceptive states. While proprioception is intuitively important for decision-making and obstacle avoidance, simply incorporating all proprioceptive states leads to a surprising degradation in imitation learning performance. In this work, we identify the underlying issue as the proprioception shift problem, where the distributions of proprioceptive states diverge significantly between training and deployment. To address this challenge, we propose a domain adaptation framework that bridges the gap by utilizing rollout data collected during deployment. Using Wasserstein distance, we quantify the discrepancy between expert and rollout proprioceptive states and minimize this gap by adding noise to both sets of states, proportional to the Wasserstein distance. This strategy enhances robustness against proprioception shifts by aligning the training and deployment distributions. Experiments on robotic manipulation tasks demonstrate the efficacy of our method, enabling the imitation policy to leverage proprioception while mitigating its adverse effects. Our approach outperforms the naive solution which discards proprioception, and other baselines designed to address distributional shifts.
comment: Need further modification
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
♻ ☆ 2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos ICCV 2025
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios. Project-website: https://sites.google.com/view/2handedafforder
comment: ICCV 2025
♻ ☆ SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains
This paper presents SCALER, a versatile free-climbing multi-limbed robot that is designed to achieve tightly coupled simultaneous locomotion and dexterous grasping. While existing quadrupedal-limbed robots have demonstrated impressive dexterous capabilities, achieving a balance between power-demanding locomotion and precise grasping remains a critical challenge. We design a torso mechanism and a parallel-serial limb to meet the conflicting requirements that pose unique challenges in hardware design. SCALER employs underactuated two-fingered GOAT grippers that can mechanically adapt and offer seven modes of grasping, enabling SCALER to traverse extreme terrains with multi-modal grasping strategies. We study the whole-body approach, where SCALER utilizes its body and limbs to generate additional forces for stable grasping in various environments, thereby further enhancing its versatility. Furthermore, we improve the GOAT gripper actuation speed to realize more dynamic climbing in a closed-loop control fashion. With these proposed technologies, SCALER can traverse vertical, overhanging, upside-down, slippery terrains and bouldering walls with non-convex-shaped climbing holds under the Earth's gravity.
comment: Accepted to IEEE Transactions on Robotics (T-RO), 2025
Vision 60
♻ ☆ Defensive Adversarial CAPTCHA: A Semantics-Driven Framework for Natural Adversarial Example Generation
Traditional CAPTCHA (Completely Automated Public Turing Test to Tell Computers and Humans Apart) schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on the original image characteristics, resulting in distortions that hinder human interpretation and limit their applicability in scenarios where no initial input images are available. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (DAC), a novel framework that generates high-fidelity adversarial examples guided by attacker-specified semantics information. Leveraging a Large Language Model (LLM), DAC enhances CAPTCHA diversity and enriches the semantic information. To address various application scenarios, we examine the white-box targeted attack scenario and the black box untargeted attack scenario. For target attacks, we introduce two latent noise variables that are alternately guided in the diffusion step to achieve robust inversion. The synergy between gradient guidance and latent variable optimization achieved in this way ensures that the generated adversarial examples not only accurately align with the target conditions but also achieve optimal performance in terms of distributional consistency and attack effectiveness. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-DAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show that the defensive adversarial CAPTCHA generated by BP-DAC is able to defend against most of the unknown models, and the generated CAPTCHA is indistinguishable to both humans and DNNs.
comment: 13 pages, 6 figures
♻ ☆ Training Free Stylized Abstraction
Stylized abstraction synthesizes visually exaggerated yet semantically faithful representations of subjects, balancing recognizability with perceptual distortion. Unlike image-to-image translation, which prioritizes structural fidelity, stylized abstraction demands selective retention of identity cues while embracing stylistic divergence, especially challenging for out-of-distribution individuals. We propose a training-free framework that generates stylized abstractions from a single image using inference-time scaling in vision-language models (VLLMs) to extract identity-relevant features, and a novel cross-domain rectified flow inversion strategy that reconstructs structure based on style-dependent priors. Our method adapts structural restoration dynamically through style-aware temporal scheduling, enabling high-fidelity reconstructions that honor both subject and style. It supports multi-round abstraction-aware generation without fine-tuning. To evaluate this task, we introduce StyleBench, a GPT-based human-aligned metric suited for abstract styles where pixel-level similarity fails. Experiments across diverse abstraction (e.g., LEGO, knitted dolls, South Park) show strong generalization to unseen identities and styles in a fully open-source setup.
comment: Project Page: https://kartik-3004.github.io/TF-SA/
♻ ☆ Prompt-Guided Latent Diffusion with Predictive Class Conditioning for 3D Prostate MRI Generation
Objective: Latent diffusion models (LDM) could alleviate data scarcity challenges affecting machine learning development for medical imaging. However, medical LDM strategies typically rely on short-prompt text encoders, non-medical LDMs, or large data volumes. These strategies can limit performance and scientific accessibility. We propose a novel LDM conditioning approach to address these limitations. Methods: We propose Class-Conditioned Efficient Large Language model Adapter (CCELLA), a novel dual-head conditioning approach that simultaneously conditions the LDM U-Net with free-text clinical reports and radiology classification. We also propose a data-efficient LDM framework centered around CCELLA and a proposed joint loss function. We first evaluate our method on 3D prostate MRI against state-of-the-art. We then augment a downstream classifier model training dataset with synthetic images from our method. Results: Our method achieves a 3D FID score of 0.025 on a size-limited 3D prostate MRI dataset, significantly outperforming a recent foundation model with FID 0.071. When training a classifier for prostate cancer prediction, adding synthetic images generated by our method during training improves classifier accuracy from 69% to 74%. Training a classifier solely on our method's synthetic images achieved comparable performance to training on real images alone. Conclusion: We show that our method improved both synthetic image quality and downstream classifier performance using limited data and minimal human annotation. Significance: The proposed CCELLA-centric framework enables radiology report and class-conditioned LDM training for high-quality medical image synthesis given limited data volume and human data annotation, improving LDM performance and scientific accessibility. Code from this study will be available at https://github.com/grabkeem/CCELLA
comment: MAH and BT are co-senior authors on the work. This work has been submitted to the IEEE for possible publication
♻ ☆ Learning from Videos for 3D World: Enhancing MLLMs with 3D Vision Geometry Priors
Previous research has investigated the application of Multimodal Large Language Models (MLLMs) in understanding 3D scenes by interpreting them as videos. These approaches generally depend on comprehensive 3D data inputs, such as point clouds or reconstructed Bird's-Eye View (BEV) maps. In our research, we advance this field by enhancing the capability of MLLMs to understand and reason in 3D spaces directly from video data, without the need for additional 3D input. We propose a novel and efficient method, the Video-3D Geometry Large Language Model (VG LLM). Our approach employs a 3D visual geometry encoder that extracts 3D prior information from video sequences. This information is integrated with visual tokens and fed into the MLLM. Extensive experiments have shown that our method has achieved substantial improvements in various tasks related to 3D scene understanding and spatial reasoning, all directly learned from video sources. Impressively, our 4B model, which does not rely on explicit 3D data inputs, achieves competitive results compared to existing state-of-the-art methods, and even surpasses the Gemini-1.5-Pro in the VSI-Bench evaluations.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ AdaptoVision: A Multi-Resolution Image Recognition Model for Robust and Scalable Classification
This paper introduces AdaptoVision, a novel convolutional neural network (CNN) architecture designed to efficiently balance computational complexity and classification accuracy. By leveraging enhanced residual units, depth-wise separable convolutions, and hierarchical skip connections, AdaptoVision significantly reduces parameter count and computational requirements while preserving competitive performance across various benchmark and medical image datasets. Extensive experimentation demonstrates that AdaptoVision achieves state-of-the-art on BreakHis dataset and comparable accuracy levels, notably 95.3\% on CIFAR-10 and 85.77\% on CIFAR-100, without relying on any pretrained weights. The model's streamlined architecture and strategic simplifications promote effective feature extraction and robust generalization, making it particularly suitable for deployment in real-time and resource-constrained environments.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
Building Rome with Convex Optimization
Global bundle adjustment is made easy by depth prediction and convex optimization. We (i) propose a scaled bundle adjustment (SBA) formulation that lifts 2D keypoint measurements to 3D with learned depth, (ii) design an empirically tight convex semidfinite program (SDP) relaxation that solves SBA to certfiable global optimality, (iii) solve the SDP relaxations at extreme scale with Burer-Monteiro factorization and a CUDA-based trust-region Riemannian optimizer (dubbed XM), (iv) build a structure from motion (SfM) pipeline with XM as the optimization engine and show that XM-SfM compares favorably with existing pipelines in terms of reconstruction quality while being significantly faster, more scalable, and initialization-free.
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
Depth Matters: Exploring Deep Interactions of RGB-D for Semantic Segmentation in Traffic Scenes IROS 2025
RGB-D has gradually become a crucial data source for understanding complex scenes in assisted driving. However, existing studies have paid insufficient attention to the intrinsic spatial properties of depth maps. This oversight significantly impacts the attention representation, leading to prediction errors caused by attention shift issues. To this end, we propose a novel learnable Depth interaction Pyramid Transformer (DiPFormer) to explore the effectiveness of depth. Firstly, we introduce Depth Spatial-Aware Optimization (Depth SAO) as offset to represent real-world spatial relationships. Secondly, the similarity in the feature space of RGB-D is learned by Depth Linear Cross-Attention (Depth LCA) to clarify spatial differences at the pixel level. Finally, an MLP Decoder is utilized to effectively fuse multi-scale features for meeting real-time requirements. Comprehensive experiments demonstrate that the proposed DiPFormer significantly addresses the issue of attention misalignment in both road detection (+7.5%) and semantic segmentation (+4.9% / +1.5%) tasks. DiPFormer achieves state-of-the-art performance on the KITTI (97.57% F-score on KITTI road and 68.74% mIoU on KITTI-360) and Cityscapes (83.4% mIoU) datasets.
comment: Accepted by IROS 2025
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ SurgTPGS: Semantic 3D Surgical Scene Understanding with Text Promptable Gaussian Splatting MICCAI 2025
In contemporary surgical research and practice, accurately comprehending 3D surgical scenes with text-promptable capabilities is particularly crucial for surgical planning and real-time intra-operative guidance, where precisely identifying and interacting with surgical tools and anatomical structures is paramount. However, existing works focus on surgical vision-language model (VLM), 3D reconstruction, and segmentation separately, lacking support for real-time text-promptable 3D queries. In this paper, we present SurgTPGS, a novel text-promptable Gaussian Splatting method to fill this gap. We introduce a 3D semantics feature learning strategy incorporating the Segment Anything model and state-of-the-art vision-language models. We extract the segmented language features for 3D surgical scene reconstruction, enabling a more in-depth understanding of the complex surgical environment. We also propose semantic-aware deformation tracking to capture the seamless deformation of semantic features, providing a more precise reconstruction for both texture and semantic features. Furthermore, we present semantic region-aware optimization, which utilizes regional-based semantic information to supervise the training, particularly promoting the reconstruction quality and semantic smoothness. We conduct comprehensive experiments on two real-world surgical datasets to demonstrate the superiority of SurgTPGS over state-of-the-art methods, highlighting its potential to revolutionize surgical practices. SurgTPGS paves the way for developing next-generation intelligent surgical systems by enhancing surgical precision and safety. Our code is available at: https://github.com/lastbasket/SurgTPGS.
comment: MICCAI 2025. Project Page: https://lastbasket.github.io/MICCAI-2025-SurgTPGS/
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Beyond Diagnostic Performance: Revealing and Quantifying Ethical Risks in Pathology Foundation Models
Pathology foundation models (PFMs), as large-scale pre-trained models tailored for computational pathology, have significantly advanced a wide range of applications. Their ability to leverage prior knowledge from massive datasets has streamlined the development of intelligent pathology models. However, we identify several critical and interrelated ethical risks that remain underexplored, yet must be addressed to enable the safe translation of PFMs from lab to clinic. These include the potential leakage of patient-sensitive attributes, disparities in model performance across demographic and institutional subgroups, and the reliance on diagnosis-irrelevant features that undermine clinical reliability. In this study, we pioneer the quantitative analysis for ethical risks in PFMs, including privacy leakage, clinical reliability, and group fairness. Specifically, we propose an evaluation framework that systematically measures key dimensions of ethical concern: the degree to which patient-sensitive attributes can be inferred from model representations, the extent of performance disparities across demographic and institutional subgroups, and the influence of diagnostically irrelevant features on model decisions. We further investigate the underlying causes of these ethical risks in PFMs and empirically validate our findings. Then we offer insights into potential directions for mitigating such risks, aiming to inform the development of more ethically robust PFMs. This work provides the first quantitative and systematic evaluation of ethical risks in PFMs. Our findings highlight the urgent need for ethical safeguards in PFMs and offer actionable insights for building more trustworthy and clinically robust PFMs. To facilitate future research and deployment, we will release the assessment framework as an online toolkit to support the development, auditing, and deployment of ethically robust PFMs.
comment: 33 pages,5 figure,23 tables
♻ ☆ SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images ICCV 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that plays a crucial role in modern medical diagnostics by visualizing radio-tracer distribution to reveal physiological processes. Accurate organ segmentation from PET images is essential for comprehensive multi-systemic analysis of interactions between different organs and pathologies. Existing segmentation methods are limited by insufficient annotation data and varying levels of annotation, resulting in weak generalization ability and difficulty in clinical application. Recent developments in segmentation foundation models have shown superior versatility across diverse segmentation tasks. Despite the efforts of medical adaptations, these works primarily focus on structural medical images with detailed physiological structural information and exhibit limited generalization performance on molecular PET imaging. In this paper, we collect and construct PETS-5k, the largest PET segmentation dataset to date, comprising 5,731 three-dimensional whole-body PET images and encompassing over 1.3M 2D images. Based on the established dataset, we develop SegAnyPET, a modality-specific 3D foundation model for universal promptable segmentation from PET images. To issue the challenge of discrepant annotation quality, we adopt a cross prompting confident learning (CPCL) strategy with an uncertainty-guided self-rectification process to robustly learn segmentation from high-quality labeled data and low-quality noisy labeled data for promptable segmentation. Experimental results demonstrate that SegAnyPET can segment seen and unseen target organs using only one or a few prompt points, outperforming state-of-the-art foundation models and task-specific fully supervised models with higher accuracy and strong generalization ability for universal segmentation.
comment: Accept for ICCV 2025
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing. For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics. To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing.
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection CVPR2025
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.
comment: Accepted by CVPR2025
♻ ☆ StreakNet-Arch: An Anti-scattering Network-based Architecture for Underwater Carrier LiDAR-Radar Imaging
In this paper, we introduce StreakNet-Arch, a real-time, end-to-end binary-classification framework based on our self-developed Underwater Carrier LiDAR-Radar (UCLR) that embeds Self-Attention and our novel Double Branch Cross Attention (DBC-Attention) to enhance scatter suppression. Under controlled water tank validation conditions, StreakNet-Arch with Self-Attention or DBC-Attention outperforms traditional bandpass filtering and achieves higher $F_1$ scores than learning-based MP networks and CNNs at comparable model size and complexity. Real-time benchmarks on an NVIDIA RTX 3060 show a constant Average Imaging Time (54 to 84 ms) regardless of frame count, versus a linear increase (58 to 1,257 ms) for conventional methods. To facilitate further research, we contribute a publicly available streak-tube camera image dataset contains 2,695,168 real-world underwater 3D point cloud data. More importantly, we validate our UCLR system in a South China Sea trial, reaching an error of 46mm for 3D target at 1,000 m depth and 20 m range. Source code and data are available at https://github.com/BestAnHongjun/StreakNet .
comment: Accepted by IEEE Transactions on Image Processing (T-IP)
♻ ☆ Towards Generalized and Training-Free Text-Guided Semantic Manipulation
Text-guided semantic manipulation refers to semantically editing an image generated from a source prompt to match a target prompt, enabling the desired semantic changes (e.g., addition, removal, and style transfer) while preserving irrelevant contents. With the powerful generative capabilities of the diffusion model, the task has shown the potential to generate high-fidelity visual content. Nevertheless, existing methods either typically require time-consuming fine-tuning (inefficient), fail to accomplish multiple semantic manipulations (poorly extensible), and/or lack support for different modality tasks (limited generalizability). Upon further investigation, we find that the geometric properties of noises in the diffusion model are strongly correlated with the semantic changes. Motivated by this, we propose a novel $\textit{GTF}$ for text-guided semantic manipulation, which has the following attractive capabilities: 1) $\textbf{Generalized}$: our $\textit{GTF}$ supports multiple semantic manipulations (e.g., addition, removal, and style transfer) and can be seamlessly integrated into all diffusion-based methods (i.e., Plug-and-play) across different modalities (i.e., modality-agnostic); and 2) $\textbf{Training-free}$: $\textit{GTF}$ produces high-fidelity results via simply controlling the geometric relationship between noises without tuning or optimization. Our extensive experiments demonstrate the efficacy of our approach, highlighting its potential to advance the state-of-the-art in semantics manipulation.
comment: Project Page: https://ayanami-yu.github.io/GTF-Project-Page/
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Listener-Rewarded Thinking in VLMs for Image Preferences
Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.
♻ ☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue MICCAI
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: An improved version of this manuscript was accepted to MICCAI
♻ ☆ StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning ICCV 2025
Recently, Mamba-based methods have demonstrated impressive performance in point cloud representation learning by leveraging State Space Model (SSM) with the efficient context modeling ability and linear complexity. However, these methods still face two key issues that limit the potential of SSM: Destroying the adjacency of 3D points during SSM processing and failing to retain long-sequence memory as the input length increases in downstream tasks. To address these issues, we propose StruMamba3D, a novel paradigm for self-supervised point cloud representation learning. It enjoys several merits. First, we design spatial states and use them as proxies to preserve spatial dependencies among points. Second, we enhance the SSM with a state-wise update strategy and incorporate a lightweight convolution to facilitate interactions between spatial states for efficient structure modeling. Third, our method reduces the sensitivity of pre-trained Mamba-based models to varying input lengths by introducing a sequence length-adaptive strategy. Experimental results across four downstream tasks showcase the superior performance of our method. In addition, our method attains the SOTA 95.1% accuracy on ModelNet40 and 92.75% accuracy on the most challenging split of ScanObjectNN without voting strategy.
comment: Accepted by ICCV 2025
♻ ☆ Edit Transfer: Learning Image Editing via Vision In-Context Relations
We introduce a new setting, Edit Transfer, where a model learns a transformation from just a single source-target example and applies it to a new query image. While text-based methods excel at semantic manipulations through textual prompts, they often struggle with precise geometric details (e.g., poses and viewpoint changes). Reference-based editing, on the other hand, typically focuses on style or appearance and fails at non-rigid transformations. By explicitly learning the editing transformation from a source-target pair, Edit Transfer mitigates the limitations of both text-only and appearance-centric references. Drawing inspiration from in-context learning in large language models, we propose a visual relation in-context learning paradigm, building upon a DiT-based text-to-image model. We arrange the edited example and the query image into a unified four-panel composite, then apply lightweight LoRA fine-tuning to capture complex spatial transformations from minimal examples. Despite using only 42 training samples, Edit Transfer substantially outperforms state-of-the-art TIE and RIE methods on diverse non-rigid scenarios, demonstrating the effectiveness of few-shot visual relation learning.
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning ICCV 2025
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead. However, as task diversity and complexity increase, EVIT faces significant challenges in resolving data conflicts. To address this limitation, we propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict through dual structural optimization. Specifically, we utilize two subspaces: a skill space for stable, holistic knowledge retention, and a rank-rectified task space that locally activates the holistic knowledge. Additionally, we introduce Visual Cue Enhancement (VCE), a multi-level local feature aggregation module designed to enrich the vision-language projection with local details. Our approach is both memory- and time-efficient, requiring only 1.16$\times$ the inference time of the standard LoRA method (with injection into the query and value projection layers), and just 73\% of the inference time of a 4-expert LoRA-MoE. Extensive experiments on various downstream tasks and general MLLM benchmarks validate the effectiveness of our proposed methods.
comment: ICCV 2025
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ SMoLoRA: Exploring and Defying Dual Catastrophic Forgetting in Continual Visual Instruction Tuning
Visual instruction tuning (VIT) enables multimodal large language models (MLLMs) to effectively handle a wide range of vision tasks by framing them as language-based instructions. Building on this, continual visual instruction tuning (CVIT) extends the capability of MLLMs to incrementally learn new tasks, accommodating evolving functionalities. While prior work has advanced CVIT through the development of new benchmarks and approaches to mitigate catastrophic forgetting, these efforts largely follow traditional continual learning paradigms, neglecting the unique challenges specific to CVIT. We identify a dual form of catastrophic forgetting in CVIT, where MLLMs not only forget previously learned visual understanding but also experience a decline in instruction following abilities as they acquire new tasks. To address this, we introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules-one for visual understanding and another for instruction following. This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance. Furthermore, we propose a new CVIT benchmark that goes beyond existing benchmarks by additionally evaluating a model's ability to generalize to unseen tasks and handle diverse instructions across various tasks. Extensive experiments demonstrate that SMoLoRA outperforms existing methods in mitigating dual forgetting, improving generalization to unseen tasks, and ensuring robustness in following diverse instructions. Code is available at https://github.com/Minato-Zackie/SMoLoRA.
♻ ☆ A Dataset for Enhancing MLLMs in Visualization Understanding and Reconstruction
Current multimodal large language models (MLLMs), while effective in natural image understanding, struggle with visualization understanding due to their inability to decode the data-to-visual mapping and extract structured information. To address these challenges, we propose SimVec, a compact and structured vector format that encodes chart elements, including mark types, positions, and sizes. Then, we present a new visualization dataset, which consists of bitmap images of charts, their corresponding SimVec representations, and data-centric question-answering pairs, each accompanied by explanatory chain-of-thought sentences. We fine-tune state-of-the-art MLLMs using our dataset. The experimental results show that fine-tuning leads to substantial improvements in data-centric reasoning tasks compared to their zero-shot versions. SimVec also enables MLLMs to accurately and compactly reconstruct chart structures from images. Our dataset and code are available at: https://github.com/VIDA-Lab/MLLM4VIS.
♻ ☆ Maximum Dispersion, Maximum Concentration: Enhancing the Quality of MOP Solutions
Multi-objective optimization problems (MOPs) often require a trade-off between conflicting objectives, maximizing diversity and convergence in the objective space. This study presents an approach to improve the quality of MOP solutions by optimizing the dispersion in the decision space and the convergence in a specific region of the objective space. Our approach defines a Region of Interest (ROI) based on a cone representing the decision maker's preferences in the objective space, while enhancing the dispersion of solutions in the decision space using a uniformity measure. Combining solution concentration in the objective space with dispersion in the decision space intensifies the search for Pareto-optimal solutions while increasing solution diversity. When combined, these characteristics improve the quality of solutions and avoid the bias caused by clustering solutions in a specific region of the decision space. Preliminary experiments suggest that this method enhances multi-objective optimization by generating solutions that effectively balance dispersion and concentration, thereby mitigating bias in the decision space.
comment: 11 pages
♻ ☆ Ovis-U1 Technical Report
In this report, we introduce Ovis-U1, a 3-billion-parameter unified model that integrates multimodal understanding, text-to-image generation, and image editing capabilities. Building on the foundation of the Ovis series, Ovis-U1 incorporates a diffusion-based visual decoder paired with a bidirectional token refiner, enabling image generation tasks comparable to leading models like GPT-4o. Unlike some previous models that use a frozen MLLM for generation tasks, Ovis-U1 utilizes a new unified training approach starting from a language model. Compared to training solely on understanding or generation tasks, unified training yields better performance, demonstrating the enhancement achieved by integrating these two tasks. Ovis-U1 achieves a score of 69.6 on the OpenCompass Multi-modal Academic Benchmark, surpassing recent state-of-the-art models such as Ristretto-3B and SAIL-VL-1.5-2B. In text-to-image generation, it excels with scores of 83.72 and 0.89 on the DPG-Bench and GenEval benchmarks, respectively. For image editing, it achieves 4.00 and 6.42 on the ImgEdit-Bench and GEdit-Bench-EN, respectively. As the initial version of the Ovis unified model series, Ovis-U1 pushes the boundaries of multimodal understanding, generation, and editing.
comment: An unified model for multimodal understanding, text-to-image generation, and image editing. GitHub: https://github.com/AIDC-AI/Ovis-U1
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) offers an alternative by learning a reference representation of healthy anatomy without the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, achieving state-of-the-art anomaly localization performance on the NOVA benchmark.
comment: Under consideration at Pattern Recognition Letters
♻ ☆ ZonUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces ZonUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, ZonUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights ZonUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The ZonUI-3B is available at: https://github.com/Han1018/ZonUI-3B
♻ ☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
♻ ☆ ICME 2025 Grand Challenge on Video Super-Resolution for Video Conferencing
Super-Resolution (SR) is a critical task in computer vision, focusing on reconstructing high-resolution (HR) images from low-resolution (LR) inputs. The field has seen significant progress through various challenges, particularly in single-image SR. Video Super-Resolution (VSR) extends this to the temporal domain, aiming to enhance video quality using methods like local, uni-, bi-directional propagation, or traditional upscaling followed by restoration. This challenge addresses VSR for conferencing, where LR videos are encoded with H.265 at fixed QPs. The goal is to upscale videos by a specific factor, providing HR outputs with enhanced perceptual quality under a low-delay scenario using causal models. The challenge included three tracks: general-purpose videos, talking head videos, and screen content videos, with separate datasets provided by the organizers for training, validation, and testing. We open-sourced a new screen content dataset for the SR task in this challenge. Submissions were evaluated through subjective tests using a crowdsourced implementation of the ITU-T Rec P.910.
♻ ☆ Unleashing Diffusion and State Space Models for Medical Image Segmentation
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/k-Means_Mask_Mamba.
♻ ☆ Instruct-4DGS: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation CVPR 2025
Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose Instruct-4DGS, an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which captures dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field, which may arise from the editing process, we introduce a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that Instruct-4DGS is efficient, reducing editing time by more than half compared to existing methods while achieving high-quality edits that better follow user instructions. Code and results: https://hanbyelcho.info/instruct-4dgs/
comment: Accepted to CVPR 2025. The first two authors contributed equally
♻ ☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
♻ ☆ Contrastive Conditional Latent Diffusion for Audio-visual Segmentation
We propose a contrastive conditional latent diffusion model for audio-visual segmentation (AVS) to thoroughly investigate the impact of audio, where the correlation between audio and the final segmentation map is modeled to guarantee the strong correlation between them. To achieve semantic-correlated representation learning, our framework incorporates a latent diffusion model. The diffusion model learns the conditional generation process of the ground-truth segmentation map, resulting in ground-truth aware inference during the denoising process at the test stage. As our model is conditional, it is vital to ensure that the conditional variable contributes to the model output. We thus extensively model the contribution of the audio signal by minimizing the density ratio between the conditional probability of the multimodal data, e.g. conditioned on the audio-visual data, and that of the unimodal data, e.g. conditioned on the audio data only. In this way, our latent diffusion model via density ratio optimization explicitly maximizes the contribution of audio for AVS, which can then be achieved with contrastive learning as a constraint, where the diffusion part serves as the main objective to achieve maximum likelihood estimation, and the density ratio optimization part imposes the constraint. By adopting this latent diffusion model via contrastive learning, we effectively enhance the contribution of audio for AVS. The effectiveness of our solution is validated through experimental results on the benchmark dataset. Code and results are online via our project page: https://github.com/OpenNLPLab/DiffusionAVS.
♻ ☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ De-LightSAM: Modality-Decoupled Lightweight SAM for Generalizable Medical Segmentation
The universality of deep neural networks across different modalities and their generalization capabilities to unseen domains play an essential role in medical image segmentation. The recent segment anything model (SAM) has demonstrated strong adaptability across diverse natural scenarios. However, the huge computational costs, demand for manual annotations as prompts and conflict-prone decoding process of SAM degrade its generalization capabilities in medical scenarios. To address these limitations, we propose a modality-decoupled lightweight SAM for domain-generalized medical image segmentation, named De-LightSAM. Specifically, we first devise a lightweight domain-controllable image encoder (DC-Encoder) that produces discriminative visual features for diverse modalities. Further, we introduce the self-patch prompt generator (SP-Generator) to automatically generate high-quality dense prompt embeddings for guiding segmentation decoding. Finally, we design the query-decoupled modality decoder (QM-Decoder) that leverages a one-to-one strategy to provide an independent decoding channel for every modality, preventing mutual knowledge interference of different modalities. Moreover, we design a multi-modal decoupled knowledge distillation (MDKD) strategy to leverage robust common knowledge to complement domain-specific medical feature representations. Extensive experiments indicate that De-LightSAM outperforms state-of-the-arts in diverse medical imaging segmentation tasks, displaying superior modality universality and generalization capabilities. Especially, De-LightSAM uses only 2.0% parameters compared to SAM-H. The source code is available at https://github.com/xq141839/De-LightSAM.
comment: Under Review
♻ ☆ VideoCogQA: A Controllable Benchmark for Evaluating Cognitive Abilities in Video-Language Models
Recent advancements in Large Video-Language Models (LVLMs) have led to promising results in multimodal video understanding. However, it remains unclear whether these models possess the cognitive capabilities required for high-level tasks, particularly those involving symbolic and abstract perception. Existing benchmarks typically rely on real-world, annotated videos, which lack control over video content and inherent difficulty, limiting their diagnostic power. To bridge this gap, we propose VideoCogQA, a scalable and fully controllable benchmark inspired by game-world environments, designed to evaluate the cognitive abilities of LVLMs. By generating synthetic videos via a programmatic engine, VideoCogQA allows fine-grained control over visual elements, temporal dynamics, and task difficulty. This approach enables a focused evaluation of video cognitive abilities, independent of prior knowledge from visual scene semantics. The dataset includes 800 videos and 3,280 question-answer pairs, featuring tasks related to abstract concepts, symbolic elements, and multimodal integration, with varying levels of difficulty. Experimental results show that even state-of-the-art (SOTA) models, such as GPT-4o, achieve an average performance of 48.8% on tasks involving abstract concepts. Additionally, performance drops by 15% as task complexity increases, highlighting the challenges LVLMs face in maintaining consistent performance. Through this work, we hope to show the limitations of current LVLMs and offer insights into how they can more effectively emulate human cognitive processes in the future.
♻ ☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
♻ ☆ Enabling Collaborative Parametric Knowledge Calibration for Retrieval-Augmented Vision Question Answering
Knowledge-based Vision Question Answering (KB-VQA) systems address complex visual-grounded questions with knowledge retrieved from external knowledge bases. The tasks of knowledge retrieval and answer generation tasks both necessitate precise multimodal understanding of question context and external knowledge. However, existing methods treat these two stages as separate modules with limited interaction during training, which hinders bi-directional parametric knowledge sharing, ultimately leading to suboptimal performance. To fully exploit the cross-task synergy in KB-VQA, we propose a unified retrieval-augmented VQA framework with collaborative parametric knowledge calibration. The proposed framework can effectively adapt general multimodal pre-trained models for fine-grained, knowledge-intensive tasks while enabling the retriever and generator to collaboratively enhance and share their parametric knowledge during both training and inference. To enhance fine-grained understanding of questions and external documents, we also integrate late interaction mechanism into the proposed training framework. Additionally, we introduce a reflective-answering mechanism that allows the model to explicitly evaluate and refine its knowledge boundary. Our approach achieves competitive performance against state-of-the-art models, delivering a significant 4.7\% improvement in answering accuracy, and brings an average 7.5\% boost in base MLLMs' VQA performance.
comment: 10 pages, 5 figures, Under Review
♻ ☆ OMNI-DC: Highly Robust Depth Completion with Multiresolution Depth Integration ICCV 2025
Depth completion (DC) aims to predict a dense depth map from an RGB image and a sparse depth map. Existing DC methods generalize poorly to new datasets or unseen sparse depth patterns, limiting their real-world applications. We propose OMNI-DC, a highly robust DC model that generalizes well zero-shot to various datasets. The key design is a novel Multi-resolution Depth Integrator, allowing our model to deal with very sparse depth inputs. We also introduce a novel Laplacian loss to model the ambiguity in the training process. Moreover, we train OMNI-DC on a mixture of high-quality datasets with a scale normalization technique and synthetic depth patterns. Extensive experiments on 7 datasets show consistent improvements over baselines, reducing errors by as much as 43%. Codes and checkpoints are available at https://github.com/princeton-vl/OMNI-DC.
comment: Accepted to ICCV 2025. Added additional results and ablations
♻ ☆ Seeking and Updating with Live Visual Knowledge
The visual world around us constantly evolves, from real-time news and social media trends to global infrastructure changes visible through satellite imagery and augmented reality enhancements. However, Multimodal Large Language Models (MLLMs), which automate many tasks, struggle to stay current, limited by the cutoff dates in their fixed training datasets. To quantify this stagnation, we introduce LiveVQA, the first-of-its-kind dataset featuring 107,143 samples and 12 categories data specifically designed to support research in both seeking and updating with live visual knowledge. Drawing from recent news articles, video platforms, and academic publications in April 2024-May 2025, LiveVQA enables evaluation of how models handle latest visual information beyond their knowledge boundaries and how current methods help to update them. Our comprehensive benchmarking of 17 state-of-the-art MLLMs reveals significant performance gaps on content beyond knowledge cutoff, and tool-use or agentic visual seeking framework drastically gain an average of 327% improvement. Furthermore, we explore parameter-efficient fine-tuning (PEFT) methods to update MLLMs with new visual knowledge. We dive deeply to the critical balance between adapter capacity and model capability when updating MLLMs with new visual knowledge. All the experimental dataset and source code are publicly available at: https://livevqa.github.io.
comment: Preprint. Under Review
♻ ☆ FreqDGT: Frequency-Adaptive Dynamic Graph Networks with Transformer for Cross-subject EEG Emotion Recognition
Electroencephalography (EEG) serves as a reliable and objective signal for emotion recognition in affective brain-computer interfaces, offering unique advantages through its high temporal resolution and ability to capture authentic emotional states that cannot be consciously controlled. However, cross-subject generalization remains a fundamental challenge due to individual variability, cognitive traits, and emotional responses. We propose FreqDGT, a frequency-adaptive dynamic graph transformer that systematically addresses these limitations through an integrated framework. FreqDGT introduces frequency-adaptive processing (FAP) to dynamically weight emotion-relevant frequency bands based on neuroscientific evidence, employs adaptive dynamic graph learning (ADGL) to learn input-specific brain connectivity patterns, and implements multi-scale temporal disentanglement network (MTDN) that combines hierarchical temporal transformers with adversarial feature disentanglement to capture both temporal dynamics and ensure cross-subject robustness. Comprehensive experiments demonstrate that FreqDGT significantly improves cross-subject emotion recognition accuracy, confirming the effectiveness of integrating frequency-adaptive, spatial-dynamic, and temporal-hierarchical modeling while ensuring robustness to individual differences. The code is available at https://github.com/NZWANG/FreqDGT.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
♻ ☆ DynaCLR: Contrastive Learning of Cellular Dynamics with Temporal Regularization
We report DynaCLR, a self-supervised method for embedding cell and organelle Dynamics via Contrastive Learning of Representations of time-lapse images. DynaCLR integrates single-cell tracking and time-aware contrastive sampling to learn robust, temporally regularized representations of cell dynamics. DynaCLR embeddings generalize effectively to in-distribution and out-of-distribution datasets, and can be used for several downstream tasks with sparse human annotations. We demonstrate efficient annotations of cell states with a human-in-the-loop using fluorescence and label-free imaging channels. DynaCLR method enables diverse downstream biological analyses: classification of cell division and infection, clustering heterogeneous cell migration patterns, cross-modal distillation of cell states from fluorescence to label-free channel, alignment of asynchronous cellular responses and broken cell tracks, and discovering organelle response due to infection. DynaCLR is a flexible method for comparative analyses of dynamic cellular responses to pharmacological, microbial, and genetic perturbations. We provide PyTorch-based implementations of the model training and inference pipeline (https://github.com/mehta-lab/viscy) and a GUI (https://github.com/czbiohub-sf/napari-iohub) for the visualization and annotation of trajectories of cells in the real space and the embedding space.
comment: 30 pages, 6 figures, 13 appendix figures, 5 videos (ancillary files)
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Grounding Creativity in Physics: A Brief Survey of Physical Priors in AIGC IJCAI 2025
Recent advancements in AI-generated content have significantly improved the realism of 3D and 4D generation. However, most existing methods prioritize appearance consistency while neglecting underlying physical principles, leading to artifacts such as unrealistic deformations, unstable dynamics, and implausible objects interactions. Incorporating physics priors into generative models has become a crucial research direction to enhance structural integrity and motion realism. This survey provides a review of physics-aware generative methods, systematically analyzing how physical constraints are integrated into 3D and 4D generation. First, we examine recent works in incorporating physical priors into static and dynamic 3D generation, categorizing methods based on representation types, including vision-based, NeRF-based, and Gaussian Splatting-based approaches. Second, we explore emerging techniques in 4D generation, focusing on methods that model temporal dynamics with physical simulations. Finally, we conduct a comparative analysis of major methods, highlighting their strengths, limitations, and suitability for different materials and motion dynamics. By presenting an in-depth analysis of physics-grounded AIGC, this survey aims to bridge the gap between generative models and physical realism, providing insights that inspire future research in physically consistent content generation.
comment: Accepted by IJCAI 2025 Survey Track
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
♻ ☆ Seamless Interaction: Dyadic Audiovisual Motion Modeling and Large-Scale Dataset
Human communication involves a complex interplay of verbal and nonverbal signals, essential for conveying meaning and achieving interpersonal goals. To develop socially intelligent AI technologies, it is crucial to develop models that can both comprehend and generate dyadic behavioral dynamics. To this end, we introduce the Seamless Interaction Dataset, a large-scale collection of over 4,000 hours of face-to-face interaction footage from over 4,000 participants in diverse contexts. This dataset enables the development of AI technologies that understand dyadic embodied dynamics, unlocking breakthroughs in virtual agents, telepresence experiences, and multimodal content analysis tools. We also develop a suite of models that utilize the dataset to generate dyadic motion gestures and facial expressions aligned with human speech. These models can take as input both the speech and visual behavior of their interlocutors. We present a variant with speech from an LLM model and integrations with 2D and 3D rendering methods, bringing us closer to interactive virtual agents. Additionally, we describe controllable variants of our motion models that can adapt emotional responses and expressivity levels, as well as generating more semantically-relevant gestures. Finally, we discuss methods for assessing the quality of these dyadic motion models, which are demonstrating the potential for more intuitive and responsive human-AI interactions.
♻ ☆ Mixed Signals: A Diverse Point Cloud Dataset for Heterogeneous LiDAR V2X Collaboration
Vehicle-to-everything (V2X) collaborative perception has emerged as a promising solution to address the limitations of single-vehicle perception systems. However, existing V2X datasets are limited in scope, diversity, and quality. To address these gaps, we present Mixed Signals, a comprehensive V2X dataset featuring 45.1k point clouds and 240.6k bounding boxes collected from three connected autonomous vehicles (CAVs) equipped with two different configurations of LiDAR sensors, plus a roadside unit with dual LiDARs. Our dataset provides point clouds and bounding box annotations across 10 classes, ensuring reliable data for perception training. We provide detailed statistical analysis on the quality of our dataset and extensively benchmark existing V2X methods on it. The Mixed Signals dataset is ready-to-use, with precise alignment and consistent annotations across time and viewpoints. Dataset website is available at https://mixedsignalsdataset.cs.cornell.edu/.
Machine Learning 68
♻ ☆ STONet: A neural operator for modeling solute transport in micro-cracked reservoirs
In this work, we introduce a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked porous media. STONet's model architecture is specifically designed for this problem and uniquely integrates an enriched DeepONet structure with a transformer-based multi-head attention mechanism, enhancing performance without incurring additional computational overhead compared to existing neural operators. The model combines different networks to encode heterogeneous properties effectively and predict the rate of change of the concentration field to accurately model the transport process. The training data is obtained using finite element (FEM) simulations by random sampling of micro-fracture distributions and applied pressure boundary conditions, which capture diverse scenarios of fracture densities, orientations, apertures, lengths, and balance of pressure-driven to density-driven flow. Our numerical experiments demonstrate that, once trained, STONet achieves accurate predictions, with relative errors typically below 1% compared with FEM simulations while reducing runtime by approximately two orders of magnitude. This type of computational efficiency facilitates building digital twins for rapid assessment of subsurface contamination risks and optimization of environmental remediation strategies. The data and code for the paper will be published at https://github.com/ehsanhaghighat/STONet.
♻ ☆ SPGD: Steepest Perturbed Gradient Descent Optimization
Optimization algorithms are pivotal in advancing various scientific and industrial fields but often encounter obstacles such as trapping in local minima, saddle points, and plateaus (flat regions), which makes the convergence to reasonable or near-optimal solutions particularly challenging. This paper presents the Steepest Perturbed Gradient Descent (SPGD), a novel algorithm that innovatively combines the principles of the gradient descent method with periodic uniform perturbation sampling to effectively circumvent these impediments and lead to better solutions whenever possible. SPGD is distinctively designed to generate a set of candidate solutions and select the one exhibiting the steepest loss difference relative to the current solution. It enhances the traditional gradient descent approach by integrating a strategic exploration mechanism that significantly increases the likelihood of escaping sub-optimal local minima and navigating complex optimization landscapes effectively. Our approach not only retains the directed efficiency of gradient descent but also leverages the exploratory benefits of stochastic perturbations, thus enabling a more comprehensive search for global optima across diverse problem spaces. We demonstrate the efficacy of SPGD in solving the 3D component packing problem, an NP-hard challenge. Preliminary results show a substantial improvement over four established methods, particularly on response surfaces with complex topographies and in multidimensional non-convex continuous optimization problems. Comparative analyses with established 2D benchmark functions highlight SPGD's superior performance, showcasing its ability to navigate complex optimization landscapes. These results emphasize SPGD's potential as a versatile tool for a wide range of optimization problems.
comment: 28 pages, 26 figures, submitted to Journal of Mechanical Design
♻ ☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ Meta-Posterior Consistency for the Bayesian Inference of Metastable System
The vast majority of the literature on learning dynamical systems or stochastic processes from time series has focused on stable or ergodic systems, for both Bayesian and frequentist inference procedures. However, most real-world systems are only metastable, that is, the dynamics appear to be stable on some time scale, but are in fact unstable over longer time scales. Consistency of inference for metastable systems may not be possible, but one can ask about metaconsistency: Do inference procedures converge when observations are taken over a large but finite time interval, but diverge on longer time scales? In this paper we introduce, discuss, and quantify metaconsistency in a Bayesian framework. We discuss how metaconsistency can be exploited to efficiently infer a model for a sub-system of a larger system, where inference on the global behavior may require much more data, or there is no theoretical guarantee as to the asymptotic success of inference procedures. We also discuss the relation between metaconsistency and the spectral properties of the model dynamical system in the case of uniformly ergodic and non-ergodic diffusions.
comment: 32 pages, 3 figures
♻ ☆ Not All Water Consumption Is Equal: A Water Stress Weighted Metric for Sustainable Computing
Water consumption is an increasingly critical dimension of computing sustainability, especially as AI workloads rapidly scale. However, current water impact assessment often overlooks where and when water stress is more severe. To fill in this gap, we present SCARF, the first general framework that evaluates water impact of computing by factoring in both spatial and temporal variations in water stress. SCARF calculates an Adjusted Water Impact (AWI) metric that considers both consumption volume and local water stress over time. Through three case studies on LLM serving, datacenters, and semiconductor fabrication plants, we show the hidden opportunities for reducing water impact by optimizing location and time choices, paving the way for water-sustainable computing. The code is available at https://github.com/jojacola/SCARF.
comment: 7 pages, 9 figures, The 4th Workshop on Sustainable Computer Systems (HotCarbon'25), Cambridge, MA, July 10-11th, 2025
♻ ☆ Large Language Model Confidence Estimation via Black-Box Access
Estimating uncertainty or confidence in the responses of a model can be significant in evaluating trust not only in the responses, but also in the model as a whole. In this paper, we explore the problem of estimating confidence for responses of large language models (LLMs) with simply black-box or query access to them. We propose a simple and extensible framework where, we engineer novel features and train a (interpretable) model (viz. logistic regression) on these features to estimate the confidence. We empirically demonstrate that our simple framework is effective in estimating confidence of Flan-ul2, Llama-13b, Mistral-7b and GPT-4 on four benchmark Q\&A tasks as well as of Pegasus-large and BART-large on two benchmark summarization tasks with it surpassing baselines by even over $10\%$ (on AUROC) in some cases. Additionally, our interpretable approach provides insight into features that are predictive of confidence, leading to the interesting and useful discovery that our confidence models built for one LLM generalize zero-shot across others on a given dataset.
comment: Accepted to TMLR 2025
♻ ☆ Uncertainty Quantification of Wind Gust Predictions in the Northeast United States: An Evidential Neural Network and Explainable Artificial Intelligence Approach
Machine learning algorithms have shown promise in reducing bias in wind gust predictions, while still underpredicting high gusts. Uncertainty quantification (UQ) supports this issue by identifying when predictions are reliable or need cautious interpretation. Using data from 61 extratropical storms in the Northeastern USA, we introduce evidential neural network (ENN) as a novel approach for UQ in gust predictions, leveraging atmospheric variables from the Weather Research and Forecasting (WRF) model. Explainable AI techniques suggested that key predictive features contributed to higher uncertainty, which correlated strongly with storm intensity and spatial gust gradients. Compared to WRF, ENN demonstrated a 47% reduction in RMSE and allowed the construction of gust prediction intervals without an ensemble, successfully capturing at least 95% of observed gusts at 179 out of 266 stations. From an operational perspective, providing gust forecasts with quantified uncertainty enhances stakeholders' confidence in risk assessment and response planning for extreme gust events.
♻ ☆ MLR-Bench: Evaluating AI Agents on Open-Ended Machine Learning Research
Recent advancements in AI agents have demonstrated their growing potential to drive and support scientific discovery. In this work, we introduce MLR-Bench, a comprehensive benchmark for evaluating AI agents on open-ended machine learning research. MLR-Bench includes three key components: (1) 201 research tasks sourced from NeurIPS, ICLR, and ICML workshops covering diverse ML topics; (2) MLR-Judge, an automated evaluation framework combining LLM-based reviewers with carefully designed review rubrics to assess research quality; and (3) MLR-Agent, a modular agent scaffold capable of completing research tasks through four stages: idea generation, proposal formulation, experimentation, and paper writing. Our framework supports both stepwise assessment across these distinct research stages, and end-to-end evaluation of the final research paper. We then use MLR-Bench to evaluate six frontier LLMs and an advanced coding agent, finding that while LLMs are effective at generating coherent ideas and well-structured papers, current coding agents frequently (e.g., in 80% of the cases) produce fabricated or invalidated experimental results--posing a major barrier to scientific reliability. We validate MLR-Judge through human evaluation, showing high agreement with expert reviewers, supporting its potential as a scalable tool for research evaluation. We open-source MLR-Bench to help the community benchmark, diagnose, and improve AI research agents toward trustworthy and transparent scientific discovery.
comment: 42 pages, 9 figures
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization
Existing post-training techniques are broadly categorized into supervised fine-tuning (SFT) and reinforcement learning (RL) methods; the former is stable during training but suffers from limited generalization, while the latter, despite its stronger generalization capability, relies on additional preference data or reward models and carries the risk of reward exploitation. In order to preserve the advantages of both SFT and RL -- namely, eliminating the need for paired data and reward models while retaining the training stability of SFT and the generalization ability of RL -- a new alignment method, Self-Sampling Preference Optimization (SSPO), is proposed in this paper. SSPO introduces a Random Checkpoint Replay (RCR) strategy that utilizes historical checkpoints to construct paired data, thereby effectively mitigating overfitting. Simultaneously, a Self-Sampling Regularization (SSR) strategy is employed to dynamically evaluate the quality of generated samples; when the generated samples are more likely to be winning samples, the approach automatically switches from DPO (Direct Preference Optimization) to SFT, ensuring that the training process accurately reflects the quality of the samples. Experimental results demonstrate that SSPO not only outperforms existing methods on text-to-image benchmarks, but its effectiveness has also been validated in text-to-video tasks. We validate SSPO across both text-to-image and text-to-video benchmarks. SSPO surpasses all previous approaches on the text-to-image benchmarks and demonstrates outstanding performance on the text-to-video benchmarks.
♻ ☆ Persistence Paradox in Dynamic Science
Persistence is often regarded as a virtue in science. In this paper, however, we challenge this conventional view by highlighting its contextual nature, particularly how persistence can become a liability during periods of paradigm shift. We focus on the deep learning revolution catalyzed by AlexNet in 2012. Analyzing the 20-year career trajectories of over 5,000 scientists who were active in top machine learning venues during the preceding decade, we examine how their research focus and output evolved. We first uncover a dynamic period in which leading venues increasingly prioritized cutting-edge deep learning developments that displaced relatively traditional statistical learning methods. Scientists responded to these changes in markedly different ways. Those who were previously successful or affiliated with old teams adapted more slowly, experiencing what we term a rigidity penalty - a reluctance to embrace new directions leading to a decline in scientific impact, as measured by citation percentile rank. In contrast, scientists who pursued strategic adaptation - selectively pivoting toward emerging trends while preserving weak connections to prior expertise - reaped the greatest benefits. Taken together, our macro- and micro-level findings show that scientific breakthroughs act as mechanisms that reconfigure power structures within a field.
♻ ☆ The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering
Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits ranking throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss - visually grounded tokens gradually become less favored throughout generation, and (2) early excitation - semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information - visually grounded tokens though not being eventually decoded still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by about 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies. Code is available at https://github.com/LzVv123456/VISTA.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ Unsupervised Attributed Dynamic Network Embedding with Stability Guarantees
Stability for dynamic network embeddings ensures that nodes behaving the same at different times receive the same embedding, allowing comparison of nodes in the network across time. We present attributed unfolded adjacency spectral embedding (AUASE), a stable unsupervised representation learning framework for dynamic networks in which nodes are attributed with time-varying covariate information. To establish stability, we prove uniform convergence to an associated latent position model. We quantify the benefits of our dynamic embedding by comparing with state-of-the-art network representation learning methods on four real attributed networks. To the best of our knowledge, AUASE is the only attributed dynamic embedding that satisfies stability guarantees without the need for ground truth labels, which we demonstrate provides significant improvements for link prediction and node classification.
comment: 28 pages, 5 figures
♻ ☆ Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought
Large Language Models (LLMs) have demonstrated remarkable performance in many applications, including challenging reasoning problems via chain-of-thoughts (CoTs) techniques that generate ``thinking tokens'' before answering the questions. While existing theoretical works demonstrate that CoTs with discrete tokens boost the capability of LLMs, recent work on continuous CoTs lacks a theoretical understanding of why it outperforms discrete counterparts in various reasoning tasks such as directed graph reachability, a fundamental graph reasoning problem that includes many practical domain applications as special cases. In this paper, we prove that a two-layer transformer with $D$ steps of continuous CoTs can solve the directed graph reachability problem, where $D$ is the diameter of the graph, while the best known result of constant-depth transformers with discrete CoTs requires $O(n^2)$ decoding steps where $n$ is the number of vertices ($D
comment: 26 pages, 7 figures
♻ ☆ Realism in Action: Anomaly-Aware Diagnosis of Brain Tumors from Medical Images Using YOLOv8 and DeiT
Reliable diagnosis of brain tumors remains challenging due to low clinical incidence rates of such cases. However, this low rate is neglected in most of proposed methods. We propose a clinically inspired framework for anomaly-resilient tumor detection and classification. Detection leverages YOLOv8n fine-tuned on a realistically imbalanced dataset (1:9 tumor-to-normal ratio; 30,000 MRI slices from 81 patients). In addition, we propose a novel Patient-to-Patient (PTP) metric that evaluates diagnostic reliability at the patient level. Classification employs knowledge distillation: a Data Efficient Image Transformer (DeiT) student model is distilled from a ResNet152 teacher. The distilled ViT achieves an F1-score of 0.92 within 20 epochs, matching near teacher performance (F1=0.97) with significantly reduced computational resources. This end-to-end framework demonstrates high robustness in clinically representative anomaly-distributed data, offering a viable tool that adheres to realistic situations in clinics.
♻ ☆ Fully Differentiable Lagrangian Convolutional Neural Network for Physics-Informed Precipitation Nowcasting
This paper presents a convolutional neural network model for precipitation nowcasting that combines data-driven learning with physics-informed domain knowledge. We propose LUPIN, a Lagrangian Double U-Net for Physics-Informed Nowcasting, that draws from existing extrapolation-based nowcasting methods. It consists of a U-Net that dynamically produces mesoscale advection motion fields, a differentiable semi-Lagrangian extrapolation operator, and an advection-free U-Net capturing the growth and decay of precipitation over time. Using our approach, we successfully implement the Lagrangian convolutional neural network for precipitation nowcasting in a fully differentiable and GPU-accelerated manner. This allows for end-to-end training and inference, including the data-driven Lagrangian coordinate system transformation of the data at runtime. We evaluate the model and compare it with other related AI-based models both quantitatively and qualitatively in an extreme event case study. Based on our evaluation, LUPIN matches and even exceeds the performance of the chosen benchmarks, opening the door for other Lagrangian machine learning models.
comment: Submitted to Applied Computing and Geosciences
♻ ☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
♻ ☆ Studying and Improving Graph Neural Network-based Motif Estimation
Graph Neural Networks (GNNs) are a predominant method for graph representation learning. However, beyond subgraph frequency estimation, their application to network motif significance-profile (SP) prediction remains under-explored, with no established benchmarks in the literature. We propose to address this problem, framing SP estimation as a task independent of subgraph frequency estimation. Our approach shifts from frequency counting to direct SP estimation and modulates the problem as multitarget regression. The reformulation is optimised for interpretability, stability and scalability on large graphs. We validate our method using a large synthetic dataset and further test it on real-world graphs. Our experiments reveal that 1-WL limited models struggle to make precise estimations of SPs. However, they can generalise to approximate the graph generation processes of networks by comparing their predicted SP with the ones originating from synthetic generators. This first study on GNN-based motif estimation also hints at how using direct SP estimation can help go past the theoretical limitations that motif estimation faces when performed through subgraph counting.
comment: This manuscript represents a revised version from the paper on https://openreview.net/forum?id=PZVVOeu6xx. Still a work in progress. Comments are welcome! 23 pages (12 main text + references), 9 figures, 5 tables. (First update: Fix broken links, references and text review.)
♻ ☆ LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
Recent research has shown an increasing interest in utilizing pre-trained large language models (LLMs) for a variety of time series applications. However, there are three main challenges when using LLMs as foundational models for time series forecasting: (1) Cross-domain generalization. (2) Cross-modality alignment. (3) Error accumulation in autoregressive frameworks. To address these challenges, we proposed LangTime, a language-guided unified model for time series forecasting that incorporates cross-domain pre-training with reinforcement learning-based fine-tuning. Specifically, LangTime constructs Temporal Comprehension Prompts (TCPs), which include dataset-wise and channel-wise instructions, to facilitate domain adaptation and condense time series into a single token, enabling LLMs to understand better and align temporal data. To improve autoregressive forecasting, we introduce TimePPO, a reinforcement learning-based fine-tuning algorithm. TimePPO mitigates error accumulation by leveraging a multidimensional rewards function tailored for time series and a repeat-based value estimation strategy. Extensive experiments demonstrate that LangTime achieves state-of-the-art cross-domain forecasting performance, while TimePPO fine-tuning effectively enhances the stability and accuracy of autoregressive forecasting.
♻ ☆ On best approximation by multivariate ridge functions with applications to generalized translation networks
In this paper, we prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., for approximation by functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n \varrho_k(A_k x) \in \mathbb{R}$ with $\varrho_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity (order of differentiability) of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results regarding the approximation properties of univariate ridge functions to the multivariate case. We use our results to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.
♻ ☆ EvoPress: Accurate Dynamic Model Compression via Evolutionary Search ICML
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on estimating the importance of a given layer, implicitly assuming that layers contribute independently to the overall compression error. We begin from the motivating observation that this independence assumption does not generally hold for LLM compression: pruning a model further may even significantly recover performance. To address this, we propose EvoPress, a novel evolutionary framework for dynamic LLM compression. By formulating dynamic compression as a general optimization problem, EvoPress identifies optimal compression profiles in a highly efficient manner, and generalizes across diverse models and compression techniques. Via EvoPress, we achieve state-of-the-art performance for dynamic compression of Llama, Mistral, and Phi models, setting new benchmarks for structural pruning (block/layer dropping), unstructured sparsity, and quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress}.
comment: ICML camera-ready
♻ ☆ Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data
On-device learning at the edge enables low-latency, private personalization with improved long-term robustness and reduced maintenance costs. Yet, achieving scalable, low-power end-to-end on-chip learning, especially from real-world sequential data with a limited number of examples, is an open challenge. Indeed, accelerators supporting error backpropagation optimize for learning performance at the expense of inference efficiency, while simplified learning algorithms often fail to reach acceptable accuracy targets. In this work, we present Chameleon, leveraging three key contributions to solve these challenges. (i) A unified learning and inference architecture supports few-shot learning (FSL), continual learning (CL) and inference at only 0.5% area overhead to the inference logic. (ii) Long temporal dependencies are efficiently captured with temporal convolutional networks (TCNs), enabling the first demonstration of end-to-end on-chip FSL and CL on sequential data and inference on 16-kHz raw audio. (iii) A dual-mode, matrix-multiplication-free compute array allows either matching the power consumption of state-of-the-art inference-only keyword spotting (KWS) accelerators or enabling $4.3\times$ higher peak GOPS. Fabricated in 40-nm CMOS, Chameleon sets new accuracy records on Omniglot for end-to-end on-chip FSL (96.8%, 5-way 1-shot, 98.8%, 5-way 5-shot) and CL (82.2% final accuracy for learning 250 classes with 10 shots), while maintaining an inference accuracy of 93.3% on the 12-class Google Speech Commands dataset at an extreme-edge power budget of 3.1 $\mu$W.
comment: 14 pages, 7 figures; added FSL power consumption measurements at 100 kHz clock speed, fixed typos
♻ ☆ Conditional Local Independence Testing for Dynamic Causal Discovery
Inferring causal relationships from dynamical systems is the central interest of many scientific inquiries. Conditional Local Independence (CLI), which describes whether the evolution of one process is influenced by another process given additional processes, is important for causal learning in such systems. However, existing CLI tests were limited to counting processes. In this paper, we propose a nonparametric CLT test for It\^o processes. Specifically, we first introduce a testing statistic based on the Local Covariance Measure (LCM) by constructing a martingale from the conditional expectation of the process of interest. For estimation, we propose an efficient estimator based on the optimal filtering equation, which can achieve root-N consistency. To establish the asymptotic level and power of the test, we relax the restrictive boundedness condition to a moment bound condition, which is practical for It\^o processes. We verify the proposed test in synthetic and real-world experiments.
comment: Working paper
♻ ☆ Machine Learning-Based Analysis of ECG and PCG Signals for Rheumatic Heart Disease Detection: A Scoping Review (2015-2025)
AI-powered stethoscopes offer a promising alternative for screening rheumatic heart disease (RHD), particularly in regions with limited diagnostic infrastructure. Early detection is vital, yet echocardiography, the gold standard tool, remains largely inaccessible in low-resource settings due to cost and workforce constraints. This review systematically examines machine learning (ML) applications from 2015 to 2025 that analyze electrocardiogram (ECG) and phonocardiogram (PCG) data to support accessible, scalable screening of all RHD variants in relation to the World Heart Federation's "25 by 25" goal to reduce RHD mortality. Using PRISMA-ScR guidelines, 37 peer-reviewed studies were selected from PubMed, IEEE Xplore, Scopus, and Embase. Convolutional neural networks (CNNs) dominate recent efforts, achieving a median accuracy of 97.75%, F1-score of 0.95, and AUROC of 0.89. However, challenges remain: 73% of studies used single-center datasets, 81.1% relied on private data, only 10.8% were externally validated, and none assessed cost-effectiveness. Although 45.9% originated from endemic regions, few addressed demographic diversity or implementation feasibility. These gaps underscore the disconnect between model performance and clinical readiness. Bridging this divide requires standardized benchmark datasets, prospective trials in endemic areas, and broader validation. If these issues are addressed, AI-augmented auscultation could transform cardiovascular diagnostics in underserved populations, thereby aiding early detection. This review also offers practical recommendations for building accessible ML-based RHD screening tools, aiming to close the diagnostic gap in low-resource settings where conventional auscultation may miss up to 90% of cases and echocardiography remains out of reach.
♻ ☆ Gradient Descent Algorithm in Hilbert Spaces under Stationary Markov Chains with $φ$- and $β$-Mixing
In this paper, we study a strictly stationary Markov chain gradient descent algorithm operating in general Hilbert spaces. Our analysis focuses on the mixing coefficients of the underlying process, specifically the $\phi$- and $\beta$-mixing coefficients. Under these assumptions, we derive probabilistic upper bounds on the convergence behavior of the algorithm based on the exponential as well as the polynomial decay of the mixing coefficients.
♻ ☆ Towards Efficient Parametric State Estimation in Circulating Fuel Reactors with Shallow Recurrent Decoder Networks
The recent developments in data-driven methods have paved the way to new methodologies to provide accurate state reconstruction of engineering systems; nuclear reactors represent particularly challenging applications for this task due to the complexity of the strongly coupled physics involved and the extremely harsh and hostile environments, especially for new technologies such as Generation-IV reactors. Data-driven techniques can combine different sources of information, including computational proxy models and local noisy measurements on the system, to robustly estimate the state. This work leverages the novel Shallow Recurrent Decoder architecture to infer the entire state vector (including neutron fluxes, precursors concentrations, temperature, pressure and velocity) of a reactor from three out-of-core time-series neutron flux measurements alone. In particular, this work extends the standard architecture to treat parametric time-series data, ensuring the possibility of investigating different accidental scenarios and showing the capabilities of this approach to provide an accurate state estimation in various operating conditions. This paper considers as a test case the Molten Salt Fast Reactor (MSFR), a Generation-IV reactor concept, characterised by strong coupling between the neutronics and the thermal hydraulics due to the liquid nature of the fuel. The promising results of this work are further strengthened by the possibility of quantifying the uncertainty associated with the state estimation, due to the considerably low training cost. The accurate reconstruction of every characteristic field in real-time makes this approach suitable for monitoring and control purposes in the framework of a reactor digital twin.
♻ ☆ Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
There has been a growing interest in studying sequential neural posterior estimation (SNPE) techniques for their advantages in dealing with simulation-based models with intractable likelihoods. They are devoted to learning the posterior from adaptively proposed simulations using neural network-based conditional density estimators. As a SNPE technique, the automatic posterior transformation (APT) method proposed by Greenberg et al. (2019) performs notably and scales to high dimensional data. However, the APT method bears the computation of an expectation of the logarithm of an intractable normalizing constant, i.e., a nested expectation. Although atomic APT was proposed to solve this by discretizing the normalizing constant, it remains challenging to analyze the convergence of learning. In this paper, we propose a nested APT method to estimate the involved nested expectation instead. This facilitates establishing the convergence analysis. Since the nested estimators for the loss function and its gradient are biased, we make use of unbiased multi-level Monte Carlo (MLMC) estimators for debiasing. To further reduce the excessive variance of the unbiased estimators, this paper also develops some truncated MLMC estimators by taking account of the trade-off between the bias and the average cost. Numerical experiments for approximating complex posteriors with multimodal in moderate dimensions are provided.
comment: 30 pages, 6 figures
♻ ☆ Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual Reinforcement Learning ICML 2025
Effective visual representation learning is crucial for reinforcement learning (RL) agents to extract task-relevant information from raw sensory inputs and generalize across diverse environments. However, existing RL benchmarks lack the ability to systematically evaluate representation learning capabilities in isolation from other learning challenges. To address this gap, we introduce the Sliding Puzzles Gym (SPGym), a novel benchmark that transforms the classic 8-tile puzzle into a visual RL task with images drawn from arbitrarily large datasets. SPGym's key innovation lies in its ability to precisely control representation learning complexity through adjustable grid sizes and image pools, while maintaining fixed environment dynamics, observation, and action spaces. This design enables researchers to isolate and scale the visual representation challenge independently of other learning components. Through extensive experiments with model-free and model-based RL algorithms, we uncover fundamental limitations in current methods' ability to handle visual diversity. As we increase the pool of possible images, all algorithms exhibit in- and out-of-distribution performance degradation, with sophisticated representation learning techniques often underperforming simpler approaches like data augmentation. These findings highlight critical gaps in visual representation learning for RL and establish SPGym as a valuable tool for driving progress in robust, generalizable decision-making systems.
comment: Accepted at ICML 2025
♻ ☆ T2I-R1: Reinforcing Image Generation with Collaborative Semantic-level and Token-level CoT
Recent advancements in large language models have demonstrated how chain-of-thought (CoT) and reinforcement learning (RL) can improve performance. However, applying such reasoning strategies to the visual generation domain remains largely unexplored. In this paper, we present T2I-R1, a novel reasoning-enhanced text-to-image generation model, powered by RL with a bi-level CoT reasoning process. Specifically, we identify two levels of CoT that can be utilized to enhance different stages of generation: (1) the semantic-level CoT for high-level planning of the prompt and (2) the token-level CoT for low-level pixel processing during patch-by-patch generation. To better coordinate these two levels of CoT, we introduce BiCoT-GRPO with an ensemble of generation rewards, which seamlessly optimizes both generation CoTs within the same training step. By applying our reasoning strategies to the baseline model, Janus-Pro, we achieve superior performance with 13% improvement on T2I-CompBench and 19% improvement on the WISE benchmark, even surpassing the state-of-the-art model FLUX.1. Code is available at: https://github.com/CaraJ7/T2I-R1
comment: Project Page: https://github.com/CaraJ7/T2I-R1
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Learning dynamical systems from data: Gradient-based dictionary optimization
The Koopman operator plays a crucial role in analyzing the global behavior of dynamical systems. Existing data-driven methods for approximating the Koopman operator or discovering the governing equations of the underlying system typically require a fixed set of basis functions, also called dictionary. The optimal choice of basis functions is highly problem-dependent and often requires domain knowledge. We present a novel gradient descent-based optimization framework for learning suitable and interpretable basis functions from data and show how it can be used in combination with EDMD, SINDy, and PDE-FIND. We illustrate the efficacy of the proposed approach with the aid of various benchmark problems such as the Ornstein-Uhlenbeck process, Chua's circuit, a nonlinear heat equation, as well as protein-folding data.
♻ ☆ The Number of Trials Matters in Infinite-Horizon General-Utility Markov Decision Processes
The general-utility Markov decision processes (GUMDPs) framework generalizes the MDPs framework by considering objective functions that depend on the frequency of visitation of state-action pairs induced by a given policy. In this work, we contribute with the first analysis on the impact of the number of trials, i.e., the number of randomly sampled trajectories, in infinite-horizon GUMDPs. We show that, as opposed to standard MDPs, the number of trials plays a key-role in infinite-horizon GUMDPs and the expected performance of a given policy depends, in general, on the number of trials. We consider both discounted and average GUMDPs, where the objective function depends, respectively, on discounted and average frequencies of visitation of state-action pairs. First, we study policy evaluation under discounted GUMDPs, proving lower and upper bounds on the mismatch between the finite and infinite trials formulations for GUMDPs. Second, we address average GUMDPs, studying how different classes of GUMDPs impact the mismatch between the finite and infinite trials formulations. Third, we provide a set of empirical results to support our claims, highlighting how the number of trajectories and the structure of the underlying GUMDP influence policy evaluation.
♻ ☆ Identity Preserving 3D Head Stylization with Multiview Score Distillation
3D head stylization transforms realistic facial features into artistic representations, enhancing user engagement across gaming and virtual reality applications. While 3D-aware generators have made significant advancements, many 3D stylization methods primarily provide near-frontal views and struggle to preserve the unique identities of original subjects, often resulting in outputs that lack diversity and individuality. This paper addresses these challenges by leveraging the PanoHead model, synthesizing images from a comprehensive 360-degree perspective. We propose a novel framework that employs negative log-likelihood distillation (LD) to enhance identity preservation and improve stylization quality. By integrating multi-view grid score and mirror gradients within the 3D GAN architecture and introducing a score rank weighing technique, our approach achieves substantial qualitative and quantitative improvements. Our findings not only advance the state of 3D head stylization but also provide valuable insights into effective distillation processes between diffusion models and GANs, focusing on the critical issue of identity preservation. Please visit the https://three-bee.github.io/head_stylization for more visuals.
comment: https://three-bee.github.io/head_stylization
♻ ☆ Mirror Online Conformal Prediction with Intermittent Feedback
Online conformal prediction enables the runtime calibration of a pre-trained artificial intelligence model using feedback on its performance. Calibration is achieved through set predictions that are updated via online rules so as to ensure long-term coverage guarantees. While recent research has demonstrated the benefits of incorporating prior knowledge into the calibration process, this has come at the cost of replacing coverage guarantees with less tangible regret guarantees based on the quantile loss. This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework that integrates prior knowledge, operates under potentially intermittent feedback, and features minimal memory complexity. IM-OCP guarantees long-term coverage and sub-linear regret, both of which hold deterministically for any given data sequence and in expectation with respect to the intermittent feedback.
♻ ☆ Training-Conditional Coverage Bounds under Covariate Shift
Conformal prediction methodology has recently been extended to the covariate shift setting, where the distribution of covariates differs between training and test data. While existing results ensure that the prediction sets from these methods achieve marginal coverage above a nominal level, their coverage rate conditional on the training dataset (referred to as training-conditional coverage) remains unexplored. In this paper, we address this gap by deriving upper bounds on the tail of the training-conditional coverage distribution, offering probably approximately correct (PAC) guarantees for these methods. Our results quantify the relationship between the quality of the prediction sets and the severity of distributional changes, and can potentially be used to compute more efficient prediction sets.
comment: arXiv admin note: text overlap with arXiv:2404.13731
♻ ☆ A novel Trunk Branch-net PINN for flow and heat transfer prediction in porous medium
A novel Trunk-Branch (TB)-net physics-informed neural network (PINN) architecture is developed, which is a PINN-based method incorporating trunk and branch nets to capture both global and local features. The aim is to solve four main classes of problems: forward flow problem, forward heat transfer problem, inverse heat transfer problem, and transfer learning problem within the porous medium, which are notoriously complex that could not be handled by origin PINN. In the proposed TB-net PINN architecture, a Fully-connected Neural Network (FNN) is used as the trunk net, followed by separated FNNs as the branch nets with respect to outputs, and automatic differentiation is performed for partial derivatives of outputs with respect to inputs by considering various physical loss. The effectiveness and flexibility of the novel TB-net PINN architecture is demonstrated through a collection of forward problems, and transfer learning validates the feasibility of resource reuse. Combining with the superiority over traditional numerical methods in solving inverse problems, the proposed TB-net PINN shows its great potential for practical engineering applications.
comment: 33 pages, 24 figures,
♻ ☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
♻ ☆ Integrating Expert Labels into LLM-based Emission Goal Detection: Example Selection vs Automatic Prompt Design
We address the detection of emission reduction goals in corporate reports, an important task for monitoring companies' progress in addressing climate change. Specifically, we focus on the issue of integrating expert feedback in the form of labeled example passages into LLM-based pipelines, and compare the two strategies of (1) a dynamic selection of few-shot examples and (2) the automatic optimization of the prompt by the LLM itself. Our findings on a public dataset of 769 climate-related passages from real-world business reports indicate that automatic prompt optimization is the superior approach, while combining both methods provides only limited benefit. Qualitative results indicate that optimized prompts do indeed capture many intricacies of the targeted emission goal extraction task.
♻ ☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
♻ ☆ Multiresolution Analysis and Statistical Thresholding on Dynamic Networks
Detecting structural change in dynamic network data has wide-ranging applications. Existing approaches typically divide the data into time bins, extract network features within each bin, and then compare these features over time. This introduces an inherent tradeoff between temporal resolution and the statistical stability of the extracted features. Despite this tradeoff, reminiscent of time-frequency tradeoffs in signal processing, most methods rely on a fixed temporal resolution. Choosing an appropriate resolution parameter is typically difficult and can be especially problematic in domains like cybersecurity, where anomalous behavior may emerge at multiple time scales. We address this challenge by proposing ANIE (Adaptive Network Intensity Estimation), a multi-resolution framework designed to automatically identify the time scales at which network structure evolves, enabling the joint detection of both rapid and gradual changes. Modeling interactions as Poisson processes, our method proceeds in two steps: (1) estimating a low-dimensional subspace of node behavior, and (2) deriving a set of novel empirical affinity coefficients that quantify change in interaction intensity between latent factors and support statistical testing for structural change across time scales. We provide theoretical guarantees for subspace estimation and the asymptotic behavior of the affinity coefficients, enabling model-based change detection. Experiments on synthetic networks show that ANIE adapts to the appropriate time resolution and is able to capture sharp structural changes while remaining robust to noise. Furthermore, applications to real-world data showcase the practical benefits of ANIE's multiresolution approach to detecting structural change over fixed resolution methods.
♻ ☆ Downscaling Neural Network for Coastal Simulations
Learning the fine-scale details of a coastal ocean simulation from a coarse representation is a challenging task. For real-world applications, high-resolution simulations are necessary to advance understanding of many coastal processes, specifically, to predict flooding resulting from tsunamis and storm surges. We propose a Downscaling Neural Network for Coastal Simulation (DNNCS) for spatiotemporal enhancement to efficiently learn the high-resolution numerical solution. Given images of coastal simulations produced on low-resolution computational meshes using low polynomial order discontinuous Galerkin discretizations and a coarse temporal resolution, the proposed DNNCS learns to produce high-resolution free surface elevation and velocity visualizations in both time and space. To efficiently model the dynamic changes over time and space, we propose grid-aware spatiotemporal attention to project the temporal features to the spatial domain for non-local feature matching. The coordinate information is also utilized via positional encoding. For the final reconstruction, we use the spatiotemporal bilinear operation to interpolate the missing frames and then expand the feature maps to the frequency domain for residual mapping. Besides data-driven losses, the proposed physics-informed loss guarantees gradient consistency and momentum changes. Their combination contributes to the overall 24% improvements in Root Mean Square Error (RMSE). To train the proposed model, we propose a novel coastal simulation dataset and use it for model optimization and evaluation. Our method shows superior downscaling quality and fast computation compared to the state-of-the-art methods.
comment: 13 pages, 12 figures
♻ ☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
comment: Submitted to Information Sciences
♻ ☆ Integrating Dual Prototypes for Task-Wise Adaption in Pre-Trained Model-Based Class-Incremental Learning
Class-incremental learning (CIL) aims to acquire new classes while conserving historical knowledge incrementally. Despite existing pre-trained model (PTM) based methods performing excellently in CIL, it is better to fine-tune them on downstream incremental tasks with massive patterns unknown to PTMs. However, using task streams for fine-tuning could lead to \textit{catastrophic forgetting} that will erase the knowledge in PTMs. This paper proposes the Dual Prototype network for Task-wise Adaption (DPTA) of PTM-based CIL. For each incremental learning task, an adapter module is built to fine-tune the PTM, where the center-adapt loss forces the representation to be more centrally clustered and class separable. The dual prototype network improves the prediction process by enabling test-time adapter selection, where the raw prototypes deduce several possible task indexes of test samples to select suitable adapter modules for PTM, and the augmented prototypes that could separate highly correlated classes are utilized to determine the final result. Experiments on several benchmark datasets demonstrate the excellent performance of DPTA. Code is available in https://github.com/Yorkxzm/DPTA
comment: 10 pages,9 figures,2 tables
♻ ☆ The Curse of Depth in Large Language Models
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
♻ ☆ Plastic tensor networks for interpretable generative modeling
A structural optimization scheme for a single-layer nonnegative adaptive tensor tree (NATT) that models a target probability distribution is proposed as an alternative paradigm for generative modeling. The NATT scheme, by construction, automatically searches for a tree structure that best fits a given discrete dataset whose features serve as inputs, and has the advantage that it is interpretable as a probabilistic graphical model. We consider the NATT scheme and a recently proposed Born machine adaptive tensor tree (BMATT) optimization scheme and demonstrate their effectiveness on a variety of generative modeling tasks where the objective is to infer the hidden structure of a provided dataset. Our results show that in terms of minimizing the negative log-likelihood, the single-layer scheme has model performance comparable to the Born machine scheme, though not better. The tasks include deducing the structure of binary bitwise operations, learning the internal structure of random Bayesian networks given only visible sites, and a real-world example related to hierarchical clustering where a cladogram is constructed from mitochondrial DNA sequences. In doing so, we also show the importance of the choice of network topology and the versatility of a least-mutual information criterion in selecting a candidate structure for a tensor tree, as well as discuss aspects of these tensor tree generative models including their information content and interpretability.
comment: 18 pages, 17 figures
♻ ☆ UFGraphFR: Graph Federation Recommendation System based on User Text description features
Federated learning has emerged as a key paradigm in privacy-preserving computing due to its "data usable but not visible" property, enabling users to collaboratively train models without sharing raw data. Motivated by this, federated recommendation systems offer a promising architecture that balances user privacy with recommendation accuracy through distributed collaborative learning. However, existing federated recommendation methods often neglect the underlying semantic or behavioral relationships between users during parameter aggregation, which limits their recommendation effectiveness. To overcome this limitation, graph-based federated recommendation systems have been proposed to leverage neighborhood information. Yet, conventional graph construction methods usually require access to raw user data or explicit social links, which contradicts the strict privacy requirements of federated learning. In this work, we propose UFGraphFR (User Text-feature-based Graph Federated Recommendation), a novel personalized federated recommendation framework that constructs a user graph based on clients' locally embedded text features. Our core assumption is that users with similar textual feature descriptions exhibit similar preferences. Accordingly, UFGraphFR introduces two key components: (1) a privacy-preserving user relationship graph constructed from the joint embedding layer's weight matrix without leaking raw user attributes; (2) a Transformer-based architecture to model temporal dependencies in user-item interaction sequences. Experimental results on benchmark datasets such as MovieLens and HetRec2011 demonstrate that UFGraphFR achieves recommendation accuracy comparable to both centralized and state-of-the-art federated baselines while preserving user privacy. The code is available at: https://github.com/trueWangSyutung/UFGraphFR.
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
♻ ☆ Both Asymptotic and Non-Asymptotic Convergence of Quasi-Hyperbolic Momentum using Increasing Batch Size
Momentum methods were originally introduced for their superiority to stochastic gradient descent (SGD) in deterministic settings with convex objective functions. However, despite their widespread application to deep neural networks -- a representative case of stochastic nonconvex optimization -- the theoretical justification for their effectiveness in such settings remains limited. Quasi-hyperbolic momentum (QHM) is an algorithm that generalizes various momentum methods and has been studied to better understand the class of momentum-based algorithms as a whole. In this paper, we provide both asymptotic and non-asymptotic convergence results for mini-batch QHM with an increasing batch size. We show that achieving asymptotic convergence requires either a decaying learning rate or an increasing batch size. Since a decaying learning rate adversely affects non-asymptotic convergence, we demonstrate that using mini-batch QHM with an increasing batch size -- without decaying the learning rate -- can be a more effective strategy. Our experiments show that even a finite increase in batch size can provide benefits for training neural networks.
♻ ☆ RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language (VL) alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning and offer limited interpretability through attention probability visualizations. To address these challenges, we introduce RadZero, a novel framework for VL alignment in radiology with zero-shot multi-task capability. A key component of our approach is VL-CABS (Vision-Language Cross-Attention Based on Similarity), which aligns text embeddings with local image features for interpretable, fine-grained VL reasoning. RadZero leverages large language models to extract concise semantic sentences from radiology reports and employs multi-positive contrastive training to effectively capture relationships between images and multiple relevant textual descriptions. It uses a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, VL-CABS enables zero-shot inference with similarity probability for classification, and pixel-level VL similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, VL similarity map analysis highlights the potential of VL-CABS for improving explainability in VL alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
♻ ☆ Parameter-Efficient Fine-Tuning via Circular Convolution ACL 2025
Low-Rank Adaptation (LoRA) has gained popularity for fine-tuning large foundation models, leveraging low-rank matrices $\mathbf{A}$ and $\mathbf{B}$ to represent weight changes (i.e., $\Delta \mathbf{W} = \mathbf{B} \mathbf{A}$). This method reduces trainable parameters and mitigates heavy memory consumption associated with full delta matrices by sequentially multiplying $\mathbf{A}$ and $\mathbf{B}$ with the activation. Despite its success, the intrinsic low-rank characteristic may limit its performance. Although several variants have been proposed to address this issue, they often overlook the crucial computational and memory efficiency brought by LoRA. In this paper, we propose Circular Convolution Adaptation (C$^3$A), which not only achieves high-rank adaptation with enhanced performance but also excels in both computational power and memory utilization. Extensive experiments demonstrate that C$^3$A consistently outperforms LoRA and its variants across various fine-tuning tasks.
comment: ACL 2025
♻ ☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
♻ ☆ Two-Stage Regularization-Based Structured Pruning for LLMs
The deployment of large language models (LLMs) is largely hindered by their large number of parameters. Structural pruning has emerged as a promising solution. Prior structured pruning methods directly remove unimportant parameters based on certain metrics, which often causes knowledge loss and necessitates extensive retraining. To overcome this, we introduce a novel pruning method TRSP: Two-Stage Regularization-Based Structured Pruning for LLMs. Specifically, we multiply the output of each transformer layer by an initial learnable weight and iteratively learn these weights by adding their $\ell_1$-norm as a regularization term to the loss function, serving as the first-stage regularization. Subsequently, we apply additional regularization to the difference between the output and input of layers with smaller weights, encouraging the shift of knowledge to the preserved layers. This serves as the second-stage regularization. TRSP retains more knowledge and better preserves model performance than direct parameter elimination. Through extensive experimentation we show that TRSP outperforms strong layer-wise structured pruning methods without requiring retraining. As a layer-wise pruning method, it delivers notable end-to-end acceleration, making it a promising solution for efficient LLM deployment.
♻ ☆ PEAKS: Selecting Key Training Examples Incrementally via Prediction Error Anchored by Kernel Similarity
As deep learning continues to be driven by ever-larger datasets, understanding which examples are most important for generalization has become a critical question. While progress in data selection continues, emerging applications require studying this problem in dynamic contexts. To bridge this gap, we pose the Incremental Data Selection (IDS) problem, where examples arrive as a continuous stream, and need to be selected without access to the full data source. In this setting, the learner must incrementally build a training dataset of predefined size while simultaneously learning the underlying task. We find that in IDS, the impact of a new sample on the model state depends fundamentally on both its geometric relationship in the feature space and its prediction error. Leveraging this insight, we propose PEAKS (Prediction Error Anchored by Kernel Similarity), an efficient data selection method tailored for IDS. Our comprehensive evaluations demonstrate that PEAKS consistently outperforms existing selection strategies. Furthermore, PEAKS yields increasingly better performance returns than random selection as training data size grows on real-world datasets. The code is available at https://github.com/BurakGurbuz97/PEAKS.
♻ ☆ Towards Large-Scale In-Context Reinforcement Learning by Meta-Training in Randomized Worlds
In-Context Reinforcement Learning (ICRL) enables agents to learn automatically and on-the-fly from their interactive experiences. However, a major challenge in scaling up ICRL is the lack of scalable task collections. To address this, we propose the procedurally generated tabular Markov Decision Processes, named AnyMDP. Through a carefully designed randomization process, AnyMDP is capable of generating high-quality tasks on a large scale while maintaining relatively low structural biases. To facilitate efficient meta-training at scale, we further introduce step-wise supervision and induce prior information in the ICRL framework.Our results demonstrate that, with a sufficiently large scale of AnyMDP tasks, the proposed model can generalize to tasks that were not considered in the training set. The scalable task set provided by AnyMDP also enables a more thorough empirical investigation of the relationship between data distribution and ICRL performance. We further show that the generalization of ICRL potentially comes at the cost of increased task diversity and longer adaptation periods. This finding carries critical implications for scaling robust ICRL capabilities, highlighting the necessity of diverse and extensive task design, and prioritizing asymptotic performance over few-shot adaptation.
comment: Preprint
♻ ☆ BlockDialect: Block-wise Fine-grained Mixed Format Quantization for Energy-Efficient LLM Inference ICML 2025
The rapidly increasing size of large language models (LLMs) presents significant challenges in memory usage and computational costs. Quantizing both weights and activations can address these issues, with hardware-supported fine-grained scaling emerging as a promising solution to mitigate outliers. However, existing methods struggle to capture nuanced block data distributions. We propose BlockDialect, a block-wise fine-grained mixed format technique that assigns a per-block optimal number format from a formatbook for better data representation. Additionally, we introduce DialectFP4, a formatbook of FP4 variants (akin to dialects) that adapt to diverse data distributions. To leverage this efficiently, we propose a two-stage approach for online DialectFP4 activation quantization. Importantly, DialectFP4 ensures energy efficiency by selecting representable values as scaled integers compatible with low-precision integer arithmetic. BlockDialect achieves 10.78% (7.48%) accuracy gain on the LLaMA3-8B (LLaMA2-7B) model compared to MXFP4 format with lower bit usage per data, while being only 5.45% (2.69%) below full precision even when quantizing full-path matrix multiplication. Focusing on how to represent over how to scale, our work presents a promising path for energy-efficient LLM inference.
comment: ICML 2025
♻ ☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
♻ ☆ Analogical Learning for Cross-Scenario Generalization: Framework and Application to Intelligent Localization
Existing learning models often exhibit poor generalization when deployed across diverse scenarios. It is primarily due to that the underlying reference frame of the data varies with the deployment environment and settings. However, despite that data of each scenario has a distinct reference frame, its generation generally follows common underlying physical rules. Based on this understanding, this article proposes a deep learning framework named analogical learning (AL), which implicitly retrieves the reference frame information associated with a scenario and then to make accurate prediction by relative analogy with other scenarios. Specifically, we design a bipartite neural network called Mateformer. Its first part captures the relativity within multiple latent feature spaces between the input data and a small amount of embedded data from the studied scenario, while its second part uses this relativity to guide the nonlinear analogy. We apply AL to the typical multi-scenario learning problem of intelligent wireless localization in cellular networks. Extensive experiments validate AL's superiority across three key dimensions. First, it achieves state-of-the-art accuracy in single-scenario benchmarks. Second, it demonstrates stable transferability between different scenarios, avoiding catastrophic forgetting. Finally, and most importantly, it robustly adapts to new, unseen scenarios--including dynamic weather and traffic conditions--without any tuning. All data and code are available at https://github.com/ziruichen-research/ALLoc.
♻ ☆ A Good Start Matters: Enhancing Continual Learning with Data-Driven Weight Initialization
To adapt to real-world data streams, continual learning (CL) systems must rapidly learn new concepts while preserving and utilizing prior knowledge. When it comes to adding new information to continually-trained deep neural networks (DNNs), classifier weights for newly encountered categories are typically initialized randomly, leading to high initial training loss (spikes) and instability. Consequently, achieving optimal convergence and accuracy requires prolonged training, increasing computational costs. Inspired by Neural Collapse (NC), we propose a weight initialization strategy to improve learning efficiency in CL. In DNNs trained with mean-squared-error, NC gives rise to a Least-Square (LS) classifier in the last layer, whose weights can be analytically derived from learned features. We leverage this LS formulation to initialize classifier weights in a data-driven manner, aligning them with the feature distribution rather than using random initialization. Our method mitigates initial loss spikes and accelerates adaptation to new tasks. We evaluate our approach in large-scale CL settings, demonstrating faster adaptation and improved CL performance.
comment: Accepted to the Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ Neuro-Informed Joint Learning Enhances Cognitive Workload Decoding in Portable BCIs
Portable and wearable consumer-grade electroencephalography (EEG) devices, like Muse headbands, offer unprecedented mobility for daily brain-computer interface (BCI) applications, including cognitive load detection. However, the exacerbated non-stationarity in portable EEG signals constrains data fidelity and decoding accuracy, creating a fundamental trade-off between portability and performance. To mitigate such limitation, we propose MuseCogNet (Muse-based Cognitive Network), a unified joint learning framework integrating self-supervised and supervised training paradigms. In particular, we introduce an EEG-grounded self-supervised reconstruction loss based on average pooling to capture robust neurophysiological patterns, while cross-entropy loss refines task-specific cognitive discriminants. This joint learning framework resembles the bottom-up and top-down attention in humans, enabling MuseCogNet to significantly outperform state-of-the-art methods on a publicly available Muse dataset and establish an implementable pathway for neurocognitive monitoring in ecological settings.
comment: 2 pages short paper
♻ ☆ Ansatz-free Hamiltonian learning with Heisenberg-limited scaling
Learning the unknown interactions that govern a quantum system is crucial for quantum information processing, device benchmarking, and quantum sensing. The problem, known as Hamiltonian learning, is well understood under the assumption that interactions are local, but this assumption may not hold for arbitrary Hamiltonians. Previous methods all require high-order inverse polynomial dependency with precision, unable to surpass the standard quantum limit and reach the gold standard Heisenberg-limited scaling. Whether Heisenberg-limited Hamiltonian learning is possible without prior assumptions about the interaction structures, a challenge we term \emph{ansatz-free Hamiltonian learning}, remains an open question. In this work, we present a quantum algorithm to learn arbitrary sparse Hamiltonians without any structure constraints using only black-box queries of the system's real-time evolution and minimal digital controls to attain Heisenberg-limited scaling in estimation error. Our method is also resilient to state-preparation-and-measurement errors, enhancing its practical feasibility. We numerically demonstrate our ansatz-free protocol for learning physical Hamiltonians and validating analog quantum simulations, benchmarking our performance against the state-of-the-art Heisenberg-limited learning approach. Moreover, we establish a fundamental trade-off between total evolution time and quantum control on learning arbitrary interactions, revealing the intrinsic interplay between controllability and total evolution time complexity for any learning algorithm. These results pave the way for further exploration into Heisenberg-limited Hamiltonian learning in complex quantum systems under minimal assumptions, potentially enabling new benchmarking and verification protocols.
comment: Updated version with expanded explanations, added pseudocode, and new numerical demonstrations. 10 pages, 4 figures. HYH and MM contributed equally
♻ ☆ CoCMT: Communication-Efficient Cross-Modal Transformer for Collaborative Perception
Multi-agent collaborative perception enhances each agent perceptual capabilities by sharing sensing information to cooperatively perform robot perception tasks. This approach has proven effective in addressing challenges such as sensor deficiencies, occlusions, and long-range perception. However, existing representative collaborative perception systems transmit intermediate feature maps, such as bird-eye view (BEV) representations, which contain a significant amount of non-critical information, leading to high communication bandwidth requirements. To enhance communication efficiency while preserving perception capability, we introduce CoCMT, an object-query-based collaboration framework that optimizes communication bandwidth by selectively extracting and transmitting essential features. Within CoCMT, we introduce the Efficient Query Transformer (EQFormer) to effectively fuse multi-agent object queries and implement a synergistic deep supervision to enhance the positive reinforcement between stages, leading to improved overall performance. Experiments on OPV2V and V2V4Real datasets show CoCMT outperforms state-of-the-art methods while drastically reducing communication needs. On V2V4Real, our model (Top-50 object queries) requires only 0.416 Mb bandwidth, 83 times less than SOTA methods, while improving AP70 by 1.1 percent. This efficiency breakthrough enables practical collaborative perception deployment in bandwidth-constrained environments without sacrificing detection accuracy.
♻ ☆ Lifelong Learning of Video Diffusion Models From a Single Video Stream
This work demonstrates that training autoregressive video diffusion models from a single video stream$\unicode{x2013}$resembling the experience of embodied agents$\unicode{x2013}$is not only possible, but can also be as effective as standard offline training given the same number of gradient steps. Our work further reveals that this main result can be achieved using experience replay methods that only retain a subset of the preceding video stream. To support training and evaluation in this setting, we introduce four new datasets for streaming lifelong generative video modeling: Lifelong Bouncing Balls, Lifelong 3D Maze, Lifelong Drive, and Lifelong PLAICraft, each consisting of one million consecutive frames from environments of increasing complexity.
comment: Video samples are available here: https://drive.google.com/drive/folders/1CsmWqug-CS7I6NwGDvHsEN9FqN2QzspN
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with error probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 37 pages. V4: sharpened results and typos fixed
♻ ☆ Transformers from Diffusion: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, inspired by physical systems, we propose an energy-constrained diffusion model, which integrates the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified mathematical framework for common neural architectures whose computational flows can be cast as message passing (or its special case), including MLPs, GNNs, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers (DIFFormer), whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Published in Journal of Machine Learning Research (JMLR). Extended from DIFFormer in ICLR 2023
♻ ☆ Junk DNA Hypothesis: Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs "Difficult" Downstream Tasks in LLMs ICML 2024
We present Junk DNA Hypothesis by adopting a novel task-centric angle for the pre-trained weights of large language models (LLMs). It has been believed that weights in LLMs contain significant redundancy, leading to the conception that a considerable chunk of the parameters can be removed by pruning without compromising performance. Contrary to this belief, this paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks - manifested as the monotonic relationship between the performance drop of downstream tasks across the difficulty spectrum, as we prune more pre-trained weights by magnitude. Moreover, we reveal that these seemingly inconsequential weights can result in irreparable loss of knowledge and performance degradation in difficult tasks, even when downstream continual training is allowed. Interestingly, our evaluations show that the other popular compression, namely quantization, fails to exhibit similar monotonic effect and does not as convincingly disentangle this task-difficulty information. To study formally, we introduce several quantifiable metrics to gauge the downstream task difficulty: (1) within the same task category, and (2) across different task categories. Our extensive experiments substantiate the Junk DNA Hypothesis across a diverse range of model sizes, tasks, datasets, and even pruning methods. Codes are available at: https://github.com/VITA-Group/Junk_DNA_Hypothesis.git.
comment: Published at ICML 2024
♻ ☆ Geological and Well prior assisted full waveform inversion using conditional diffusion models
Full waveform inversion (FWI) often faces challenges due to inadequate seismic observations, resulting in band-limited and geologically inaccurate inversion results. Incorporating prior information from potential velocity distributions, well-log information, and our geological knowledge and expectations can significantly improve FWI convergence to a realistic model. While diffusion-regularized FWI has shown improved performance compared to conventional FWI by incorporating the velocity distribution prior, it can benefit even more by incorporating well-log information and other geological knowledge priors. To leverage this fact, we propose a geological class and well-information prior-assisted FWI using conditional diffusion models. This method seamlessly integrates multi-modal information into FWI, simultaneously achieving data fitting and universal geologic and geophysics prior matching, which is often not achieved with traditional regularization methods. Specifically, we propose to combine conditional diffusion models with FWI, where we integrate well-log data and geological class conditions into these conditional diffusion models using classifier-free guidance for multi-modal prior matching beyond the original velocity distribution prior. Numerical experiments on the OpenFWI datasets and field marine data demonstrate the effectiveness of our method compared to conventional FWI and the unconditional diffusion-regularized FWI.
System/Control 32
☆ Tunnelling Through Time Series: A Probabilistic Visibility Graph for Local and Global Pattern Discovery
The growing availability of high-resolution, long-term time series data has highlighted the need for methods capable of capturing both local and global patterns. To address this, we introduce the Probabilistic Visibility Graph (PVG), a novel approach inspired by the quantum tunnelling phenomenon. The PVG extends the classical Visibility Graph (VG) by introducing probabilistic connections between time points that are obstructed in the VG due to intermediate values. We demonstrate the PVG's effectiveness in capturing long-range dependencies through simulations of amplitude-modulated signals and analysis of electrocorticography (ECoG) data under rest and anesthesia conditions. Key results show that the PVG presents distinct network properties between rest and anesthesia, with rest exhibiting stronger small-worldness and scale-free behavior, reflecting a hub-dominated, centralized connectivity structure, compared to anesthesia. These findings highlight the PVG's potential for analyzing complex signals with interacting temporal scales, offering new insights into neural dynamics and other real-world phenomena.
☆ Teaching Cars to Drive: Spotlight on Connected and Automated Vehicles
In recent decades, society has witnessed significant advancements in emerging mobility systems. These systems refer to transportation solutions that incorporate digital technologies, automation, connectivity, and sustainability to create safer, more efficient, and user-centered mobility. Examples include connected and automated vehicles (CAVs), shared mobility services (car-pooling), electric vehicles, and mobility-as-a-service platforms. These innovations have the potential to greatly impact areas such as safety, pollution, comfort, travel time, and fairness. In this article, we explore the current landscape of CAVs. We discuss their role in daily life and their future potential, while also addressing the challenges they may introduce. Following, we also examine the practical difficulties in research associated with CAVs especially simulating and testing CAV-related algorithms in real-world settings. We present existing solutions that aim to overcome these limitations. Finally, we provide an accessible introduction to modeling CAVs using basic kinematic principles and offer an open-source tutorial to help interested students begin exploring the field.
☆ A Spectral-Based Tuning Criterion for PI Controllers in IPDT Systems With Unified Tracking and Disturbance Rejection Performance
This paper proposes a spectral-based tuning method for proportional-integral (PI) controllers in integrating-plus-dead-time (IPDT) systems. The design objective is to achieve unified exponential decay for both reference tracking and disturbance rejection by minimizing the spectral abscissa of the closed-loop system. A second-order semi-discrete model accurately captures the integrator and delay dynamics while enabling efficient dominant pole extraction. These discrete-time poles are mapped to continuous time and refined using Newton-Raphson iterations on the exact transcendental characteristic equation. The method produces a unique PI gain set without requiring heuristic trade-offs or weighting parameters. Comparative simulations demonstrate that the proposed tuning achieves faster convergence and improved robustness margins compared to classical rules (Ziegler-Nichols, SIMC) and integral performance criteria (IAE, ITAE). The approach provides a transparent and computationally efficient framework for PI control in delay-dominant systems.
☆ An Adaptive Estimation Approach based on Fisher Information to Overcome the Challenges of LFP Battery SOC Estimation
Robust and Real-time State of Charge (SOC) estimation is essential for Lithium Iron Phosphate (LFP) batteries, which are widely used in electric vehicles (EVs) and energy storage systems due to safety and longevity. However, the flat Open Circuit Voltage (OCV)-SOC curve makes this task particularly challenging. This challenge is complicated by hysteresis effects, and real-world conditions such as current bias, voltage quantization errors, and temperature that must be considered in the battery management system use. In this paper, we proposed an adaptive estimation approach to overcome the challenges of LFPSOC estimation. Specifically, the method uses an adaptive fisher information fusion strategy that adaptively combines the SOC estimation from two different models, which are Coulomb counting and equivalent circuit model-based parameter identification. The effectiveness of this strategy is rationalized by the information richness excited by external cycling signals. A 3D OCV-H-SOC map that captures the relationship between OCV, hysteresis, and SOC was proposed as the backbone, and can be generalizable to other widely adopted parameter-identification methods. Extensive validation under ideal and real-world use scenarios, including SOC-OCV flat zones, current bias, voltage quantization errors, low temperatures, and insufficient current excitations, have been performed using 4 driving profiles, i.e., the Orange County Transit Bus Cycle, the California Unified Cycle, the US06 Drive Cycle, and the New York City Cycle, where the results demonstrate superiority over the state-of-the-art unscented Kalman filter, long short-term memory networks and transformer in all validation cases.
☆ Imitation Learning for Satellite Attitude Control under Unknown Perturbations
This paper presents a novel satellite attitude control framework that integrates Soft Actor-Critic (SAC) reinforcement learning with Generative Adversarial Imitation Learning (GAIL) to achieve robust performance under various unknown perturbations. Traditional control techniques often rely on precise system models and are sensitive to parameter uncertainties and external perturbations. To overcome these limitations, we first develop a SAC-based expert controller that demonstrates improved resilience against actuator failures, sensor noise, and attitude misalignments, outperforming our previous results in several challenging scenarios. We then use GAIL to train a learner policy that imitates the expert's trajectories, thereby reducing training costs and improving generalization through expert demonstrations. Preliminary experiments under single and combined perturbations show that the SAC expert can rotate the antenna to a specified direction and keep the antenna orientation reliably stable in most of the listed perturbations. Additionally, the GAIL learner can imitate most of the features from the trajectories generated by the SAC expert. Comparative evaluations and ablation studies confirm the effectiveness of the SAC algorithm and reward shaping. The integration of GAIL further reduces sample complexity and demonstrates promising imitation capabilities, paving the way for more intelligent and autonomous spacecraft control systems.
comment: 2025 AAS/AIAA Astrodynamics Specialist Conference
☆ HERCULES: Hardware accElerator foR stoChastic schedULing in hEterogeneous Systems
Efficient workload scheduling is a critical challenge in modern heterogeneous computing environments, particularly in high-performance computing (HPC) systems. Traditional software-based schedulers struggle to efficiently balance workload distribution due to high scheduling overhead, lack of adaptability to dynamic workloads, and suboptimal resource utilization. These pitfalls are compounded in heterogeneous systems, where differing computational elements can have vastly different performance profiles. To resolve these hindrances, we present a novel FPGA-based accelerator for stochastic online scheduling (SOS). We modify a greedy cost selection assignment policy by adapting existing cost equations to engage with discretized time before implementing them into a hardware accelerator design. Our design leverages hardware parallelism, precalculation, and precision quantization to reduce job scheduling latency. By introducing a hardware-accelerated approach to real-time scheduling, this paper establishes a new paradigm for adaptive scheduling mechanisms in heterogeneous computing systems. The proposed design achieves high throughput, low latency, and energy-efficient operation, offering a scalable alternative to traditional software scheduling methods. Experimental results demonstrate consistent workload distribution, fair machine utilization, and up to 1060x speedup over single-threaded software scheduling policy implementations. This makes the SOS accelerator a strong candidate for deployment in high-performance computing system, deeplearning pipelines, and other performance-critical applications.
comment: 10 pages, 10 figures, accepted for publication in in Int'l Conference on Computer Aided Design (ICCAD) 2025
☆ Geometrization of Higher-Order Linear Control Laws for Attitude Control on $\mathsf{SO(3)}$
This paper presents a theoretical framework for analyzing the stability of higher-order geometric nonlinear control laws for attitude control on the Special Orthogonal Group $\mathrm{SO(3)}$. In particular, the paper extends existing results on the analysis of PID-type geometric nonlinear control laws to more general higher-order dynamic state-feedback compensators on $\mathrm{SO(3)}$. The candidate Lyapunov function is motivated by quadratic Lyapunov functions of the form $V(x)=x^{\top}Px$ typically considered in the analysis of linear time-invariant (LTI) systems. The stability analysis is carried out in two steps. In the first step, a sufficient condition is obtained for the positive definiteness of the candidate Lyapunov function, and a necessary and sufficient condition for the negative definiteness of the corresponding Lyapunov rate. These conditions ensure that the desired equilibrium is almost globally asymptotically stable (AGAS). In the second step, a convex relaxation of the proposed conditions is used to obtain sufficient conditions in the form of linear matrix inequalities (LMIs). Overall, the approach is motivated by the widespread use of LMI-based analysis and design tools for LTI systems. To reduce conservatism, matrix gains are considered for the controller gains as well as the Lyapunov function coefficients. The applicability of the approach to practical problems is illustrated by designing and analyzing a 21-state geometric nonlinear attitude control law for a multicopter.
comment: 14 pages, 5 figures
☆ Turning AI Data Centers into Grid-Interactive Assets: Results from a Field Demonstration in Phoenix, Arizona
Artificial intelligence (AI) is fueling exponential electricity demand growth, threatening grid reliability, raising prices for communities paying for new energy infrastructure, and stunting AI innovation as data centers wait for interconnection to constrained grids. This paper presents the first field demonstration, in collaboration with major corporate partners, of a software-only approach--Emerald Conductor--that transforms AI data centers into flexible grid resources that can efficiently and immediately harness existing power systems without massive infrastructure buildout. Conducted at a 256-GPU cluster running representative AI workloads within a commercial, hyperscale cloud data center in Phoenix, Arizona, the trial achieved a 25% reduction in cluster power usage for three hours during peak grid events while maintaining AI quality of service (QoS) guarantees. By orchestrating AI workloads based on real-time grid signals without hardware modifications or energy storage, this platform reimagines data centers as grid-interactive assets that enhance grid reliability, advance affordability, and accelerate AI's development.
comment: 10 pages, 6 figures, 1 table
☆ Constellation as a Service: Tailored Connectivity Management in Direct-Satellite-to-Device Networks
Direct-satellite-to-device (DS2D) communication is emerging as a promising solution for global mobile service extension, leveraging the deployment of satellite constellations. However, the challenge of managing DS2D connectivity for multi-constellations becomes outstanding, including high interference and frequent handovers caused by multi-coverage overlap and rapid satellite movement. Moreover, existing approaches primarily operate within single-constellation shell, which inherently limits the ability to exploit the vast potential of multi-constellation connectivity provision, resulting in suboptimal DS2D service performances. To address these challenges, this article proposes a Constellation as a Service (CaaS) framework, which treats the entire multi-constellation infrastructure as a shared resource pool and dynamically forms optimal sub-constellations (SCs) for each DS2D service region. The formation of each SC integrates satellites from various orbits to provide tailored connectivity based on user demands, guided by two innovative strategies: predictive satellite beamforming using generative artificial intelligence (GenAI) and pre-configured handover path for efficient satellite access and mobility management. Simulation results demonstrate that CaaS significantly improves satellite service rates while reducing handover overhead, making it an efficient and continuable solution for managing DS2D connectivity in multi-constellation environments.
comment: To appear in IEEE Communications Magazine
☆ Verifiable Natural Language to Linear Temporal Logic Translation: A Benchmark Dataset and Evaluation Suite
Empirical evaluation of state-of-the-art natural-language (NL) to temporal-logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies measure only the accuracy of the translation of NL logic into formal TL, ignoring a system's capacity to ground atomic propositions into new scenarios or environments. This is a critical feature, necessary for the verification of resulting formulas in a concrete state space. Consequently, most NL-to-TL translation frameworks propose their own bespoke dataset in which the correct grounding is known a-priori, inflating performance metrics and neglecting the need for extensible, domain-general systems. In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark ( VLTL-Bench), a unifying benchmark that measures verification and verifiability of automated NL-to-LTL translation. The dataset consists of three unique state spaces and thousands of diverse natural language specifications and corresponding formal specifications in temporal logic. Moreover, the benchmark contains sample traces to validate the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researches to improve and evaluate different substeps of the overall problem. To encourage methodologically sound advances in verifiable NL-to-LTL translation approaches, we release VLTL-Bench here: https://www.kaggle.com/datasets/dubascudes/vltl bench.
☆ Ranking Quantilized Mean-Field Games with an Application to Early-Stage Venture Investments
Quantilized mean-field game models involve quantiles of the population's distribution. We study a class of such games with a capacity for ranking games, where the performance of each agent is evaluated based on its terminal state relative to the population's $\alpha$-quantile value, $\alpha \in (0,1)$. This evaluation criterion is designed to select the top $(1-\alpha)\%$ performing agents. We provide two formulations for this competition: a target-based formulation and a threshold-based formulation. In the former and latter formulations, to satisfy the selection condition, each agent aims for its terminal state to be \textit{exactly} equal and \textit{at least} equal to the population's $\alpha$-quantile value, respectively. For the target-based formulation, we obtain an analytic solution and demonstrate the $\epsilon$-Nash property for the asymptotic best-response strategies in the $N$-player game. Specifically, the quantilized mean-field consistency condition is expressed as a set of forward-backward ordinary differential equations, characterizing the $\alpha$-quantile value at equilibrium. For the threshold-based formulation, we obtain a semi-explicit solution and numerically solve the resulting quantilized mean-field consistency condition. Subsequently, we propose a new application in the context of early-stage venture investments, where a venture capital firm financially supports a group of start-up companies engaged in a competition over a finite time horizon, with the goal of selecting a percentage of top-ranking ones to receive the next round of funding at the end of the time horizon. We present the results and interpretations of numerical experiments for both formulations discussed in this context and show that the target-based formulation provides a very good approximation for the threshold-based formulation.
☆ Getting Dynamic Line Ratings into Markets
Static transmission line ratings may lead to underutilization of line capacity due to overly conservative (worst-case) assumptions. Grid-enhancing technologies (GETs) such as dynamic line ratings (DLRs), which adjust line capacity based on real-time conditions, are a techno-economically viable alternative to increase the utilization of existing power lines. Nonetheless, their adoption has been slow, partly due to the absence of operational tools that effectively account for simultaneous impacts on dispatch and pricing. In this paper, we represent transmission capacity with DLRs as a stock-like resource with time-variant interdependency, which is modeled via an approximation of line temperature evolution process, decoupling the impacts of ambient weather conditions and power flow on transmission line temperature and thus capacity. We integrate DLRs into a multi-period DC optimal power flow problem, with chance constrains addressing correlated uncertainty in DLRs and renewable generation. This yields non-convex problems that we transform into a tractable convex form by linearization. We derive locational marginal energy and ancillary services prices consistent with a competitive equilibrium. Numerical experiments on the 11-zone and 1814-node NYISO systems demonstrate its performance, including impacts on dispatch, pricing, and marginal carbon emissions.
☆ A Test-Function Approach to Incremental Stability
This paper presents a novel framework for analyzing Incremental-Input-to-State Stability ($\delta$ISS) based on the idea of using rewards as "test functions." Whereas control theory traditionally deals with Lyapunov functions that satisfy a time-decrease condition, reinforcement learning (RL) value functions are constructed by exponentially decaying a Lipschitz reward function that may be non-smooth and unbounded on both sides. Thus, these RL-style value functions cannot be directly understood as Lyapunov certificates. We develop a new equivalence between a variant of incremental input-to-state stability of a closed-loop system under given a policy, and the regularity of RL-style value functions under adversarial selection of a H\"older-continuous reward function. This result highlights that the regularity of value functions, and their connection to incremental stability, can be understood in a way that is distinct from the traditional Lyapunov-based approach to certifying stability in control theory.
comment: 8 pages
☆ Neural Augmented Kalman Filters for Road Network assisted GNSS positioning ICML 2025
The Global Navigation Satellite System (GNSS) provides critical positioning information globally, but its accuracy in dense urban environments is often compromised by multipath and non-line-of-sight errors. Road network data can be used to reduce the impact of these errors and enhance the accuracy of a positioning system. Previous works employing road network data are either limited to offline applications, or rely on Kalman Filter (KF) heuristics with little flexibility and robustness. We instead propose training a Temporal Graph Neural Network (TGNN) to integrate road network information into a KF. The TGNN is designed to predict the correct road segment and its associated uncertainty to be used in the measurement update step of the KF. We validate our approach with real-world GNSS data and open-source road networks, observing a 29% decrease in positioning error for challenging scenarios compared to a GNSS-only KF. To the best of our knowledge, ours is the first deep learning-based approach jointly employing road network data and GNSS measurements to determine the user position on Earth.
comment: Accepted to ICML 2025 workshop ML4Wireless
☆ Price Aware Power Split Control in Heterogeneous Battery Storage Systems
This paper presents a unified framework for the optimal scheduling of battery dispatch and internal power allocation in Battery energy storage systems (BESS). This novel approach integrates both market-based (price-aware) signals and physical system constraints to simultaneously optimize (1) external energy dispatch and (2) internal heterogeneity management of BESS, enhancing its operational economic value and performance. This work compares both model-based Linear Programming (LP) and model-free Reinforcement Learning (RL) approaches for optimization under varying forecast assumptions, using a custom Gym-based simulation environment. The evaluation considers both long-term and short-term performance, focusing on economic savings, State of Charge (SOC) and temperature balancing, and overall system efficiency. In summary, the long-term results show that the RL approach achieved 10% higher system efficiency compared to LP, whereas the latter yielded 33% greater cumulative savings. In terms of internal heterogeneity, the LP approach resulted in lower mean SOC imbalance, while the RL approach achieved better temperature balance between strings. This behavior is further examined in the short-term evaluation, which indicates that LP delivers strong optimization under known and stable conditions, whereas RL demonstrates higher adaptability in dynamic environments, offering potential advantages for real-time BESS control.
☆ A Simple Proof of Nehari's Theorem Based on Duality
In this technical note we provide a simple proof of Nehari's theorem on the optimal approximation by $H_\infty$ functions, based on convex duality.
comment: 11 pages
☆ Cyber Attacks Detection, Prevention, and Source Localization in Digital Substation Communication using Hybrid Statistical-Deep Learning
The digital transformation of power systems is accelerating the adoption of IEC 61850 standard. However, its communication protocols, including Sampled Values (SV), lack built-in security features such as authentication and encryption, making them vulnerable to malicious packet injection. Such cyber attacks can delay fault clearance or trigger unintended circuit breaker operations. While most existing research focuses on detecting cyber attacks in digital substations, intrusion prevention systems have been disregarded because of the risk of potential communication network disruptions. This paper proposes a novel method using hybrid statistical-deep learning for the detection, prevention, and source localization of IEC 61850 SV injection attacks. The method uses exponentially modified Gaussian distributions to model communication network latency and long short-term memory and Elman recurrent neural network to detect anomalous variations in the estimated probability distributions. It effectively discards malicious SV frames with minimal processing overhead and latency, maintains robustness against communication network latency variation and time-synchronization issues, and guarantees a near-zero false positive rate in non-attack scenarios. Comprehensive validation is conducted on three testbeds involving industrial-grade devices, hardware-in-the-loop simulations, virtualized intelligent electronic devices and merging units, and high-fidelity emulated communication networks. Results demonstrate the method's suitability for practical deployment in IEC 61850-compliant digital substations.
comment: 10 pages, 6 figures. This work has been submitted to the IEEE for possible publication
☆ The impact of the following vehicles behaviors on the car following behaviors of the ego-vehicle
Among all types of crashes, rear-end crashes dominate, which are closely related to the car-following (CF) behaviors. Traditional CF behavior models focused on the influence of the vehicle in front, but usually ignored the peer pressure from the surrounding road users, including the following vehicle (FV). Based on an open dataset, the highD dataset, we investigated whether the FV's states can affect the CF behavior of the ego-vehicle in CF events. Two types of CF events were extracted from highD database, including the tailgated events, where the time headway between the FV and the ego-vehicle (i.e., time gap) was smaller than 1 second, and the gapped events, where the time gap was larger than 3 seconds. The dynamic time warping was used to extract CF pairs with similar speed profiles of the leading vehicle (LV). Statistical analyses were conducted to compare the CF-performance metrics in tailgated and gapped events. Then, the inverse reinforcement learning was used to recover the reward function of the ego-vehicle drivers in different CF events. The results showed that the ego-driver would adjust their CF behavior in response to the pressure from a tailgating FV, by maintaining a closer distance to the LV, but at the same time, driving more cautiously. Further, drivers were still able to adjust their CF strategies based on the speed of traffic flow and the distance to the LV, even when being tailgated. These findings provide insights regarding more accurate modelling of traffic flow by considering the peer pressure from surrounding road users.
☆ Multi-Agent Coordination under Poisson Observations: A Global Game Approach
We study a model of strategic coordination based on a class of games with incomplete information known as Global Games. Under the assumption of Poisson-distributed signals and a Gamma prior distribution on state of the system, we demonstrate the existence of a Bayesian Nash equilibrium within the class of threshold policies for utility functions that are linear in the agents' actions. Although computing the exact threshold that constitutes an equilibrium in a system with finitely many agents is a highly non-trivial task, the problem becomes tractable by analyzing the game's potential function with countably infinitely many agents. Through numerical examples, we provide evidence that the resulting potential function is unimodal, exhibiting a well-defined maximum. Our results are applicable to the modeling of bacterial Quorum Sensing systems, whose noisy observation signals are often well-approximated using Poisson processes.
☆ Minimal Construction of Graphs with Maximum Robustness
The notions of network $r$-robustness and $(r,s)$-robustness have been earlier introduced in the literature to achieve resilient control in the presence of misbehaving agents. However, while higher robustness levels provide networks with higher tolerances against the misbehaving agents, they also require dense communication structures, which are not always desirable for systems with limited capabilities and energy capacities. Therefore, this paper studies the fundamental structures behind $r$-robustness and $(r,s)$- robustness properties in two different ways. (a) We first explore and establish the tight necessary conditions on the number of edges for undirected graphs with any nodes must satisfy to achieve maximum $r$- and $(r,s)$-robustness. (b) We then use these conditions to construct two classes of undirected graphs, referred as to $\gamma$- and $(\gamma,\gamma)$-Minimal Edge Robust Graphs (MERGs), that provably achieve maximum robustness with minimal numbers of edges. We finally validate our work through some sets of simulations.
☆ Data-Driven Exploration for a Class of Continuous-Time Linear--Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for the same class of continuous-time stochastic linear--quadratic (LQ) control problems as in \cite{huang2024sublinear}, where volatilities depend on both states and controls while states are scalar-valued and running control rewards are absent. We propose a model-free, data-driven exploration mechanism that adaptively adjusts entropy regularization by the critic and policy variance by the actor. Unlike the constant or deterministic exploration schedules employed in \cite{huang2024sublinear}, which require extensive tuning for implementations and ignore learning progresses during iterations, our adaptive exploratory approach boosts learning efficiency with minimal tuning. Despite its flexibility, our method achieves a sublinear regret bound that matches the best-known model-free results for this class of LQ problems, which were previously derived only with fixed exploration schedules. Numerical experiments demonstrate that adaptive explorations accelerate convergence and improve regret performance compared to the non-adaptive model-free and model-based counterparts.
comment: 36 pages, 10 figures
☆ Augmented Physics-Based Li-ion Battery Model via Adaptive Ensemble Sparse Learning and Conformal Prediction
Accurate electrochemical models are essential for the safe and efficient operation of lithium-ion batteries in real-world applications such as electrified vehicles and grid storage. Reduced-order models (ROM) offer a balance between fidelity and computational efficiency but often struggle to capture complex and nonlinear behaviors, such as the dynamics in the cell voltage response under high C-rate conditions. To address these limitations, this study proposes an Adaptive Ensemble Sparse Identification (AESI) framework that enhances the accuracy of reduced-order li-ion battery models by compensating for unpredictable dynamics. The approach integrates an Extended Single Particle Model (ESPM) with an evolutionary ensemble sparse learning strategy to construct a robust hybrid model. In addition, the AESI framework incorporates a conformal prediction method to provide theoretically guaranteed uncertainty quantification for voltage error dynamics, thereby improving the reliability of the model's predictions. Evaluation across diverse operating conditions shows that the hybrid model (ESPM + AESI) improves the voltage prediction accuracy, achieving mean squared error reductions of up to 46% on unseen data. Prediction reliability is further supported by conformal prediction, yielding statistically valid prediction intervals with coverage ratios of 96.85% and 97.41% for the ensemble models based on bagging and stability selection, respectively.
♻ ☆ On the Cost of Consecutive Estimation Error: Significance-Aware Non-linear Aging
This paper considers the semantics-aware remote state estimation of an asymmetric Markov chain with prioritized states. Due to resource constraints, the sensor needs to trade between estimation quality and communication cost. The aim is to exploit the significance of information through the history of system realizations to determine the optimal timing of transmission, thereby reducing the amount of uninformative data transmitted in the network. To this end, we introduce a new metric, the significance-aware Age of Consecutive Error (AoCE), that captures two semantic attributes: the significance of estimation error and the cost of consecutive error. Different costs and non-linear age functions are assigned to different estimation errors to account for their relative importance to system performance. We identify the optimal transmission problem as a countably infinite state Markov decision process (MDP) with unbounded costs. We first give sufficient conditions on the age functions, source pattern, and channel reliability so that an optimal policy exists to have bounded average costs. We show that the optimal policy exhibits a switching structure. That is, the sensor triggers a transmission only when the system has been trapped in an error for a certain number of consecutive time slots. We also provide sufficient conditions under which the switching policy degenerates into a simple threshold policy, i.e., featuring identical thresholds for all estimation errors. Furthermore, we exploit the structural properties and develop a structured policy iteration (SPI) algorithm that considerably reduces computation overhead. Numerical results show that the optimal policy outperforms the classic rule-, distortion- and age-based policies. An important takeaway is that the more semantic attributes we utilize, the fewer transmissions are needed.
comment: This paper has been accepted for publication in the IEEE Transactions on Information Theory
♻ ☆ Disturbance-Adaptive Data-Driven Predictive Control: Trading Comfort Violations for Savings in Building Climate Control
Model Predictive Control (MPC) has demonstrated significant potential in improving energy efficiency in building climate control, outperforming traditional controllers commonly used in modern building management systems. Among MPC variants, Data-driven Predictive Control (DPC) offers the advantage of modeling building dynamics directly from data, thereby substantially reducing commissioning efforts. However, inevitable model uncertainties and measurement noise can result in comfort violations, even with dedicated MPC setups. This paper introduces a Disturbance-Adaptive DPC (DAD-DPC) framework that ensures asymptotic satisfaction of predefined violation bounds without knowing the uncertainty and noise distributions. The framework employs a data-driven pipeline based on Willems' Fundamental Lemma and conformal prediction for application in building climate control. The proposed DAD-DPC framework was validated through four building cases using the high-fidelity BOPTEST simulation platform and an occupied campus building, Polydome. DAD-DPC successfully regulated the average comfort violations to meet pre-defined bounds. Notably, the 5%-violation DAD-DPC setup achieved 30.1%/11.2%/27.1%/20.5% energy savings compared to default controllers across four cases. These results demonstrate the framework's effectiveness in balancing energy consumption and comfort violations, offering a practical solution for building climate control applications.
♻ ☆ Adaptive Modified RISE Control for Quadrotors: Enhancing Trajectory Tracking Through Uncertainty Compensation
This paper presents an adaptive modified Robust Inverse of Signum Error (AM-RISE) control method, which achieves reliable trajectory tracking control for a quadrotor unmanned aerial vehicle. The proposed method systematically accounts for gyroscopic effects, rotor dynamics, parametric uncertainties, and external disturbances, ensuring robust performance across varying trajectory speeds. Through novel mathematical manipulation in the error system development, the quadrotor dynamics are expressed in a control-oriented form, which explicitly incorporates the uncertainty in the gyroscopic term and control actuation term. An adaptive modified RISE law is then designed to stabilize both the position and attitude loops of the quadrotor system. A rigorous Lyapunov-based analysis is utilized to prove asymptotic trajectory tracking, where the region of convergence can be made arbitrarily large through judicious control gain selection. Moreover, the stability analysis formally addresses gyroscopic effects and actuator uncertainty. To illustrate the performance of the control law, comparative numerical simulation results are provided, which demonstrate the improved closed-loop performance achieved under varying levels of parametric uncertainty, disturbance magnitudes and trajectory speeds.
comment: This paper is under review
♻ ☆ Robust Correlated Equilibrium: Definition and Computation
We study N-player finite games with costs perturbed due to time-varying disturbances in the underlying system and to that end, we propose the concept of Robust Correlated Equilibrium that generalizes the definition of Correlated Equilibrium. Conditions under which the Robust Correlated Equilibrium exists are specified, and a decentralized algorithm for learning strategies that are optimal in the sense of Robust Correlated Equilibrium is proposed. The primary contribution of the paper is the convergence analysis of the algorithm and to that end, we propose a modification of the celebrated Blackwell's Approachability theorem to games with costs that are not just time-average, as in the original Blackwell's Approachability Theorem, but also include the time-average of previous algorithm iterates. The designed algorithm is applied to a practical water distribution network with pumps being the controllers and their costs being perturbed by uncertain consumption due to the consumers. Simulation results show that each controller achieves no regret, and empirical distributions converge to the Robust Correlated Equilibrium.
comment: Preprint submitted to Automatica
♻ ☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
♻ ☆ Theoretical Grid-Forming Extreme of Inverters
What are the theoretical and physical limits of a grid-forming inverter? This letter proposes that the extreme grid-forming ability of inverters is limited by their dc-side, ac-side, circuit topology dynamics, but not control. While many papers focus on how to improve grid-forming inverters stability, power sharing, inertia emulation, fault response, few, if any, formally define the fundamental theoretical limits or extremes of grid-forming behavior. It seems that the grid-forming can be improved endlessly. No physical system can support a grid indefinitely without limitations, especially under increasing levels of disturbance or uncertainty. Therefore, this boundary is explicitly shown by a mathematical expression in this letter. Consequently, the results show that relatively low dc-side voltage and high active power injection could damage the grid-forming ability. Poor consideration of dc-side, ac-side, and circuit topology dynamics in real practice will cause jeopardizing oscillation even by the theoretical best grid-forming control strategy.
comment: 4 pages, 2 figures, letter, This work has been submitted to the IEEE for possible publication
♻ ☆ Symmetric Sliding-Mode Control of Grid-Forming Inverters With Precision Region Under AC and DC Sides Varying
Voltage regulation under conventional grid-forming controllers is tightly coupled to power sharing and dc-link dynamics. Consequently, its tracking accuracy deteriorates during grid faults, sudden power sharing changes, or dc-bus voltage varying. To address this issue, a symmetric sliding-mode control (SSMC) method is developed and its voltage precision region is derived. It illustrates how much ac-side power dynamics and dc-link voltage varying can be decoupled from the voltage regulation task, which helps predict when an abnormal entangling appears. While conventional sliding-mode controls address voltage-tracking error through complex sliding surface designs, repetitive correction techniques or special reaching laws, this work identifies that the error at power-line frequency primarily stem from the asymmetry property of inverters with the delay effect and the computational inaccuracy. Guided by this insight, an asymmetry compensation structure is proposed, which avoids added design complexity and directly mitigates voltage tracking error. Furthermore, the control design is supported by a physical and quantitative explanation, aiding in parameter tuning. Simulation and experimental results demonstrate that the proposed method achieves faster tracking responses while maintaining robust and more accurate tracking under both dc-link voltage and ac-side current variations. Conventional grid-forming and classical sliding-mode controllers, which handle these variations separately, cannot match this combined speed and robustness. Furthermore, the voltage precision region is explicitly verified.
comment: 10 pages, 10 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Thévenin Equivalent Parameters Identification Based on Statistical Characteristics of System Ambient Data
This paper proposes a novel method for identifying Th\'evenin equivalent parameters (TEP) in power system, based on the statistical characteristics of the system's stochastic response. The method leverages stochastic fluctuation data under steady-state grid conditions and applies sliding window techniques to compute sensitivity parameters between voltage magnitude, current magnitude and power. This enables high-accuracy and robust TEP identification. In contrast to traditional methods, the proposed approach does not rely on large disturbances or probing signals but instead utilizes the natural fluctuation behavior of the system. Additionally, the method supports distributed implementation using local measurements of voltage magnitude, current magnitude, and power, offering significant practical value for engineering applications. The theoretical analysis demonstrates the method's robustness in the presence of low signal-to-noise ratio (SNR), asynchronous measurements, and data collinearity issues. Simulation results further confirm the effectiveness of the proposed method in diverse practical scenarios, demonstrating its ability to consistently provide accurate and reliable identification of TEP using system ambient data.
♻ ☆ Autonomous Robotic Bone Micro-Milling System with Automatic Calibration and 3D Surface Fitting
Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we address this challenge by integrating a Microscopic Stereo Camera System (MSCS) into the robotic bone micro-milling system and proposing a novel pre-measurement pipeline for the target surface. Starting from uncalibrated cameras, the pipeline enables automatic calibration and 3D surface fitting through a convolutional neural network (CNN)-based keypoint detection. Combined with the existing feedback-based system, we develop the world's first autonomous robotic bone micro-milling system capable of rapidly, in real-time, and accurately perceiving and adapting to surface unevenness and non-uniform thickness, thereby enabling an end-to-end autonomous cranial window creation workflow without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7% and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
comment: 8 pages, 8 figures, submitted to RA-L
♻ ☆ Networked dynamics with application to frequency stability of grid-forming power-limiting droop control
In this paper, we study a constrained network flow problem and associated networked dynamics that resemble but are distinct from the well-known primal-dual dynamics of the constrained flow problem. Crucially, under a change of coordinates, the networked dynamics coincide with primal-dual dynamics associated with the constrained flow problem in edge coordinates. Next, we show that, under mild feasibility assumptions, the networked dynamics are globally asymptotically stable with respect to the set of optimizers of its associated constrained flow problem in nodal coordinates. Subsequently, we apply our stability results to establish frequency stability of power-limiting grid-forming droop control. Compared to conventional grid-forming droop control, power-limiting droop control explicitly accounts for active power limits of the generation (e.g., renewables) interfaced by the converter. While power-limiting droop control has been demonstrated to work well in simulation and experiment, analytical results are not readily available. Moreover, we (i) show that the converter frequencies synchronize to a common synchronous frequency for each grid-forming converter, (ii) characterize the synchronous frequency in the case of converters operating at their power limit, and (iii) establish that power-limiting droop control exhibits power-sharing properties similar to conventional unconstrained droop control. Finally, the analytical results are illustrated using an Electromagnetic transient (EMT) simulation.
Robotics 44
☆ Exploring Accelerated Skill Acquisition via Tandem Training for Colonoscopy
New endoscopists require a large volume of expert-proctored colonoscopies to attain minimal competency. Developing multi-fingered, synchronized control of a colonoscope requires significant time and exposure to the device. Current training methods inhibit this development by relying on tool hand-off for expert demonstrations. There is a need for colonoscopy training tools that enable in-hand expert guidance in real-time. We present a new concept of a tandem training system that uses a telemanipulated preceptor colonoscope to guide novice users as they perform a colonoscopy. This system is capable of dual-control and can automatically toggle between expert and novice control of a standard colonoscope's angulation control wheels. Preliminary results from a user study with novice and expert users show the effectiveness of this device as a skill acquisition tool. We believe that this device has the potential to accelerate skill acquisition for colonoscopy and, in the future, enable individualized instruction and responsive teaching through bidirectional actuation.
☆ A Survey on Vision-Language-Action Models for Autonomous Driving
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
☆ Predictive Risk Analysis and Safe Trajectory Planning for Intelligent and Connected Vehicles
The safe trajectory planning of intelligent and connected vehicles is a key component in autonomous driving technology. Modeling the environment risk information by field is a promising and effective approach for safe trajectory planning. However, existing risk assessment theories only analyze the risk by current information, ignoring future prediction. This paper proposes a predictive risk analysis and safe trajectory planning framework for intelligent and connected vehicles. This framework first predicts future trajectories of objects by a local risk-aware algorithm, following with a spatiotemporal-discretised predictive risk analysis using the prediction results. Then the safe trajectory is generated based on the predictive risk analysis. Finally, simulation and vehicle experiments confirm the efficacy and real-time practicability of our approach.
☆ STCLocker: Deadlock Avoidance Testing for Autonomous Driving Systems
Autonomous Driving System (ADS) testing is essential to ensure the safety and reliability of autonomous vehicles (AVs) before deployment. However, existing techniques primarily focus on evaluating ADS functionalities in single-AV settings. As ADSs are increasingly deployed in multi-AV traffic, it becomes crucial to assess their cooperative performance, particularly regarding deadlocks, a fundamental coordination failure in which multiple AVs enter a circular waiting state indefinitely, resulting in motion planning failures. Despite its importance, the cooperative capability of ADSs to prevent deadlocks remains insufficiently underexplored. To address this gap, we propose the first dedicated Spatio-Temporal Conflict-Guided Deadlock Avoidance Testing technique, STCLocker, for generating DeadLock Scenarios (DLSs), where a group of AVs controlled by the ADS under test are in a circular wait state. STCLocker consists of three key components: Deadlock Oracle, Conflict Feedback, and Conflict-aware Scenario Generation. Deadlock Oracle provides a reliable black-box mechanism for detecting deadlock cycles among multiple AVs within a given scenario. Conflict Feedback and Conflict-aware Scenario Generation collaborate to actively guide AVs into simultaneous competition over spatial conflict resources (i.e., shared passing regions) and temporal competitive behaviors (i.e., reaching the conflict region at the same time), thereby increasing the effectiveness of generating conflict-prone deadlocks. We evaluate STCLocker on two types of ADSs: Roach, an end-to-end ADS, and OpenCDA, a module-based ADS supporting cooperative communication. Experimental results show that, on average, STCLocker generates more DLS than the best-performing baseline.
☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.
comment: 14 pages, 4 figures
☆ Adapt Your Body: Mitigating Proprioception Shifts in Imitation Learning
Imitation learning models for robotic tasks typically rely on multi-modal inputs, such as RGB images, language, and proprioceptive states. While proprioception is intuitively important for decision-making and obstacle avoidance, simply incorporating all proprioceptive states leads to a surprising degradation in imitation learning performance. In this work, we identify the underlying issue as the proprioception shift problem, where the distributions of proprioceptive states diverge significantly between training and deployment. To address this challenge, we propose a domain adaptation framework that bridges the gap by utilizing rollout data collected during deployment. Using Wasserstein distance, we quantify the discrepancy between expert and rollout proprioceptive states and minimize this gap by adding noise to both sets of states, proportional to the Wasserstein distance. This strategy enhances robustness against proprioception shifts by aligning the training and deployment distributions. Experiments on robotic manipulation tasks demonstrate the efficacy of our method, enabling the imitation policy to leverage proprioception while mitigating its adverse effects. Our approach outperforms the naive solution which discards proprioception, and other baselines designed to address distributional shifts.
☆ World4Omni: A Zero-Shot Framework from Image Generation World Model to Robotic Manipulation
Improving data efficiency and generalization in robotic manipulation remains a core challenge. We propose a novel framework that leverages a pre-trained multimodal image-generation model as a world model to guide policy learning. By exploiting its rich visual-semantic representations and strong generalization across diverse scenes, the model generates open-ended future state predictions that inform downstream manipulation. Coupled with zero-shot low-level control modules, our approach enables general-purpose robotic manipulation without task-specific training. Experiments in both simulation and real-world environments demonstrate that our method achieves effective performance across a wide range of manipulation tasks with no additional data collection or fine-tuning. Supplementary materials are available on our website: https://world4omni.github.io/.
☆ Data-Driven Predictive Planning and Control for Aerial 3D Inspection with Back-face Elimination
Automated inspection with Unmanned Aerial Systems (UASs) is a transformative capability set to revolutionize various application domains. However, this task is inherently complex, as it demands the seamless integration of perception, planning, and control which existing approaches often treat separately. Moreover, it requires accurate long-horizon planning to predict action sequences, in contrast to many current techniques, which tend to be myopic. To overcome these limitations, we propose a 3D inspection approach that unifies perception, planning, and control within a single data-driven predictive control framework. Unlike traditional methods that rely on known UAS dynamic models, our approach requires only input-output data, making it easily applicable to off-the-shelf black-box UASs. Our method incorporates back-face elimination, a visibility determination technique from 3D computer graphics, directly into the control loop, thereby enabling the online generation of accurate, long-horizon 3D inspection trajectories.
comment: 2025 European Control Conference (ECC), Thessaloniki, Greece, 24-27 June 2025
☆ Multi-Timescale Hierarchical Reinforcement Learning for Unified Behavior and Control of Autonomous Driving
Reinforcement Learning (RL) is increasingly used in autonomous driving (AD) and shows clear advantages. However, most RL-based AD methods overlook policy structure design. An RL policy that only outputs short-timescale vehicle control commands results in fluctuating driving behavior due to fluctuations in network outputs, while one that only outputs long-timescale driving goals cannot achieve unified optimality of driving behavior and control. Therefore, we propose a multi-timescale hierarchical reinforcement learning approach. Our approach adopts a hierarchical policy structure, where high- and low-level RL policies are unified-trained to produce long-timescale motion guidance and short-timescale control commands, respectively. Therein, motion guidance is explicitly represented by hybrid actions to capture multimodal driving behaviors on structured road and support incremental low-level extend-state updates. Additionally, a hierarchical safety mechanism is designed to ensure multi-timescale safety. Evaluation in simulator-based and HighD dataset-based highway multi-lane scenarios demonstrates that our approach significantly improves AD performance, effectively increasing driving efficiency, action consistency and safety.
comment: 8 pages, Submitted to IEEE Robotics and Automation Letters
☆ Motion Tracking with Muscles: Predictive Control of a Parametric Musculoskeletal Canine Model
We introduce a novel musculoskeletal model of a dog, procedurally generated from accurate 3D muscle meshes. Accompanying this model is a motion capture-based locomotion task compatible with a variety of control algorithms, as well as an improved muscle dynamics model designed to enhance convergence in differentiable control frameworks. We validate our approach by comparing simulated muscle activation patterns with experimentally obtained electromyography (EMG) data from previous canine locomotion studies. This work aims to bridge gaps between biomechanics, robotics, and computational neuroscience, offering a robust platform for researchers investigating muscle actuation and neuromuscular control.We plan to release the full model along with the retargeted motion capture clips to facilitate further research and development.
☆ Validation of AI-Based 3D Human Pose Estimation in a Cyber-Physical Environment
Ensuring safe and realistic interactions between automated driving systems and vulnerable road users (VRUs) in urban environments requires advanced testing methodologies. This paper presents a test environment that combines a Vehiclein-the-Loop (ViL) test bench with a motion laboratory, demonstrating the feasibility of cyber-physical (CP) testing of vehicle-pedestrian and vehicle-cyclist interactions. Building upon previous work focused on pedestrian localization, we further validate a human pose estimation (HPE) approach through a comparative analysis of real-world (RW) and virtual representations of VRUs. The study examines the perception of full-body motion using a commercial monocular camera-based 3Dskeletal detection AI. The virtual scene is generated in Unreal Engine 5, where VRUs are animated in real time and projected onto a screen to stimulate the camera. The proposed stimulation technique ensures the correct perspective, enabling realistic vehicle perception. To assess the accuracy and consistency of HPE across RW and CP domains, we analyze the reliability of detections as well as variations in movement trajectories and joint estimation stability. The validation includes dynamic test scenarios where human avatars, both walking and cycling, are monitored under controlled conditions. Our results show a strong alignment in HPE between RW and CP test conditions for stable motion patterns, while notable inaccuracies persist under dynamic movements and occlusions, particularly for complex cyclist postures. These findings contribute to refining CP testing approaches for evaluating next-generation AI-based vehicle perception and to enhancing interaction models of automated vehicles and VRUs in CP environments.
comment: 6 pages, 5 figures, Preprint for 2025 IEEE IAVVC (International Automated Vehicle Validation Conference)
☆ PAC Bench: Do Foundation Models Understand Prerequisites for Executing Manipulation Policies?
Vision-Language Models (VLMs) are increasingly pivotal for generalist robot manipulation, enabling tasks such as physical reasoning, policy generation, and failure detection. However, their proficiency in these high-level applications often assumes a deep understanding of low-level physical prerequisites, a capability that remains largely unverified. For robots to perform actions reliably, they must comprehend intrinsic object properties (e.g., material, weight), action affordances (e.g., graspable, stackable), and physical constraints (e.g., stability, reachability, or an object's state, such as being closed). Despite the widespread use of VLMs in manipulation tasks, we argue that off-the-shelf models may lack this granular, physically grounded understanding, as such prerequisites are often overlooked during training. To address this critical gap, we introduce PAC Bench, a comprehensive benchmark designed to systematically evaluate VLMs on their understanding of core Properties, Affordances, and Constraints (PAC) from a task executability perspective. PAC Bench features a diverse dataset with over 30,000 annotations, comprising 673 real-world images (115 object classes, 15 property types, and 1 to 3 affordances defined per class), 100 real-world humanoid-view scenarios, and 120 unique simulated constraint scenarios across four tasks. Our evaluations reveal significant gaps in the ability of current VLMs to grasp fundamental physical concepts, highlighting limitations in their suitability for reliable robot manipulation and pointing to key areas for targeted research. PAC Bench also serves as a standardized benchmark for rigorously evaluating physical reasoning in VLMs and guiding the development of more robust, physically grounded models for robotic applications. Project Page: https://pacbench.github.io/
☆ A comprehensive control architecture for semi-autonomous dual-arm robots in agriculture settings
The adoption of mobile robotic platforms in complex environments, such as agricultural settings, requires these systems to exhibit a flexible yet effective architecture that integrates perception and control. In such scenarios, several tasks need to be accomplished simultaneously, ranging from managing robot limits to performing operational tasks and handling human inputs. The purpose of this paper is to present a comprehensive control architecture for achieving complex tasks such as robotized harvesting in vineyards within the framework of the European project CANOPIES. In detail, a 16-DOF dual-arm mobile robot is employed, controlled via a Hierarchical Quadratic Programming (HQP) approach capable of handling both equality and inequality constraints at various priorities to harvest grape bunches selected by the perception system developed within the project. Furthermore, given the complexity of the scenario and the uncertainty in the perception system, which could potentially lead to collisions with the environment, the handling of interaction forces is necessary. Remarkably, this was achieved using the same HQP framework. This feature is further leveraged to enable semi-autonomous operations, allowing a human operator to assist the robotic counterpart in completing harvesting tasks. Finally, the obtained results are validated through extensive testing conducted first in a laboratory environment to prove individual functionalities, then in a real vineyard, encompassing both autonomous and semi-autonomous grape harvesting operations.
☆ Towards Universal Shared Control in Teleoperation Without Haptic Feedback
Teleoperation with non-haptic VR controllers deprives human operators of critical motion feedback. We address this by embedding a multi-objective optimization problem that converts user input into collision-free UR5e joint trajectories while actively suppressing liquid slosh in a glass. The controller maintains 13 ms average planning latency, confirming real-time performance and motivating the augmentation of this teleoperation approach to further objectives.
comment: 5 pages, submitted to IEEE Telepresence 2025 conference
☆ Passage-traversing optimal path planning with sampling-based algorithms
This paper introduces a new paradigm of optimal path planning, i.e., passage-traversing optimal path planning (PTOPP), that optimizes paths' traversed passages for specified optimization objectives. In particular, PTOPP is utilized to find the path with optimal accessible free space along its entire length, which represents a basic requirement for paths in robotics. As passages are places where free space shrinks and becomes constrained, the core idea is to leverage the path's passage traversal status to characterize its accessible free space comprehensively. To this end, a novel passage detection and free space decomposition method using proximity graphs is proposed, enabling fast detection of sparse but informative passages and environment decompositions. Based on this preprocessing, optimal path planning with accessible free space objectives or constraints is formulated as PTOPP problems compatible with sampling-based optimal planners. Then, sampling-based algorithms for PTOPP, including their dependent primitive procedures, are developed leveraging partitioned environments for fast passage traversal check. All these methods are implemented and thoroughly tested for effectiveness and efficiency validation. Compared to existing approaches, such as clearance-based methods, PTOPP demonstrates significant advantages in configurability, solution optimality, and efficiency, addressing prior limitations and incapabilities. It is believed to provide an efficient and versatile solution to accessible free space optimization over conventional avenues and more generally, to a broad class of path planning problems that can be formulated as PTOPP.
comment: 30 pages, 22 figures, 6 tables, journal paper
☆ Online Human Action Detection during Escorting
The deployment of robot assistants in large indoor spaces has seen significant growth, with escorting tasks becoming a key application. However, most current escorting robots primarily rely on navigation-focused strategies, assuming that the person being escorted will follow without issue. In crowded environments, this assumption often falls short, as individuals may struggle to keep pace, become obstructed, get distracted, or need to stop unexpectedly. As a result, conventional robotic systems are often unable to provide effective escorting services due to their limited understanding of human movement dynamics. To address these challenges, an effective escorting robot must continuously detect and interpret human actions during the escorting process and adjust its movement accordingly. However, there is currently no existing dataset designed specifically for human action detection in the context of escorting. Given that escorting often occurs in crowded environments, where other individuals may enter the robot's camera view, the robot also needs to identify the specific human it is escorting (the subject) before predicting their actions. Since no existing model performs both person re-identification and action prediction in real-time, we propose a novel neural network architecture that can accomplish both tasks. This enables the robot to adjust its speed dynamically based on the escortee's movements and seamlessly resume escorting after any disruption. In comparative evaluations against strong baselines, our system demonstrates superior efficiency and effectiveness, showcasing its potential to significantly improve robotic escorting services in complex, real-world scenarios.
comment: Accepted in IEEE RO-MAN '25
☆ MGPRL: Distributed Multi-Gaussian Processes for Wi-Fi-based Multi-Robot Relative Localization in Large Indoor Environments IROS 2025
Relative localization is a crucial capability for multi-robot systems operating in GPS-denied environments. Existing approaches for multi-robot relative localization often depend on costly or short-range sensors like cameras and LiDARs. Consequently, these approaches face challenges such as high computational overhead (e.g., map merging) and difficulties in disjoint environments. To address this limitation, this paper introduces MGPRL, a novel distributed framework for multi-robot relative localization using convex-hull of multiple Wi-Fi access points (AP). To accomplish this, we employ co-regionalized multi-output Gaussian Processes for efficient Radio Signal Strength Indicator (RSSI) field prediction and perform uncertainty-aware multi-AP localization, which is further coupled with weighted convex hull-based alignment for robust relative pose estimation. Each robot predicts the RSSI field of the environment by an online scan of APs in its environment, which are utilized for position estimation of multiple APs. To perform relative localization, each robot aligns the convex hull of its predicted AP locations with that of the neighbor robots. This approach is well-suited for devices with limited computational resources and operates solely on widely available Wi-Fi RSSI measurements without necessitating any dedicated pre-calibration or offline fingerprinting. We rigorously evaluate the performance of the proposed MGPRL in ROS simulations and demonstrate it with real-world experiments, comparing it against multiple state-of-the-art approaches. The results showcase that MGPRL outperforms existing methods in terms of localization accuracy and computational efficiency. Finally, we open source MGPRL as a ROS package https://github.com/herolab-uga/MGPRL.
comment: Accepted to IROS 2025
☆ Towards foundational LiDAR world models with efficient latent flow matching
LiDAR-based world models offer more structured and geometry-aware representations than their image-based counterparts. However, existing LiDAR world models are narrowly trained; each model excels only in the domain for which it was built. Can we develop LiDAR world models that exhibit strong transferability across multiple domains? We conduct the first systematic domain transfer study across three demanding scenarios: (i) outdoor to indoor generalization, (ii) sparse-beam \& dense-beam adaptation, and (iii) non-semantic to semantic transfer. Given different amounts of fine-tuning data, our experiments show that a single pre-trained model can achieve up to 11% absolute improvement (83\% relative) over training from scratch and outperforms training from scratch in 30/36 of our comparisons. This transferability of dynamic learning significantly reduces the reliance on manually annotated data for semantic occupancy forecasting: our method exceed the previous semantic occupancy forecasting models with only 5% of the labeled training data required by prior models. We also observed inefficiencies of current LiDAR world models, mainly through their under-compression of LiDAR data and inefficient training objectives. To address this, we propose a latent conditional flow matching (CFM)-based frameworks that achieves state-of-the-art reconstruction accuracy using only half the training data and a compression ratio 6 times higher than that of prior methods. Our model achieves SOTA performance on future-trajectory-conditioned semantic occupancy forecasting while being 23x more computationally efficient (a 28x FPS speedup); and achieves SOTA performance on semantic occupancy forecasting while being 2x more computationally efficient (a 1.1x FPS speedup).
comment: 25 pages, 13 figures
☆ Risk-Based Filtering of Valuable Driving Situations in the Waymo Open Motion Dataset
Improving automated vehicle software requires driving data rich in valuable road user interactions. In this paper, we propose a risk-based filtering approach that helps identify such valuable driving situations from large datasets. Specifically, we use a probabilistic risk model to detect high-risk situations. Our method stands out by considering a) first-order situations (where one vehicle directly influences another and induces risk) and b) second-order situations (where influence propagates through an intermediary vehicle). In experiments, we show that our approach effectively selects valuable driving situations in the Waymo Open Motion Dataset. Compared to the two baseline interaction metrics of Kalman difficulty and Tracks-To-Predict (TTP), our filtering approach identifies complex and complementary situations, enriching the quality in automated vehicle testing. The risk data is made open-source: https://github.com/HRI-EU/RiskBasedFiltering.
☆ When Digital Twins Meet Large Language Models: Realistic, Interactive, and Editable Simulation for Autonomous Driving
Simulation frameworks have been key enablers for the development and validation of autonomous driving systems. However, existing methods struggle to comprehensively address the autonomy-oriented requirements of balancing: (i) dynamical fidelity, (ii) photorealistic rendering, (iii) context-relevant scenario orchestration, and (iv) real-time performance. To address these limitations, we present a unified framework for creating and curating high-fidelity digital twins to accelerate advancements in autonomous driving research. Our framework leverages a mix of physics-based and data-driven techniques for developing and simulating digital twins of autonomous vehicles and their operating environments. It is capable of reconstructing real-world scenes and assets (real2sim) with geometric and photorealistic accuracy and infusing them with various physical properties to enable real-time dynamical simulation of the ensuing driving scenarios. Additionally, it also incorporates a large language model (LLM) interface to flexibly edit the driving scenarios online via natural language prompts. We analyze the presented framework in terms of its fidelity, performance, and serviceability. Results indicate that our framework can reconstruct 3D scenes and assets with up to 97% structural similarity, while maintaining frame rates above 60 Hz. We also demonstrate that it can handle natural language prompts to generate diverse driving scenarios with up to 95% repeatability and 85% generalizability.
☆ Mechanical Intelligence-Aware Curriculum Reinforcement Learning for Humanoids with Parallel Actuation
Reinforcement learning (RL) has enabled significant advances in humanoid robot locomotion, yet most learning frameworks do not account for mechanical intelligence embedded in parallel actuation mechanisms due to limitations in simulator support for closed kinematic chains. This omission can lead to inaccurate motion modeling and suboptimal policies, particularly for robots with high actuation complexity. This paper presents an end-to-end curriculum RL framework for BRUCE, a kid-sized humanoid robot featuring three distinct parallel mechanisms in its legs: a differential pulley, a 5-bar linkage, and a 4-bar linkage. Unlike prior approaches that rely on simplified serial approximations, we simulate all closed-chain constraints natively using GPU-accelerated MJX (MuJoCo), preserving the hardware's physical properties during training. We benchmark our RL approach against a Model Predictive Controller (MPC), demonstrating better surface generalization and performance in real-world zero-shot deployment. This work highlights the computational approaches and performance benefits of fully simulating parallel mechanisms in end-to-end learning pipelines for legged humanoids.
☆ User Concerns Regarding Social Robots for Mood Regulation: A Case Study on the "Sunday Blues"
While recent research highlights the potential of social robots to support mood regulation, little is known about how prospective users view their integration into everyday life. To explore this, we conducted an exploratory case study that used a speculative robot concept "Mora" to provoke reflection and facilitate meaningful discussion about using social robots to manage subtle, day-to-day emotional experiences. We focused on the "Sunday Blues," a common dip in mood that occurs at the end of the weekend, as a relatable context in which to explore individuals' insights. Using a video prototype and a co-constructing stories method, we engaged 15 participants in imagining interactions with Mora and discussing their expectations, doubts, and concerns. The study surfaced a range of nuanced reflections around the attributes of social robots like empathy, intervention effectiveness, and ethical boundaries, which we translated into design considerations for future research and development in human-robot interaction.
comment: Accepted to International Conference on Social Robotics + AI (ICSR 2025)
Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems
Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI. However, traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response. In real-world applications, such as robotics, mechatronics, and communication networks, execution mismatches arising from system dynamics, hardware constraints, and latency can significantly degrade performance. This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches, a challenge largely overlooked in existing methods. Our approach establishes a structured two-stage process: determining the desired action and selecting the appropriate control signal to ensure proper execution. It trains the agent while accounting for action mismatches and controller corrections. By incorporating these factors into the training process, the AI agent optimizes the desired action with respect to both the actual control signal and the intended outcome, explicitly considering execution errors. This approach enhances robustness, ensuring that decision-making remains effective under real-world uncertainties. Our approach offers a substantial advancement for engineering practice by bridging the gap between idealized learning and real-world implementation. It equips intelligent agents operating in engineering environments with the ability to anticipate and adjust for actuation errors and system disturbances during training. We evaluate the framework in five widely used open-source mechanical simulation environments we restructured and developed to reflect real-world operating conditions, showcasing its robustness against uncertainties and offering a highly practical and efficient solution for control-oriented applications.
comment: 27 pages, 10 figures
☆ Sim2Real Diffusion: Learning Cross-Domain Adaptive Representations for Transferable Autonomous Driving
Simulation-based design, optimization, and validation of autonomous driving algorithms have proven to be crucial for their iterative improvement over the years. Nevertheless, the ultimate measure of effectiveness is their successful transition from simulation to reality (sim2real). However, existing sim2real transfer methods struggle to comprehensively address the autonomy-oriented requirements of balancing: (i) conditioned domain adaptation, (ii) robust performance with limited examples, (iii) modularity in handling multiple domain representations, and (iv) real-time performance. To alleviate these pain points, we present a unified framework for learning cross-domain adaptive representations for sim2real transferable autonomous driving algorithms using conditional latent diffusion models. Our framework offers options to leverage: (i) alternate foundation models, (ii) a few-shot fine-tuning pipeline, and (iii) textual as well as image prompts for mapping across given source and target domains. It is also capable of generating diverse high-quality samples when diffusing across parameter spaces such as times of day, weather conditions, seasons, and operational design domains. We systematically analyze the presented framework and report our findings in the form of critical quantitative metrics and ablation studies, as well as insightful qualitative examples and remarks. Additionally, we demonstrate the serviceability of the proposed approach in bridging the sim2real gap for end-to-end autonomous driving using a behavioral cloning case study. Our experiments indicate that the proposed framework is capable of bridging the perceptual sim2real gap by over 40%. We hope that our approach underscores the potential of generative diffusion models in sim2real transfer, offering a pathway toward more robust and adaptive autonomous driving.
☆ SurgiSR4K: A High-Resolution Endoscopic Video Dataset for Robotic-Assisted Minimally Invasive Procedures
High-resolution imaging is crucial for enhancing visual clarity and enabling precise computer-assisted guidance in minimally invasive surgery (MIS). Despite the increasing adoption of 4K endoscopic systems, there remains a significant gap in publicly available native 4K datasets tailored specifically for robotic-assisted MIS. We introduce SurgiSR4K, the first publicly accessible surgical imaging and video dataset captured at a native 4K resolution, representing realistic conditions of robotic-assisted procedures. SurgiSR4K comprises diverse visual scenarios including specular reflections, tool occlusions, bleeding, and soft tissue deformations, meticulously designed to reflect common challenges faced during laparoscopic and robotic surgeries. This dataset opens up possibilities for a broad range of computer vision tasks that might benefit from high resolution data, such as super resolution (SR), smoke removal, surgical instrument detection, 3D tissue reconstruction, monocular depth estimation, instance segmentation, novel view synthesis, and vision-language model (VLM) development. SurgiSR4K provides a robust foundation for advancing research in high-resolution surgical imaging and fosters the development of intelligent imaging technologies aimed at enhancing performance, safety, and usability in image-guided robotic surgeries.
☆ Rethink 3D Object Detection from Physical World
High-accuracy and low-latency 3D object detection is essential for autonomous driving systems. While previous studies on 3D object detection often evaluate performance based on mean average precision (mAP) and latency, they typically fail to address the trade-off between speed and accuracy, such as 60.0 mAP at 100 ms vs 61.0 mAP at 500 ms. A quantitative assessment of the trade-offs between different hardware devices and accelerators remains unexplored, despite being critical for real-time applications. Furthermore, they overlook the impact on collision avoidance in motion planning, for example, 60.0 mAP leading to safer motion planning or 61.0 mAP leading to high-risk motion planning. In this paper, we introduce latency-aware AP (L-AP) and planning-aware AP (P-AP) as new metrics, which consider the physical world such as the concept of time and physical constraints, offering a more comprehensive evaluation for real-time 3D object detection. We demonstrate the effectiveness of our metrics for the entire autonomous driving system using nuPlan dataset, and evaluate 3D object detection models accounting for hardware differences and accelerators. We also develop a state-of-the-art performance model for real-time 3D object detection through latency-aware hyperparameter optimization (L-HPO) using our metrics. Additionally, we quantitatively demonstrate that the assumption "the more point clouds, the better the recognition performance" is incorrect for real-time applications and optimize both hardware and model selection using our metrics.
comment: 15 pages, 10 figures
☆ Novel Design of 3D Printed Tumbling Microrobots for in vivo Targeted Drug Delivery
This paper presents innovative designs for 3D-printed tumbling microrobots, specifically engineered for targeted in vivo drug delivery applications. The microrobot designs, created using stereolithography 3D printing technologies, incorporate permanent micro-magnets to enable actuation via a rotating magnetic field actuator system. The experimental framework encompasses a series of locomotion characterization tests to evaluate microrobot performance under various conditions. Testing variables include variations in microrobot geometries, actuation frequencies, and environmental conditions, such as dry and wet environments, and temperature changes. The paper outlines designs for three drug loading methods, along with comprehensive assessments thermal drug release using a focused ultrasound system, as well as biocompatibility tests. Animal model testing involves tissue phantoms and in vivo rat models, ensuring a thorough evaluation of the microrobots' performance and compatibility. The results highlight the robustness and adaptability of the proposed microrobot designs, showcasing the potential for efficient and targeted in vivo drug delivery. This novel approach addresses current limitations in existing tumbling microrobot designs and paves the way for advancements in targeted drug delivery within the large intestine.
♻ ☆ Region Based SLAM-Aware Exploration: Efficient and Robust Autonomous Mapping Strategy That Can Scale
Autonomous exploration for mapping unknown large scale environments is a fundamental challenge in robotics, with efficiency in time, stability against map corruption and computational resources being crucial. This paper presents a novel approach to indoor exploration that addresses these key issues in existing methods. We introduce a Simultaneous Localization and Mapping (SLAM)-aware region-based exploration strategy that partitions the environment into discrete regions, allowing the robot to incrementally explore and stabilize each region before moving to the next one. This approach significantly reduces redundant exploration and improves overall efficiency. As the device finishes exploring a region and stabilizes it, we also perform SLAM keyframe marginalization, a technique which reduces problem complexity by eliminating variables, while preserving their essential information. To improves robustness and further enhance efficiency, we develop a checkpoint system that enables the robot to resume exploration from the last stable region in case of failures, eliminating the need for complete re-exploration. Our method, tested in real homes, office and simulations, outperforms state-of-the-art approaches. The improvements demonstrate substantial enhancements in various real world environments, with significant reductions in keyframe usage (85%), submap usage (50% office, 32% home), pose graph optimization time (78-80%), and exploration duration (10-15%). This region-based strategy with keyframe marginalization offers an efficient solution for autonomous robotic mapping.
comment: 8 pages, 9 figures
♻ ☆ SICNav-Diffusion: Safe and Interactive Crowd Navigation with Diffusion Trajectory Predictions
To navigate crowds without collisions, robots must interact with humans by forecasting their future motion and reacting accordingly. While learning-based prediction models have shown success in generating likely human trajectory predictions, integrating these stochastic models into a robot controller presents several challenges. The controller needs to account for interactive coupling between planned robot motion and human predictions while ensuring both predictions and robot actions are safe (i.e. collision-free). To address these challenges, we present a receding horizon crowd navigation method for single-robot multi-human environments. We first propose a diffusion model to generate joint trajectory predictions for all humans in the scene. We then incorporate these multi-modal predictions into a SICNav Bilevel MPC problem that simultaneously solves for a robot plan (upper-level) and acts as a safety filter to refine the predictions for non-collision (lower-level). Combining planning and prediction refinement into one bilevel problem ensures that the robot plan and human predictions are coupled. We validate the open-loop trajectory prediction performance of our diffusion model on the commonly used ETH/UCY benchmark and evaluate the closed-loop performance of our robot navigation method in simulation and extensive real-robot experiments demonstrating safe, efficient, and reactive robot motion.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ A Robot-Led Intervention for Emotion Regulation: From Expression to Reappraisal
Emotion regulation is a crucial skill for managing emotions in everyday life, yet finding a constructive and accessible method to support these processes remains challenging due to their cognitive demands. In this study, we explore how regular interactions with a social robot, conducted in a structured yet familiar environment within university halls and departments, can provide effective support for emotion regulation through cognitive reappraisal. Twenty-one students participated in a five-session study at a university hall or department, where the robot, powered by a large language model (GPT-3.5), facilitated structured conversations, encouraging the students to reinterpret emotionally charged situations they shared with the robot. Quantitative and qualitative results indicate significant improvements in emotion self-regulation, with participants reporting better understanding and control of their emotions. The intervention led to significant changes in constructive emotion regulation tendencies and positive effects on mood and sentiment after each session. The findings also demonstrate that repeated interactions with the robot encouraged greater emotional expressiveness, including longer speech disclosures, increased use of affective language, and heightened facial arousal. Notably, expressiveness followed structured patterns aligned with the reappraisal process, with expression peaking during key reappraisal moments, particularly when participants were prompted to reinterpret negative experiences. The qualitative feedback further highlighted how the robot fostered introspection and provided a supportive space for discussing emotions, enabling participants to confront long-avoided emotional challenges. These findings demonstrate the potential of robots to effectively assist in emotion regulation in familiar environments, offering both emotional support and cognitive guidance.
♻ ☆ Diffusion Models for Robotic Manipulation: A Survey
Diffusion generative models have demonstrated remarkable success in visual domains such as image and video generation. They have also recently emerged as a promising approach in robotics, especially in robot manipulations. Diffusion models leverage a probabilistic framework, and they stand out with their ability to model multi-modal distributions and their robustness to high-dimensional input and output spaces. This survey provides a comprehensive review of state-of-the-art diffusion models in robotic manipulation, including grasp learning, trajectory planning, and data augmentation. Diffusion models for scene and image augmentation lie at the intersection of robotics and computer vision for vision-based tasks to enhance generalizability and data scarcity. This paper also presents the two main frameworks of diffusion models and their integration with imitation learning and reinforcement learning. In addition, it discusses the common architectures and benchmarks and points out the challenges and advantages of current state-of-the-art diffusion-based methods.
comment: 28 pages, 2 figure, 9 tables
♻ ☆ Ego-Foresight: Self-supervised Learning of Agent-Aware Representations for Improved RL
Despite the significant advancements in Deep Reinforcement Learning (RL) observed in the last decade, the amount of training experience necessary to learn effective policies remains one of the primary concerns both in simulated and real environments. Looking to solve this issue, previous work has shown that improved training efficiency can be achieved by separately modeling agent and environment, but usually requiring a supervisory agent mask. In contrast to RL, humans can perfect a new skill from a small number of trials and in most cases do so without a supervisory signal, making neuroscientific studies of human development a valuable source of inspiration for RL. In particular, we explore the idea of motor prediction, which states that humans develop an internal model of themselves and of the consequences that their motor commands have on the immediate sensory inputs. Our insight is that the movement of the agent provides a cue that allows the duality between agent and environment to be learned. To instantiate this idea, we present Ego-Foresight, a self-supervised method for disentangling agent and environment based on motion and prediction. Our main finding is self-supervised agent-awareness by visuomotor prediction of the agent improves sample-efficiency and performance of the underlying RL algorithm. To test our approach, we first study its ability to visually predict agent movement irrespective of the environment, in simulated and real-world robotic data. Then, we integrate Ego-Foresight with a model-free RL algorithm to solve simulated robotic tasks, showing that self-supervised agent-awareness can improve sample-efficiency and performance in RL.
comment: 13 pages, 8 figures, conference
♻ ☆ Adaptive Domain Modeling with Language Models: A Multi-Agent Approach to Task Planning
We introduce TAPAS (Task-based Adaptation and Planning using AgentS), a multi-agent framework that integrates Large Language Models (LLMs) with symbolic planning to solve complex tasks without the need for manually defined environment models. TAPAS employs specialized LLM-based agents that collaboratively generate and adapt domain models, initial states, and goal specifications as needed using structured tool-calling mechanisms. Through this tool-based interaction, downstream agents can request modifications from upstream agents, enabling adaptation to novel attributes and constraints without manual domain redefinition. A ReAct (Reason+Act)-style execution agent, coupled with natural language plan translation, bridges the gap between dynamically generated plans and real-world robot capabilities. TAPAS demonstrates strong performance in benchmark planning domains and in the VirtualHome simulated real-world environment.
comment: Accepted at IEEE CASE 2025, 8 pages, 8 figures
♻ ☆ Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models ICML 2025
Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
comment: Published at the Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ Skill-Nav: Enhanced Navigation with Versatile Quadrupedal Locomotion via Waypoint Interface
Quadrupedal robots have demonstrated exceptional locomotion capabilities through Reinforcement Learning (RL), including extreme parkour maneuvers. However, integrating locomotion skills with navigation in quadrupedal robots has not been fully investigated, which holds promise for enhancing long-distance movement capabilities. In this paper, we propose Skill-Nav, a method that incorporates quadrupedal locomotion skills into a hierarchical navigation framework using waypoints as an interface. Specifically, we train a waypoint-guided locomotion policy using deep RL, enabling the robot to autonomously adjust its locomotion skills to reach targeted positions while avoiding obstacles. Compared with direct velocity commands, waypoints offer a simpler yet more flexible interface for high-level planning and low-level control. Utilizing waypoints as the interface allows for the application of various general planning tools, such as large language models (LLMs) and path planning algorithms, to guide our locomotion policy in traversing terrains with diverse obstacles. Extensive experiments conducted in both simulated and real-world scenarios demonstrate that Skill-Nav can effectively traverse complex terrains and complete challenging navigation tasks.
comment: 17pages, 6 figures
♻ ☆ Adaptive event-triggered robust tracking control of soft robots
Soft robots manufactured with flexible materials can be highly compliant and adaptive to their surroundings, which facilitates their application in areas such as dexterous manipulation and environmental exploration. This paper aims at investigating the tracking control problem for soft robots under uncertainty such as unmodeled dynamics and external disturbance. First, we establish a novel switching function and design the compensated tracking error dynamics by virtue of the command filter. Then, based on the backstepping methodology, the virtual controllers and the adaptive logic estimating the supremum of uncertainty impacts are developed for synthesizing an event-triggered control strategy. In addition, the uniformed finite-time stability certification is derived for different scenarios of the switching function. Finally, we perform a case study of a soft robot to illustrate the effectiveness of the proposed control algorithm.
comment: We need to significantly alter the structure of the paper and update the collaboration, in view of supplementing a new experimental study
Mesh-Learner: Texturing Mesh with Spherical Harmonics IROS2025
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.
comment: IROS2025 Accepted
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
comment: Need further revision
♻ ☆ Learning Attentive Neural Processes for Planning with Pushing Actions
Our goal is to enable robots to plan sequences of tabletop actions to push a block with unknown physical properties to a desired goal pose. We approach this problem by learning the constituent models of a Partially-Observable Markov Decision Process (POMDP), where the robot can observe the outcome of a push, but the physical properties of the block that govern the dynamics remain unknown. A common solution approach is to train an observation model in a supervised fashion, and do inference with a general inference technique such as particle filters. However, supervised training requires knowledge of the relevant physical properties that determine the problem dynamics, which we do not assume to be known. Planning also requires simulating many belief updates, which becomes expensive when using particle filters to represent the belief. We propose to learn an Attentive Neural Process that computes the belief over a learned latent representation of the relevant physical properties given a history of actions. To address the pushing planning problem, we integrate a trained Neural Process with a double-progressive widening sampling strategy. Simulation results indicate that Neural Process Tree with Double Progressive Widening (NPT-DPW) generates better-performing plans faster than traditional particle-filter methods that use a supervised-trained observation model, even in complex pushing scenarios.
comment: Presented at 2025 RoboReps Workshop
♻ ☆ Generating and Customizing Robotic Arm Trajectories using Neural Networks
We introduce a neural network approach for generating and customizing the trajectory of a robotic arm, that guarantees precision and repeatability. To highlight the potential of this novel method, we describe the design and implementation of the technique and show its application in an experimental setting of cognitive robotics. In this scenario, the NICO robot was characterized by the ability to point to specific points in space with precise linear movements, increasing the predictability of the robotic action during its interaction with humans. To achieve this goal, the neural network computes the forward kinematics of the robot arm. By integrating it with a generator of joint angles, another neural network was developed and trained on an artificial dataset created from suitable start and end poses of the robotic arm. Through the computation of angular velocities, the robot was characterized by its ability to perform the movement, and the quality of its action was evaluated in terms of shape and accuracy. Thanks to its broad applicability, our approach successfully generates precise trajectories that could be customized in their shape and adapted to different settings.
comment: The code is released at https://github.com/andylucny/nico2/tree/main/generate
♻ ☆ DG16M: A Large-Scale Dataset for Dual-Arm Grasping with Force-Optimized Grasps
Dual-arm robotic grasping is crucial for handling large objects that require stable and coordinated manipulation. While single-arm grasping has been extensively studied, datasets tailored for dual-arm settings remain scarce. We introduce a large-scale dataset of 16 million dual-arm grasps, evaluated under improved force-closure constraints. Additionally, we develop a benchmark dataset containing 300 objects with approximately 30,000 grasps, evaluated in a physics simulation environment, providing a better grasp quality assessment for dual-arm grasp synthesis methods. Finally, we demonstrate the effectiveness of our dataset by training a Dual-Arm Grasp Classifier network that outperforms the state-of-the-art methods by 15\%, achieving higher grasp success rates and improved generalization across objects.
Vision 160
☆ How to Design and Train Your Implicit Neural Representation for Video Compression
Implicit neural representation (INR) methods for video compression have recently achieved visual quality and compression ratios that are competitive with traditional pipelines. However, due to the need for per-sample network training, the encoding speeds of these methods are too slow for practical adoption. We develop a library to allow us to disentangle and review the components of methods from the NeRV family, reframing their performance in terms of not only size-quality trade-offs, but also impacts on training time. We uncover principles for effective video INR design and propose a state-of-the-art configuration of these components, Rabbit NeRV (RNeRV). When all methods are given equal training time (equivalent to 300 NeRV epochs) for 7 different UVG videos at 1080p, RNeRV achieves +1.27% PSNR on average compared to the best-performing alternative for each video in our NeRV library. We then tackle the encoding speed issue head-on by investigating the viability of hyper-networks, which predict INR weights from video inputs, to disentangle training from encoding to allow for real-time encoding. We propose masking the weights of the predicted INR during training to allow for variable, higher quality compression, resulting in 1.7% improvements to both PSNR and MS-SSIM at 0.037 bpp on the UCF-101 dataset, and we increase hyper-network parameters by 0.4% for 2.5%/2.7% improvements to PSNR/MS-SSIM with equal bpp and similar speeds. Our project website is available at https://mgwillia.github.io/vinrb/ and our code is available at https://github.com/mgwillia/vinrb.
comment: 21 pages, 41 figures, 5 tables
☆ FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation
Residual connection has been extensively studied and widely applied at the model architecture level. However, its potential in the more challenging data-centric approaches remains unexplored. In this work, we introduce the concept of Data Residual Matching for the first time, leveraging data-level skip connections to facilitate data generation and mitigate data information vanishing. This approach maintains a balance between newly acquired knowledge through pixel space optimization and existing core local information identification within raw data modalities, specifically for the dataset distillation task. Furthermore, by incorporating optimization-level refinements, our method significantly improves computational efficiency, achieving superior performance while reducing training time and peak GPU memory usage by 50%. Consequently, the proposed method Fast and Accurate Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-of-the-art, demonstrating substantial improvements over existing methods across multiple dataset benchmarks in both efficiency and effectiveness. For instance, with ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the method achieves 47.7% test accuracy in single-model dataset distillation and 50.0% in multi-model dataset distillation, surpassing RDED by +5.7% and outperforming state-of-the-art multi-model approaches, EDC and CV-DD, by +1.4% and +4.0%. Code is available at: https://github.com/Jiacheng8/FADRM.
comment: Code at: https://github.com/Jiacheng8/FADRM
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Calligrapher: Freestyle Text Image Customization
We introduce Calligrapher, a novel diffusion-based framework that innovatively integrates advanced text customization with artistic typography for digital calligraphy and design applications. Addressing the challenges of precise style control and data dependency in typographic customization, our framework incorporates three key technical contributions. First, we develop a self-distillation mechanism that leverages the pre-trained text-to-image generative model itself alongside the large language model to automatically construct a style-centric typography benchmark. Second, we introduce a localized style injection framework via a trainable style encoder, which comprises both Qformer and linear layers, to extract robust style features from reference images. An in-context generation mechanism is also employed to directly embed reference images into the denoising process, further enhancing the refined alignment of target styles. Extensive quantitative and qualitative evaluations across diverse fonts and design contexts confirm Calligrapher's accurate reproduction of intricate stylistic details and precise glyph positioning. By automating high-quality, visually consistent typography, Calligrapher surpasses traditional models, empowering creative practitioners in digital art, branding, and contextual typographic design.
comment: Project page: https://calligrapher2025.github.io/Calligrapher Code: https://github.com/Calligrapher2025/Calligrapher
☆ TextMesh4D: High-Quality Text-to-4D Mesh Generation
Recent advancements in diffusion generative models significantly advanced image, video, and 3D content creation from user-provided text prompts. However, the challenging problem of dynamic 3D content generation (text-to-4D) with diffusion guidance remains largely unexplored. In this paper, we introduce TextMesh4D, a novel framework for high-quality text-to-4D generation. Our approach leverages per-face Jacobians as a differentiable mesh representation and decomposes 4D generation into two stages: static object creation and dynamic motion synthesis. We further propose a flexibility-rigidity regularization term to stabilize Jacobian optimization under video diffusion priors, ensuring robust geometric performance. Experiments demonstrate that TextMesh4D achieves state-of-the-art results in terms of temporal consistency, structural fidelity, and visual realism. Moreover, TextMesh4D operates with a low GPU memory overhead-requiring only a single 24GB GPU-offering a cost-effective yet high-quality solution for text-driven 4D mesh generation. The code will be released to facilitate future research in text-to-4D generation.
☆ Epona: Autoregressive Diffusion World Model for Autonomous Driving ICCV2025
Diffusion models have demonstrated exceptional visual quality in video generation, making them promising for autonomous driving world modeling. However, existing video diffusion-based world models struggle with flexible-length, long-horizon predictions and integrating trajectory planning. This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences rather than sequentially constructing localized distributions at each timestep. In this work, we propose Epona, an autoregressive diffusion world model that enables localized spatiotemporal distribution modeling through two key innovations: 1) Decoupled spatiotemporal factorization that separates temporal dynamics modeling from fine-grained future world generation, and 2) Modular trajectory and video prediction that seamlessly integrate motion planning with visual modeling in an end-to-end framework. Our architecture enables high-resolution, long-duration generation while introducing a novel chain-of-forward training strategy to address error accumulation in autoregressive loops. Experimental results demonstrate state-of-the-art performance with 7.4\% FVD improvement and minutes longer prediction duration compared to prior works. The learned world model further serves as a real-time motion planner, outperforming strong end-to-end planners on NAVSIM benchmarks. Code will be publicly available at \href{https://github.com/Kevin-thu/Epona/}{https://github.com/Kevin-thu/Epona/}.
comment: ICCV2025, Project Page: https://kevin-thu.github.io/Epona/
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ DenseWorld-1M: Towards Detailed Dense Grounded Caption in the Real World
Multimodal Large Language Models (MLLMs) demonstrate a complex understanding of scenes, benefiting from large-scale and high-quality datasets. Most existing caption datasets lack the ground locations and relations for visual entities. Several grounded caption datasets face the problems of missing detailed descriptions, relations, and massive object descriptions on high-resolution images. To fill this gap for the community, we present DenseWorld-1M, the first massive, detailed, dense grounded caption dataset in the real world. We design a three-stage labeling pipeline, containing open-world perception, detailed object caption generation, and dense caption merging. The first stage obtains entity-level masks and labels. The second stage generates the object-level, detailed captions with the guidance of masks and labels from the first stage. The final stage merges object captions and masks into spatial and relational dense captions. To accelerate the labeling process and improve caption quality, we present two VLM models: the Detailed Region Caption model and the Spatial Caption Merging model. Extensive experiments on various settings, including vision-language understanding, visual grounding, and region caption generation, demonstrate the effectiveness of our DenseWorld-1M dataset and labeling models.
comment: Datasets and Models: https://github.com/lxtGH/DenseWorld-1M
☆ MILo: Mesh-In-the-Loop Gaussian Splatting for Detailed and Efficient Surface Reconstruction
While recent advances in Gaussian Splatting have enabled fast reconstruction of high-quality 3D scenes from images, extracting accurate surface meshes remains a challenge. Current approaches extract the surface through costly post-processing steps, resulting in the loss of fine geometric details or requiring significant time and leading to very dense meshes with millions of vertices. More fundamentally, the a posteriori conversion from a volumetric to a surface representation limits the ability of the final mesh to preserve all geometric structures captured during training. We present MILo, a novel Gaussian Splatting framework that bridges the gap between volumetric and surface representations by differentiably extracting a mesh from the 3D Gaussians. We design a fully differentiable procedure that constructs the mesh-including both vertex locations and connectivity-at every iteration directly from the parameters of the Gaussians, which are the only quantities optimized during training. Our method introduces three key technical contributions: a bidirectional consistency framework ensuring both representations-Gaussians and the extracted mesh-capture the same underlying geometry during training; an adaptive mesh extraction process performed at each training iteration, which uses Gaussians as differentiable pivots for Delaunay triangulation; a novel method for computing signed distance values from the 3D Gaussians that enables precise surface extraction while avoiding geometric erosion. Our approach can reconstruct complete scenes, including backgrounds, with state-of-the-art quality while requiring an order of magnitude fewer mesh vertices than previous methods. Due to their light weight and empty interior, our meshes are well suited for downstream applications such as physics simulations or animation.
comment: 10 pages. A presentation video of our approach is available at https://youtu.be/_SGNhhNz0fE
☆ MotionGPT3: Human Motion as a Second Modality
Though recent advances in multimodal models have demonstrated strong capabilities and opportunities in unified understanding and generation, the development of unified motion-language models remains underexplored. To enable such models with high-fidelity human motion, two core challenges must be addressed. The first is the reconstruction gap between the continuous motion modality and discrete representation in an autoregressive manner, and the second is the degradation of language intelligence during unified training. Inspired by the mixture of experts, we propose MotionGPT3, a bimodal motion-language model that treats human motion as a second modality, decoupling motion modeling via separate model parameters and enabling both effective cross-modal interaction and efficient multimodal scaling training. To preserve language intelligence, the text branch retains the original structure and parameters of the pretrained language model, while a new motion branch is integrated via a shared attention mechanism, enabling bidirectional information flow between two modalities. We first employ a motion Variational Autoencoder (VAE) to encode raw human motion into latent representations. Based on this continuous latent space, the motion branch predicts motion latents directly from intermediate hidden states using a diffusion head, bypassing discrete tokenization. Extensive experiments show that our approach achieves competitive performance on both motion understanding and generation tasks while preserving strong language capabilities, establishing a unified bimodal motion diffusion framework within an autoregressive manner.
comment: 21 pages, 8 figures
☆ Imagine for Me: Creative Conceptual Blending of Real Images and Text via Blended Attention
Blending visual and textual concepts into a new visual concept is a unique and powerful trait of human beings that can fuel creativity. However, in practice, cross-modal conceptual blending for humans is prone to cognitive biases, like design fixation, which leads to local minima in the design space. In this paper, we propose a T2I diffusion adapter "IT-Blender" that can automate the blending process to enhance human creativity. Prior works related to cross-modal conceptual blending are limited in encoding a real image without loss of details or in disentangling the image and text inputs. To address these gaps, IT-Blender leverages pretrained diffusion models (SD and FLUX) to blend the latent representations of a clean reference image with those of the noisy generated image. Combined with our novel blended attention, IT-Blender encodes the real reference image without loss of details and blends the visual concept with the object specified by the text in a disentangled way. Our experiment results show that IT-Blender outperforms the baselines by a large margin in blending visual and textual concepts, shedding light on the new application of image generative models to augment human creativity.
comment: Project website is available at https://imagineforme.github.io/
☆ C3VDv2 -- Colonoscopy 3D video dataset with enhanced realism
Computer vision techniques have the potential to improve the diagnostic performance of colonoscopy, but the lack of 3D colonoscopy datasets for training and validation hinders their development. This paper introduces C3VDv2, the second version (v2) of the high-definition Colonoscopy 3D Video Dataset, featuring enhanced realism designed to facilitate the quantitative evaluation of 3D colon reconstruction algorithms. 192 video sequences were captured by imaging 60 unique, high-fidelity silicone colon phantom segments. Ground truth depth, surface normals, optical flow, occlusion, six-degree-of-freedom pose, coverage maps, and 3D models are provided for 169 colonoscopy videos. Eight simulated screening colonoscopy videos acquired by a gastroenterologist are provided with ground truth poses. The dataset includes 15 videos featuring colon deformations for qualitative assessment. C3VDv2 emulates diverse and challenging scenarios for 3D reconstruction algorithms, including fecal debris, mucous pools, blood, debris obscuring the colonoscope lens, en-face views, and fast camera motion. The enhanced realism of C3VDv2 will allow for more robust and representative development and evaluation of 3D reconstruction algorithms.
comment: 19 pages, 7 figures
☆ Continual Adaptation: Environment-Conditional Parameter Generation for Object Detection in Dynamic Scenarios
In practice, environments constantly change over time and space, posing significant challenges for object detectors trained based on a closed-set assumption, i.e., training and test data share the same distribution. To this end, continual test-time adaptation has attracted much attention, aiming to improve detectors' generalization by fine-tuning a few specific parameters, e.g., BatchNorm layers. However, based on a small number of test images, fine-tuning certain parameters may affect the representation ability of other fixed parameters, leading to performance degradation. Instead, we explore a new mechanism, i.e., converting the fine-tuning process to a specific-parameter generation. Particularly, we first design a dual-path LoRA-based domain-aware adapter that disentangles features into domain-invariant and domain-specific components, enabling efficient adaptation. Additionally, a conditional diffusion-based parameter generation mechanism is presented to synthesize the adapter's parameters based on the current environment, preventing the optimization from getting stuck in local optima. Finally, we propose a class-centered optimal transport alignment method to mitigate catastrophic forgetting. Extensive experiments conducted on various continuous domain adaptive object detection tasks demonstrate the effectiveness. Meanwhile, visualization results show that the representation extracted by the generated parameters can capture more object-related information and strengthen the generalization ability.
☆ A Survey on Vision-Language-Action Models for Autonomous Driving
The rapid progress of multimodal large language models (MLLM) has paved the way for Vision-Language-Action (VLA) paradigms, which integrate visual perception, natural language understanding, and control within a single policy. Researchers in autonomous driving are actively adapting these methods to the vehicle domain. Such models promise autonomous vehicles that can interpret high-level instructions, reason about complex traffic scenes, and make their own decisions. However, the literature remains fragmented and is rapidly expanding. This survey offers the first comprehensive overview of VLA for Autonomous Driving (VLA4AD). We (i) formalize the architectural building blocks shared across recent work, (ii) trace the evolution from early explainer to reasoning-centric VLA models, and (iii) compare over 20 representative models according to VLA's progress in the autonomous driving domain. We also consolidate existing datasets and benchmarks, highlighting protocols that jointly measure driving safety, accuracy, and explanation quality. Finally, we detail open challenges - robustness, real-time efficiency, and formal verification - and outline future directions of VLA4AD. This survey provides a concise yet complete reference for advancing interpretable socially aligned autonomous vehicles. Github repo is available at \href{https://github.com/JohnsonJiang1996/Awesome-VLA4AD}{SicongJiang/Awesome-VLA4AD}.
☆ Foundation Models for Zero-Shot Segmentation of Scientific Images without AI-Ready Data
Zero-shot and prompt-based technologies capitalized on using frequently occurring images to transform visual reasoning tasks, which explains why such technologies struggle with valuable yet scarce scientific image sets. In this work, we propose Zenesis, a comprehensive no-code interactive platform designed to minimize barriers posed by data readiness for scientific images. We develop lightweight multi-modal adaptation techniques that enable zero-shot operation on raw scientific data, along with human-in-the-loop refinement and heuristic-based temporal enhancement options. We demonstrate the performance of our approach through comprehensive comparison and validation on challenging Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) data of catalyst-loaded membranes. Zenesis significantly outperforms baseline methods, achieving an average accuracy of 0.947, an Intersection over Union (IOU) of 0.858, and a Dice score of 0.923 for amorphous catalyst samples and accuracy of 0.987, an IOU of 0.857, and a Dice score of 0.923 for crystalline samples. These results mark a substantial improvement over traditional methods like Otsu thresholding and even advanced models like Segment Anything Model (SAM) when used in isolation. Our results demonstrate that Zenesis is a powerful tool for scientific applications, particularly in fields where high-quality annotated datasets are unavailable, accelerating accurate analysis of experimental imaging.
comment: This manuscript is a draft on arxiv. A final version has been submitted to the 59th ICPP 2025, DRAI workshop
☆ Supervised Diffusion-Model-Based PET Image Reconstruction MICCAI 2025
Diffusion models (DMs) have recently been introduced as a regularizing prior for PET image reconstruction, integrating DMs trained on high-quality PET images with unsupervised schemes that condition on measured data. While these approaches have potential generalization advantages due to their independence from the scanner geometry and the injected activity level, they forgo the opportunity to explicitly model the interaction between the DM prior and noisy measurement data, potentially limiting reconstruction accuracy. To address this, we propose a supervised DM-based algorithm for PET reconstruction. Our method enforces the non-negativity of PET's Poisson likelihood model and accommodates the wide intensity range of PET images. Through experiments on realistic brain PET phantoms, we demonstrate that our approach outperforms or matches state-of-the-art deep learning-based methods quantitatively across a range of dose levels. We further conduct ablation studies to demonstrate the benefits of the proposed components in our model, as well as its dependence on training data, parameter count, and number of diffusion steps. Additionally, we show that our approach enables more accurate posterior sampling than unsupervised DM-based methods, suggesting improved uncertainty estimation. Finally, we extend our methodology to a practical approach for fully 3D PET and present example results from real [$^{18}$F]FDG brain PET data.
comment: 12 pages, 6 figures. Submitted to MICCAI 2025, not peer-reviewed
☆ Ella: Embodied Social Agents with Lifelong Memory
We introduce Ella, an embodied social agent capable of lifelong learning within a community in a 3D open world, where agents accumulate experiences and acquire knowledge through everyday visual observations and social interactions. At the core of Ella's capabilities is a structured, long-term multimodal memory system that stores, updates, and retrieves information effectively. It consists of a name-centric semantic memory for organizing acquired knowledge and a spatiotemporal episodic memory for capturing multimodal experiences. By integrating this lifelong memory system with foundation models, Ella retrieves relevant information for decision-making, plans daily activities, builds social relationships, and evolves autonomously while coexisting with other intelligent beings in the open world. We conduct capability-oriented evaluations in a dynamic 3D open world where 15 agents engage in social activities for days and are assessed with a suite of unseen controlled evaluations. Experimental results show that Ella can influence, lead, and cooperate with other agents well to achieve goals, showcasing its ability to learn effectively through observation and social interaction. Our findings highlight the transformative potential of combining structured memory systems with foundation models for advancing embodied intelligence. More videos can be found at https://umass-embodied-agi.github.io/Ella/.
☆ EXPERT: An Explainable Image Captioning Evaluation Metric with Structured Explanations ACL 2025
Recent advances in large language models and vision-language models have led to growing interest in explainable evaluation metrics for image captioning. However, these metrics generate explanations without standardized criteria, and the overall quality of the generated explanations remains unverified. In this paper, we propose EXPERT, a reference-free evaluation metric that provides structured explanations based on three fundamental criteria: fluency, relevance, and descriptiveness. By constructing large-scale datasets of high-quality structured explanations, we develop a two-stage evaluation template to effectively supervise a vision-language model for both scoring and explanation generation. EXPERT achieves state-of-the-art results on benchmark datasets while providing significantly higher-quality explanations than existing metrics, as validated through comprehensive human evaluation. Our code and datasets are available at https://github.com/hjkim811/EXPERT.
comment: Accepted at ACL 2025 Findings
☆ ShapeKit
In this paper, we present a practical approach to improve anatomical shape accuracy in whole-body medical segmentation. Our analysis shows that a shape-focused toolkit can enhance segmentation performance by over 8%, without the need for model re-training or fine-tuning. In comparison, modifications to model architecture typically lead to marginal gains of less than 3%. Motivated by this observation, we introduce ShapeKit, a flexible and easy-to-integrate toolkit designed to refine anatomical shapes. This work highlights the underappreciated value of shape-based tools and calls attention to their potential impact within the medical segmentation community.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
While personalization has been explored in traditional autonomous driving systems, it remains largely overlooked in end-to-end autonomous driving (E2EAD), despite its growing prominence. This gap is critical, as user-aligned behavior is essential for trust, comfort, and widespread adoption of autonomous vehicles. A core challenge is the lack of large-scale real-world datasets annotated with diverse and fine-grained driving preferences, hindering the development and evaluation of personalized E2EAD models. In this work, we present the first large-scale real-world dataset enriched with annotations capturing diverse driving preferences, establishing a foundation for personalization in E2EAD. We extract static environmental features from real-world road topology and infer dynamic contextual cues using a fine-tuned visual language model (VLM), enabling consistent and fine-grained scenario construction. Based on these scenarios, we derive objective preference annotations through behavioral distribution analysis and rule-based heuristics. To address the inherent subjectivity of driving style, we further employ the VLM to generate subjective annotations by jointly modeling scene semantics and driver behavior. Final high-quality labels are obtained through a human-in-the-loop verification process that fuses both perspectives. Building on this dataset, we propose the first benchmark for evaluating personalized E2EAD models. We assess several state-of-the-art models with and without preference conditioning, demonstrating that incorporating personalized preferences results in behavior more aligned with human driving. Our work lays the foundation for personalized E2EAD by providing a standardized platform to systematically integrate human preferences into data-driven E2EAD systems, catalyzing future research in human-centric autonomy.
comment: 14 pages, 4 figures
☆ Toward Simple and Robust Contrastive Explanations for Image Classification by Leveraging Instance Similarity and Concept Relevance
Understanding why a classification model prefers one class over another for an input instance is the challenge of contrastive explanation. This work implements concept-based contrastive explanations for image classification by leveraging the similarity of instance embeddings and relevance of human-understandable concepts used by a fine-tuned deep learning model. Our approach extracts concepts with their relevance score, computes contrasts for similar instances, and evaluates the resulting contrastive explanations based on explanation complexity. Robustness is tested for different image augmentations. Two research questions are addressed: (1) whether explanation complexity varies across different relevance ranges, and (2) whether explanation complexity remains consistent under image augmentations such as rotation and noise. The results confirm that for our experiments higher concept relevance leads to shorter, less complex explanations, while lower relevance results in longer, more diffuse explanations. Additionally, explanations show varying degrees of robustness. The discussion of these findings offers insights into the potential of building more interpretable and robust AI systems.
comment: 17 pages, 6 figures, KI2025 - 48th German Conference on Artificial Intelligence
☆ Visual and Memory Dual Adapter for Multi-Modal Object Tracking
Prompt-learning-based multi-modal trackers have achieved promising progress by employing lightweight visual adapters to incorporate auxiliary modality features into frozen foundation models. However, existing approaches often struggle to learn reliable prompts due to limited exploitation of critical cues across frequency and temporal domains. In this paper, we propose a novel visual and memory dual adapter (VMDA) to construct more robust and discriminative representations for multi-modal tracking. Specifically, we develop a simple but effective visual adapter that adaptively transfers discriminative cues from auxiliary modality to dominant modality by jointly modeling the frequency, spatial, and channel-wise features. Additionally, we design the memory adapter inspired by the human memory mechanism, which stores global temporal cues and performs dynamic update and retrieval operations to ensure the consistent propagation of reliable temporal information across video sequences. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the various multi-modal tracking tasks, including RGB-Thermal, RGB-Depth, and RGB-Event tracking. Code and models are available at https://github.com/xuboyue1999/mmtrack.git.
☆ Evaluating the Impact of Khmer Font Types on Text Recognition
Text recognition is significantly influenced by font types, especially for complex scripts like Khmer. The variety of Khmer fonts, each with its unique character structure, presents challenges for optical character recognition (OCR) systems. In this study, we evaluate the impact of 19 randomly selected Khmer font types on text recognition accuracy using Pytesseract. The fonts include Angkor, Battambang, Bayon, Bokor, Chenla, Dangrek, Freehand, Kh Kompong Chhnang, Kh SN Kampongsom, Khmer, Khmer CN Stueng Songke, Khmer Savuth Pen, Metal, Moul, Odor MeanChey, Preah Vihear, Siemreap, Sithi Manuss, and iSeth First. Our comparison of OCR performance across these fonts reveals that Khmer, Odor MeanChey, Siemreap, Sithi Manuss, and Battambang achieve high accuracy, while iSeth First, Bayon, and Dangrek perform poorly. This study underscores the critical importance of font selection in optimizing Khmer text recognition and provides valuable insights for developing more robust OCR systems.
☆ GaVS: 3D-Grounded Video Stabilization via Temporally-Consistent Local Reconstruction and Rendering
Video stabilization is pivotal for video processing, as it removes unwanted shakiness while preserving the original user motion intent. Existing approaches, depending on the domain they operate, suffer from several issues (e.g. geometric distortions, excessive cropping, poor generalization) that degrade the user experience. To address these issues, we introduce \textbf{GaVS}, a novel 3D-grounded approach that reformulates video stabilization as a temporally-consistent `local reconstruction and rendering' paradigm. Given 3D camera poses, we augment a reconstruction model to predict Gaussian Splatting primitives, and finetune it at test-time, with multi-view dynamics-aware photometric supervision and cross-frame regularization, to produce temporally-consistent local reconstructions. The model are then used to render each stabilized frame. We utilize a scene extrapolation module to avoid frame cropping. Our method is evaluated on a repurposed dataset, instilled with 3D-grounded information, covering samples with diverse camera motions and scene dynamics. Quantitatively, our method is competitive with or superior to state-of-the-art 2D and 2.5D approaches in terms of conventional task metrics and new geometry consistency. Qualitatively, our method produces noticeably better results compared to alternatives, validated by the user study.
comment: siggraph 2025, project website: https://sinoyou.github.io/gavs
☆ Thinking with Images for Multimodal Reasoning: Foundations, Methods, and Future Frontiers
Recent progress in multimodal reasoning has been significantly advanced by textual Chain-of-Thought (CoT), a paradigm where models conduct reasoning within language. This text-centric approach, however, treats vision as a static, initial context, creating a fundamental "semantic gap" between rich perceptual data and discrete symbolic thought. Human cognition often transcends language, utilizing vision as a dynamic mental sketchpad. A similar evolution is now unfolding in AI, marking a fundamental paradigm shift from models that merely think about images to those that can truly think with images. This emerging paradigm is characterized by models leveraging visual information as intermediate steps in their thought process, transforming vision from a passive input into a dynamic, manipulable cognitive workspace. In this survey, we chart this evolution of intelligence along a trajectory of increasing cognitive autonomy, which unfolds across three key stages: from external tool exploration, through programmatic manipulation, to intrinsic imagination. To structure this rapidly evolving field, our survey makes four key contributions. (1) We establish the foundational principles of the think with image paradigm and its three-stage framework. (2) We provide a comprehensive review of the core methods that characterize each stage of this roadmap. (3) We analyze the critical landscape of evaluation benchmarks and transformative applications. (4) We identify significant challenges and outline promising future directions. By providing this structured overview, we aim to offer a clear roadmap for future research towards more powerful and human-aligned multimodal AI.
comment: We maintain a real-time GitHub repository tracking progress at: https://github.com/zhaochen0110/Awesome_Think_With_Images
☆ Three-dimensional end-to-end deep learning for brain MRI analysis
Deep learning (DL) methods are increasingly outperforming classical approaches in brain imaging, yet their generalizability across diverse imaging cohorts remains inadequately assessed. As age and sex are key neurobiological markers in clinical neuroscience, influencing brain structure and disease risk, this study evaluates three of the existing three-dimensional architectures, namely Simple Fully Connected Network (SFCN), DenseNet, and Shifted Window (Swin) Transformers, for age and sex prediction using T1-weighted MRI from four independent cohorts: UK Biobank (UKB, n=47,390), Dallas Lifespan Brain Study (DLBS, n=132), Parkinson's Progression Markers Initiative (PPMI, n=108 healthy controls), and Information eXtraction from Images (IXI, n=319). We found that SFCN consistently outperformed more complex architectures with AUC of 1.00 [1.00-1.00] in UKB (internal test set) and 0.85-0.91 in external test sets for sex classification. For the age prediction task, SFCN demonstrated a mean absolute error (MAE) of 2.66 (r=0.89) in UKB and 4.98-5.81 (r=0.55-0.70) across external datasets. Pairwise DeLong and Wilcoxon signed-rank tests with Bonferroni corrections confirmed SFCN's superiority over Swin Transformer across most cohorts (p<0.017, for three comparisons). Explainability analysis further demonstrates the regional consistency of model attention across cohorts and specific to each task. Our findings reveal that simpler convolutional networks outperform the denser and more complex attention-based DL architectures in brain image analysis by demonstrating better generalizability across different datasets.
☆ GroundingDINO-US-SAM: Text-Prompted Multi-Organ Segmentation in Ultrasound with LoRA-Tuned Vision-Language Models
Accurate and generalizable object segmentation in ultrasound imaging remains a significant challenge due to anatomical variability, diverse imaging protocols, and limited annotated data. In this study, we propose a prompt-driven vision-language model (VLM) that integrates Grounding DINO with SAM2 to enable object segmentation across multiple ultrasound organs. A total of 18 public ultrasound datasets, encompassing the breast, thyroid, liver, prostate, kidney, and paraspinal muscle, were utilized. These datasets were divided into 15 for fine-tuning and validation of Grounding DINO using Low Rank Adaptation (LoRA) to the ultrasound domain, and 3 were held out entirely for testing to evaluate performance in unseen distributions. Comprehensive experiments demonstrate that our approach outperforms state-of-the-art segmentation methods, including UniverSeg, MedSAM, MedCLIP-SAM, BiomedParse, and SAMUS on most seen datasets while maintaining strong performance on unseen datasets without additional fine-tuning. These results underscore the promise of VLMs in scalable and robust ultrasound image analysis, reducing dependence on large, organ-specific annotated datasets. We will publish our code on code.sonography.ai after acceptance.
comment: 11 pages, 3 figures, 6 figures
☆ PriOr-Flow: Enhancing Primitive Panoramic Optical Flow with Orthogonal View
Panoramic optical flow enables a comprehensive understanding of temporal dynamics across wide fields of view. However, severe distortions caused by sphere-to-plane projections, such as the equirectangular projection (ERP), significantly degrade the performance of conventional perspective-based optical flow methods, especially in polar regions. To address this challenge, we propose PriOr-Flow, a novel dual-branch framework that leverages the low-distortion nature of the orthogonal view to enhance optical flow estimation in these regions. Specifically, we introduce the Dual-Cost Collaborative Lookup (DCCL) operator, which jointly retrieves correlation information from both the primitive and orthogonal cost volumes, effectively mitigating distortion noise during cost volume construction. Furthermore, our Ortho-Driven Distortion Compensation (ODDC) module iteratively refines motion features from both branches, further suppressing polar distortions. Extensive experiments demonstrate that PriOr-Flow is compatible with various perspective-based iterative optical flow methods and consistently achieves state-of-the-art performance on publicly available panoramic optical flow datasets, setting a new benchmark for wide-field motion estimation. The code is publicly available at: https://github.com/longliangLiu/PriOr-Flow.
comment: 11 pages
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Puzzles: Unbounded Video-Depth Augmentation for Scalable End-to-End 3D Reconstruction
Multi-view 3D reconstruction remains a core challenge in computer vision. Recent methods, such as DUST3R and its successors, directly regress pointmaps from image pairs without relying on known scene geometry or camera parameters. However, the performance of these models is constrained by the diversity and scale of available training data. In this work, we introduce Puzzles, a data augmentation strategy that synthesizes an unbounded volume of high-quality posed video-depth data from a single image or video clip. By simulating diverse camera trajectories and realistic scene geometry through targeted image transformations, Puzzles significantly enhances data variety. Extensive experiments show that integrating Puzzles into existing video-based 3D reconstruction pipelines consistently boosts performance without modifying the underlying network architecture. Notably, models trained on only ten percent of the original data augmented with Puzzles still achieve accuracy comparable to those trained on the full dataset. Code is available at https://jiahao-ma.github.io/puzzles/.
comment: Feed-forward 3D reconstruction, Data Augmentation
☆ VMoBA: Mixture-of-Block Attention for Video Diffusion Models
The quadratic complexity of full attention mechanisms poses a significant bottleneck for Video Diffusion Models (VDMs) aiming to generate long-duration, high-resolution videos. While various sparse attention methods have been proposed, many are designed as training-free inference accelerators or do not optimally capture the unique spatio-temporal characteristics inherent in video data when trained natively. This paper introduces Video Mixture of Block Attention (VMoBA), a novel sparse attention mechanism specifically adapted for VDMs. Motivated by an in-depth analysis of attention patterns within pre-trained video transformers, which revealed strong spatio-temporal locality, varying query importance, and head-specific concentration levels, VMoBA enhances the original MoBA framework with three key modifications: (1) a layer-wise recurrent block partition scheme (1D-2D-3D) to dynamically adapt to diverse spatio-temporal attention patterns and improve efficiency; (2) global block selection to prioritize the most salient query-key block interactions across an entire attention head; and (3) threshold-based block selection to dynamically determine the number of attended blocks based on their cumulative similarity. Extensive experiments demonstrate that VMoBA significantly accelerates the training of VDMs on longer sequences, achieving 2.92x FLOPs and 1.48x latency speedup, while attaining comparable or even superior generation quality to full attention. Furthermore, VMoBA exhibits competitive performance in training-free inference, offering 2.40x FLOPs and 1.35x latency speedup for high-res video generation.
comment: Code is at https://github.com/KwaiVGI/VMoBA
☆ A Closer Look at Conditional Prompt Tuning for Vision-Language Models
Despite the great promise of Prompt Tuning (PT) in adapting large Vision-Language Pretrained Models (VLPMs) to downstream tasks, they often struggle to overcome the Base-New Tradeoff (BNT) dilemma: as VLPMs are better tuned to a base task, their ability to generalize to new tasks diminishes. Recent work on conditional PT addresses this problem by replacing static prompts with dynamic Visual Image Information (VII)-conditioned prompts, improving the model's generalization to new tasks to some extent. In this work, we first identify a critical issue with existing conditional PT methods: using VII as the "condition" of prompts yields suboptimal performance, and even random noise-conditioned prompts can outperform the VII-conditioned counterparts. On further analysis, we find that learning dynamic prompts conditioned on Textual Class Information (TCI) is the key to solving the BNT problem. Motivated by this, we then propose Class-adaptive Prompt Tuning (CaPT), which enables fast adaptation of tuned models to new classes by learning TCI-conditioned prompts from base classes. Remarkably, CaPT can be used as a plugin to mitigate the BNT problem for existing unconditional PT schemes. Extensive experiments on 11 datasets show that CaPT consistently improves the performance of five strong unconditional PT baselines with negligible additional computational cost. Additionally, by integrating CaPT with our recently proposed DePT framework, we devise a new conditional PT approach, termed DeCaPT, which outperforms the H ACC of the state-of-the-art conditional PT scheme by 3.49%, averaged over the 11 datasets. Code: https://github.com/Koorye/CaPT.
comment: 18 pages
☆ HiNeuS: High-fidelity Neural Surface Mitigating Low-texture and Reflective Ambiguity ICCV
Neural surface reconstruction faces persistent challenges in reconciling geometric fidelity with photometric consistency under complex scene conditions. We present HiNeuS, a unified framework that holistically addresses three core limitations in existing approaches: multi-view radiance inconsistency, missing keypoints in textureless regions, and structural degradation from over-enforced Eikonal constraints during joint optimization. To resolve these issues through a unified pipeline, we introduce: 1) Differential visibility verification through SDF-guided ray tracing, resolving reflection ambiguities via continuous occlusion modeling; 2) Planar-conformal regularization via ray-aligned geometry patches that enforce local surface coherence while preserving sharp edges through adaptive appearance weighting; and 3) Physically-grounded Eikonal relaxation that dynamically modulates geometric constraints based on local radiance gradients, enabling detail preservation without sacrificing global regularity. Unlike prior methods that handle these aspects through sequential optimizations or isolated modules, our approach achieves cohesive integration where appearance-geometry constraints evolve synergistically throughout training. Comprehensive evaluations across synthetic and real-world datasets demonstrate state-of-the-art performance, including a 21.4% reduction in Chamfer distance over reflection-aware baselines and 2.32 dB PSNR improvement against neural rendering counterparts. Qualitative analyses reveal superior capability in recovering specular instruments, urban layouts with centimeter-scale infrastructure, and low-textured surfaces without local patch collapse. The method's generalizability is further validated through successful application to inverse rendering tasks, including material decomposition and view-consistent relighting.
comment: Published in International Conference on Computer Vision (ICCV) 2025
☆ RGC-VQA: An Exploration Database for Robotic-Generated Video Quality Assessment
As camera-equipped robotic platforms become increasingly integrated into daily life, robotic-generated videos have begun to appear on streaming media platforms, enabling us to envision a future where humans and robots coexist. We innovatively propose the concept of Robotic-Generated Content (RGC) to term these videos generated from egocentric perspective of robots. The perceptual quality of RGC videos is critical in human-robot interaction scenarios, and RGC videos exhibit unique distortions and visual requirements that differ markedly from those of professionally-generated content (PGC) videos and user-generated content (UGC) videos. However, dedicated research on quality assessment of RGC videos is still lacking. To address this gap and to support broader robotic applications, we establish the first Robotic-Generated Content Database (RGCD), which contains a total of 2,100 videos drawn from three robot categories and sourced from diverse platforms. A subjective VQA experiment is conducted subsequently to assess human visual perception of robotic-generated videos. Finally, we conduct a benchmark experiment to evaluate the performance of 11 state-of-the-art VQA models on our database. Experimental results reveal significant limitations in existing VQA models when applied to complex, robotic-generated content, highlighting a critical need for RGC-specific VQA models. Our RGCD is publicly available at: https://github.com/IntMeGroup/RGC-VQA.
☆ Refine Any Object in Any Scene
Viewpoint missing of objects is common in scene reconstruction, as camera paths typically prioritize capturing the overall scene structure rather than individual objects. This makes it highly challenging to achieve high-fidelity object-level modeling while maintaining accurate scene-level representation. Addressing this issue is critical for advancing downstream tasks requiring detailed object understanding and appearance modeling. In this paper, we introduce Refine Any object In any ScenE (RAISE), a novel 3D enhancement framework that leverages 3D generative priors to recover fine-grained object geometry and appearance under missing views. Starting from substituting degraded objects with proxies, via a 3D generative model with strong 3D understanding, RAISE progressively refines geometry and texture by aligning each proxy to its degraded counterpart in 7-DOF pose, followed by correcting spatial and appearance inconsistencies via registration-constrained enhancement. This two-stage refinement ensures the high-fidelity geometry and appearance of the original object in unseen views while maintaining consistency in spatial positioning, observed geometry, and appearance. Extensive experiments on challenging benchmarks show that RAISE significantly outperforms state-of-the-art methods in both novel view synthesis and geometry completion tasks. RAISE is made publicly available at https://github.com/PolySummit/RAISE.
comment: 9 pages with 6 figures
☆ PointSSIM: A novel low dimensional resolution invariant image-to-image comparison metric
This paper presents PointSSIM, a novel low-dimensional image-to-image comparison metric that is resolution invariant. Drawing inspiration from the structural similarity index measure and mathematical morphology, PointSSIM enables robust comparison across binary images of varying resolutions by transforming them into marked point pattern representations. The key features of the image, referred to as anchor points, are extracted from binary images by identifying locally adaptive maxima from the minimal distance transform. Image comparisons are then performed using a summary vector, capturing intensity, connectivity, complexity, and structural attributes. Results show that this approach provides an efficient and reliable method for image comparison, particularly suited to applications requiring structural analysis across different resolutions.
comment: 13 pages, 20 figures
☆ Low-latency vision transformers via large-scale multi-head attention
The emergence of spontaneous symmetry breaking among a few heads of multi-head attention (MHA) across transformer blocks in classification tasks was recently demonstrated through the quantification of single-nodal performance (SNP). This finding indicates that each head focuses its attention on a subset of labels through cooperation among its SNPs. This underlying learning mechanism is generalized to large-scale MHA (LS-MHA) using a single matrix value representing single-head performance (SHP), analogous to single-filter performance in convolutional neural networks (CNNs). The results indicate that each SHP matrix comprises multiple unit clusters such that each label being explicitly recognized by a few heads with negligible noise. This leads to an increased signal-to-noise ratio (SNR) along the transformer blocks, thereby improving classification accuracy. These features give rise to several distinct vision transformer (ViT) architectures that achieve the same accuracy but differ in their LS-MHA structures. As a result, their soft committee yields superior accuracy, an outcome not typically observed in CNNs which rely on hundreds of filters. In addition, a significant reduction in latency is achieved without affecting the accuracy by replacing the initial transformer blocks with convolutional layers. This substitution accelerates early-stage learning, which is then improved by subsequent transformer layers. The extension of this learning mechanism to natural language processing tasks, based on quantitative differences between CNNs and ViT architectures, has the potential to yield new insights in deep learning. The findings are demonstrated using compact convolutional transformer architectures trained on the CIFAR-100 dataset.
comment: 23 pages, 4 figures, 7 tables
☆ Spatially Gene Expression Prediction using Dual-Scale Contrastive Learning MICCAI 2025
Spatial transcriptomics (ST) provides crucial insights into tissue micro-environments, but is limited to its high cost and complexity. As an alternative, predicting gene expression from pathology whole slide images (WSI) is gaining increasing attention. However, existing methods typically rely on single patches or a single pathology modality, neglecting the complex spatial and molecular interactions between target and neighboring information (e.g., gene co-expression). This leads to a failure in establishing connections among adjacent regions and capturing intricate cross-modal relationships. To address these issues, we propose NH2ST, a framework that integrates spatial context and both pathology and gene modalities for gene expression prediction. Our model comprises a query branch and a neighbor branch to process paired target patch and gene data and their neighboring regions, where cross-attention and contrastive learning are employed to capture intrinsic associations and ensure alignments between pathology and gene expression. Extensive experiments on six datasets demonstrate that our model consistently outperforms existing methods, achieving over 20% in PCC metrics. Codes are available at https://github.com/MCPathology/NH2ST
comment: Our paper has been accepted by MICCAI 2025
☆ Flash-VStream: Efficient Real-Time Understanding for Long Video Streams ICCV 2025
Benefiting from the advances in large language models and cross-modal alignment, existing multimodal large language models have achieved prominent performance in image and short video understanding. However, the understanding of long videos is still challenging, as their long-context nature results in significant computational and memory overhead. Most existing work treats long videos in the same way as short videos, which is inefficient for real-world applications and hard to generalize to even longer videos. To address these issues, we propose Flash-VStream, an efficient video language model capable of processing extremely long videos and responding to user queries in real time. Particularly, we design a Flash Memory module, containing a low-capacity context memory to aggregate long-context temporal information and model the distribution of information density, and a high-capacity augmentation memory to retrieve detailed spatial information based on this distribution. Compared to existing models, Flash-VStream achieves significant reductions in inference latency. Extensive experiments on long video benchmarks and comprehensive video benchmarks, i.e., EgoSchema, MLVU, LVBench, MVBench and Video-MME, demonstrate the state-of-the-art performance and outstanding efficiency of our method. Code is available at https://github.com/IVGSZ/Flash-VStream.
comment: Accepted by ICCV 2025
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ Interpretable Zero-Shot Learning with Locally-Aligned Vision-Language Model ICCV'25
Large-scale vision-language models (VLMs), such as CLIP, have achieved remarkable success in zero-shot learning (ZSL) by leveraging large-scale visual-text pair datasets. However, these methods often lack interpretability, as they compute the similarity between an entire query image and the embedded category words, making it difficult to explain their predictions. One approach to address this issue is to develop interpretable models by integrating language, where classifiers are built using discrete attributes, similar to human perception. This introduces a new challenge: how to effectively align local visual features with corresponding attributes based on pre-trained VLMs. To tackle this, we propose LaZSL, a locally-aligned vision-language model for interpretable ZSL. LaZSL employs local visual-semantic alignment via optimal transport to perform interaction between visual regions and their associated attributes, facilitating effective alignment and providing interpretable similarity without the need for additional training. Extensive experiments demonstrate that our method offers several advantages, including enhanced interpretability, improved accuracy, and strong domain generalization. Codes available at: https://github.com/shiming-chen/LaZSL.
comment: Accepted to ICCV'25
☆ MadCLIP: Few-shot Medical Anomaly Detection with CLIP MICCAI 2025
An innovative few-shot anomaly detection approach is presented, leveraging the pre-trained CLIP model for medical data, and adapting it for both image-level anomaly classification (AC) and pixel-level anomaly segmentation (AS). A dual-branch design is proposed to separately capture normal and abnormal features through learnable adapters in the CLIP vision encoder. To improve semantic alignment, learnable text prompts are employed to link visual features. Furthermore, SigLIP loss is applied to effectively handle the many-to-one relationship between images and unpaired text prompts, showcasing its adaptation in the medical field for the first time. Our approach is validated on multiple modalities, demonstrating superior performance over existing methods for AC and AS, in both same-dataset and cross-dataset evaluations. Unlike prior work, it does not rely on synthetic data or memory banks, and an ablation study confirms the contribution of each component. The code is available at https://github.com/mahshid1998/MadCLIP.
comment: Accepted to MICCAI 2025 (this version is not peer-reviewed; it is the submitted version). MICCAI proceedings DOI will appear here
☆ Towards Initialization-free Calibrated Bundle Adjustment
A recent series of works has shown that initialization-free BA can be achieved using pseudo Object Space Error (pOSE) as a surrogate objective. The initial reconstruction-step optimizes an objective where all terms are projectively invariant and it cannot incorporate knowledge of the camera calibration. As a result, the solution is only determined up to a projective transformation of the scene and the process requires more data for successful reconstruction. In contrast, we present a method that is able to use the known camera calibration thereby producing near metric solutions, that is, reconstructions that are accurate up to a similarity transformation. To achieve this we introduce pairwise relative rotation estimates that carry information about camera calibration. These are only invariant to similarity transformations, thus encouraging solutions that preserve metric features of the real scene. Our method can be seen as integrating rotation averaging into the pOSE framework striving towards initialization-free calibrated SfM. Our experimental evaluation shows that we are able to reliably optimize our objective, achieving convergence to the global minimum with high probability from random starting solutions, resulting in accurate near metric reconstructions.
Controllable Reference-Based Real-World Remote Sensing Image Super-Resolution with Generative Diffusion Priors
Super-resolution (SR) techniques can enhance the spatial resolution of remote sensing images by utilizing low-resolution (LR) images to reconstruct high-resolution (HR) images, enabling more efficient large-scale earth observation applications. While single-image super-resolution (SISR) methods have shown progress, reference-based super-resolution (RefSR) offers superior performance by incorporating historical HR images alongside current LR observations. However, existing RefSR methods struggle with real-world complexities, such as cross-sensor resolution gap and significant land cover changes, often leading to under-generation or over-reliance on reference image. To address these challenges, we propose CRefDiff, a novel controllable reference-based diffusion model for real-world remote sensing image SR. To address the under-generation problem, CRefDiff is built upon the pretrained Stable Diffusion model, leveraging its powerful generative prior to produce accurate structures and textures. To mitigate over-reliance on the reference, we introduce a dual-branch fusion mechanism that adaptively integrates both local and global information from the reference image. Moreover, this novel dual-branch design enables reference strength control during inference, enhancing interactivity and flexibility of the model. Finally, a strategy named Better Start is proposed to significantly reduce the number of denoising steps, thereby accelerating the inference process. To support further research, we introduce Real-RefRSSRD, a new real-world RefSR dataset for remote sensing images, consisting of HR NAIP and LR Sentinel-2 image pairs with diverse land cover changes and significant temporal gaps. Extensive experiments on Real-RefRSSRD show that CRefDiff achieves state-of-the-art performance across various metrics and improves downstream tasks such as scene classification and semantic segmentation.
☆ Visual Textualization for Image Prompted Object Detection ICCV 2025
We propose VisTex-OVLM, a novel image prompted object detection method that introduces visual textualization -- a process that projects a few visual exemplars into the text feature space to enhance Object-level Vision-Language Models' (OVLMs) capability in detecting rare categories that are difficult to describe textually and nearly absent from their pre-training data, while preserving their pre-trained object-text alignment. Specifically, VisTex-OVLM leverages multi-scale textualizing blocks and a multi-stage fusion strategy to integrate visual information from visual exemplars, generating textualized visual tokens that effectively guide OVLMs alongside text prompts. Unlike previous methods, our method maintains the original architecture of OVLM, maintaining its generalization capabilities while enhancing performance in few-shot settings. VisTex-OVLM demonstrates superior performance across open-set datasets which have minimal overlap with OVLM's pre-training data and achieves state-of-the-art results on few-shot benchmarks PASCAL VOC and MSCOCO. The code will be released at https://github.com/WitGotFlg/VisTex-OVLM.
comment: Accepted by ICCV 2025
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Spatio-Temporal Representation Decoupling and Enhancement for Federated Instrument Segmentation in Surgical Videos
Surgical instrument segmentation under Federated Learning (FL) is a promising direction, which enables multiple surgical sites to collaboratively train the model without centralizing datasets. However, there exist very limited FL works in surgical data science, and FL methods for other modalities do not consider inherent characteristics in surgical domain: i) different scenarios show diverse anatomical backgrounds while highly similar instrument representation; ii) there exist surgical simulators which promote large-scale synthetic data generation with minimal efforts. In this paper, we propose a novel Personalized FL scheme, Spatio-Temporal Representation Decoupling and Enhancement (FedST), which wisely leverages surgical domain knowledge during both local-site and global-server training to boost segmentation. Concretely, our model embraces a Representation Separation and Cooperation (RSC) mechanism in local-site training, which decouples the query embedding layer to be trained privately, to encode respective backgrounds. Meanwhile, other parameters are optimized globally to capture the consistent representations of instruments, including the temporal layer to capture similar motion patterns. A textual-guided channel selection is further designed to highlight site-specific features, facilitating model adapta tion to each site. Moreover, in global-server training, we propose Synthesis-based Explicit Representation Quantification (SERQ), which defines an explicit representation target based on synthetic data to synchronize the model convergence during fusion for improving model generalization.
☆ Can We Challenge Open-Vocabulary Object Detectors with Generated Content in Street Scenes?
Open-vocabulary object detectors such as Grounding DINO are trained on vast and diverse data, achieving remarkable performance on challenging datasets. Due to that, it is unclear where to find their limitations, which is of major concern when using in safety-critical applications. Real-world data does not provide sufficient control, required for a rigorous evaluation of model generalization. In contrast, synthetically generated data allows to systematically explore the boundaries of model competence/generalization. In this work, we address two research questions: 1) Can we challenge open-vocabulary object detectors with generated image content? 2) Can we find systematic failure modes of those models? To address these questions, we design two automated pipelines using stable diffusion to inpaint unusual objects with high diversity in semantics, by sampling multiple substantives from WordNet and ChatGPT. On the synthetically generated data, we evaluate and compare multiple open-vocabulary object detectors as well as a classical object detector. The synthetic data is derived from two real-world datasets, namely LostAndFound, a challenging out-of-distribution (OOD) detection benchmark, and the NuImages dataset. Our results indicate that inpainting can challenge open-vocabulary object detectors in terms of overlooking objects. Additionally, we find a strong dependence of open-vocabulary models on object location, rather than on object semantics. This provides a systematic approach to challenge open-vocabulary models and gives valuable insights on how data could be acquired to effectively improve these models.
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ Proteus-ID: ID-Consistent and Motion-Coherent Video Customization
Video identity customization seeks to synthesize realistic, temporally coherent videos of a specific subject, given a single reference image and a text prompt. This task presents two core challenges: (1) maintaining identity consistency while aligning with the described appearance and actions, and (2) generating natural, fluid motion without unrealistic stiffness. To address these challenges, we introduce Proteus-ID, a novel diffusion-based framework for identity-consistent and motion-coherent video customization. First, we propose a Multimodal Identity Fusion (MIF) module that unifies visual and textual cues into a joint identity representation using a Q-Former, providing coherent guidance to the diffusion model and eliminating modality imbalance. Second, we present a Time-Aware Identity Injection (TAII) mechanism that dynamically modulates identity conditioning across denoising steps, improving fine-detail reconstruction. Third, we propose Adaptive Motion Learning (AML), a self-supervised strategy that reweights the training loss based on optical-flow-derived motion heatmaps, enhancing motion realism without requiring additional inputs. To support this task, we construct Proteus-Bench, a high-quality dataset comprising 200K curated clips for training and 150 individuals from diverse professions and ethnicities for evaluation. Extensive experiments demonstrate that Proteus-ID outperforms prior methods in identity preservation, text alignment, and motion quality, establishing a new benchmark for video identity customization. Codes and data are publicly available at https://grenoble-zhang.github.io/Proteus-ID/.
comment: Preprint. Work in progress
☆ When Small Guides Large: Cross-Model Co-Learning for Test-Time Adaptation
Test-time Adaptation (TTA) adapts a given model to testing domain data with potential domain shifts through online unsupervised learning, yielding impressive performance. However, to date, existing TTA methods primarily focus on single-model adaptation. In this work, we investigate an intriguing question: how does cross-model knowledge influence the TTA process? Our findings reveal that, in TTA's unsupervised online setting, each model can provide complementary, confident knowledge to the others, even when there are substantial differences in model size. For instance, a smaller model like MobileViT (10.6M parameters) can effectively guide a larger model like ViT-Base (86.6M parameters). In light of this, we propose COCA, a Cross-Model Co-Learning framework for TTA, which mainly consists of two main strategies. 1) Co-adaptation adaptively integrates complementary knowledge from other models throughout the TTA process, reducing individual model biases. 2) Self-adaptation enhances each model's unique strengths via unsupervised learning, enabling diverse adaptation to the target domain. Extensive experiments show that COCA, which can also serve as a plug-and-play module, significantly boosts existing SOTAs, on models with various sizes--including ResNets, ViTs, and Mobile-ViTs--via cross-model co-learned TTA. For example, with Mobile-ViT's guidance, COCA raises ViT-Base's average adaptation accuracy on ImageNet-C from 51.7% to 64.5%. The code is publicly available at https://github.com/ycarobot/COCA.
comment: 15 pages, 5 figures
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
☆ Towards Efficient and Accurate Spiking Neural Networks via Adaptive Bit Allocation
Multi-bit spiking neural networks (SNNs) have recently become a heated research spot, pursuing energy-efficient and high-accurate AI. However, with more bits involved, the associated memory and computation demands escalate to the point where the performance improvements become disproportionate. Based on the insight that different layers demonstrate different importance and extra bits could be wasted and interfering, this paper presents an adaptive bit allocation strategy for direct-trained SNNs, achieving fine-grained layer-wise allocation of memory and computation resources. Thus, SNN's efficiency and accuracy can be improved. Specifically, we parametrize the temporal lengths and the bit widths of weights and spikes, and make them learnable and controllable through gradients. To address the challenges caused by changeable bit widths and temporal lengths, we propose the refined spiking neuron, which can handle different temporal lengths, enable the derivation of gradients for temporal lengths, and suit spike quantization better. In addition, we theoretically formulate the step-size mismatch problem of learnable bit widths, which may incur severe quantization errors to SNN, and accordingly propose the step-size renewal mechanism to alleviate this issue. Experiments on various datasets, including the static CIFAR and ImageNet and the dynamic CIFAR-DVS and DVS-GESTURE, demonstrate that our methods can reduce the overall memory and computation cost while achieving higher accuracy. Particularly, our SEWResNet-34 can achieve a 2.69\% accuracy gain and 4.16$\times$ lower bit budgets over the advanced baseline work on ImageNet. This work will be fully open-sourced.
☆ Towards an Automated Multimodal Approach for Video Summarization: Building a Bridge Between Text, Audio and Facial Cue-Based Summarization
The increasing volume of video content in educational, professional, and social domains necessitates effective summarization techniques that go beyond traditional unimodal approaches. This paper proposes a behaviour-aware multimodal video summarization framework that integrates textual, audio, and visual cues to generate timestamp-aligned summaries. By extracting prosodic features, textual cues and visual indicators, the framework identifies semantically and emotionally important moments. A key contribution is the identification of bonus words, which are terms emphasized across multiple modalities and used to improve the semantic relevance and expressive clarity of the summaries. The approach is evaluated against pseudo-ground truth (pGT) summaries generated using LLM-based extractive method. Experimental results demonstrate significant improvements over traditional extractive method, such as the Edmundson method, in both text and video-based evaluation metrics. Text-based metrics show ROUGE-1 increasing from 0.4769 to 0.7929 and BERTScore from 0.9152 to 0.9536, while in video-based evaluation, our proposed framework improves F1-Score by almost 23%. The findings underscore the potential of multimodal integration in producing comprehensive and behaviourally informed video summaries.
comment: Accepted to HHAI WS 2025: Workshops at the Fourth International Conference on Hybrid Human-Artificial Intelligence (HHAI)
☆ Subjective Camera: Bridging Human Cognition and Visual Reconstruction through Sequence-Aware Sketch-Guided Diffusion
We propose Subjective Camera, a human-as-imaging-device paradigm that reconstructs real-world scenes from mental impressions through synergistic use of verbal descriptions and progressive rough sketches. This approach overcomes dual limitations of language ambiguity and sketch abstraction by treating the user's drawing sequence as priors, effectively translating subjective perceptual expectations into photorealistic images. Existing approaches face three fundamental barriers: (1) user-specific subjective input biases, (2) huge modality gap between planar sketch and 3D priors in diffusion, and (3) sketch quality-sensitive performance degradation. Current solutions either demand resource-intensive model adaptation or impose impractical requirements on sketch precision. Our framework addresses these challenges through concept-sequential generation. (1) We establish robust appearance priors through text-reward optimization, and then implement sequence-aware disentangled generation that processes concepts in sketching order; these steps accommodate user-specific subjective expectation in a train-free way. (2) We employ latent optimization that effectively bridges the modality gap between planar sketches and 3D priors in diffusion. (3) Our hierarchical reward-guided framework enables the use of rough sketches without demanding artistic expertise. Comprehensive evaluation across diverse datasets demonstrates that our approach achieves state-of-the-art performance in maintaining both semantic and spatial coherence.
☆ Single Image Test-Time Adaptation via Multi-View Co-Training MICCAI 2025
Test-time adaptation enables a trained model to adjust to a new domain during inference, making it particularly valuable in clinical settings where such on-the-fly adaptation is required. However, existing techniques depend on large target domain datasets, which are often impractical and unavailable in medical scenarios that demand per-patient, real-time inference. Moreover, current methods commonly focus on two-dimensional images, failing to leverage the volumetric richness of medical imaging data. Bridging this gap, we propose a Patch-Based Multi-View Co-Training method for Single Image Test-Time adaptation. Our method enforces feature and prediction consistency through uncertainty-guided self-training, enabling effective volumetric segmentation in the target domain with only a single test-time image. Validated on three publicly available breast magnetic resonance imaging datasets for tumor segmentation, our method achieves performance close to the upper bound supervised benchmark while also outperforming all existing state-of-the-art methods, on average by a Dice Similarity Coefficient of 3.75%. We publicly share our accessible codebase, readily integrable with the popular nnUNet framework, at https://github.com/smriti-joshi/muvi.git.
comment: MICCAI 2025
☆ MDPG: Multi-domain Diffusion Prior Guidance for MRI Reconstruction MICCAI2025
Magnetic Resonance Imaging (MRI) reconstruction is essential in medical diagnostics. As the latest generative models, diffusion models (DMs) have struggled to produce high-fidelity images due to their stochastic nature in image domains. Latent diffusion models (LDMs) yield both compact and detailed prior knowledge in latent domains, which could effectively guide the model towards more effective learning of the original data distribution. Inspired by this, we propose Multi-domain Diffusion Prior Guidance (MDPG) provided by pre-trained LDMs to enhance data consistency in MRI reconstruction tasks. Specifically, we first construct a Visual-Mamba-based backbone, which enables efficient encoding and reconstruction of under-sampled images. Then pre-trained LDMs are integrated to provide conditional priors in both latent and image domains. A novel Latent Guided Attention (LGA) is proposed for efficient fusion in multi-level latent domains. Simultaneously, to effectively utilize a prior in both the k-space and image domain, under-sampled images are fused with generated full-sampled images by the Dual-domain Fusion Branch (DFB) for self-adaption guidance. Lastly, to further enhance the data consistency, we propose a k-space regularization strategy based on the non-auto-calibration signal (NACS) set. Extensive experiments on two public MRI datasets fully demonstrate the effectiveness of the proposed methodology. The code is available at https://github.com/Zolento/MDPG.
comment: Accept by MICCAI2025
☆ MedSAM-CA: A CNN-Augmented ViT with Attention-Enhanced Multi-Scale Fusion for Medical Image Segmentation
Medical image segmentation plays a crucial role in clinical diagnosis and treatment planning, where accurate boundary delineation is essential for precise lesion localization, organ identification, and quantitative assessment. In recent years, deep learning-based methods have significantly advanced segmentation accuracy. However, two major challenges remain. First, the performance of these methods heavily relies on large-scale annotated datasets, which are often difficult to obtain in medical scenarios due to privacy concerns and high annotation costs. Second, clinically challenging scenarios, such as low contrast in certain imaging modalities and blurry lesion boundaries caused by malignancy, still pose obstacles to precise segmentation. To address these challenges, we propose MedSAM-CA, an architecture-level fine-tuning approach that mitigates reliance on extensive manual annotations by adapting the pretrained foundation model, Medical Segment Anything (MedSAM). MedSAM-CA introduces two key components: the Convolutional Attention-Enhanced Boundary Refinement Network (CBR-Net) and the Attention-Enhanced Feature Fusion Block (Atte-FFB). CBR-Net operates in parallel with the MedSAM encoder to recover boundary information potentially overlooked by long-range attention mechanisms, leveraging hierarchical convolutional processing. Atte-FFB, embedded in the MedSAM decoder, fuses multi-level fine-grained features from skip connections in CBR-Net with global representations upsampled within the decoder to enhance boundary delineation accuracy. Experiments on publicly available datasets covering dermoscopy, CT, and MRI imaging modalities validate the effectiveness of MedSAM-CA. On dermoscopy dataset, MedSAM-CA achieves 94.43% Dice with only 2% of full training data, reaching 97.25% of full-data training performance, demonstrating strong effectiveness in low-resource clinical settings.
☆ SynMotion: Semantic-Visual Adaptation for Motion Customized Video Generation
Diffusion-based video motion customization facilitates the acquisition of human motion representations from a few video samples, while achieving arbitrary subjects transfer through precise textual conditioning. Existing approaches often rely on semantic-level alignment, expecting the model to learn new motion concepts and combine them with other entities (e.g., ''cats'' or ''dogs'') to produce visually appealing results. However, video data involve complex spatio-temporal patterns, and focusing solely on semantics cause the model to overlook the visual complexity of motion. Conversely, tuning only the visual representation leads to semantic confusion in representing the intended action. To address these limitations, we propose SynMotion, a new motion-customized video generation model that jointly leverages semantic guidance and visual adaptation. At the semantic level, we introduce the dual-embedding semantic comprehension mechanism which disentangles subject and motion representations, allowing the model to learn customized motion features while preserving its generative capabilities for diverse subjects. At the visual level, we integrate parameter-efficient motion adapters into a pre-trained video generation model to enhance motion fidelity and temporal coherence. Furthermore, we introduce a new embedding-specific training strategy which \textbf{alternately optimizes} subject and motion embeddings, supported by the manually constructed Subject Prior Video (SPV) training dataset. This strategy promotes motion specificity while preserving generalization across diverse subjects. Lastly, we introduce MotionBench, a newly curated benchmark with diverse motion patterns. Experimental results across both T2V and I2V settings demonstrate that \method outperforms existing baselines. Project page: https://lucaria-academy.github.io/SynMotion/
comment: Project page: https://lucaria-academy.github.io/SynMotion/
☆ A Unified Framework for Stealthy Adversarial Generation via Latent Optimization and Transferability Enhancement
Due to their powerful image generation capabilities, diffusion-based adversarial example generation methods through image editing are rapidly gaining popularity. However, due to reliance on the discriminative capability of the diffusion model, these diffusion-based methods often struggle to generalize beyond conventional image classification tasks, such as in Deepfake detection. Moreover, traditional strategies for enhancing adversarial example transferability are challenging to adapt to these methods. To address these challenges, we propose a unified framework that seamlessly incorporates traditional transferability enhancement strategies into diffusion model-based adversarial example generation via image editing, enabling their application across a wider range of downstream tasks. Our method won first place in the "1st Adversarial Attacks on Deepfake Detectors: A Challenge in the Era of AI-Generated Media" competition at ACM MM25, which validates the effectiveness of our approach.
☆ Pruning by Block Benefit: Exploring the Properties of Vision Transformer Blocks during Domain Adaptation ICCV'25
Vision Transformer have set new benchmarks in several tasks, but these models come with the lack of high computational costs which makes them impractical for resource limited hardware. Network pruning reduces the computational complexity by removing less important operations while maintaining performance. However, pruning a model on an unseen data domain, leads to a misevaluation of weight significance, resulting in suboptimal resource assignment. In this work, we find that task-sensitive layers initially fail to improve the feature representation on downstream tasks, leading to performance loss for early pruning decisions. To address this problem, we introduce Pruning by Block Benefit (P3B), a pruning method that utilizes the relative contribution on block level to globally assign parameter resources. P3B identifies low-impact components to reduce parameter allocation while preserving critical ones. Classical pruning mask optimization struggles to reactivate zero-mask-elements. In contrast, P3B sets a layerwise keep ratio based on global performance metrics, ensuring the reactivation of late-converging blocks. We show in extensive experiments that P3B is a state of the art pruning method with most noticeable gains in transfer learning tasks. Notably, P3B is able to conserve high performance, even in high sparsity regimes of 70% parameter reduction while only losing 0.64% in accuracy.
comment: ICCV'25 Workshops
☆ Partial Forward Blocking: A Novel Data Pruning Paradigm for Lossless Training Acceleration ICCV2025
The ever-growing size of training datasets enhances the generalization capability of modern machine learning models but also incurs exorbitant computational costs. Existing data pruning approaches aim to accelerate training by removing those less important samples. However, they often rely on gradients or proxy models, leading to prohibitive additional costs of gradient back-propagation and proxy model training. In this paper, we propose Partial Forward Blocking (PFB), a novel framework for lossless training acceleration. The efficiency of PFB stems from its unique adaptive pruning pipeline: sample importance is assessed based on features extracted from the shallow layers of the target model. Less important samples are then pruned, allowing only the retained ones to proceed with the subsequent forward pass and loss back-propagation. This mechanism significantly reduces the computational overhead of deep-layer forward passes and back-propagation for pruned samples, while also eliminating the need for auxiliary backward computations and proxy model training. Moreover, PFB introduces probability density as an indicator of sample importance. Combined with an adaptive distribution estimation module, our method dynamically prioritizes relatively rare samples, aligning with the constantly evolving training state. Extensive experiments demonstrate the significant superiority of PFB in performance and speed. On ImageNet, PFB achieves a 0.5% accuracy improvement and 33% training time reduction with 40% data pruned.
comment: Accepted by ICCV2025
☆ Diffusion Model-based Data Augmentation Method for Fetal Head Ultrasound Segmentation
Medical image data is less accessible than in other domains due to privacy and regulatory constraints. In addition, labeling requires costly, time-intensive manual image annotation by clinical experts. To overcome these challenges, synthetic medical data generation offers a promising solution. Generative AI (GenAI), employing generative deep learning models, has proven effective at producing realistic synthetic images. This study proposes a novel mask-guided GenAI approach using diffusion models to generate synthetic fetal head ultrasound images paired with segmentation masks. These synthetic pairs augment real datasets for supervised fine-tuning of the Segment Anything Model (SAM). Our results show that the synthetic data captures real image features effectively, and this approach reaches state-of-the-art fetal head segmentation, especially when trained with a limited number of real image-mask pairs. In particular, the segmentation reaches Dice Scores of 94.66\% and 94.38\% using a handful of ultrasound images from the Spanish and African cohorts, respectively. Our code, models, and data are available on GitHub.
☆ On the Domain Robustness of Contrastive Vision-Language Models
In real-world vision-language applications, practitioners increasingly rely on large, pretrained foundation models rather than custom-built solutions, despite limited transparency regarding their training data and processes. While these models achieve impressive performance on general benchmarks, their effectiveness can decline notably under specialized domain shifts, such as unique imaging conditions or environmental variations. In this work, we introduce Deepbench, a framework designed to assess domain-specific robustness of vision-language models (VLMs). Deepbench leverages a large language model (LLM) to generate realistic, context-aware image corruptions tailored to specific deployment domains without requiring labeled data. We evaluate a range of contrastive vision-language architectures and architectural variants across six real-world domains and observe substantial variability in robustness, highlighting the need for targeted, domain-aware evaluation. Deepbench is released as open-source software to support further research into domain-aware robustness assessment.
comment: Deepbench is available at https://github.com/ml-lab-htw/deepbench
☆ Towards Markerless Intraoperative Tracking of Deformable Spine Tissue
Consumer-grade RGB-D imaging for intraoperative orthopedic tissue tracking is a promising method with high translational potential. Unlike bone-mounted tracking devices, markerless tracking can reduce operating time and complexity. However, its use has been limited to cadaveric studies. This paper introduces the first real-world clinical RGB-D dataset for spine surgery and develops SpineAlign, a system for capturing deformation between preoperative and intraoperative spine states. We also present an intraoperative segmentation network trained on this data and introduce CorrespondNet, a multi-task framework for predicting key regions for registration in both intraoperative and preoperative scenes.
comment: Preprint of paper, submitted
☆ MReg: A Novel Regression Model with MoE-based Video Feature Mining for Mitral Regurgitation Diagnosis MICCAI 2025
Color Doppler echocardiography is a crucial tool for diagnosing mitral regurgitation (MR). Recent studies have explored intelligent methods for MR diagnosis to minimize user dependence and improve accuracy. However, these approaches often fail to align with clinical workflow and may lead to suboptimal accuracy and interpretability. In this study, we introduce an automated MR diagnosis model (MReg) developed on the 4-chamber cardiac color Doppler echocardiography video (A4C-CDV). It follows comprehensive feature mining strategies to detect MR and assess its severity, considering clinical realities. Our contribution is threefold. First, we formulate the MR diagnosis as a regression task to capture the continuity and ordinal relationships between categories. Second, we design a feature selection and amplification mechanism to imitate the sonographer's diagnostic logic for accurate MR grading. Third, inspired by the Mixture-of-Experts concept, we introduce a feature summary module to extract the category-level features, enhancing the representational capacity for more accurate grading. We trained and evaluated our proposed MReg on a large in-house A4C-CDV dataset comprising 1868 cases with three graded regurgitation labels. Compared to other weakly supervised video anomaly detection and supervised classification methods, MReg demonstrated superior performance in MR diagnosis. Our code is available at: https://github.com/cskdstz/MReg.
comment: 10 pages, 5 figures, accepted by MICCAI 2025
☆ VAP-Diffusion: Enriching Descriptions with MLLMs for Enhanced Medical Image Generation
As the appearance of medical images is influenced by multiple underlying factors, generative models require rich attribute information beyond labels to produce realistic and diverse images. For instance, generating an image of skin lesion with specific patterns demands descriptions that go beyond diagnosis, such as shape, size, texture, and color. However, such detailed descriptions are not always accessible. To address this, we explore a framework, termed Visual Attribute Prompts (VAP)-Diffusion, to leverage external knowledge from pre-trained Multi-modal Large Language Models (MLLMs) to improve the quality and diversity of medical image generation. First, to derive descriptions from MLLMs without hallucination, we design a series of prompts following Chain-of-Thoughts for common medical imaging tasks, including dermatologic, colorectal, and chest X-ray images. Generated descriptions are utilized during training and stored across different categories. During testing, descriptions are randomly retrieved from the corresponding category for inference. Moreover, to make the generator robust to unseen combination of descriptions at the test time, we propose a Prototype Condition Mechanism that restricts test embeddings to be similar to those from training. Experiments on three common types of medical imaging across four datasets verify the effectiveness of VAP-Diffusion.
☆ Unified Multimodal Understanding via Byte-Pair Visual Encoding
Multimodal large language models (MLLMs) have made significant progress in vision-language understanding, yet effectively aligning different modalities remains a fundamental challenge. We present a framework that unifies multimodal understanding by applying byte-pair encoding to visual tokens. Unlike conventional approaches that rely on modality-specific encoders, our method directly incorporates structural information into visual tokens, mirroring successful tokenization strategies in text-only language models. We introduce a priority-guided encoding scheme that considers both frequency and spatial consistency, coupled with a multi-stage training procedure based on curriculum-driven data composition. These enhancements enable the transformer model to better capture cross-modal relationships and reason with visual information. Comprehensive experiments demonstrate improved performance across diverse vision-language tasks. By bridging the gap between visual and textual representations, our approach contributes to the advancement of more capable and efficient multimodal foundation models.
☆ Blending Concepts with Text-to-Image Diffusion Models
Diffusion models have dramatically advanced text-to-image generation in recent years, translating abstract concepts into high-fidelity images with remarkable ease. In this work, we examine whether they can also blend distinct concepts, ranging from concrete objects to intangible ideas, into coherent new visual entities under a zero-shot framework. Specifically, concept blending merges the key attributes of multiple concepts (expressed as textual prompts) into a single, novel image that captures the essence of each concept. We investigate four blending methods, each exploiting different aspects of the diffusion pipeline (e.g., prompt scheduling, embedding interpolation, or layer-wise conditioning). Through systematic experimentation across diverse concept categories, such as merging concrete concepts, synthesizing compound words, transferring artistic styles, and blending architectural landmarks, we show that modern diffusion models indeed exhibit creative blending capabilities without further training or fine-tuning. Our extensive user study, involving 100 participants, reveals that no single approach dominates in all scenarios: each blending technique excels under certain conditions, with factors like prompt ordering, conceptual distance, and random seed affecting the outcome. These findings highlight the remarkable compositional potential of diffusion models while exposing their sensitivity to seemingly minor input variations.
comment: Currently under review
☆ Brain Tumor Detection through Thermal Imaging and MobileNET
Brain plays a crucial role in regulating body functions and cognitive processes, with brain tumors posing significant risks to human health. Precise and prompt detection is a key factor in proper treatment and better patient outcomes. Traditional methods for detecting brain tumors, that include biopsies, MRI, and CT scans often face challenges due to their high costs and the need for specialized medical expertise. Recent developments in machine learning (ML) and deep learning (DL) has exhibited strong capabilities in automating the identification and categorization of brain tumors from medical images, especially MRI scans. However, these classical ML models have limitations, such as high computational demands, the need for large datasets, and long training times, which hinder their accessibility and efficiency. Our research uses MobileNET model for efficient detection of these tumors. The novelty of this project lies in building an accurate tumor detection model which use less computing re-sources and runs in less time followed by efficient decision making through the use of image processing technique for accurate results. The suggested method attained an average accuracy of 98.5%.
☆ Revisiting Audio-Visual Segmentation with Vision-Centric Transformer CVPR 2025
Audio-Visual Segmentation (AVS) aims to segment sound-producing objects in video frames based on the associated audio signal. Prevailing AVS methods typically adopt an audio-centric Transformer architecture, where object queries are derived from audio features. However, audio-centric Transformers suffer from two limitations: perception ambiguity caused by the mixed nature of audio, and weakened dense prediction ability due to visual detail loss. To address these limitations, we propose a new Vision-Centric Transformer (VCT) framework that leverages vision-derived queries to iteratively fetch corresponding audio and visual information, enabling queries to better distinguish between different sounding objects from mixed audio and accurately delineate their contours. Additionally, we also introduce a Prototype Prompted Query Generation (PPQG) module within our VCT framework to generate vision-derived queries that are both semantically aware and visually rich through audio prototype prompting and pixel context grouping, facilitating audio-visual information aggregation. Extensive experiments demonstrate that our VCT framework achieves new state-of-the-art performances on three subsets of the AVSBench dataset. The code is available at https://github.com/spyflying/VCT_AVS.
comment: Accepted by CVPR 2025; Code: https://github.com/spyflying/VCT_AVS; Models: https://huggingface.co/nowherespyfly/VCT_AVS
☆ TurboVSR: Fantastic Video Upscalers and Where to Find Them ICCV
Diffusion-based generative models have demonstrated exceptional promise in the video super-resolution (VSR) task, achieving a substantial advancement in detail generation relative to prior methods. However, these approaches face significant computational efficiency challenges. For instance, current techniques may require tens of minutes to super-resolve a mere 2-second, 1080p video. In this paper, we present TurboVSR, an ultra-efficient diffusion-based video super-resolution model. Our core design comprises three key aspects: (1) We employ an autoencoder with a high compression ratio of 32$\times$32$\times$8 to reduce the number of tokens. (2) Highly compressed latents pose substantial challenges for training. We introduce factorized conditioning to mitigate the learning complexity: we first learn to super-resolve the initial frame; subsequently, we condition the super-resolution of the remaining frames on the high-resolution initial frame and the low-resolution subsequent frames. (3) We convert the pre-trained diffusion model to a shortcut model to enable fewer sampling steps, further accelerating inference. As a result, TurboVSR performs on par with state-of-the-art VSR methods, while being 100+ times faster, taking only 7 seconds to process a 2-second long 1080p video. TurboVSR also supports image resolution by considering image as a one-frame video. Our efficient design makes SR beyond 1080p possible, results on 4K (3648$\times$2048) image SR show surprising fine details.
comment: ICCV, 2025
☆ AttentionGS: Towards Initialization-Free 3D Gaussian Splatting via Structural Attention
3D Gaussian Splatting (3DGS) is a powerful alternative to Neural Radiance Fields (NeRF), excelling in complex scene reconstruction and efficient rendering. However, it relies on high-quality point clouds from Structure-from-Motion (SfM), limiting its applicability. SfM also fails in texture-deficient or constrained-view scenarios, causing severe degradation in 3DGS reconstruction. To address this limitation, we propose AttentionGS, a novel framework that eliminates the dependency on high-quality initial point clouds by leveraging structural attention for direct 3D reconstruction from randomly initialization. In the early training stage, we introduce geometric attention to rapidly recover the global scene structure. As training progresses, we incorporate texture attention to refine fine-grained details and enhance rendering quality. Furthermore, we employ opacity-weighted gradients to guide Gaussian densification, leading to improved surface reconstruction. Extensive experiments on multiple benchmark datasets demonstrate that AttentionGS significantly outperforms state-of-the-art methods, particularly in scenarios where point cloud initialization is unreliable. Our approach paves the way for more robust and flexible 3D Gaussian Splatting in real-world applications.
☆ PGOV3D: Open-Vocabulary 3D Semantic Segmentation with Partial-to-Global Curriculum
Existing open-vocabulary 3D semantic segmentation methods typically supervise 3D segmentation models by merging text-aligned features (e.g., CLIP) extracted from multi-view images onto 3D points. However, such approaches treat multi-view images merely as intermediaries for transferring open-vocabulary information, overlooking their rich semantic content and cross-view correspondences, which limits model effectiveness. To address this, we propose PGOV3D, a novel framework that introduces a Partial-to-Global curriculum for improving open-vocabulary 3D semantic segmentation. The key innovation lies in a two-stage training strategy. In the first stage, we pre-train the model on partial scenes that provide dense semantic information but relatively simple geometry. These partial point clouds are derived from multi-view RGB-D inputs via pixel-wise depth projection. To enable open-vocabulary learning, we leverage a multi-modal large language model (MLLM) and a 2D segmentation foundation model to generate open-vocabulary labels for each viewpoint, offering rich and aligned supervision. An auxiliary inter-frame consistency module is introduced to enforce feature consistency across varying viewpoints and enhance spatial understanding. In the second stage, we fine-tune the model on complete scene-level point clouds, which are sparser and structurally more complex. We aggregate the partial vocabularies associated with each scene and generate pseudo labels using the pre-trained model, effectively bridging the semantic gap between dense partial observations and large-scale 3D environments. Extensive experiments on ScanNet, ScanNet200, and S3DIS benchmarks demonstrate that PGOV3D achieves competitive performance in open-vocabulary 3D semantic segmentation.
☆ SG-LDM: Semantic-Guided LiDAR Generation via Latent-Aligned Diffusion
Lidar point cloud synthesis based on generative models offers a promising solution to augment deep learning pipelines, particularly when real-world data is scarce or lacks diversity. By enabling flexible object manipulation, this synthesis approach can significantly enrich training datasets and enhance discriminative models. However, existing methods focus on unconditional lidar point cloud generation, overlooking their potential for real-world applications. In this paper, we propose SG-LDM, a Semantic-Guided Lidar Diffusion Model that employs latent alignment to enable robust semantic-to-lidar synthesis. By directly operating in the native lidar space and leveraging explicit semantic conditioning, SG-LDM achieves state-of-the-art performance in generating high-fidelity lidar point clouds guided by semantic labels. Moreover, we propose the first diffusion-based lidar translation framework based on SG-LDM, which enables cross-domain translation as a domain adaptation strategy to enhance downstream perception performance. Systematic experiments demonstrate that SG-LDM significantly outperforms existing lidar diffusion models and the proposed lidar translation framework further improves data augmentation performance in the downstream lidar segmentation task.
☆ AI-Generated Lecture Slides for Improving Slide Element Detection and Retrieval ICDAR 2025
Lecture slide element detection and retrieval are key problems in slide understanding. Training effective models for these tasks often depends on extensive manual annotation. However, annotating large volumes of lecture slides for supervised training is labor intensive and requires domain expertise. To address this, we propose a large language model (LLM)-guided synthetic lecture slide generation pipeline, SynLecSlideGen, which produces high-quality, coherent and realistic slides. We also create an evaluation benchmark, namely RealSlide by manually annotating 1,050 real lecture slides. To assess the utility of our synthetic slides, we perform few-shot transfer learning on real data using models pre-trained on them. Experimental results show that few-shot transfer learning with pretraining on synthetic slides significantly improves performance compared to training only on real data. This demonstrates that synthetic data can effectively compensate for limited labeled lecture slides. The code and resources of our work are publicly available on our project website: https://synslidegen.github.io/.
comment: 40 pages including supplementary, accepted at ICDAR 2025
☆ CAI: Caption-Sensitive Attention Intervention for Mitigating Object Hallucination in Large Vision-Language Models
Although Large Vision-Language Models (LVLMs) have demonstrated powerful capabilities in interpreting visual information, they frequently produce content that deviates from visual information, leading to object hallucination. To tackle this, recent works mostly depend on expensive manual annotations and training cost, or significantly increase inference time. In this work, we observe that LVLMs' attention to visual information is significantly stronger when answering caption queries compared to non-caption queries. Inspired by this phenomenon, we propose Caption-sensitive Attention Intervention (CAI), a training-free, plug-and-play hallucination mitigation method that leverages the attention activation pattern in response to caption queries to enhance LVLMs' visual perception capability. Extensive experimental results across four benchmarks covering both discriminative and generative tasks, demonstrate that CAI achieves state-of-the-art (SOTA) hallucination mitigating performance only with minimal additional inference cost.
☆ A Clinically-Grounded Two-Stage Framework for Renal CT Report Generation
Generating radiology reports from CT scans remains a complex task due to the nuanced nature of medical imaging and the variability in clinical documentation. In this study, we propose a two-stage framework for generating renal radiology reports from 2D CT slices. First, we extract structured abnormality features using a multi-task learning model trained to identify lesion attributes such as location, size, enhancement, and attenuation. These extracted features are subsequently combined with the corresponding CT image and fed into a fine-tuned vision-language model to generate natural language report sentences aligned with clinical findings. We conduct experiments on a curated dataset of renal CT studies with manually annotated sentence-slice-feature triplets and evaluate performance using both classification metrics and natural language generation metrics. Our results demonstrate that the proposed model outperforms random baselines across all abnormality types, and the generated reports capture key clinical content with reasonable textual accuracy. This exploratory work highlights the feasibility of modular, feature-informed report generation for renal imaging. Future efforts will focus on extending this pipeline to 3D CT volumes and further improving clinical fidelity in multimodal medical AI systems.
☆ PBCAT: Patch-based composite adversarial training against physically realizable attacks on object detection ICCV 2025
Object detection plays a crucial role in many security-sensitive applications. However, several recent studies have shown that object detectors can be easily fooled by physically realizable attacks, \eg, adversarial patches and recent adversarial textures, which pose realistic and urgent threats. Adversarial Training (AT) has been recognized as the most effective defense against adversarial attacks. While AT has been extensively studied in the $l_\infty$ attack settings on classification models, AT against physically realizable attacks on object detectors has received limited exploration. Early attempts are only performed to defend against adversarial patches, leaving AT against a wider range of physically realizable attacks under-explored. In this work, we consider defending against various physically realizable attacks with a unified AT method. We propose PBCAT, a novel Patch-Based Composite Adversarial Training strategy. PBCAT optimizes the model by incorporating the combination of small-area gradient-guided adversarial patches and imperceptible global adversarial perturbations covering the entire image. With these designs, PBCAT has the potential to defend against not only adversarial patches but also unseen physically realizable attacks such as adversarial textures. Extensive experiments in multiple settings demonstrated that PBCAT significantly improved robustness against various physically realizable attacks over state-of-the-art defense methods. Notably, it improved the detection accuracy by 29.7\% over previous defense methods under one recent adversarial texture attack.
comment: Accepted by ICCV 2025
Dataset Distillation via Vision-Language Category Prototype ICCV2025
Dataset distillation (DD) condenses large datasets into compact yet informative substitutes, preserving performance comparable to the original dataset while reducing storage, transmission costs, and computational consumption. However, previous DD methods mainly focus on distilling information from images, often overlooking the semantic information inherent in the data. The disregard for context hinders the model's generalization ability, particularly in tasks involving complex datasets, which may result in illogical outputs or the omission of critical objects. In this study, we integrate vision-language methods into DD by introducing text prototypes to distill language information and collaboratively synthesize data with image prototypes, thereby enhancing dataset distillation performance. Notably, the text prototypes utilized in this study are derived from descriptive text information generated by an open-source large language model. This framework demonstrates broad applicability across datasets without pre-existing text descriptions, expanding the potential of dataset distillation beyond traditional image-based approaches. Compared to other methods, the proposed approach generates logically coherent images containing target objects, achieving state-of-the-art validation performance and demonstrating robust generalization. Source code and generated data are available in https://github.com/zou-yawen/Dataset-Distillation-via-Vision-Language-Category-Prototype/
comment: accepted by ICCV2025
☆ StackCLIP: Clustering-Driven Stacked Prompt in Zero-Shot Industrial Anomaly Detection
Enhancing the alignment between text and image features in the CLIP model is a critical challenge in zero-shot industrial anomaly detection tasks. Recent studies predominantly utilize specific category prompts during pretraining, which can cause overfitting to the training categories and limit model generalization. To address this, we propose a method that transforms category names through multicategory name stacking to create stacked prompts, forming the basis of our StackCLIP model. Our approach introduces two key components. The Clustering-Driven Stacked Prompts (CSP) module constructs generic prompts by stacking semantically analogous categories, while utilizing multi-object textual feature fusion to amplify discriminative anomalies among similar objects. The Ensemble Feature Alignment (EFA) module trains knowledge-specific linear layers tailored for each stack cluster and adaptively integrates them based on the attributes of test categories. These modules work together to deliver superior training speed, stability, and convergence, significantly boosting anomaly segmentation performance. Additionally, our stacked prompt framework offers robust generalization across classification tasks. To further improve performance, we introduce the Regulating Prompt Learning (RPL) module, which leverages the generalization power of stacked prompts to refine prompt learning, elevating results in anomaly detection classification tasks. Extensive testing on seven industrial anomaly detection datasets demonstrates that our method achieves state-of-the-art performance in both zero-shot anomaly detection and segmentation tasks.
☆ Event-based Tiny Object Detection: A Benchmark Dataset and Baseline
Small object detection (SOD) in anti-UAV task is a challenging problem due to the small size of UAVs and complex backgrounds. Traditional frame-based cameras struggle to detect small objects in complex environments due to their low frame rates, limited dynamic range, and data redundancy. Event cameras, with microsecond temporal resolution and high dynamic range, provide a more effective solution for SOD. However, existing event-based object detection datasets are limited in scale, feature large targets size, and lack diverse backgrounds, making them unsuitable for SOD benchmarks. In this paper, we introduce a Event-based Small object detection (EVSOD) dataset (namely EV-UAV), the first large-scale, highly diverse benchmark for anti-UAV tasks. It includes 147 sequences with over 2.3 million event-level annotations, featuring extremely small targets (averaging 6.8 $\times$ 5.4 pixels) and diverse scenarios such as urban clutter and extreme lighting conditions. Furthermore, based on the observation that small moving targets form continuous curves in spatiotemporal event point clouds, we propose Event based Sparse Segmentation Network (EV-SpSegNet), a novel baseline for event segmentation in point cloud space, along with a Spatiotemporal Correlation (STC) loss that leverages motion continuity to guide the network in retaining target events. Extensive experiments on the EV-UAV dataset demonstrate the superiority of our method and provide a benchmark for future research in EVSOD. The dataset and code are at https://github.com/ChenYichen9527/Ev-UAV.
☆ Metadata, Wavelet, and Time Aware Diffusion Models for Satellite Image Super Resolution ICLR 2025
The acquisition of high-resolution satellite imagery is often constrained by the spatial and temporal limitations of satellite sensors, as well as the high costs associated with frequent observations. These challenges hinder applications such as environmental monitoring, disaster response, and agricultural management, which require fine-grained and high-resolution data. In this paper, we propose MWT-Diff, an innovative framework for satellite image super-resolution (SR) that combines latent diffusion models with wavelet transforms to address these challenges. At the core of the framework is a novel metadata-, wavelet-, and time-aware encoder (MWT-Encoder), which generates embeddings that capture metadata attributes, multi-scale frequency information, and temporal relationships. The embedded feature representations steer the hierarchical diffusion dynamics, through which the model progressively reconstructs high-resolution satellite imagery from low-resolution inputs. This process preserves critical spatial characteristics including textural patterns, boundary discontinuities, and high-frequency spectral components essential for detailed remote sensing analysis. The comparative analysis of MWT-Diff across multiple datasets demonstrated favorable performance compared to recent approaches, as measured by standard perceptual quality metrics including FID and LPIPS.
comment: ICLR 2025 Workshop on Machine Learning for Remote Sensing (ML4RS)
☆ OcRFDet: Object-Centric Radiance Fields for Multi-View 3D Object Detection in Autonomous Driving ICCV2025
Current multi-view 3D object detection methods typically transfer 2D features into 3D space using depth estimation or 3D position encoder, but in a fully data-driven and implicit manner, which limits the detection performance. Inspired by the success of radiance fields on 3D reconstruction, we assume they can be used to enhance the detector's ability of 3D geometry estimation. However, we observe a decline in detection performance, when we directly use them for 3D rendering as an auxiliary task. From our analysis, we find the performance drop is caused by the strong responses on the background when rendering the whole scene. To address this problem, we propose object-centric radiance fields, focusing on modeling foreground objects while discarding background noises. Specifically, we employ Object-centric Radiance Fields (OcRF) to enhance 3D voxel features via an auxiliary task of rendering foreground objects. We further use opacity - the side-product of rendering- to enhance the 2D foreground BEV features via Height-aware Opacity-based Attention (HOA), where attention maps at different height levels are generated separately via multiple networks in parallel. Extensive experiments on the nuScenes validation and test datasets demonstrate that our OcRFDet achieves superior performance, outperforming previous state-of-the-art methods with 57.2$\%$ mAP and 64.8$\%$ NDS on the nuScenes test benchmark. Code will be available at https://github.com/Mingqj/OcRFDet.
comment: Accepted by ICCV2025
☆ MMReason: An Open-Ended Multi-Modal Multi-Step Reasoning Benchmark for MLLMs Toward AGI
Reasoning plays a crucial role in advancing Multimodal Large Language Models (MLLMs) toward Artificial General Intelligence. However, existing MLLM benchmarks often fall short in precisely and comprehensively evaluating long-chain reasoning abilities from three key aspects: (1) lack of difficulty and diversity, (2) susceptibility to guessability and memorization, (3) inadequate assessment of intermediate reasoning steps. To fill this gap, we introduce MMReason, a new benchmark designed to precisely and comprehensively evaluate MLLM long-chain reasoning capability with diverse, open-ended, challenging questions. First, we curate challenging questions requiring multi-step reasoning from various fields (i.e., 6 disciplines) and multiple difficulty levels (i.e., from pre-university to university, and from foundational to competition tiers). Second, these questions are reformulated into an open-ended format and filtered using a multi-model voting technique to eliminate shortcut cases related to guessing and memorization, ensuring robust reasoning evaluations. Third, we annotate the questions with detailed step-by-step solutions, and design a reference-based ternary scoring mechanism to reliably assess intermediate reasoning steps. With MMReason, we benchmark popular leading MLLMs and provide an in-depth analysis of their reasoning capabilities. We hope MMReason will serve as a valuable resource for advancing MLLM reasoning research. Code will be available at https://github.com/HJYao00/MMReason.
comment: Technical report
☆ LH2Face: Loss function for Hard High-quality Face
In current practical face authentication systems, most face recognition (FR) algorithms are based on cosine similarity with softmax classification. Despite its reliable classification performance, this method struggles with hard samples. A popular strategy to improve FR performance is incorporating angular or cosine margins. However, it does not take face quality or recognition hardness into account, simply increasing the margin value and thus causing an overly uniform training strategy. To address this problem, a novel loss function is proposed, named Loss function for Hard High-quality Face (LH2Face). Firstly, a similarity measure based on the von Mises-Fisher (vMF) distribution is stated, specifically focusing on the logarithm of the Probability Density Function (PDF), which represents the distance between a probability distribution and a vector. Then, an adaptive margin-based multi-classification method using softmax, called the Uncertainty-Aware Margin Function, is implemented in the article. Furthermore, proxy-based loss functions are used to apply extra constraints between the proxy and sample to optimize their representation space distribution. Finally, a renderer is constructed that optimizes FR through face reconstruction and vice versa. Our LH2Face is superior to similiar schemes on hard high-quality face datasets, achieving 49.39% accuracy on the IJB-B dataset, which surpasses the second-place method by 2.37%.
☆ JAM-Flow: Joint Audio-Motion Synthesis with Flow Matching
The intrinsic link between facial motion and speech is often overlooked in generative modeling, where talking head synthesis and text-to-speech (TTS) are typically addressed as separate tasks. This paper introduces JAM-Flow, a unified framework to simultaneously synthesize and condition on both facial motion and speech. Our approach leverages flow matching and a novel Multi-Modal Diffusion Transformer (MM-DiT) architecture, integrating specialized Motion-DiT and Audio-DiT modules. These are coupled via selective joint attention layers and incorporate key architectural choices, such as temporally aligned positional embeddings and localized joint attention masking, to enable effective cross-modal interaction while preserving modality-specific strengths. Trained with an inpainting-style objective, JAM-Flow supports a wide array of conditioning inputs-including text, reference audio, and reference motion-facilitating tasks such as synchronized talking head generation from text, audio-driven animation, and much more, within a single, coherent model. JAM-Flow significantly advances multi-modal generative modeling by providing a practical solution for holistic audio-visual synthesis. project page: https://joonghyuk.com/jamflow-web
comment: project page: https://joonghyuk.com/jamflow-web Under review. Preprint published on arXiv
☆ Oneta: Multi-Style Image Enhancement Using Eigentransformation Functions
The first algorithm, called Oneta, for a novel task of multi-style image enhancement is proposed in this work. Oneta uses two point operators sequentially: intensity enhancement with a transformation function (TF) and color correction with a color correction matrix (CCM). This two-step enhancement model, though simple, achieves a high performance upper bound. Also, we introduce eigentransformation function (eigenTF) to represent TF compactly. The Oneta network comprises Y-Net and C-Net to predict eigenTF and CCM parameters, respectively. To support $K$ styles, Oneta employs $K$ learnable tokens. During training, each style token is learned using image pairs from the corresponding dataset. In testing, Oneta selects one of the $K$ style tokens to enhance an image accordingly. Extensive experiments show that the single Oneta network can effectively undertake six enhancement tasks -- retouching, image signal processing, low-light image enhancement, dehazing, underwater image enhancement, and white balancing -- across 30 datasets.
☆ Consistent Time-of-Flight Depth Denoising via Graph-Informed Geometric Attention ICCV
Depth images captured by Time-of-Flight (ToF) sensors are prone to noise, requiring denoising for reliable downstream applications. Previous works either focus on single-frame processing, or perform multi-frame processing without considering depth variations at corresponding pixels across frames, leading to undesirable temporal inconsistency and spatial ambiguity. In this paper, we propose a novel ToF depth denoising network leveraging motion-invariant graph fusion to simultaneously enhance temporal stability and spatial sharpness. Specifically, despite depth shifts across frames, graph structures exhibit temporal self-similarity, enabling cross-frame geometric attention for graph fusion. Then, by incorporating an image smoothness prior on the fused graph and data fidelity term derived from ToF noise distribution, we formulate a maximum a posterior problem for ToF denoising. Finally, the solution is unrolled into iterative filters whose weights are adaptively learned from the graph-informed geometric attention, producing a high-performance yet interpretable network. Experimental results demonstrate that the proposed scheme achieves state-of-the-art performance in terms of accuracy and consistency on synthetic DVToF dataset and exhibits robust generalization on the real Kinectv2 dataset. Source code will be released at \href{https://github.com/davidweidawang/GIGA-ToF}{https://github.com/davidweidawang/GIGA-ToF}.
comment: This paper has been accepted for publication at the International Conference on Computer Vision (ICCV) 2025
☆ Pyramidal Patchification Flow for Visual Generation
Diffusion transformers (DiTs) adopt Patchify, mapping patch representations to token representations through linear projections, to adjust the number of tokens input to DiT blocks and thus the computation cost. Instead of a single patch size for all the timesteps, we introduce a Pyramidal Patchification Flow (PPFlow) approach: Large patch sizes are used for high noise timesteps and small patch sizes for low noise timesteps; Linear projections are learned for each patch size; and Unpatchify is accordingly modified. Unlike Pyramidal Flow, our approach operates over full latent representations other than pyramid representations, and adopts the normal denoising process without requiring the renoising trick. We demonstrate the effectiveness of our approach through two training manners. Training from scratch achieves a $1.6\times$ ($2.0\times$) inference speed over SiT-B/2 for 2-level (3-level) pyramid patchification with slightly lower training FLOPs and similar image generation performance. Training from pretrained normal DiTs achieves even better performance with small training time. The code and checkpoint are at https://github.com/fudan-generative-vision/PPFlow.
comment: 10 pages, 9figures
☆ Uncertainty-aware Diffusion and Reinforcement Learning for Joint Plane Localization and Anomaly Diagnosis in 3D Ultrasound MICCAI 2025
Congenital uterine anomalies (CUAs) can lead to infertility, miscarriage, preterm birth, and an increased risk of pregnancy complications. Compared to traditional 2D ultrasound (US), 3D US can reconstruct the coronal plane, providing a clear visualization of the uterine morphology for assessing CUAs accurately. In this paper, we propose an intelligent system for simultaneous automated plane localization and CUA diagnosis. Our highlights are: 1) we develop a denoising diffusion model with local (plane) and global (volume/text) guidance, using an adaptive weighting strategy to optimize attention allocation to different conditions; 2) we introduce a reinforcement learning-based framework with unsupervised rewards to extract the key slice summary from redundant sequences, fully integrating information across multiple planes to reduce learning difficulty; 3) we provide text-driven uncertainty modeling for coarse prediction, and leverage it to adjust the classification probability for overall performance improvement. Extensive experiments on a large 3D uterine US dataset show the efficacy of our method, in terms of plane localization and CUA diagnosis. Code is available at https://github.com/yuhoo0302/CUA-US.
comment: Accepted by MICCAI 2025;10 pages, 3 figures
☆ AFUNet: Cross-Iterative Alignment-Fusion Synergy for HDR Reconstruction via Deep Unfolding Paradigm ICCV
Existing learning-based methods effectively reconstruct HDR images from multi-exposure LDR inputs with extended dynamic range and improved detail, but they rely more on empirical design rather than theoretical foundation, which can impact their reliability. To address these limitations, we propose the cross-iterative Alignment and Fusion deep Unfolding Network (AFUNet), where HDR reconstruction is systematically decoupled into two interleaved subtasks -- alignment and fusion -- optimized through alternating refinement, achieving synergy between the two subtasks to enhance the overall performance. Our method formulates multi-exposure HDR reconstruction from a Maximum A Posteriori (MAP) estimation perspective, explicitly incorporating spatial correspondence priors across LDR images and naturally bridging the alignment and fusion subproblems through joint constraints. Building on the mathematical foundation, we reimagine traditional iterative optimization through unfolding -- transforming the conventional solution process into an end-to-end trainable AFUNet with carefully designed modules that work progressively. Specifically, each iteration of AFUNet incorporates an Alignment-Fusion Module (AFM) that alternates between a Spatial Alignment Module (SAM) for alignment and a Channel Fusion Module (CFM) for adaptive feature fusion, progressively bridging misaligned content and exposure discrepancies. Extensive qualitative and quantitative evaluations demonstrate AFUNet's superior performance, consistently surpassing state-of-the-art methods. Our code is available at: https://github.com/eezkni/AFUNet
comment: Accepted to International Conference on Computer Vision (ICCV) 2025
☆ GViT: Representing Images as Gaussians for Visual Recognition
We introduce GVIT, a classification framework that abandons conventional pixel or patch grid input representations in favor of a compact set of learnable 2D Gaussians. Each image is encoded as a few hundred Gaussians whose positions, scales, orientations, colors, and opacities are optimized jointly with a ViT classifier trained on top of these representations. We reuse the classifier gradients as constructive guidance, steering the Gaussians toward class-salient regions while a differentiable renderer optimizes an image reconstruction loss. We demonstrate that by 2D Gaussian input representations coupled with our GVIT guidance, using a relatively standard ViT architecture, closely matches the performance of a traditional patch-based ViT, reaching a 76.9% top-1 accuracy on Imagenet-1k using a ViT-B architecture.
☆ When Test-Time Adaptation Meets Self-Supervised Models
Training on test-time data enables deep learning models to adapt to dynamic environmental changes, enhancing their practical applicability. Online adaptation from source to target domains is promising but it remains highly reliant on the performance of source pretrained model. In this paper, we investigate whether test-time adaptation (TTA) methods can continuously improve models trained via self-supervised learning (SSL) without relying on source pretraining. We introduce a self-supervised TTA protocol after observing that existing TTA approaches struggle when directly applied to self-supervised models with low accuracy on the source domain. Furthermore, we propose a collaborative learning framework that integrates SSL and TTA models, leveraging contrastive learning and knowledge distillation for stepwise representation refinement. We validate our method on diverse self-supervised models, including DINO, MoCo, and iBOT, across TTA benchmarks. Extensive experiments validate the effectiveness of our approach in SSL, showing that it achieves competitive performance even without source pretraining.
comment: 15 pages, 7 figures
♻ ☆ GLIMPSE: Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation for Generative LVLMs
Recent progress in large vision-language models (LVLMs) has advanced the state of the art in visual question answering (VQA). However, interpreting where LVLMs direct their visual attention while generating free-form responses remains a significant challenge, yet is essential for understanding model behavior. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework that jointly attributes LVLM outputs to the most relevant visual evidence and textual signals supporting open-ended VQA. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and relevance-weighted token aggregation to produce holistic response-level heat maps for interpreting cross-modal reasoning, outperforming prior interpretability methods and pushing the state-of-the-art in human-alignment. We demonstrate an analytic explainable AI (XAI) approach using GLIMPSE to uncover fine-grained insights into LVLM cross-modal attribution, trace reasoning dynamics, analyze systematic human-attention misalignment, diagnose hallucination, expose bias, and ensure transparency.
♻ ☆ Accurate and lightweight dehazing via multi-receptive-field non-local network and novel contrastive regularization
Recently, deep learning-based methods have dominated image dehazing domain. Although very competitive dehazing performance has been achieved with sophisticated models, effective solutions for extracting useful features are still under-explored. In addition, non-local network, which has made a breakthrough in many vision tasks, has not been appropriately applied to image dehazing. Thus, a multi-receptive-field non-local network (MRFNLN) consisting of the multi-stream feature attention block (MSFAB) and cross non-local block (CNLB) is presented in this paper. We start with extracting richer features for dehazing. Specifically, we design a multi-stream feature extraction (MSFE) sub-block, which contains three parallel convolutions with different receptive fields (i.e., $1\times 1$, $3\times 3$, $5\times 5$) for extracting multi-scale features. Following MSFE, we employ an attention sub-block to make the model adaptively focus on important channels/regions. The MSFE and attention sub-blocks constitute our MSFAB. Then, we design a cross non-local block (CNLB), which can capture long-range dependencies beyond the query. Instead of the same input source of query branch, the key and value branches are enhanced by fusing more preceding features. CNLB is computation-friendly by leveraging a spatial pyramid down-sampling (SPDS) strategy to reduce the computation and memory consumption without sacrificing the performance. Last but not least, a novel detail-focused contrastive regularization (DFCR) is presented by emphasizing the low-level details and ignoring the high-level semantic information in the representation space. Comprehensive experimental results demonstrate that the proposed MRFNLN model outperforms recent state-of-the-art dehazing methods with less than 1.5 Million parameters.
comment: submitted to the IEEE Journal for possible publication
♻ ☆ AQUA20: A Benchmark Dataset for Underwater Species Classification under Challenging Conditions
Robust visual recognition in underwater environments remains a significant challenge due to complex distortions such as turbidity, low illumination, and occlusion, which severely degrade the performance of standard vision systems. This paper introduces AQUA20, a comprehensive benchmark dataset comprising 8,171 underwater images across 20 marine species reflecting real-world environmental challenges such as illumination, turbidity, occlusions, etc., providing a valuable resource for underwater visual understanding. Thirteen state-of-the-art deep learning models, including lightweight CNNs (SqueezeNet, MobileNetV2) and transformer-based architectures (ViT, ConvNeXt), were evaluated to benchmark their performance in classifying marine species under challenging conditions. Our experimental results show ConvNeXt achieving the best performance, with a Top-3 accuracy of 98.82% and a Top-1 accuracy of 90.69%, as well as the highest overall F1-score of 88.92% with moderately large parameter size. The results obtained from our other benchmark models also demonstrate trade-offs between complexity and performance. We also provide an extensive explainability analysis using GRAD-CAM and LIME for interpreting the strengths and pitfalls of the models. Our results reveal substantial room for improvement in underwater species recognition and demonstrate the value of AQUA20 as a foundation for future research in this domain. The dataset is publicly available at: https://huggingface.co/datasets/taufiktrf/AQUA20.
comment: Submitted to AJSE Springer
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations ICCV 2025
Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This is challenging as it involves deep vision-language understanding, pixel-level dense prediction and spatiotemporal reasoning. Despite notable progress in recent years, existing methods still exhibit a noticeable gap when considering all these aspects. In this work, we propose \textbf{ReferDINO}, a strong RVOS model that inherits region-level vision-language alignment from foundational visual grounding models, and is further endowed with pixel-level dense perception and cross-modal spatiotemporal reasoning. In detail, ReferDINO integrates two key components: 1) a grounding-guided deformable mask decoder that utilizes location prediction to progressively guide mask prediction through differentiable deformation mechanisms; 2) an object-consistent temporal enhancer that injects pretrained time-varying text features into inter-frame interaction to capture object-aware dynamic changes. Moreover, a confidence-aware query pruning strategy is designed to accelerate object decoding without compromising model performance. Extensive experimental results on five benchmarks demonstrate that our ReferDINO significantly outperforms previous methods (e.g., +3.9% (\mathcal{J}&\mathcal{F}) on Ref-YouTube-VOS) with real-time inference speed (51 FPS).
comment: Accepted to ICCV 2025. Project page: \url{https://isee-laboratory.github.io/ReferDINO}
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomous Driving ICRA 2025
The integration of data from diverse sensor modalities (e.g., camera and LiDAR) constitutes a prevalent methodology within the ambit of autonomous driving scenarios. Recent advancements in efficient point cloud transformers have underscored the efficacy of integrating information in sparse formats. When it comes to fusion, since image patches are dense in pixel space with ambiguous depth, it necessitates additional design considerations for effective fusion. In this paper, we conduct a comprehensive exploration of design choices for Transformer-based sparse cameraLiDAR fusion. This investigation encompasses strategies for image-to-3D and LiDAR-to-2D mapping, attention neighbor grouping, single modal tokenizer, and micro-structure of Transformer. By amalgamating the most effective principles uncovered through our investigation, we introduce FlatFusion, a carefully designed framework for sparse camera-LiDAR fusion. Notably, FlatFusion significantly outperforms state-of-the-art sparse Transformer-based methods, including UniTR, CMT, and SparseFusion, achieving 73.7 NDS on the nuScenes validation set with 10.1 FPS with PyTorch.
comment: Accepted by ICRA 2025
♻ ☆ Advancing Textual Prompt Learning with Anchored Attributes ICCV 2025
Textual-based prompt learning methods primarily employ multiple learnable soft prompts and hard class tokens in a cascading manner as text inputs, aiming to align image and text (category) spaces for downstream tasks. However, current training is restricted to aligning images with predefined known categories and cannot be associated with unknown categories. In this work, we propose utilizing universal attributes as a bridge to enhance the alignment between images and unknown categories. Specifically, we introduce an Attribute-anchored Textual Prompt learning method for vision-language models, named ATPrompt. This approach expands the learning space of soft prompts from the original one-dimensional category level into the multi-dimensional attribute level by incorporating multiple attribute tokens into the learnable soft prompts. Through this modification, we transform the text prompt from a category-centric form to an attribute-category hybrid form. Additionally, we introduce a straightforward differentiable attribute search method to identify representative and suitable attributes for downstream tasks. As an easy-to-use plug-in technique, ATPrompt can seamlessly replace the existing basic prompt format in textual-based methods, providing general improvements at a negligible computational cost. Extensive experiments across 11 datasets validate the effectiveness of our method.
comment: ICCV 2025. Project Page: https://zhengli97.github.io/ATPrompt/
♻ ☆ INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables
♻ ☆ Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment CVPR2025
Current multimodal large language models (MLLMs) struggle with fine-grained or precise understanding of visuals although they give comprehensive perception and reasoning in a spectrum of vision applications. Recent studies either develop tool-using or unify specific visual tasks into the autoregressive framework, often at the expense of overall multimodal performance. To address this issue and enhance MLLMs with visual tasks in a scalable fashion, we propose Task Preference Optimization (TPO), a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks. TPO introduces learnable task tokens that establish connections between multiple task-specific heads and the MLLM. By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance. Through multi-task co-training within TPO, we observe synergistic benefits that elevate individual task performance beyond what is achievable through single-task training methodologies. Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models. Additionally, MLLM-TPO demonstrates robust zero-shot capabilities across various tasks, performing comparably to state-of-the-art supervised models. The code will be released at https://github.com/OpenGVLab/TPO
comment: CVPR2025
♻ ☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation. The code is available at https://github.com/Jiahao-UTS/TUFA.
comment: 24 Pages, 9 Figures, accepted to IJCV-2025
♻ ☆ FALCON: Resolving Visual Redundancy and Fragmentation in High-resolution Multimodal Large Language Models via Visual Registers ICCV
The incorporation of high-resolution visual input equips multimodal large language models (MLLMs) with enhanced visual perception capabilities for real-world tasks. However, most existing high-resolution MLLMs rely on a cropping-based approach to process images, which leads to fragmented visual encoding and a sharp increase in redundant tokens. To tackle these issues, we propose the FALCON model. FALCON introduces a novel visual register technique to simultaneously: 1) Eliminate redundant tokens at the stage of visual encoding. To directly address the visual redundancy present in the output of vision encoder, we propose a Register-based Representation Compacting (ReCompact) mechanism. This mechanism introduces a set of learnable visual registers designed to adaptively aggregate essential information while discarding redundancy. It enables the encoder to produce a more compact visual representation with a minimal number of output tokens, thus eliminating the need for an additional compression module. 2) Ensure continuity in visual encoding. To address the potential encoding errors caused by fragmented visual inputs, we develop a Register Interactive Attention (ReAtten) module. This module facilitates effective and efficient information exchange across sub-images by enabling interactions between visual registers. It ensures the continuity of visual semantics throughout the encoding. We conduct comprehensive experiments with FALCON on high-resolution benchmarks across a wide range of scenarios. FALCON demonstrates superior performance with a remarkable 9-fold reduction in visual tokens.
comment: Accepted to the IEEE/CVF International Conference on Computer Vision (ICCV) 2025
♻ ☆ Towards Vision-Language-Garment Models for Web Knowledge Garment Understanding and Generation CVPR
Multimodal foundation models have demonstrated strong generalization, yet their ability to transfer knowledge to specialized domains such as garment generation remains underexplored. We introduce VLG, a vision-language-garment model that synthesizes garments from textual descriptions and visual imagery. Our experiments assess VLG's zero-shot generalization, investigating its ability to transfer web-scale reasoning to unseen garment styles and prompts. Preliminary results indicate promising transfer capabilities, highlighting the potential for multimodal foundation models to adapt effectively to specialized domains like fashion design.
comment: Presented at MMFM CVPRW'25, Project Page: https://www.computationalimaging.org/publications/vision-language-garment-models/
♻ ☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 10 pages + refs, 40 pages total (including supplement), 24 supplementary figures
♻ ☆ PerLDiff: Controllable Street View Synthesis Using Perspective-Layout Diffusion Models ICCV 2025
Controllable generation is considered a potentially vital approach to address the challenge of annotating 3D data, and the precision of such controllable generation becomes particularly imperative in the context of data production for autonomous driving. Existing methods focus on the integration of diverse generative information into controlling inputs, utilizing frameworks such as GLIGEN or ControlNet, to produce commendable outcomes in controllable generation. However, such approaches intrinsically restrict generation performance to the learning capacities of predefined network architectures. In this paper, we explore the innovative integration of controlling information and introduce PerLDiff (\textbf{Per}spective-\textbf{L}ayout \textbf{Diff}usion Models), a novel method for effective street view image generation that fully leverages perspective 3D geometric information. Our PerLDiff employs 3D geometric priors to guide the generation of street view images with precise object-level control within the network learning process, resulting in a more robust and controllable output. Moreover, it demonstrates superior controllability compared to alternative layout control methods. Empirical results justify that our PerLDiff markedly enhances the precision of controllable generation on the NuScenes and KITTI datasets.
comment: Accepted by ICCV 2025
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Assessing workflow impact and clinical utility of AI-assisted brain aneurysm detection: a multi-reader study
Despite the plethora of AI-based algorithms developed for anomaly detection in radiology, subsequent integration into clinical setting is rarely evaluated. In this work, we assess the applicability and utility of an AI-based model for brain aneurysm detection comparing the performance of two readers with different levels of experience (2 and 13 years). We aim to answer the following questions: 1) Do the readers improve their performance when assisted by the AI algorithm? 2) How much does the AI algorithm impact routine clinical workflow? We reuse and enlarge our open-access, Time-Of-Flight Magnetic Resonance Angiography dataset (N=460). We use 360 subjects for training/validating our algorithm and 100 as unseen test set for the reading session. Even though our model reaches state-of-the-art results on the test set (sensitivity=74%, false positive rate=1.6), we show that neither the junior nor the senior reader significantly increase their sensitivity (p=0.59, p=1, respectively). In addition, we find that reading time for both readers is significantly higher in the "AI-assisted" setting than in the "Unassisted" (+15 seconds, on average; p=3x10^(-4) junior, p=3x10^(-5) senior). The confidence reported by the readers is unchanged across the two settings, indicating that the AI assistance does not influence the certainty of the diagnosis. Our findings highlight the importance of clinical validation of AI algorithms in a clinical setting involving radiologists. This study should serve as a reminder to the community to always examine the real-word effectiveness and workflow impact of proposed algorithms.
comment: This paper has been accepted for publication in the journal NeuroImage: Clinical (DOI: https://doi.org/10.1016/j.nicl.2025.103835)
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ AWF: Adaptive Weight Fusion for Enhanced Class Incremental Semantic Segmentation
Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.
comment: 10 pages,6 figures
♻ ☆ Cluster and Predict Latent Patches for Improved Masked Image Modeling
Masked Image Modeling (MIM) offers a promising approach to self-supervised representation learning, however existing MIM models still lag behind the state-of-the-art. In this paper, we systematically analyze target representations, loss functions, and architectures, to introduce CAPI - a novel pure-MIM framework that relies on the prediction of latent clusterings. Our approach leverages a clustering-based loss, which is stable to train, and exhibits promising scaling properties. Our ViT-L backbone, CAPI, achieves 83.8% accuracy on ImageNet and 32.1% mIoU on ADE20K with simple linear probes, substantially outperforming previous MIM methods and approaching the performance of the current state-of-the-art, DINOv2. We release all our code and models.
comment: 26 pages, 14 figures, accepted in TMLR 2025
♻ ☆ USP: Unified Self-Supervised Pretraining for Image Generation and Understanding ICCV2025
Recent studies have highlighted the interplay between diffusion models and representation learning. Intermediate representations from diffusion models can be leveraged for downstream visual tasks, while self-supervised vision models can enhance the convergence and generation quality of diffusion models. However, transferring pretrained weights from vision models to diffusion models is challenging due to input mismatches and the use of latent spaces. To address these challenges, we propose Unified Self-supervised Pretraining (USP), a framework that initializes diffusion models via masked latent modeling in a Variational Autoencoder (VAE) latent space. USP achieves comparable performance in understanding tasks while significantly improving the convergence speed and generation quality of diffusion models. Our code will be publicly available at https://github.com/AMAP-ML/USP.
comment: Accepted to ICCV2025
♻ ☆ DepthART: Monocular Depth Estimation as Autoregressive Refinement Task
Monocular depth estimation has seen significant advances through discriminative approaches, yet their performance remains constrained by the limitations of training datasets. While generative approaches have addressed this challenge by leveraging priors from internet-scale datasets, with recent studies showing state-of-the-art results using fine-tuned text-to-image diffusion models, there is still room for improvement. Notably, autoregressive generative approaches, particularly Visual AutoRegressive modeling, have demonstrated superior results compared to diffusion models in conditioned image synthesis, while offering faster inference times. In this work, we apply Visual Autoregressive Transformer (VAR) to the monocular depth estimation problem. However, the conventional GPT-2-style training procedure (teacher forcing) inherited by VAR yields suboptimal results for depth estimation. To address this limitation, we introduce DepthART - a novel training method formulated as a Depth Autoregressive Refinement Task. Unlike traditional VAR training with static inputs and targets, our method implements a dynamic target formulation based on model outputs, enabling self-refinement. By utilizing the model's own predictions as inputs instead of ground truth token maps during training, we frame the objective as residual minimization, effectively reducing the discrepancy between training and inference procedures. Our experimental results demonstrate that the proposed training approach significantly enhances the performance of VAR in depth estimation tasks. When trained on Hypersim dataset using our approach, the model achieves superior results across multiple unseen benchmarks compared to existing generative and discriminative baselines.
♻ ☆ Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression techniques require additional end-to-end fine-tuning or incur a significant drawback to runtime, making them ill-suited for online (real-time) inference, where a prediction is made on any new input as it comes in. We introduce the $\textbf{Visual Word Tokenizer}$ (VWT), a training-free method for reducing power costs while retaining performance and runtime. The VWT groups visual subwords (image patches) that are frequently used into visual words while infrequent ones remain intact. To do so, $\textit{intra}$-image or $\textit{inter}$-image statistics are leveraged to identify similar visual concepts for sequence compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar power efficiency but exact a higher toll on runtime (up to 100% or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
♻ ☆ Methodology for an Analysis of Influencing Factors on 3D Object Detection Performance ATC
In automated driving, object detection is crucial for perceiving the environment. Although deep learning-based detectors offer high performance, their black-box nature complicates safety assurance. We propose a novel methodology to analyze how object- and environment-related factors affect LiDAR- and camera-based 3D object detectors. A statistical univariate analysis relates each factor to pedestrian detection errors. Additionally, a Random Forest (RF) model predicts errors from meta-information, with Shapley Values interpreting feature importance. By capturing feature dependencies, the RF enables a nuanced analysis of detection errors. Understanding these factors reveals detector performance gaps and supports safer object detection system development.
comment: IEEE International Conference on Autonomous and Trusted Computing (IEEE ATC), 2025
♻ ☆ Grid: Omni Visual Generation
Visual generation has witnessed remarkable progress in single-image tasks, yet extending these capabilities to temporal sequences remains challenging. Current approaches either build specialized video models from scratch with enormous computational costs or add separate motion modules to image generators, both requiring learning temporal dynamics anew. We observe that modern image generation models possess underutilized potential in handling structured layouts with implicit temporal understanding. Building on this insight, we introduce GRID, which reformulates temporal sequences as grid layouts, enabling holistic processing of visual sequences while leveraging existing model capabilities. Through a parallel flow-matching training strategy with coarse-to-fine scheduling, our approach achieves up to 67 faster inference speeds while using <1/1000 of the computational resources compared to specialized models. Extensive experiments demonstrate that GRID not only excels in temporal tasks from Text-to-Video to 3D Editing but also preserves strong performance in image generation, establishing itself as an efficient and versatile omni-solution for visual generation.
comment: Codes: https://github.com/Should-AI-Lab/GRID
♻ ☆ MSF: Efficient Diffusion Model Via Multi-Scale Latent Factorize
While diffusion-based generative models have made significant strides in visual content creation, conventional approaches face computational challenges, especially for high-resolution images, as they denoise the entire image from noisy inputs. This contrasts with signal processing techniques, such as Fourier and wavelet analyses, which often employ hierarchical decompositions. Inspired by such principles, particularly the idea of signal separation, we introduce a diffusion framework leveraging multi-scale latent factorization. Our framework uniquely decomposes the denoising target, typically latent features from a pretrained Variational Autoencoder, into a low-frequency base signal capturing core structural information and a high-frequency residual signal that contributes finer, high-frequency details like textures. This decomposition into base and residual components directly informs our two-stage image generation process, which first produces the low-resolution base, followed by the generation of the high-resolution residual. Our proposed architecture facilitates reduced sampling steps during the residual learning stage, owing to the inherent ease of modeling residual information, which confers advantages over conventional full-resolution generation techniques. This specific approach of decomposing the signal into a base and a residual, conceptually akin to how wavelet analysis can separate different frequency bands, yields a more streamlined and intuitive design distinct from generic hierarchical models. Our method, \name\ (Multi-Scale Factorization), demonstrates its effectiveness by achieving FID scores of 2.08 ($256\times256$) and 2.47 ($512\times512$) on class-conditional ImageNet benchmarks, outperforming the DiT baseline (2.27 and 3.04 respectively) while also delivering a $4\times$ speed-up with the same number of sampling steps.
♻ ☆ Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
comment: Submitted to ISVC 2025
♻ ☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects ICML 2025
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available at: $\href{https://t2m4lvo.github.io}{https://t2m4lvo.github.io}$.
comment: Accepted to ICML 2025
♻ ☆ HMSViT: A Hierarchical Masked Self-Supervised Vision Transformer for Corneal Nerve Segmentation and Diabetic Neuropathy Diagnosis
Diabetic Peripheral Neuropathy (DPN) affects nearly half of diabetes patients, requiring early detection. Corneal Confocal Microscopy (CCM) enables non-invasive diagnosis, but automated methods suffer from inefficient feature extraction, reliance on handcrafted priors, and data limitations. We propose HMSViT, a novel Hierarchical Masked Self-Supervised Vision Transformer (HMSViT) designed for corneal nerve segmentation and DPN diagnosis. Unlike existing methods, HMSViT employs pooling-based hierarchical and dual attention mechanisms with absolute positional encoding, enabling efficient multi-scale feature extraction by capturing fine-grained local details in early layers and integrating global context in deeper layers, all at a lower computational cost. A block-masked self supervised learning framework is designed for the HMSViT that reduces reliance on labelled data, enhancing feature robustness, while a multi-scale decoder is used for segmentation and classification by fusing hierarchical features. Experiments on clinical CCM datasets showed HMSViT achieves state-of-the-art performance, with 61.34% mIoU for nerve segmentation and 70.40% diagnostic accuracy, outperforming leading hierarchical models like the Swin Transformer and HiViT by margins of up to 6.39% in segmentation accuracy while using fewer parameters. Detailed ablation studies further reveal that integrating block-masked SSL with hierarchical multi-scale feature extraction substantially enhances performance compared to conventional supervised training. Overall, these comprehensive experiments confirm that HMSViT delivers excellent, robust, and clinically viable results, demonstrating its potential for scalable deployment in real-world diagnostic applications.
♻ ☆ TinyAlign: Boosting Lightweight Vision-Language Models by Mitigating Modal Alignment Bottlenecks
Lightweight Vision-Language Models (VLMs) are indispensable for resource-constrained applications. The prevailing approach to aligning vision and language models involves freezing both the vision encoder and the language model while training small connector modules. However, this strategy heavily depends on the intrinsic capabilities of the language model, which can be suboptimal for lightweight models with limited representational capacity. In this work, we investigate this alignment bottleneck through the lens of mutual information, demonstrating that the constrained capacity of the language model inherently limits the Effective Mutual Information (EMI) between multimodal inputs and outputs, thereby compromising alignment quality. To address this challenge, we propose TinyAlign, a novel framework inspired by Retrieval-Augmented Generation, which strategically retrieves relevant context from a memory bank to enrich multimodal inputs and enhance their alignment. Extensive empirical evaluations reveal that TinyAlign significantly reduces training loss, accelerates convergence, and enhances task performance. Remarkably, it allows models to achieve baseline-level performance with only 40\% of the fine-tuning data, highlighting exceptional data efficiency. Our work thus offers a practical pathway for developing more capable lightweight VLMs while introducing a fresh theoretical lens to better understand and address alignment bottlenecks in constrained multimodal systems.
♻ ☆ OmniHuman-1: Rethinking the Scaling-Up of One-Stage Conditioned Human Animation Models ICCV 2025
End-to-end human animation, such as audio-driven talking human generation, has undergone notable advancements in the recent few years. However, existing methods still struggle to scale up as large general video generation models, limiting their potential in real applications. In this paper, we propose OmniHuman, a Diffusion Transformer-based framework that scales up data by mixing motion-related conditions into the training phase. To this end, we introduce two training principles for these mixed conditions, along with the corresponding model architecture and inference strategy. These designs enable OmniHuman to fully leverage data-driven motion generation, ultimately achieving highly realistic human video generation. More importantly, OmniHuman supports various portrait contents (face close-up, portrait, half-body, full-body), supports both talking and singing, handles human-object interactions and challenging body poses, and accommodates different image styles. Compared to existing end-to-end audio-driven methods, OmniHuman not only produces more realistic videos, but also offers greater flexibility in inputs. It also supports multiple driving modalities (audio-driven, video-driven and combined driving signals). Video samples are provided on the ttfamily project page (https://omnihuman-lab.github.io)
comment: ICCV 2025, Homepage: https://omnihuman-lab.github.io/
♻ ☆ HalCECE: A Framework for Explainable Hallucination Detection through Conceptual Counterfactuals in Image Captioning
In the dynamic landscape of artificial intelligence, the exploration of hallucinations within vision-language (VL) models emerges as a critical frontier. This work delves into the intricacies of hallucinatory phenomena exhibited by widely used image captioners, unraveling interesting patterns. Specifically, we step upon previously introduced techniques of conceptual counterfactual explanations to address VL hallucinations. The deterministic and efficient nature of the employed conceptual counterfactuals backbone is able to suggest semantically minimal edits driven by hierarchical knowledge, so that the transition from a hallucinated caption to a non-hallucinated one is performed in a black-box manner. HalCECE, our proposed hallucination detection framework is highly interpretable, by providing semantically meaningful edits apart from standalone numbers, while the hierarchical decomposition of hallucinated concepts leads to a thorough hallucination analysis. Another novelty tied to the current work is the investigation of role hallucinations, being one of the first works to involve interconnections between visual concepts in hallucination detection. Overall, HalCECE recommends an explainable direction to the crucial field of VL hallucination detection, thus fostering trustworthy evaluation of current and future VL systems.
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address these issues, we introduce VPP-LLaVA, an MLLM enhanced with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms: the global VPP overlays a learnable, axis-like tensor onto the input image to provide structured spatial cues, while the local VPP incorporates position-aware queries to support fine-grained localization.To effectively train our model with spatial guidance, we further introduce VPP-SFT, a curated dataset of 0.6M high-quality visual grounding samples. Designed in a compact format, it enables efficient training and is significantly smaller than datasets used by other MLLMs (e.g., ~21M samples in MiniGPT-v2), yet still provides a strong performance boost. The resulting model, VPP-LLaVA, not only achieves state-of-the-art results on standard visual grounding benchmarks but also demonstrates strong zero-shot generalization to challenging unseen datasets. Code and dataset will be released upon acceptance at https://github.com/WayneTomas/VPP-LLaVA.
♻ ☆ AEM: Attention Entropy Maximization for Multiple Instance Learning based Whole Slide Image Classification MICCAI2025
Multiple Instance Learning (MIL) effectively analyzes whole slide images but faces overfitting due to attention over-concentration. While existing solutions rely on complex architectural modifications or additional processing steps, we introduce Attention Entropy Maximization (AEM), a simple yet effective regularization technique. Our investigation reveals the positive correlation between attention entropy and model performance. Building on this insight, we integrate AEM regularization into the MIL framework to penalize excessive attention concentration. To address sensitivity to the AEM weight parameter, we implement Cosine Weight Annealing, reducing parameter dependency. Extensive evaluations demonstrate AEM's superior performance across diverse feature extractors, MIL frameworks, attention mechanisms, and augmentation techniques. Here is our anonymous code: https://github.com/dazhangyu123/AEM.
comment: Accepted by MICCAI2025
♻ ☆ Harnessing Shared Relations via Multimodal Mixup Contrastive Learning for Multimodal Classification
Deep multimodal learning has shown remarkable success by leveraging contrastive learning to capture explicit one-to-one relations across modalities. However, real-world data often exhibits shared relations beyond simple pairwise associations. We propose M3CoL, a Multimodal Mixup Contrastive Learning approach to capture nuanced shared relations inherent in multimodal data. Our key contribution is a Mixup-based contrastive loss that learns robust representations by aligning mixed samples from one modality with their corresponding samples from other modalities thereby capturing shared relations between them. For multimodal classification tasks, we introduce a framework that integrates a fusion module with unimodal prediction modules for auxiliary supervision during training, complemented by our proposed Mixup-based contrastive loss. Through extensive experiments on diverse datasets (N24News, ROSMAP, BRCA, and Food-101), we demonstrate that M3CoL effectively captures shared multimodal relations and generalizes across domains. It outperforms state-of-the-art methods on N24News, ROSMAP, and BRCA, while achieving comparable performance on Food-101. Our work highlights the significance of learning shared relations for robust multimodal learning, opening up promising avenues for future research. Our code is publicly available at https://github.com/RaghavSinghal10/M3CoL.
comment: Transactions on Machine Learning Research (TMLR). Raja Kumar and Raghav Singhal contributed equally to this work
♻ ☆ FedEx-LoRA: Exact Aggregation for Federated and Efficient Fine-Tuning of Foundation Models ACL 2025
Low-Rank Adaptation (LoRA) is a popular technique for efficient fine-tuning of foundation models. However, applying LoRA in federated learning environments, where data is distributed across multiple clients, presents unique challenges. Existing methods rely on traditional federated averaging of LoRA adapters, resulting in inexact updates. To address this, we propose Federated Exact LoRA, or FedEx-LoRA, which adds a residual error term to the pretrained frozen weight matrix. Our approach achieves exact updates with minimal computational and communication overhead, preserving LoRA's efficiency. We evaluate the method on various models across arithmetic reasoning, commonsense reasoning, natural language understanding and natural language generation tasks, showing consistent performance gains over state-of-the-art methods across multiple settings. Through extensive analysis, we quantify that the deviations in updates from the ideal solution are significant, highlighting the need for exact aggregation. Our method's simplicity, efficiency, and broad applicability position it as a promising solution for accurate and effective federated fine-tuning of foundation models. Our code is publicly available at https://github.com/RaghavSinghal10/fedex-lora.
comment: ACL 2025 - Oral. Raghav Singhal and Kaustubh Ponkshe contributed equally to this work
♻ ☆ Emulating Self-attention with Convolution for Efficient Image Super-Resolution ICCV 2025
In this paper, we tackle the high computational overhead of Transformers for efficient image super-resolution~(SR). Motivated by the observations of self-attention's inter-layer repetition, we introduce a convolutionized self-attention module named Convolutional Attention~(ConvAttn) that emulates self-attention's long-range modeling capability and instance-dependent weighting with a single shared large kernel and dynamic kernels. By utilizing the ConvAttn module, we significantly reduce the reliance on self-attention and its involved memory-bound operations while maintaining the representational capability of Transformers. Furthermore, we overcome the challenge of integrating flash attention into the lightweight SR regime, effectively mitigating self-attention's inherent memory bottleneck. We scale up the window size to 32$\times$32 with flash attention rather than proposing an intricate self-attention module, significantly improving PSNR by 0.31dB on Urban100$\times$2 while reducing latency and memory usage by 16$\times$ and 12.2$\times$. Building on these approaches, our proposed network, termed Emulating Self-attention with Convolution~(ESC), notably improves PSNR by 0.27 dB on Urban100$\times$4 compared to HiT-SRF, reducing the latency and memory usage by 3.7$\times$ and 6.2$\times$, respectively. Extensive experiments demonstrate that our ESC maintains the ability for long-range modeling, data scalability, and the representational power of Transformers despite most self-attention being replaced by the ConvAttn module.
comment: ICCV 2025
♻ ☆ Visual Re-Ranking with Non-Visual Side Information SC
The standard approach for visual place recognition is to use global image descriptors to retrieve the most similar database images for a given query image. The results can then be further improved with re-ranking methods that re-order the top scoring images. However, existing methods focus on re-ranking based on the same image descriptors that were used for the initial retrieval, which we argue provides limited additional signal. In this work we propose Generalized Contextual Similarity Aggregation (GCSA), which is a graph neural network-based re-ranking method that, in addition to the visual descriptors, can leverage other types of available side information. This can for example be other sensor data (such as signal strength of nearby WiFi or BlueTooth endpoints) or geometric properties such as camera poses for database images. In many applications this information is already present or can be acquired with low effort. Our architecture leverages the concept of affinity vectors to allow for a shared encoding of the heterogeneous multi-modal input. Two large-scale datasets, covering both outdoor and indoor localization scenarios, are utilized for training and evaluation. In experiments we show significant improvement not only on image retrieval metrics, but also for the downstream visual localization task.
comment: Accepted at Scandinavian Conference on Image Analysis (SCIA) 2025
♻ ☆ Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration MICCAI
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.
comment: 11 pages, 3 figures, 2 tables, Accepted at Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
♻ ☆ InstructionBench: An Instructional Video Understanding Benchmark
Despite progress in video large language models (Video-LLMs), research on instructional video understanding, crucial for enhancing access to instructional content, remains insufficient. To address this, we introduce InstructionBench, an Instructional video understanding Benchmark, which challenges models' advanced temporal reasoning within instructional videos characterized by their strict step-by-step flow. Employing GPT-4, we formulate Q&A pairs in open-ended and multiple-choice formats to assess both Coarse-Grained event-level and Fine-Grained object-level reasoning. Our filtering strategies exclude questions answerable purely by common-sense knowledge, focusing on visual perception and analysis when evaluating Video-LLM models. The benchmark finally contains 5k questions across over 700 videos. We evaluate the latest Video-LLMs on our InstructionBench, finding that closed-source models outperform open-source ones. However, even the best model, GPT-4o, achieves only 53.42% accuracy, indicating significant gaps in temporal reasoning. To advance the field, we also develop a comprehensive instructional video dataset with over 19k Q&A pairs from nearly 2.5k videos, using an automated data generation framework, thereby enriching the community's research resources. All data are available at https://huggingface.co/datasets/sunwhw/InstructionBench.
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ D$^2$ST-Adapter: Disentangled-and-Deformable Spatio-Temporal Adapter for Few-shot Action Recognition ICCV2025
Adapting pre-trained image models to video modality has proven to be an effective strategy for robust few-shot action recognition. In this work, we explore the potential of adapter tuning in image-to-video model adaptation and propose a novel video adapter tuning framework, called Disentangled-and-Deformable Spatio-Temporal Adapter (D$^2$ST-Adapter). It features a lightweight design, low adaptation overhead and powerful spatio-temporal feature adaptation capabilities. D$^2$ST-Adapter is structured with an internal dual-pathway architecture that enables built-in disentangled encoding of spatial and temporal features within the adapter, seamlessly integrating into the single-stream feature learning framework of pre-trained image models. In particular, we develop an efficient yet effective implementation of the D$^2$ST-Adapter, incorporating the specially devised anisotropic Deformable Spatio-Temporal Attention as its pivotal operation. This mechanism can be individually tailored for two pathways with anisotropic sampling densities along the spatial and temporal domains in 3D spatio-temporal space, enabling disentangled encoding of spatial and temporal features while maintaining a lightweight design. Extensive experiments by instantiating our method on both pre-trained ResNet and ViT demonstrate the superiority of our method over state-of-the-art methods. Our method is particularly well-suited to challenging scenarios where temporal dynamics are critical for action recognition. Code is available at https://github.com/qizhongtan/D2ST-Adapter.
comment: Accepted by ICCV2025
♻ ☆ Edit360: 2D Image Edits to 3D Assets from Any Angle
Recent advances in diffusion models have significantly improved image generation and editing, but extending these capabilities to 3D assets remains challenging, especially for fine-grained edits that require multi-view consistency. Existing methods typically restrict editing to predetermined viewing angles, severely limiting their flexibility and practical applications. We introduce Edit360, a tuning-free framework that extends 2D modifications to multi-view consistent 3D editing. Built upon video diffusion models, Edit360 enables user-specific editing from arbitrary viewpoints while ensuring structural coherence across all views. The framework selects anchor views for 2D modifications and propagates edits across the entire 360-degree range. To achieve this, Edit360 introduces a novel Anchor-View Editing Propagation mechanism, which effectively aligns and merges multi-view information within the latent and attention spaces of diffusion models. The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets, enabling customizable 3D content creation.
comment: 11 pages, 9 figures
♻ ☆ LW2G: Learning Whether to Grow for Prompt-based Continual Learning
Recent Prompt-based Continual learning (PCL) has achieved remarkable performance with pre-trained models. These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference. Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL. In this paper, we propose a plug-in method, $\textbf{L}$earning $\textbf{W}$hether $\textbf{t}$o $\textbf{G}$row $\textbf{(LW2G)}$, which leverages the disparities between tasks to form an effective and efficient prompt sets pool, thereby achieving intra-task knowledge sharing and cooperation and avoiding the unbounded increase in the cost of the prompt pool. Specifically, a shared set is utilized when several tasks share certain commonalities, and a new set is added when there are significant differences between the new and previous tasks. To achieve this, we develop a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks by surgically modifying the original gradient onto the orthogonal complement of the old feature space. With HFC, an automated scheme, Dynamic Growing Approach, adaptively learns whether to grow with a dynamic threshold. Furthermore, we design a gradient-based constraint to ensure consistency between the updating prompts and pre-trained knowledge. Extensive experiments show the effectiveness of our method. Code is available at https://github.com/RAIAN08/LW2G.
♻ ☆ Advancing Facial Stylization through Semantic Preservation Constraint and Pseudo-Paired Supervision
Facial stylization aims to transform facial images into appealing, high-quality stylized portraits, with the critical challenge of accurately learning the target style while maintaining content consistency with the original image. Although previous StyleGAN-based methods have made significant advancements, the generated results still suffer from artifacts or insufficient fidelity to the source image. We argue that these issues stem from neglecting semantic shift of the generator during stylization. Therefore, we propose a facial stylization method that integrates semantic preservation constraint and pseudo-paired supervision to enhance the content correspondence and improve the stylization effect. Additionally, we develop a methodology for creating multi-level pseudo-paired datasets to implement supervisory constraint. Furthermore, building upon our facial stylization framework, we achieve more flexible multimodal and reference-guided stylization without complex network architecture designs or additional training. Experimental results demonstrate that our approach produces high-fidelity, aesthetically pleasing facial style transfer that surpasses previous methods.
♻ ☆ StereoDiff: Stereo-Diffusion Synergy for Video Depth Estimation
Recent video depth estimation methods achieve great performance by following the paradigm of image depth estimation, i.e., typically fine-tuning pre-trained video diffusion models with massive data. However, we argue that video depth estimation is not a naive extension of image depth estimation. The temporal consistency requirements for dynamic and static regions in videos are fundamentally different. Consistent video depth in static regions, typically backgrounds, can be more effectively achieved via stereo matching across all frames, which provides much stronger global 3D cues. While the consistency for dynamic regions still should be learned from large-scale video depth data to ensure smooth transitions, due to the violation of triangulation constraints. Based on these insights, we introduce StereoDiff, a two-stage video depth estimator that synergizes stereo matching for mainly the static areas with video depth diffusion for maintaining consistent depth transitions in dynamic areas. We mathematically demonstrate how stereo matching and video depth diffusion offer complementary strengths through frequency domain analysis, highlighting the effectiveness of their synergy in capturing the advantages of both. Experimental results on zero-shot, real-world, dynamic video depth benchmarks, both indoor and outdoor, demonstrate StereoDiff's SoTA performance, showcasing its superior consistency and accuracy in video depth estimation.
comment: Work done in Nov 2024, during an internship at the University of Pennsylvania. Project page: https://stereodiff.github.io/
♻ ☆ Disentangled Diffusion-Based 3D Human Pose Estimation with Hierarchical Spatial and Temporal Denoiser AAAI24
Recently, diffusion-based methods for monocular 3D human pose estimation have achieved state-of-the-art (SOTA) performance by directly regressing the 3D joint coordinates from the 2D pose sequence. Although some methods decompose the task into bone length and bone direction prediction based on the human anatomical skeleton to explicitly incorporate more human body prior constraints, the performance of these methods is significantly lower than that of the SOTA diffusion-based methods. This can be attributed to the tree structure of the human skeleton. Direct application of the disentangled method could amplify the accumulation of hierarchical errors, propagating through each hierarchy. Meanwhile, the hierarchical information has not been fully explored by the previous methods. To address these problems, a Disentangled Diffusion-based 3D Human Pose Estimation method with Hierarchical Spatial and Temporal Denoiser is proposed, termed DDHPose. In our approach: (1) We disentangle the 3D pose and diffuse the bone length and bone direction during the forward process of the diffusion model to effectively model the human pose prior. A disentanglement loss is proposed to supervise diffusion model learning. (2) For the reverse process, we propose Hierarchical Spatial and Temporal Denoiser (HSTDenoiser) to improve the hierarchical modeling of each joint. Our HSTDenoiser comprises two components: the Hierarchical-Related Spatial Transformer (HRST) and the Hierarchical-Related Temporal Transformer (HRTT). HRST exploits joint spatial information and the influence of the parent joint on each joint for spatial modeling, while HRTT utilizes information from both the joint and its hierarchical adjacent joints to explore the hierarchical temporal correlations among joints. Code and models are available at https://github.com/Andyen512/DDHPose
comment: Accepted by AAAI24
♻ ☆ OrderChain: Towards General Instruct-Tuning for Stimulating the Ordinal Understanding Ability of MLLM
Despite the remarkable progress of multimodal large language models (MLLMs), they continue to face challenges in achieving competitive performance on ordinal regression (OR; a.k.a. ordinal classification). To address this issue, this paper presents OrderChain, a novel and general prompting paradigm that improves the ordinal understanding ability of MLLMs by specificity and commonality modeling. Specifically, our OrderChain consists of a set of task-aware prompts to facilitate the specificity modeling of diverse OR tasks and a new range optimization Chain-of-Thought (RO-CoT), which learns a commonality way of thinking about OR tasks by uniformly decomposing them into multiple small-range optimization subtasks. Further, we propose a category recursive division (CRD) method to generate instruction candidate category prompts to support RO-CoT automatic optimization. Comprehensive experiments show that a Large Language and Vision Assistant (LLaVA) model with our OrderChain improves baseline LLaVA significantly on diverse OR datasets, e.g., from 47.5% to 93.2% accuracy on the Adience dataset for age estimation, and from 30.0% to 85.7% accuracy on the Diabetic Retinopathy dataset. Notably, LLaVA with our OrderChain also remarkably outperforms state-of-the-art methods by 27% on accuracy and 0.24 on MAE on the Adience dataset. To our best knowledge, our OrderChain is the first work that augments MLLMs for OR tasks, and the effectiveness is witnessed across a spectrum of OR datasets.
♻ ☆ Deblurring in the Wild: A Real-World Dataset from Smartphone High-Speed Videos
We introduce the largest real-world image deblurring dataset constructed from smartphone slow-motion videos. Using 240 frames captured over one second, we simulate realistic long-exposure blur by averaging frames to produce blurry images, while using the temporally centered frame as the sharp reference. Our dataset contains over 42,000 high-resolution blur-sharp image pairs, making it approximately 10 times larger than widely used datasets, with 8 times the amount of different scenes, including indoor and outdoor environments, with varying object and camera motions. We benchmark multiple state-of-the-art (SOTA) deblurring models on our dataset and observe significant performance degradation, highlighting the complexity and diversity of our benchmark. Our dataset serves as a challenging new benchmark to facilitate robust and generalizable deblurring models.
comment: 8 pages (without references), 3 figures. Dataset https://huggingface.co/datasets/masterda/SloMoBlur
Mesh-Learner: Texturing Mesh with Spherical Harmonics IROS2025
In this paper, we present a 3D reconstruction and rendering framework termed Mesh-Learner that is natively compatible with traditional rasterization pipelines. It integrates mesh and spherical harmonic (SH) texture (i.e., texture filled with SH coefficients) into the learning process to learn each mesh s view-dependent radiance end-to-end. Images are rendered by interpolating surrounding SH Texels at each pixel s sampling point using a novel interpolation method. Conversely, gradients from each pixel are back-propagated to the related SH Texels in SH textures. Mesh-Learner exploits graphic features of rasterization pipeline (texture sampling, deferred rendering) to render, which makes Mesh-Learner naturally compatible with tools (e.g., Blender) and tasks (e.g., 3D reconstruction, scene rendering, reinforcement learning for robotics) that are based on rasterization pipelines. Our system can train vast, unlimited scenes because we transfer only the SH textures within the frustum to the GPU for training. At other times, the SH textures are stored in CPU RAM, which results in moderate GPU memory usage. The rendering results on interpolation and extrapolation sequences in the Replica and FAST-LIVO2 datasets achieve state-of-the-art performance compared to existing state-of-the-art methods (e.g., 3D Gaussian Splatting and M2-Mapping). To benefit the society, the code will be available at https://github.com/hku-mars/Mesh-Learner.
comment: IROS2025 Accepted
♻ ☆ Object detection in adverse weather conditions for autonomous vehicles using Instruct Pix2Pix IJCNN
Enhancing the robustness of object detection systems under adverse weather conditions is crucial for the advancement of autonomous driving technology. This study presents a novel approach leveraging the diffusion model Instruct Pix2Pix to develop prompting methodologies that generate realistic datasets with weather-based augmentations aiming to mitigate the impact of adverse weather on the perception capabilities of state-of-the-art object detection models, including Faster R-CNN and YOLOv10. Experiments were conducted in two environments, in the CARLA simulator where an initial evaluation of the proposed data augmentation was provided, and then on the real-world image data sets BDD100K and ACDC demonstrating the effectiveness of the approach in real environments. The key contributions of this work are twofold: (1) identifying and quantifying the performance gap in object detection models under challenging weather conditions, and (2) demonstrating how tailored data augmentation strategies can significantly enhance the robustness of these models. This research establishes a solid foundation for improving the reliability of perception systems in demanding environmental scenarios, and provides a pathway for future advancements in autonomous driving.
comment: 8 pages, 5 figures. Accepted at the International Joint Conference on Neural Networks (IJCNN) 2025 (to appear)
♻ ☆ ProSAM: Enhancing the Robustness of SAM-based Visual Reference Segmentation with Probabilistic Prompts
The recent advancements in large foundation models have driven the success of open-set image segmentation, a task focused on segmenting objects beyond predefined categories. Among various prompt types (such as points, boxes, texts, and visual references), visual reference segmentation stands out for its unique flexibility and strong zero-shot capabilities. Recently, several SAM-based methods have made notable progress in this task by automatically generating prompts to guide SAM. However, these methods often generate prompts at object boundaries due to suboptimal prompt encoder, which results in instability and reduced robustness. In this work, we introduce ProSAM, a simple but effective method to address the stability challenges we identified in existing SAM-based visual reference segmentation approaches. By learning a variational prompt encoder to predict multivariate prompt distributions, ProSAM avoids generating prompts that lie in unstable regions, overcoming the instability caused by less robust prompts. Our approach consistently surpasses state-of-the-art methods on the Pascal-5$^i$ and COCO-20$^i$ datasets, providing a more robust solution for visual reference segmentation.
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
comment: Need further revision
♻ ☆ PRVQL: Progressive Knowledge-guided Refinement for Robust Egocentric Visual Query Localization
Egocentric visual query localization (EgoVQL) focuses on localizing the target of interest in space and time from first-person videos, given a visual query. Despite recent progressive, existing methods often struggle to handle severe object appearance changes and cluttering background in the video due to lacking sufficient target cues, leading to degradation. Addressing this, we introduce PRVQL, a novel Progressive knowledge-guided Refinement framework for EgoVQL. The core is to continuously exploit target-relevant knowledge directly from videos and utilize it as guidance to refine both query and video features for improving target localization. Our PRVQL contains multiple processing stages. The target knowledge from one stage, comprising appearance and spatial knowledge extracted via two specially designed knowledge learning modules, are utilized as guidance to refine the query and videos features for the next stage, which are used to generate more accurate knowledge for further feature refinement. With such a progressive process, target knowledge in PRVQL can be gradually improved, which, in turn, leads to better refined query and video features for localization in the final stage. Compared to previous methods, our PRVQL, besides the given object cues, enjoys additional crucial target information from a video as guidance to refine features, and hence enhances EgoVQL in complicated scenes. In our experiments on challenging Ego4D, PRVQL achieves state-of-the-art result and largely surpasses other methods, showing its efficacy. Our code, model and results will be released at https://github.com/fb-reps/PRVQL.
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code is available at https://github.com/WonwoongCho/Towards-Enhanced-Controllability-of-Diffusion-Models
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection IROS 2025
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Camera-ready version for IROS 2025
♻ ☆ Generating Physically Stable and Buildable Brick Structures from Text
We introduce BrickGPT, the first approach for generating physically stable interconnecting brick assembly models from text prompts. To achieve this, we construct a large-scale, physically stable dataset of brick structures, along with their associated captions, and train an autoregressive large language model to predict the next brick to add via next-token prediction. To improve the stability of the resulting designs, we employ an efficient validity check and physics-aware rollback during autoregressive inference, which prunes infeasible token predictions using physics laws and assembly constraints. Our experiments show that BrickGPT produces stable, diverse, and aesthetically pleasing brick structures that align closely with the input text prompts. We also develop a text-based brick texturing method to generate colored and textured designs. We show that our designs can be assembled manually by humans and automatically by robotic arms. We release our new dataset, StableText2Brick, containing over 47,000 brick structures of over 28,000 unique 3D objects accompanied by detailed captions, along with our code and models at the project website: https://avalovelace1.github.io/BrickGPT/.
comment: Project page: https://avalovelace1.github.io/BrickGPT/
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
♻ ☆ INP-Former++: Advancing Universal Anomaly Detection via Intrinsic Normal Prototypes and Residual Learning
Anomaly detection (AD) is essential for industrial inspection and medical diagnosis, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Furthermore, we propose a soft version of the INP Coherence Loss and enhance INP-Former by incorporating residual learning, leading to the development of INP-Former++. The proposed method significantly improves detection performance across single-class, multi-class, semi-supervised, few-shot, and zero-shot settings.
comment: 15 pages, 11 figures, 13 tables. arXiv admin note: substantial text overlap with arXiv:2503.02424
Machine Learning 124
☆ Teaching Time Series to See and Speak: Forecasting with Aligned Visual and Textual Perspectives
Time series forecasting traditionally relies on unimodal numerical inputs, which often struggle to capture high-level semantic patterns due to their dense and unstructured nature. While recent approaches have explored representing time series as text using large language models (LLMs), these methods remain limited by the discrete nature of token sequences and lack the perceptual intuition humans typically apply, such as interpreting visual patterns. In this paper, we propose a multimodal contrastive learning framework that transforms raw time series into structured visual and textual perspectives. Rather than using natural language or real-world images, we construct both modalities directly from numerical sequences. We then align these views in a shared semantic space via contrastive learning, enabling the model to capture richer and more complementary representations. Furthermore, we introduce a variate selection module that leverages the aligned representations to identify the most informative variables for multivariate forecasting. Extensive experiments on fifteen short-term and six long-term forecasting benchmarks demonstrate that our approach consistently outperforms strong unimodal and cross-modal baselines, highlighting the effectiveness of multimodal alignment in enhancing time series forecasting. Code is available at: https://github.com/Ironieser/TimesCLIP.
comment: Code: https://github.com/Ironieser/TimesCLIP
☆ Data Uniformity Improves Training Efficiency and More, with a Convergence Framework Beyond the NTK Regime
Data selection plays a crucial role in data-driven decision-making, including in large language models (LLMs), and is typically task-dependent. Properties such as data quality and diversity have been extensively studied and are known to enhance model performance. However, it remains unclear whether there exist other quantitative and general principles of data selection that can consistently improve performance, especially for complex tasks with limited prior knowledge. In this paper, we demonstrate that selecting more uniformly distributed data can improve training efficiency while enhancing performance. Specifically, we establish that more uniform (less biased) distribution leads to a larger minimum pairwise distance between data points, denoted by $h_{\min}$, and prove that a smaller $h_{\min}$ can slow down the training dynamics of gradient descent (GD). Moreover, we theoretically show that the approximation error of neural networks decreases as $h_{\min}$ increases. Our analysis introduces a convergence framework for GD beyond the Neural Tangent Kernel (NTK) regime, applicable to a broad class of architectures, including transformers, without requiring Lipschitz smoothness. This framework further provides theoretical justification for the use of residual connections and function compositions in deep neural architectures. In the end, we conduct comprehensive experiments for supervised fine-tuning across various settings, including different optimization strategies, model sizes, and training datasets. The results consistently demonstrate that selecting data by maximizing pairwise distance significantly accelerates training and achieves comparable or better performance in LLMs across diverse datasets. Code and Datasets are available at the link: https://github.com/SafeRL-Lab/data-uniformity.
☆ SPIRAL: Self-Play on Zero-Sum Games Incentivizes Reasoning via Multi-Agent Multi-Turn Reinforcement Learning
Recent advances in reinforcement learning have shown that language models can develop sophisticated reasoning through training on tasks with verifiable rewards, but these approaches depend on human-curated problem-answer pairs and domain-specific reward engineering. We introduce SPIRAL, a self-play framework where models learn by playing multi-turn, zero-sum games against continuously improving versions of themselves, eliminating the need for human supervision. Through self-play, SPIRAL generates an infinite curriculum of progressively challenging problems as models must constantly adapt to stronger opponents. To enable this self-play training at scale, We implement a fully online, multi-turn, multi-agent reinforcement learning system for LLMs and propose role-conditioned advantage estimation (RAE) to stabilize multi-agent training. Using SPIRAL, self-play on zero-sum games produces reasoning capabilities that transfer broadly. Training Qwen3-4B-Base on Kuhn Poker alone achieves 8.6% improvement on math and 8.4% on general reasoning, outperforming SFT on 25,000 expert game trajectories. Analysis reveals that this transfer occurs through three cognitive patterns: systematic decomposition, expected value calculation, and case-by-case analysis. Multi-game training (TicTacToe, Kuhn Poker, Simple Negotiation) further enhances performance as each game develops distinct reasoning strengths. Applying SPIRAL to a strong reasoning model (DeepSeek-R1-Distill-Qwen-7B) can still lead to 2.0% average improvement. These results demonstrate that zero-sum games naturally develop transferable reasoning capabilities, highlighting a promising direction for autonomous reasoning development.
comment: Work in Progress
☆ Navigating with Annealing Guidance Scale in Diffusion Space
Denoising diffusion models excel at generating high-quality images conditioned on text prompts, yet their effectiveness heavily relies on careful guidance during the sampling process. Classifier-Free Guidance (CFG) provides a widely used mechanism for steering generation by setting the guidance scale, which balances image quality and prompt alignment. However, the choice of the guidance scale has a critical impact on the convergence toward a visually appealing and prompt-adherent image. In this work, we propose an annealing guidance scheduler which dynamically adjusts the guidance scale over time based on the conditional noisy signal. By learning a scheduling policy, our method addresses the temperamental behavior of CFG. Empirical results demonstrate that our guidance scheduler significantly enhances image quality and alignment with the text prompt, advancing the performance of text-to-image generation. Notably, our novel scheduler requires no additional activations or memory consumption, and can seamlessly replace the common classifier-free guidance, offering an improved trade-off between prompt alignment and quality.
comment: Project page: https://annealing-guidance.github.io/annealing-guidance/
☆ Development of Hybrid Artificial Intelligence Training on Real and Synthetic Data: Benchmark on Two Mixed Training Strategies
Synthetic data has emerged as a cost-effective alternative to real data for training artificial neural networks (ANN). However, the disparity between synthetic and real data results in a domain gap. That gap leads to poor performance and generalization of the trained ANN when applied to real-world scenarios. Several strategies have been developed to bridge this gap, which combine synthetic and real data, known as mixed training using hybrid datasets. While these strategies have been shown to mitigate the domain gap, a systematic evaluation of their generalizability and robustness across various tasks and architectures remains underexplored. To address this challenge, our study comprehensively analyzes two widely used mixing strategies on three prevalent architectures and three distinct hybrid datasets. From these datasets, we sample subsets with varying proportions of synthetic to real data to investigate the impact of synthetic and real components. The findings of this paper provide valuable insights into optimizing the use of synthetic data in the training process of any ANN, contributing to enhancing robustness and efficacy.
comment: 21pages, 14 figures, 2 tables
☆ SQUASH: A SWAP-Based Quantum Attack to Sabotage Hybrid Quantum Neural Networks
We propose a circuit-level attack, SQUASH, a SWAP-Based Quantum Attack to sabotage Hybrid Quantum Neural Networks (HQNNs) for classification tasks. SQUASH is executed by inserting SWAP gate(s) into the variational quantum circuit of the victim HQNN. Unlike conventional noise-based or adversarial input attacks, SQUASH directly manipulates the circuit structure, leading to qubit misalignment and disrupting quantum state evolution. This attack is highly stealthy, as it does not require access to training data or introduce detectable perturbations in input states. Our results demonstrate that SQUASH significantly degrades classification performance, with untargeted SWAP attacks reducing accuracy by up to 74.08\% and targeted SWAP attacks reducing target class accuracy by up to 79.78\%. These findings reveal a critical vulnerability in HQNN implementations, underscoring the need for more resilient architectures against circuit-level adversarial interventions.
comment: Keywords: Quantum Machine Learning, Hybrid Quantum Neural Networks, SWAP Test, Fidelity, Circuit-level Attack
☆ Logit-Gap Steering: Efficient Short-Suffix Jailbreaks for Aligned Large Language Models
We introduce logit-gap steering, a fast jailbreak framework that casts the refusal-affirmation gap of RLHF-aligned language models as a single pass over the vocabulary. A forward-computable score blends gap reduction with lightweight proxies for KL penalty and reward shift, allowing a "sort-sum-stop" sweep to complete in under a second and return a short suffix--two orders of magnitude fewer model calls than beam or gradient attacks. The same suffix generalises to unseen prompts and scales from 0.5 B to 70 B checkpoints, lifting one-shot attack success from baseline levels to 80-100% while preserving topical coherence. Beyond efficiency, these suffixes expose sentence-boundary reward cliffs and other alignment artefacts, offering a lightweight probe into how safety tuning reshapes internal representations.
☆ Consensus-based optimization for closed-box adversarial attacks and a connection to evolution strategies
Consensus-based optimization (CBO) has established itself as an efficient gradient-free optimization scheme, with attractive mathematical properties, such as mean-field convergence results for non-convex loss functions. In this work, we study CBO in the context of closed-box adversarial attacks, which are imperceptible input perturbations that aim to fool a classifier, without accessing its gradient. Our contribution is to establish a connection between the so-called consensus hopping as introduced by Riedl et al. and natural evolution strategies (NES) commonly applied in the context of adversarial attacks and to rigorously relate both methods to gradient-based optimization schemes. Beyond that, we provide a comprehensive experimental study that shows that despite the conceptual similarities, CBO can outperform NES and other evolutionary strategies in certain scenarios.
☆ Agent.xpu: Efficient Scheduling of Agentic LLM Workloads on Heterogeneous SoC
The proliferation of agentic Large Language Models (LLMs) on personal devices introduces a new class of workloads characterized by a dichotomy of objectives. Reactive tasks, initiated by users, demand immediate, low-latency responses, while proactive tasks operate invisibly and prioritize throughput. Existing on-device LLM engines, designed for isolated inferences, fail to efficiently manage these concurrent and conflicting requests on consumer-grade heterogeneous SoCs with CPU, integrated GPU, and NPU. This paper introduces Agent.xpu, an efficient serving system for agentic LLM workloads on memory-unified heterogeneous SoCs. With dedicated offline profiling, Agent.xpu first constructs a heterogeneous execution graph, which fuses and chunks model kernels for affinity-guided, elastic accelerator mapping with predictive kernel annotation. At runtime, its online scheduler enables fine-grained, kernel-level preemption to guarantee the responsiveness of reactive tasks. To maximize SoC utilization, it adopts slack-aware kernel backfill to opportunistically append proactive tasks, and mitigates NPU-iGPU contention via bandwidth-aware dispatch. Evaluation on an Intel Core Ultra SoC shows that Agent.xpu achieves 4.6$\times$ lower latency for reactive tasks and sustains 1.6$\times$-6.8$\times$ higher throughput for proactive tasks compared to state-of-the-art inference engines.
☆ Faster Diffusion Models via Higher-Order Approximation
In this paper, we explore provable acceleration of diffusion models without any additional retraining. Focusing on the task of approximating a target data distribution in $\mathbb{R}^d$ to within $\varepsilon$ total-variation distance, we propose a principled, training-free sampling algorithm that requires only the order of $$ d^{1+2/K} \varepsilon^{-1/K} $$ score function evaluations (up to log factor) in the presence of accurate scores, where $K$ is an arbitrarily large fixed integer. This result applies to a broad class of target data distributions, without the need for assumptions such as smoothness or log-concavity. Our theory is robust vis-a-vis inexact score estimation, degrading gracefully as the score estimation error increases -- without demanding higher-order smoothness on the score estimates as assumed in previous work. The proposed algorithm draws insight from high-order ODE solvers, leveraging high-order Lagrange interpolation and successive refinement to approximate the integral derived from the probability flow ODE.
Unsupervised Sparse Coding-based Spiking Neural Network for Real-time Spike Sorting
Spike sorting is a crucial step in decoding multichannel extracellular neural signals, enabling the identification of individual neuronal activity. A key challenge in brain-machine interfaces (BMIs) is achieving real-time, low-power spike sorting at the edge while keeping high neural decoding performance. This study introduces the Neuromorphic Sparse Sorter (NSS), a compact two-layer spiking neural network optimized for efficient spike sorting. NSS leverages the Locally Competitive Algorithm (LCA) for sparse coding to extract relevant features from noisy events with reduced computational demands. NSS learns to sort detected spike waveforms in an online fashion and operates entirely unsupervised. To exploit multi-bit spike coding capabilities of neuromorphic platforms like Intel's Loihi 2, a custom neuron model was implemented, enabling flexible power-performance trade-offs via adjustable spike bit-widths. Evaluations on simulated and real-world tetrode signals with biological drift showed NSS outperformed established pipelines such as WaveClus3 and PCA+KMeans. With 2-bit graded spikes, NSS on Loihi 2 outperformed NSS implemented with leaky integrate-and-fire neuron and achieved an F1-score of 77% (+10% improvement) while consuming 8.6mW (+1.65mW) when tested on a drifting recording, with a computational processing time of 0.25ms (+60 us) per inference.
comment: Main article : 16 pages, 7 figures and 4 tables. Supplementary Material starts at page 17 with 7 figures
☆ Post-processing of EEG-based Auditory Attention Decoding Decisions via Hidden Markov Models
Auditory attention decoding (AAD) algorithms exploit brain signals, such as electroencephalography (EEG), to identify which speaker a listener is focusing on in a multi-speaker environment. While state-of-the-art AAD algorithms can identify the attended speaker on short time windows, their predictions are often too inaccurate for practical use. In this work, we propose augmenting AAD with a hidden Markov model (HMM) that models the temporal structure of attention. More specifically, the HMM relies on the fact that a subject is much less likely to switch attention than to keep attending the same speaker at any moment in time. We show how a HMM can significantly improve existing AAD algorithms in both causal (real-time) and non-causal (offline) settings. We further demonstrate that HMMs outperform existing postprocessing approaches in both accuracy and responsiveness, and explore how various factors such as window length, switching frequency, and AAD accuracy influence overall performance. The proposed method is computationally efficient, intuitive to use and applicable in both real-time and offline settings.
☆ Bridging Theory and Practice in Link Representation with Graph Neural Networks
Graph Neural Networks (GNNs) are widely used to compute representations of node pairs for downstream tasks such as link prediction. Yet, theoretical understanding of their expressive power has focused almost entirely on graph-level representations. In this work, we shift the focus to links and provide the first comprehensive study of GNN expressiveness in link representation. We introduce a unifying framework, the $k_\phi$-$k_\rho$-$m$ framework, that subsumes existing message-passing link models and enables formal expressiveness comparisons. Using this framework, we derive a hierarchy of state-of-the-art methods and offer theoretical tools to analyze future architectures. To complement our analysis, we propose a synthetic evaluation protocol comprising the first benchmark specifically designed to assess link-level expressiveness. Finally, we ask: does expressiveness matter in practice? We use a graph symmetry metric that quantifies the difficulty of distinguishing links and show that while expressive models may underperform on standard benchmarks, they significantly outperform simpler ones as symmetry increases, highlighting the need for dataset-aware model selection.
☆ Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
This study investigates adaptive experimental design for treatment choice, also known as fixed-budget best-arm identification. We consider an adaptive procedure consisting of a treatment-allocation phase followed by a treatment-choice phase, and we design an adaptive experiment for this setup to efficiently identify the best treatment arm, defined as the one with the highest expected outcome. In our designed experiment, the treatment-allocation phase consists of two stages. The first stage is a pilot phase, where we allocate each treatment arm uniformly with equal proportions to eliminate clearly suboptimal arms and estimate outcome variances. In the second stage, we allocate treatment arms in proportion to the variances estimated in the first stage. After the treatment-allocation phase, the procedure enters the treatment-choice phase, where we choose the treatment arm with the highest sample mean as our estimate of the best treatment arm. We prove that this single design is simultaneously asymptotically minimax and Bayes optimal for the simple regret, with upper bounds that match our lower bounds up to exact constants. Therefore, our designed experiment achieves the sharp efficiency limits without requiring separate tuning for minimax and Bayesian objectives.
☆ Provably Efficient and Agile Randomized Q-Learning
While Bayesian-based exploration often demonstrates superior empirical performance compared to bonus-based methods in model-based reinforcement learning (RL), its theoretical understanding remains limited for model-free settings. Existing provable algorithms either suffer from computational intractability or rely on stage-wise policy updates which reduce responsiveness and slow down the learning process. In this paper, we propose a novel variant of Q-learning algorithm, refereed to as RandomizedQ, which integrates sampling-based exploration with agile, step-wise, policy updates, for episodic tabular RL. We establish an $\widetilde{O}(\sqrt{H^5SAT})$ regret bound, where $S$ is the number of states, $A$ is the number of actions, $H$ is the episode length, and $T$ is the total number of episodes. In addition, we present a logarithmic regret bound under a mild positive sub-optimality condition on the optimal Q-function. Empirically, RandomizedQ exhibits outstanding performance compared to existing Q-learning variants with both bonus-based and Bayesian-based exploration on standard benchmarks.
☆ The Illusion of Progress? A Critical Look at Test-Time Adaptation for Vision-Language Models
Test-time adaptation (TTA) methods have gained significant attention for enhancing the performance of vision-language models (VLMs) such as CLIP during inference, without requiring additional labeled data. However, current TTA researches generally suffer from major limitations such as duplication of baseline results, limited evaluation metrics, inconsistent experimental settings, and insufficient analysis. These problems hinder fair comparisons between TTA methods and obscure their practical strengths and weaknesses. To address these challenges, we introduce TTA-VLM, a comprehensive benchmark for evaluating TTA methods on VLMs. Our benchmark implements 8 episodic TTA and 7 online TTA methods within a unified and reproducible framework, and evaluates them across 15 widely used datasets. Unlike prior studies focused solely on CLIP, we extend the evaluation to SigLIP--a model trained with a Sigmoid loss--and include training-time tuning methods such as CoOp, MaPLe, and TeCoA to assess generality. Beyond classification accuracy, TTA-VLM incorporates various evaluation metrics, including robustness, calibration, out-of-distribution detection, and stability, enabling a more holistic assessment of TTA methods. Through extensive experiments, we find that 1) existing TTA methods produce limited gains compared to the previous pioneering work; 2) current TTA methods exhibit poor collaboration with training-time fine-tuning methods; 3) accuracy gains frequently come at the cost of reduced model trustworthiness. We release TTA-VLM to provide fair comparison and comprehensive evaluation of TTA methods for VLMs, and we hope it encourages the community to develop more reliable and generalizable TTA strategies.
comment: Github link: https://github.com/TomSheng21/tta-vlm
☆ The Jacobian and Hessian of the Kullback-Leibler Divergence between Multivariate Gaussian Distributions (Technical Report)
This document shows how to obtain the Jacobian and Hessian matrices of the Kullback-Leibler divergence between two multivariate Gaussian distributions, using the first and second-order differentials. The presented derivations are based on the theory presented by \cite{magnus99}. I've also got great inspiration from some of the derivations in \cite{minka}. Since I pretend to be at most didactic, the document is split into a summary of results and detailed derivations on each of the elements involved, with specific references to the tricks used in the derivations, and to many of the underlying concepts.
☆ Machine Understanding of Scientific Language
Scientific information expresses human understanding of nature. This knowledge is largely disseminated in different forms of text, including scientific papers, news articles, and discourse among people on social media. While important for accelerating our pursuit of knowledge, not all scientific text is faithful to the underlying science. As the volume of this text has burgeoned online in recent years, it has become a problem of societal importance to be able to identify the faithfulness of a given piece of scientific text automatically. This thesis is concerned with the cultivation of datasets, methods, and tools for machine understanding of scientific language, in order to analyze and understand science communication at scale. To arrive at this, I present several contributions in three areas of natural language processing and machine learning: automatic fact checking, learning with limited data, and scientific text processing. These contributions include new methods and resources for identifying check-worthy claims, adversarial claim generation, multi-source domain adaptation, learning from crowd-sourced labels, cite-worthiness detection, zero-shot scientific fact checking, detecting exaggerated scientific claims, and modeling degrees of information change in science communication. Critically, I demonstrate how the research outputs of this thesis are useful for effectively learning from limited amounts of scientific text in order to identify misinformative scientific statements and generate new insights into the science communication process
comment: PhD Thesis, 210 pages
☆ LLM Agents Are the Antidote to Walled Gardens
While the Internet's core infrastructure was designed to be open and universal, today's application layer is dominated by closed, proprietary platforms. Open and interoperable APIs require significant investment, and market leaders have little incentive to enable data exchange that could erode their user lock-in. We argue that LLM-based agents fundamentally disrupt this status quo. Agents can automatically translate between data formats and interact with interfaces designed for humans: this makes interoperability dramatically cheaper and effectively unavoidable. We name this shift universal interoperability: the ability for any two digital services to exchange data seamlessly using AI-mediated adapters. Universal interoperability undermines monopolistic behaviours and promotes data portability. However, it can also lead to new security risks and technical debt. Our position is that the ML community should embrace this development while building the appropriate frameworks to mitigate the downsides. By acting now, we can harness AI to restore user freedom and competitive markets without sacrificing security.
☆ A Scalable Approach for Safe and Robust Learning via Lipschitz-Constrained Networks
Certified robustness is a critical property for deploying neural networks (NN) in safety-critical applications. A principle approach to achieving such guarantees is to constrain the global Lipschitz constant of the network. However, accurate methods for Lipschitz-constrained training often suffer from non-convex formulations and poor scalability due to reliance on global semidefinite programs (SDPs). In this letter, we propose a convex training framework that enforces global Lipschitz constraints via semidefinite relaxation. By reparameterizing the NN using loop transformation, we derive a convex admissibility condition that enables tractable and certifiable training. While the resulting formulation guarantees robustness, its scalability is limited by the size of global SDP. To overcome this, we develop a randomized subspace linear matrix inequalities (RS-LMI) approach that decomposes the global constraints into sketched layerwise constraints projected onto low-dimensional subspaces, yielding a smooth and memory-efficient training objective. Empirical results on MNIST, CIFAR-10, and ImageNet demonstrate that the proposed framework achieves competitive accuracy with significantly improved Lipschitz bounds and runtime performance.
☆ UMA: A Family of Universal Models for Atoms
The ability to quickly and accurately compute properties from atomic simulations is critical for advancing a large number of applications in chemistry and materials science including drug discovery, energy storage, and semiconductor manufacturing. To address this need, Meta FAIR presents a family of Universal Models for Atoms (UMA), designed to push the frontier of speed, accuracy, and generalization. UMA models are trained on half a billion unique 3D atomic structures (the largest training runs to date) by compiling data across multiple chemical domains, e.g. molecules, materials, and catalysts. We develop empirical scaling laws to help understand how to increase model capacity alongside dataset size to achieve the best accuracy. The UMA small and medium models utilize a novel architectural design we refer to as mixture of linear experts that enables increasing model capacity without sacrificing speed. For example, UMA-medium has 1.4B parameters but only ~50M active parameters per atomic structure. We evaluate UMA models on a diverse set of applications across multiple domains and find that, remarkably, a single model without any fine-tuning can perform similarly or better than specialized models. We are releasing the UMA code, weights, and associated data to accelerate computational workflows and enable the community to continue to build increasingly capable AI models.
comment: 29 pages, 5 figures
☆ Learning Constraints Directly from Network Data
Network data conforms to a wide range of rules that arise from protocols, design principles, and deployment decisions (e.g., a packet's queuing delay must be less than its end-to-end delay). Formalizing such rules as logic constraints can (i) improve the quality of synthetic data, (ii) reduce the brittleness of machine learning (ML) models, and (iii) improve semantic understanding of network measurements. However, these benefits remain out of reach if rule extraction is manual or solely reliant on ML, as both approaches yield incomplete, unreliable, and/or inaccurate rules. This paper formulates rule extraction as a constraint modeling problem and introduces NetNomos that learns propositional logic constraints directly from raw network measurements. Constraint modeling in this domain is uniquely challenging due to the scale of the data, the inherent learning complexity and passive environment, and the lack of ground truth supervision. NetNomos addresses these challenges via a lattice-based search structured by constraint specificity and succinctness. Our approach reduces learning complexity from superquadratic to logarithmic and enables efficient traversal in combinatorial search space. Our evaluations on diverse network datasets show that NetNomos learns all benchmark rules, including those associated with as little as 0.01% of data points, in under three hours. In contrast, baseline methods discover less than 25% of the rules and require several days to run. Through three case studies, we show that: NetNomos (i) finds rule violations in the outputs of all seven synthetic traffic generators, hence can be used to assess and guide their generation process; (ii) detects semantic differences in traffic, hence can be used for anomaly detection; and (iii) automatically finds rules used for telemetry imputation, hence can support monitoring through inference.
comment: 13 pages, 15 figures
☆ ADReFT: Adaptive Decision Repair for Safe Autonomous Driving via Reinforcement Fine-Tuning
Autonomous Driving Systems (ADSs) continue to face safety-critical risks due to the inherent limitations in their design and performance capabilities. Online repair plays a crucial role in mitigating such limitations, ensuring the runtime safety and reliability of ADSs. Existing online repair solutions enforce ADS compliance by transforming unacceptable trajectories into acceptable ones based on predefined specifications, such as rule-based constraints or training datasets. However, these approaches often lack generalizability, adaptability and tend to be overly conservative, resulting in ineffective repairs that not only fail to mitigate safety risks sufficiently but also degrade the overall driving experience. To address this issue, we propose Adaptive Decision Repair (ADReFT), a novel and effective repair method that identifies safety-critical states through offline learning from failed tests and generates appropriate mitigation actions to improve ADS safety. Specifically, ADReFT incorporates a transformer-based model with two joint heads, State Monitor and Decision Adapter, designed to capture complex driving environment interactions to evaluate state safety severity and generate adaptive repair actions. Given the absence of oracles for state safety identification, we first pretrain ADReFT using supervised learning with coarse annotations, i.e., labeling states preceding violations as positive samples and others as negative samples. It establishes ADReFT's foundational capability to mitigate safety-critical violations, though it may result in somewhat conservative mitigation strategies. Therefore, we subsequently finetune ADReFT using reinforcement learning to improve its initial capability and generate more precise and contextually appropriate repair decisions. Our evaluation results illustrate that ADReFT achieves better repair performance.
☆ Bridging the Gap with Retrieval-Augmented Generation: Making Prosthetic Device User Manuals Available in Marginalised Languages
Millions of people in African countries face barriers to accessing healthcare due to language and literacy gaps. This research tackles this challenge by transforming complex medical documents -- in this case, prosthetic device user manuals -- into accessible formats for underserved populations. This case study in cross-cultural translation is particularly pertinent/relevant for communities that receive donated prosthetic devices but may not receive the accompanying user documentation. Or, if available online, may only be available in formats (e.g., language and readability) that are inaccessible to local populations (e.g., English-language, high resource settings/cultural context). The approach is demonstrated using the widely spoken Pidgin dialect, but our open-source framework has been designed to enable rapid and easy extension to other languages/dialects. This work presents an AI-powered framework designed to process and translate complex medical documents, e.g., user manuals for prosthetic devices, into marginalised languages. The system enables users -- such as healthcare workers or patients -- to upload English-language medical equipment manuals, pose questions in their native language, and receive accurate, localised answers in real time. Technically, the system integrates a Retrieval-Augmented Generation (RAG) pipeline for processing and semantic understanding of the uploaded manuals. It then employs advanced Natural Language Processing (NLP) models for generative question-answering and multilingual translation. Beyond simple translation, it ensures accessibility to device instructions, treatment protocols, and safety information, empowering patients and clinicians to make informed healthcare decisions.
comment: 5 pages, 0 figures, 0 tables
☆ Autonomy by Design: Preserving Human Autonomy in AI Decision-Support
AI systems increasingly support human decision-making across domains of professional, skill-based, and personal activity. While previous work has examined how AI might affect human autonomy globally, the effects of AI on domain-specific autonomy -- the capacity for self-governed action within defined realms of skill or expertise -- remain understudied. We analyze how AI decision-support systems affect two key components of domain-specific autonomy: skilled competence (the ability to make informed judgments within one's domain) and authentic value-formation (the capacity to form genuine domain-relevant values and preferences). By engaging with prior investigations and analyzing empirical cases across medical, financial, and educational domains, we demonstrate how the absence of reliable failure indicators and the potential for unconscious value shifts can erode domain-specific autonomy both immediately and over time. We then develop a constructive framework for autonomy-preserving AI support systems. We propose specific socio-technical design patterns -- including careful role specification, implementation of defeater mechanisms, and support for reflective practice -- that can help maintain domain-specific autonomy while leveraging AI capabilities. This framework provides concrete guidance for developing AI systems that enhance rather than diminish human agency within specialized domains of action.
☆ QPART: Adaptive Model Quantization and Dynamic Workload Balancing for Accuracy-aware Edge Inference
As machine learning inferences increasingly move to edge devices, adapting to diverse computational capabilities, hardware, and memory constraints becomes more critical. Instead of relying on a pre-trained model fixed for all future inference queries across diverse edge devices, we argue that planning an inference pattern with a request-specific model tailored to the device's computational capacity, accuracy requirements, and time constraints is more cost-efficient and robust to diverse scenarios. To this end, we propose an accuracy-aware and workload-balanced inference system that integrates joint model quantization and inference partitioning. In this approach, the server dynamically responds to inference queries by sending a quantized model and adaptively sharing the inference workload with the device. Meanwhile, the device's computational power, channel capacity, and accuracy requirements are considered when deciding. Furthermore, we introduce a new optimization framework for the inference system, incorporating joint model quantization and partitioning. Our approach optimizes layer-wise quantization bit width and partition points to minimize time consumption and cost while accounting for varying accuracy requirements of tasks through an accuracy degradation metric in our optimization model. To our knowledge, this work represents the first exploration of optimizing quantization layer-wise bit-width in the inference serving system, by introducing theoretical measurement of accuracy degradation. Simulation results demonstrate a substantial reduction in overall time and power consumption, with computation payloads decreasing by over 80% and accuracy degradation kept below 1%.
☆ Industrial brain: a human-like autonomous neuro-symbolic cognitive decision-making system
Resilience non-equilibrium measurement, the ability to maintain fundamental functionality amidst failures and errors, is crucial for scientific management and engineering applications of industrial chain. The problem is particularly challenging when the number or types of multiple co-evolution of resilience (for example, randomly placed) are extremely chaos. Existing end-to-end deep learning ordinarily do not generalize well to unseen full-feld reconstruction of spatiotemporal co-evolution structure, and predict resilience of network topology, especially in multiple chaos data regimes typically seen in real-world applications. To address this challenge, here we propose industrial brain, a human-like autonomous cognitive decision-making and planning framework integrating higher-order activity-driven neuro network and CT-OODA symbolic reasoning to autonomous plan resilience directly from observational data of global variable. The industrial brain not only understands and model structure of node activity dynamics and network co-evolution topology without simplifying assumptions, and reveal the underlying laws hidden behind complex networks, but also enabling accurate resilience prediction, inference, and planning. Experimental results show that industrial brain significantly outperforms resilience prediction and planning methods, with an accurate improvement of up to 10.8\% over GoT and OlaGPT framework and 11.03\% over spectral dimension reduction. It also generalizes to unseen topologies and dynamics and maintains robust performance despite observational disturbances. Our findings suggest that industrial brain addresses an important gap in resilience prediction and planning for industrial chain.
Reinforcement Learning for Synchronised Flow Control in a Dual-Gate Resin Infusion System
Resin infusion (RI) and resin transfer moulding (RTM) are critical processes for the manufacturing of high-performance fibre-reinforced polymer composites, particularly for large-scale applications such as wind turbine blades. Controlling the resin flow dynamics in these processes is critical to ensure the uniform impregnation of the fibre reinforcements, thereby preventing residual porosities and dry spots that impact the consequent structural integrity of the final component. This paper presents a reinforcement learning (RL) based strategy, established using process simulations, for synchronising the different resin flow fronts in an infusion scenario involving two resin inlets and a single outlet. Using Proximal Policy Optimisation (PPO), our approach addresses the challenge of managing the fluid dynamics in a partially observable environment. The results demonstrate the effectiveness of the RL approach in achieving an accurate flow convergence, highlighting its potential towards improving process control and product quality in composites manufacturing.
comment: 11 pages, 4 figures, 45th Ris{\o} International Symposium on Materials Science
☆ The Trilemma of Truth in Large Language Models
We often attribute human characteristics to large language models (LLMs) and claim that they "know" certain things. LLMs have an internal probabilistic knowledge that represents information retained during training. How can we assess the veracity of this knowledge? We examine two common methods for probing the veracity of LLMs and discover several assumptions that are flawed. To address these flawed assumptions, we introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning), a probing method that utilizes the internal activations of LLMs to separate statements into true, false, and neither. sAwMIL is based on multiple-instance learning and conformal prediction. We evaluate sAwMIL on 5 validity criteria across 16 open-source LLMs, including both default and chat-based variants, as well as on 3 new datasets. Among the insights we provide are: (1) the veracity signal is often concentrated in the third quarter of an LLM's depth; (2) truth and falsehood signals are not always symmetric; (3) linear probes perform better on chat models than on default models; (4) nonlinear probes may be required to capture veracity signals for some LLMs with reinforcement learning from human feedback or knowledge distillation; and (5) LLMs capture a third type of signal that is distinct from true and false and is neither true nor false. These findings provide a reliable method for verifying what LLMs "know" and how certain they are of their probabilistic internal knowledge.
☆ Learning robust parameter inference and density reconstruction in flyer plate impact experiments
Estimating physical parameters or material properties from experimental observations is a common objective in many areas of physics and material science. In many experiments, especially in shock physics, radiography is the primary means of observing the system of interest. However, radiography does not provide direct access to key state variables, such as density, which prevents the application of traditional parameter estimation approaches. Here we focus on flyer plate impact experiments on porous materials, and resolving the underlying parameterized equation of state (EoS) and crush porosity model parameters given radiographic observation(s). We use machine learning as a tool to demonstrate with high confidence that using only high impact velocity data does not provide sufficient information to accurately infer both EoS and crush model parameters, even with fully resolved density fields or a dynamic sequence of images. We thus propose an observable data set consisting of low and high impact velocity experiments/simulations that capture different regimes of compaction and shock propagation, and proceed to introduce a generative machine learning approach which produces a posterior distribution of physical parameters directly from radiographs. We demonstrate the effectiveness of the approach in estimating parameters from simulated flyer plate impact experiments, and show that the obtained estimates of EoS and crush model parameters can then be used in hydrodynamic simulations to obtain accurate and physically admissible density reconstructions. Finally, we examine the robustness of the approach to model mismatches, and find that the learned approach can provide useful parameter estimates in the presence of out-of-distribution radiographic noise and previously unseen physics, thereby promoting a potential breakthrough in estimating material properties from experimental radiographic images.
comment: 24 pages, 21 figures
☆ RawMal-TF: Raw Malware Dataset Labeled by Type and Family
This work addresses the challenge of malware classification using machine learning by developing a novel dataset labeled at both the malware type and family levels. Raw binaries were collected from sources such as VirusShare, VX Underground, and MalwareBazaar, and subsequently labeled with family information parsed from binary names and type-level labels integrated from ClarAVy. The dataset includes 14 malware types and 17 malware families, and was processed using a unified feature extraction pipeline based on static analysis, particularly extracting features from Portable Executable headers, to support advanced classification tasks. The evaluation was focused on three key classification tasks. In the binary classification of malware versus benign samples, Random Forest and XGBoost achieved high accuracy on the full datasets, reaching 98.5% for type-based detection and 98.98% for family-based detection. When using truncated datasets of 1,000 samples to assess performance under limited data conditions, both models still performed strongly, achieving 97.6% for type-based detection and 98.66% for family-based detection. For interclass classification, which distinguishes between malware types or families, the models reached up to 97.5% accuracy on type-level tasks and up to 93.7% on family-level tasks. In the multiclass classification setting, which assigns samples to the correct type or family, SVM achieved 81.1% accuracy on type labels, while Random Forest and XGBoost reached approximately 73.4% on family labels. The results highlight practical trade-offs between accuracy and computational cost, and demonstrate that labeling at both the type and family levels enables more fine-grained and insightful malware classification. The work establishes a robust foundation for future research on advanced malware detection and classification.
☆ Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence
Sound deductive reasoning -- the ability to derive new knowledge from existing facts and rules -- is an indisputably desirable aspect of general intelligence. Despite the major advances of AI systems in areas such as math and science, especially since the introduction of transformer architectures, it is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable deductive reasoning tasks. Hence, these systems are unfit to fulfill the dream of achieving artificial general intelligence capable of sound deductive reasoning. We argue that their unsound behavior is a consequence of the statistical learning approach powering their development. To overcome this, we contend that to achieve reliable deductive reasoning in learning-based AI systems, researchers must fundamentally shift from optimizing for statistical performance against distributions on reasoning problems and algorithmic tasks to embracing the more ambitious exact learning paradigm, which demands correctness on all inputs. We argue that exact learning is both essential and possible, and that this ambitious objective should guide algorithm design.
☆ Spurious-Aware Prototype Refinement for Reliable Out-of-Distribution Detection
Out-of-distribution (OOD) detection is crucial for ensuring the reliability and safety of machine learning models in real-world applications, where they frequently face data distributions unseen during training. Despite progress, existing methods are often vulnerable to spurious correlations that mislead models and compromise robustness. To address this, we propose SPROD, a novel prototype-based OOD detection approach that explicitly addresses the challenge posed by unknown spurious correlations. Our post-hoc method refines class prototypes to mitigate bias from spurious features without additional data or hyperparameter tuning, and is broadly applicable across diverse backbones and OOD detection settings. We conduct a comprehensive spurious correlation OOD detection benchmarking, comparing our method against existing approaches and demonstrating its superior performance across challenging OOD datasets, such as CelebA, Waterbirds, UrbanCars, Spurious Imagenet, and the newly introduced Animals MetaCoCo. On average, SPROD improves AUROC by 4.7% and FPR@95 by 9.3% over the second best.
☆ Chain of Thought in Order: Discovering Learning-Friendly Orders for Arithmetic
The chain of thought is fundamental in Transformers, which is to perform step-by-step reasoning. Besides what intermediate steps work, the order of these steps critically affects the difficulty of the reasoning. This study addresses a novel task of unraveling chain of thought - reordering decoder input tokens to a learning-friendly sequence for Transformers to learn arithmetic tasks. The proposed pipeline first trains a Transformer on a mixture of target sequences arranged in different orders and then identifies benign orders as those with fast loss drops in the early stage. As the search space grows factorially with sequence length, we propose a two-stage hierarchical approach for inter- and intra-block reordering. Experiments on four order-sensitive arithmetic tasks show that our method identifies a learning-friendly order out of a few billion candidates. Notably, on the multiplication task, it recovered the reverse-digit order reported in prior studies.
comment: 14 pages, 10 figures
☆ Emergent musical properties of a transformer under contrastive self-supervised learning
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
comment: Accepted at ISMIR 2025
☆ When Plants Respond: Electrophysiology and Machine Learning for Green Monitoring Systems
Living plants, while contributing to ecological balance and climate regulation, also function as natural sensors capable of transmitting information about their internal physiological states and surrounding conditions. This rich source of data provides potential for applications in environmental monitoring and precision agriculture. With integration into biohybrid systems, we establish novel channels of physiological signal flow between living plants and artificial devices. We equipped *Hedera helix* with a plant-wearable device called PhytoNode to continuously record the plant's electrophysiological activity. We deployed plants in an uncontrolled outdoor environment to map electrophysiological patterns to environmental conditions. Over five months, we collected data that we analyzed using state-of-the-art and automated machine learning (AutoML). Our classification models achieve high performance, reaching macro F1 scores of up to 95 percent in binary tasks. AutoML approaches outperformed manual tuning, and selecting subsets of statistical features further improved accuracy. Our biohybrid living system monitors the electrophysiology of plants in harsh, real-world conditions. This work advances scalable, self-sustaining, and plant-integrated living biohybrid systems for sustainable environmental monitoring.
comment: Submitted and Accepted at the 14th international conference on biomimetic and biohybrid systems (Living Machines)
☆ Scaling Self-Supervised Representation Learning for Symbolic Piano Performance
We study the capabilities of generative autoregressive transformer models trained on large amounts of symbolic solo-piano transcriptions. After first pretraining on approximately 60,000 hours of music, we use a comparatively smaller, high-quality subset, to finetune models to produce musical continuations, perform symbolic classification tasks, and produce general-purpose contrastive MIDI embeddings by adapting the SimCLR framework to symbolic music. When evaluating piano continuation coherence, our generative model outperforms leading symbolic generation techniques and remains competitive with proprietary audio generation models. On MIR classification benchmarks, frozen representations from our contrastive model achieve state-of-the-art results in linear probe experiments, while direct finetuning demonstrates the generalizability of pretrained representations, often requiring only a few hundred labeled examples to specialize to downstream tasks.
comment: ISMIR (2025)
☆ Differentially Private Synthetic Data Release for Topics API Outputs
The analysis of the privacy properties of Privacy-Preserving Ads APIs is an area of research that has received strong interest from academics, industry, and regulators. Despite this interest, the empirical study of these methods is hindered by the lack of publicly available data. Reliable empirical analysis of the privacy properties of an API, in fact, requires access to a dataset consisting of realistic API outputs; however, privacy concerns prevent the general release of such data to the public. In this work, we develop a novel methodology to construct synthetic API outputs that are simultaneously realistic enough to enable accurate study and provide strong privacy protections. We focus on one Privacy-Preserving Ads APIs: the Topics API, part of Google Chrome's Privacy Sandbox. We developed a methodology to generate a differentially-private dataset that closely matches the re-identification risk properties of the real Topics API data. The use of differential privacy provides strong theoretical bounds on the leakage of private user information from this release. Our methodology is based on first computing a large number of differentially-private statistics describing how output API traces evolve over time. Then, we design a parameterized distribution over sequences of API traces and optimize its parameters so that they closely match the statistics obtained. Finally, we create the synthetic data by drawing from this distribution. Our work is complemented by an open-source release of the anonymized dataset obtained by this methodology. We hope this will enable external researchers to analyze the API in-depth and replicate prior and future work on a realistic large-scale dataset. We believe that this work will contribute to fostering transparency regarding the privacy properties of Privacy-Preserving Ads APIs.
comment: 20 pages, 8 figures
☆ Use Sparse Autoencoders to Discover Unknown Concepts, Not to Act on Known Concepts
While sparse autoencoders (SAEs) have generated significant excitement, a series of negative results have added to skepticism about their usefulness. Here, we establish a conceptual distinction that reconciles competing narratives surrounding SAEs. We argue that while SAEs may be less effective for acting on known concepts, SAEs are powerful tools for discovering unknown concepts. This distinction cleanly separates existing negative and positive results, and suggests several classes of SAE applications. Specifically, we outline use cases for SAEs in (i) ML interpretability, explainability, fairness, auditing, and safety, and (ii) social and health sciences.
☆ EFPI: Elastic Formation and Position Identification in Football (Soccer) using Template Matching and Linear Assignment
Understanding team formations and player positioning is crucial for tactical analysis in football (soccer). This paper presents a flexible method for formation recognition and player position assignment in football using predefined static formation templates and cost minimization from spatiotemporal tracking data, called EFPI. Our approach employs linear sum assignment to optimally match players to positions within a set of template formations by minimizing the total distance between actual player locations and template positions, subsequently selecting the formation with the lowest assignment cost. To improve accuracy, we scale actual player positions to match the dimensions of these formation templates in both width and length. While the method functions effectively on individual frames, it extends naturally to larger game segments such as complete periods, possession sequences or specific intervals (e.g. 10 second intervals, 5 minute intervals etc.). Additionally, we incorporate an optional stability parameter that prevents unnecessary formation changes when assignment costs differ only marginally between time segments. EFPI is available as open-source code through the unravelsports Python package.
☆ Proving the Limited Scalability of Centralized Distributed Optimization via a New Lower Bound Construction
We consider centralized distributed optimization in the classical federated learning setup, where $n$ workers jointly find an $\varepsilon$-stationary point of an $L$-smooth, $d$-dimensional nonconvex function $f$, having access only to unbiased stochastic gradients with variance $\sigma^2$. Each worker requires at most $h$ seconds to compute a stochastic gradient, and the communication times from the server to the workers and from the workers to the server are $\tau_{s}$ and $\tau_{w}$ seconds per coordinate, respectively. One of the main motivations for distributed optimization is to achieve scalability with respect to $n$. For instance, it is well known that the distributed version of SGD has a variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{n \varepsilon^2},$ which improves with the number of workers $n,$ where $\Delta = f(x^0) - f^*,$ and $x^0 \in R^d$ is the starting point. Similarly, using unbiased sparsification compressors, it is possible to reduce both the variance-dependent runtime term and the communication runtime term. However, once we account for the communication from the server to the workers $\tau_{s}$, we prove that it becomes infeasible to design a method using unbiased random sparsification compressors that scales both the server-side communication runtime term $\tau_{s} d \frac{L \Delta}{\varepsilon}$ and the variance-dependent runtime term $\frac{h \sigma^2 L \Delta}{\varepsilon^2},$ better than poly-logarithmically in $n$, even in the homogeneous (i.i.d.) case, where all workers access the same distribution. To establish this result, we construct a new "worst-case" function and develop a new lower bound framework that reduces the analysis to the concentration of a random sum, for which we prove a concentration bound. These results reveal fundamental limitations in scaling distributed optimization, even under the homogeneous assumption.
☆ Supercm: Revisiting Clustering for Semi-Supervised Learning
The development of semi-supervised learning (SSL) has in recent years largely focused on the development of new consistency regularization or entropy minimization approaches, often resulting in models with complex training strategies to obtain the desired results. In this work, we instead propose a novel approach that explicitly incorporates the underlying clustering assumption in SSL through extending a recently proposed differentiable clustering module. Leveraging annotated data to guide the cluster centroids results in a simple end-to-end trainable deep SSL approach. We demonstrate that the proposed model improves the performance over the supervised-only baseline and show that our framework can be used in conjunction with other SSL methods to further boost their performance.
☆ SGD with Adaptive Preconditioning: Unified Analysis and Momentum Acceleration
In this paper, we revisit stochastic gradient descent (SGD) with AdaGrad-type preconditioning. Our contributions are twofold. First, we develop a unified convergence analysis of SGD with adaptive preconditioning under anisotropic or matrix smoothness and noise assumptions. This allows us to recover state-of-the-art convergence results for several popular adaptive gradient methods, including AdaGrad-Norm, AdaGrad, and ASGO/One-sided Shampoo. In addition, we establish the fundamental connection between two recently proposed algorithms, Scion and DASGO, and provide the first theoretical guarantees for the latter. Second, we show that the convergence of methods like AdaGrad and DASGO can be provably accelerated beyond the best-known rates using Nesterov momentum. Consequently, we obtain the first theoretical justification that AdaGrad-type algorithms can simultaneously benefit from both diagonal preconditioning and momentum, which may provide an ultimate explanation for the practical efficiency of Adam.
☆ Adaptive Out-of-Control Point Pattern Detection in Sequential Random Finite Set Observations
In this work we introduce a novel adaptive anomaly detection framework specifically designed for monitoring sequential random finite set (RFS) observations. Our approach effectively distinguishes between In-Control data (normal) and Out-Of-Control data (anomalies) by detecting deviations from the expected statistical behavior of the process. The primary contributions of this study include the development of an innovative RFS-based framework that not only learns the normal behavior of the data-generating process online but also dynamically adapts to behavioral shifts to accurately identify abnormal point patterns. To achieve this, we introduce a new class of RFS-based posterior distributions, named Power Discounting Posteriors (PD), which facilitate adaptation to systematic changes in data while enabling anomaly detection of point pattern data through a novel predictive posterior density function. The effectiveness of the proposed approach is demonstrated by extensive qualitative and quantitative simulation experiments.
comment: 23rd European Control Conference (ECC 2025), Thessaloniki, Greece, 24-27 June 2025
☆ Towards the Training of Deeper Predictive Coding Neural Networks
Predictive coding networks trained with equilibrium propagation are neural models that perform inference through an iterative energy minimization process. Previous studies have demonstrated their effectiveness in shallow architectures, but show significant performance degradation when depth exceeds five to seven layers. In this work, we show that the reason behind this degradation is due to exponentially imbalanced errors between layers during weight updates, and predictions from the previous layer not being effective in guiding updates in deeper layers. We address the first issue by introducing two novel methods to optimize the latent variables that use precision-weighting to re-balance the distribution of energy among layers during the `relaxation phase', and the second issue by proposing a novel weight update mechanism that reduces error accumulation in deeper layers. Empirically, we test our methods on a large number of image classification tasks, resulting in large improvements in test accuracy across networks with more than seven layers, with performances comparable to those of backprop on similar models. These findings suggest that a better understanding of the relaxation phase is important to train models using equilibrium propagation at scale, and open new possibilities for their application in complex tasks.
comment: 18 Pages, 7 figures
☆ KAIROS: Scalable Model-Agnostic Data Valuation
Training data increasingly shapes not only model accuracy but also regulatory compliance and market valuation of AI assets. Yet existing valuation methods remain inadequate: model-based techniques depend on a single fitted model and inherit its biases, while algorithm-based approaches such as Data Shapley require costly retrainings at web scale. Recent Wasserstein-based model-agnostic methods rely on approximations that misrank examples relative to their true leave-one-out (LOO) utility. We introduce KAIROS, a scalable, model-agnostic valuation framework that assigns each example a distributional influence score: its contribution to the Maximum Mean Discrepancy (MMD) between the empirical training distribution and a clean reference set. Unlike Wasserstein surrogates, our MMD-based influence admits a closed-form solution that faithfully approximates the exact LOO ranking within $O(1/N^2)$ error, requires no retraining, and naturally extends to conditional kernels for unified label- and feature-error detection. Moreover, KAIROS supports efficient online updates: when a new batch of size m arrives, all scores can be updated in $O(mN)$ time, delivering up to 50x speedup without compromising ranking quality. Empirical evaluations on noise, mislabeling, and poisoning benchmarks show that KAIROS consistently outperforms state-of-the-art model-, Shapley-, and Wasserstein-based baselines in both accuracy and runtime. We provide rigorous theoretical guarantees, including symmetry for reproducible rankings and density-separation for interpretable thresholds.
comment: 19 pages, 9 figures
☆ Advancing Learnable Multi-Agent Pathfinding Solvers with Active Fine-Tuning
Multi-agent pathfinding (MAPF) is a common abstraction of multi-robot trajectory planning problems, where multiple homogeneous robots simultaneously move in the shared environment. While solving MAPF optimally has been proven to be NP-hard, scalable, and efficient, solvers are vital for real-world applications like logistics, search-and-rescue, etc. To this end, decentralized suboptimal MAPF solvers that leverage machine learning have come on stage. Building on the success of the recently introduced MAPF-GPT, a pure imitation learning solver, we introduce MAPF-GPT-DDG. This novel approach effectively fine-tunes the pre-trained MAPF model using centralized expert data. Leveraging a novel delta-data generation mechanism, MAPF-GPT-DDG accelerates training while significantly improving performance at test time. Our experiments demonstrate that MAPF-GPT-DDG surpasses all existing learning-based MAPF solvers, including the original MAPF-GPT, regarding solution quality across many testing scenarios. Remarkably, it can work with MAPF instances involving up to 1 million agents in a single environment, setting a new milestone for scalability in MAPF domains.
☆ When GNNs Met a Word Equations Solver: Learning to Rank Equations (Extended Technical Report)
Nielsen transformation is a standard approach for solving word equations: by repeatedly splitting equations and applying simplification steps, equations are rewritten until a solution is reached. When solving a conjunction of word equations in this way, the performance of the solver will depend considerably on the order in which equations are processed. In this work, the use of Graph Neural Networks (GNNs) for ranking word equations before and during the solving process is explored. For this, a novel graph-based representation for word equations is presented, preserving global information across conjuncts, enabling the GNN to have a holistic view during ranking. To handle the variable number of conjuncts, three approaches to adapt a multi-classification task to the problem of ranking equations are proposed. The training of the GNN is done with the help of minimum unsatisfiable subsets (MUSes) of word equations. The experimental results show that, compared to state-of-the-art string solvers, the new framework solves more problems in benchmarks where each variable appears at most once in each equation.
☆ Mamba-FETrack V2: Revisiting State Space Model for Frame-Event based Visual Object Tracking
Combining traditional RGB cameras with bio-inspired event cameras for robust object tracking has garnered increasing attention in recent years. However, most existing multimodal tracking algorithms depend heavily on high-complexity Vision Transformer architectures for feature extraction and fusion across modalities. This not only leads to substantial computational overhead but also limits the effectiveness of cross-modal interactions. In this paper, we propose an efficient RGB-Event object tracking framework based on the linear-complexity Vision Mamba network, termed Mamba-FETrack V2. Specifically, we first design a lightweight Prompt Generator that utilizes embedded features from each modality, together with a shared prompt pool, to dynamically generate modality-specific learnable prompt vectors. These prompts, along with the modality-specific embedded features, are then fed into a Vision Mamba-based FEMamba backbone, which facilitates prompt-guided feature extraction, cross-modal interaction, and fusion in a unified manner. Finally, the fused representations are passed to the tracking head for accurate target localization. Extensive experimental evaluations on multiple RGB-Event tracking benchmarks, including short-term COESOT dataset and long-term datasets, i.e., FE108 and FELT V2, demonstrate the superior performance and efficiency of the proposed tracking framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/Mamba_FETrack
comment: Journal extension of Mamba-FETrack which was published on Pattern Recognition and Computer Vision (PRCV) 2024
☆ Calibrating Graph Neural Networks with Wavelet-Aware Temperature Scaling
Graph Neural Networks (GNNs) have demonstrated strong predictive performance on relational data; however, their confidence estimates often misalign with actual predictive correctness, posing significant limitations for deployment in safety-critical settings. While existing graph-aware calibration methods seek to mitigate this limitation, they primarily depend on coarse one-hop statistics, such as neighbor-predicted confidence, or latent node embeddings, thereby neglecting the fine-grained structural heterogeneity inherent in graph topology. In this work, we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration framework that assigns node-specific temperatures based on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the scalability and topology sensitivity of graph wavelets to refine confidence estimates, all without necessitating model retraining or access to neighboring logits or predictions. Extensive evaluations across seven benchmark datasets with varying graph structures and two GNN backbones demonstrate that WATS achieves the lowest Expected Calibration Error (ECE) among all compared methods, outperforming both classical and graph-specific baselines by up to 42.3\% in ECE and reducing calibration variance by 17.24\% on average compared with graph-specific methods. Moreover, WATS remains computationally efficient, scaling well across graphs of diverse sizes and densities. Code will be released based on publication.
☆ Model-driven Stochastic Trace Clustering
Process discovery algorithms automatically extract process models from event logs, but high variability often results in complex and hard-to-understand models. To mitigate this issue, trace clustering techniques group process executions into clusters, each represented by a simpler and more understandable process model. Model-driven trace clustering improves on this by assigning traces to clusters based on their conformity to cluster-specific process models. However, most existing clustering techniques rely on either no process model discovery, or non-stochastic models, neglecting the frequency or probability of activities and transitions, thereby limiting their capability to capture real-world execution dynamics. We propose a novel model-driven trace clustering method that optimizes stochastic process models within each cluster. Our approach uses entropic relevance, a stochastic conformance metric based on directly-follows probabilities, to guide trace assignment. This allows clustering decisions to consider both structural alignment with a cluster's process model and the likelihood that a trace originates from a given stochastic process model. The method is computationally efficient, scales linearly with input size, and improves model interpretability by producing clusters with clearer control-flow patterns. Extensive experiments on public real-life datasets show that our method outperforms existing alternatives in representing process behavior and reveals how clustering performance rankings can shift when stochasticity is considered.
☆ Explainable AI for Comprehensive Risk Assessment for Financial Reports: A Lightweight Hierarchical Transformer Network Approach
Every publicly traded U.S. company files an annual 10-K report containing critical insights into financial health and risk. We propose Tiny eXplainable Risk Assessor (TinyXRA), a lightweight and explainable transformer-based model that automatically assesses company risk from these reports. Unlike prior work that relies solely on the standard deviation of excess returns (adjusted for the Fama-French model), which indiscriminately penalizes both upside and downside risk, TinyXRA incorporates skewness, kurtosis, and the Sortino ratio for more comprehensive risk assessment. We leverage TinyBERT as our encoder to efficiently process lengthy financial documents, coupled with a novel dynamic, attention-based word cloud mechanism that provides intuitive risk visualization while filtering irrelevant terms. This lightweight design ensures scalable deployment across diverse computing environments with real-time processing capabilities for thousands of financial documents which is essential for production systems with constrained computational resources. We employ triplet loss for risk quartile classification, improving over pairwise loss approaches in existing literature by capturing both the direction and magnitude of risk differences. Our TinyXRA achieves state-of-the-art predictive accuracy across seven test years on a dataset spanning 2013-2024, while providing transparent and interpretable risk assessments. We conduct comprehensive ablation studies to evaluate our contributions and assess model explanations both quantitatively by systematically removing highly attended words and sentences, and qualitatively by examining explanation coherence. The paper concludes with findings, practical implications, limitations, and future research directions.
☆ Training of Spiking Neural Networks with Expectation-Propagation
In this paper, we propose a unifying message-passing framework for training spiking neural networks (SNNs) using Expectation-Propagation. Our gradient-free method is capable of learning the marginal distributions of network parameters and simultaneously marginalizes nuisance parameters, such as the outputs of hidden layers. This framework allows for the first time, training of discrete and continuous weights, for deterministic and stochastic spiking networks, using batches of training samples. Although its convergence is not ensured, the algorithm converges in practice faster than gradient-based methods, without requiring a large number of passes through the training data. The classification and regression results presented pave the way for new efficient training methods for deep Bayesian networks.
comment: 10 pages
☆ Radioactive Watermarks in Diffusion and Autoregressive Image Generative Models
Image generative models have become increasingly popular, but training them requires large datasets that are costly to collect and curate. To circumvent these costs, some parties may exploit existing models by using the generated images as training data for their own models. In general, watermarking is a valuable tool for detecting unauthorized use of generated images. However, when these images are used to train a new model, watermarking can only enable detection if the watermark persists through training and remains identifiable in the outputs of the newly trained model - a property known as radioactivity. We analyze the radioactivity of watermarks in images generated by diffusion models (DMs) and image autoregressive models (IARs). We find that existing watermarking methods for DMs fail to retain radioactivity, as watermarks are either erased during encoding into the latent space or lost in the noising-denoising process (during the training in the latent space). Meanwhile, despite IARs having recently surpassed DMs in image generation quality and efficiency, no radioactive watermarking methods have been proposed for them. To overcome this limitation, we propose the first watermarking method tailored for IARs and with radioactivity in mind - drawing inspiration from techniques in large language models (LLMs), which share IARs' autoregressive paradigm. Our extensive experimental evaluation highlights our method's effectiveness in preserving radioactivity within IARs, enabling robust provenance tracking, and preventing unauthorized use of their generated images.
☆ System-Embedded Diffusion Bridge Models
Solving inverse problems -- recovering signals from incomplete or noisy measurements -- is fundamental in science and engineering. Score-based generative models (SGMs) have recently emerged as a powerful framework for this task. Two main paradigms have formed: unsupervised approaches that adapt pretrained generative models to inverse problems, and supervised bridge methods that train stochastic processes conditioned on paired clean and corrupted data. While the former typically assume knowledge of the measurement model, the latter have largely overlooked this structural information. We introduce System embedded Diffusion Bridge Models (SDBs), a new class of supervised bridge methods that explicitly embed the known linear measurement system into the coefficients of a matrix-valued SDE. This principled integration yields consistent improvements across diverse linear inverse problems and demonstrates robust generalization under system misspecification between training and deployment, offering a promising solution to real-world applications.
comment: Preprint
☆ Deep Learning-Based Semantic Segmentation for Real-Time Kidney Imaging and Measurements with Augmented Reality-Assisted Ultrasound
Ultrasound (US) is widely accessible and radiation-free but has a steep learning curve due to its dynamic nature and non-standard imaging planes. Additionally, the constant need to shift focus between the US screen and the patient poses a challenge. To address these issues, we integrate deep learning (DL)-based semantic segmentation for real-time (RT) automated kidney volumetric measurements, which are essential for clinical assessment but are traditionally time-consuming and prone to fatigue. This automation allows clinicians to concentrate on image interpretation rather than manual measurements. Complementing DL, augmented reality (AR) enhances the usability of US by projecting the display directly into the clinician's field of view, improving ergonomics and reducing the cognitive load associated with screen-to-patient transitions. Two AR-DL-assisted US pipelines on HoloLens-2 are proposed: one streams directly via the application programming interface for a wireless setup, while the other supports any US device with video output for broader accessibility. We evaluate RT feasibility and accuracy using the Open Kidney Dataset and open-source segmentation models (nnU-Net, Segmenter, YOLO with MedSAM and LiteMedSAM). Our open-source GitHub pipeline includes model implementations, measurement algorithms, and a Wi-Fi-based streaming solution, enhancing US training and diagnostics, especially in point-of-care settings.
♻ ☆ SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs? ACL'25
Recent advancements in LLMs unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. Despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have remained unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance, we ask:How can unlearning be performed effectively and efficiently on MoE LLMs? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to excessive forgetting, uncontrolled knowledge erasure and substantial utility drops when existing unlearning methods are applied. To address this, we propose a novel Selected-Expert Unlearning Framework (SEUF). Through expert attribution, unlearning is concentrated on the most actively engaged experts for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning. SEUF is compatible with various standard unlearning algorithms. Extensive experiments demonstrate that SEUF enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks and LLM architectures (compared to standard unlearning algorithms), while only unlearning 0.06% of the model parameters.
comment: Accepted to ACL'25
♻ ☆ Optimization, Isoperimetric Inequalities, and Sampling via Lyapunov Potentials COLT 2025
In this paper, we prove that optimizability of any function F using Gradient Flow from all initializations implies a Poincar\'e Inequality for Gibbs measures mu_{beta} = e^{-beta F}/Z at low temperature. In particular, under mild regularity assumptions on the convergence rate of Gradient Flow, we establish that mu_{beta} satisfies a Poincar\'e Inequality with constant O(C'+1/beta) for beta >= Omega(d), where C' is the Poincar\'e constant of mu_{beta} restricted to a neighborhood of the global minimizers of F. Under an additional mild condition on F, we show that mu_{beta} satisfies a Log-Sobolev Inequality with constant O(beta max(S, 1) max(C', 1)) where S denotes the second moment of mu_{beta}. Here asymptotic notation hides F-dependent parameters. At a high level, this establishes that optimizability via Gradient Flow from every initialization implies a Poincar\'e and Log-Sobolev Inequality for the low-temperature Gibbs measure, which in turn imply sampling from all initializations. Analogously, we establish that under the same assumptions, if F can be initialized from everywhere except some set S, then mu_{beta} satisfies a Weak Poincar\'e Inequality with parameters (O(C'+1/beta), O(mu_{beta}(S))) for \beta = Omega(d). At a high level, this shows while optimizability from 'most' initializations implies a Weak Poincar\'e Inequality, which in turn implies sampling from suitable warm starts. Our regularity assumptions are mild and as a consequence, we show we can efficiently sample from several new natural and interesting classes of non-log-concave densities, an important setting with relatively few examples. As another corollary, we obtain efficient discrete-time sampling results for log-concave measures satisfying milder regularity conditions than smoothness, similar to Lehec (2023).
comment: COLT 2025
♻ ☆ What Makes Treatment Effects Identifiable? Characterizations and Estimators Beyond Unconfoundedness COLT
Most of the widely used estimators of the average treatment effect (ATE) in causal inference rely on the assumptions of unconfoundedness and overlap. Unconfoundedness requires that the observed covariates account for all correlations between the outcome and treatment. Overlap requires the existence of randomness in treatment decisions for all individuals. Nevertheless, many types of studies frequently violate unconfoundedness or overlap, for instance, observational studies with deterministic treatment decisions - popularly known as Regression Discontinuity designs - violate overlap. In this paper, we initiate the study of general conditions that enable the identification of the average treatment effect, extending beyond unconfoundedness and overlap. In particular, following the paradigm of statistical learning theory, we provide an interpretable condition that is sufficient and necessary for the identification of ATE. Moreover, this condition also characterizes the identification of the average treatment effect on the treated (ATT) and can be used to characterize other treatment effects as well. To illustrate the utility of our condition, we present several well-studied scenarios where our condition is satisfied and, hence, we prove that ATE can be identified in regimes that prior works could not capture. For example, under mild assumptions on the data distributions, this holds for the models proposed by Tan (2006) and Rosenbaum (2002), and the Regression Discontinuity design model introduced by Thistlethwaite and Campbell (1960). For each of these scenarios, we also show that, under natural additional assumptions, ATE can be estimated from finite samples. We believe these findings open new avenues for bridging learning-theoretic insights and causal inference methodologies, particularly in observational studies with complex treatment mechanisms.
comment: Accepted for presentation at the 38th Conference on Learning Theory (COLT) 2025. v2 strengthens results to give a tight characterization for ATE identification
♻ ☆ Value-Compressed Sparse Column (VCSC): Sparse Matrix Storage for Redundant Data
Compressed Sparse Column (CSC) and Coordinate (COO) are popular compression formats for sparse matrices. However, both CSC and COO are general purpose and cannot take advantage of any of the properties of the data other than sparsity, such as data redundancy. Highly redundant sparse data is common in many machine learning applications, such as genomics, and is often too large for in-core computation using conventional sparse storage formats. In this paper, we present two extensions to CSC: (1) Value-Compressed Sparse Column (VCSC) and (2) Index- and Value-Compressed Sparse Column (IVCSC). VCSC takes advantage of high redundancy within a column to further compress data up to 3-fold over COO and 2.25-fold over CSC, without significant negative impact to performance characteristics. IVCSC extends VCSC by compressing index arrays through delta encoding and byte-packing, achieving a 10-fold decrease in memory usage over COO and 7.5-fold decrease over CSC. Our benchmarks on simulated and real data show that VCSC and IVCSC can be read in compressed form with little added computational cost. These two novel compression formats offer a broadly useful solution to encoding and reading redundant sparse data.
♻ ☆ Refined climatologies of future precipitation over High Mountain Asia using probabilistic ensemble learning
High Mountain Asia (HMA) holds the highest concentration of frozen water outside the polar regions, serving as a crucial water source for more than 1.9 billion people. Precipitation represents the largest source of uncertainty for future hydrological modelling in this area. In this study, we propose a probabilistic machine learning framework to combine monthly precipitation from 13 regional climate models developed under the Coordinated Regional Downscaling Experiment (CORDEX) over HMA via a mixture of experts (MoE). This approach accounts for seasonal and spatial biases within the models, enabling the prediction of more faithful precipitation distributions. The MoE is trained and validated against gridded historical precipitation data, yielding 32% improvement over an equally-weighted average and 254% improvement over choosing any single ensemble member. This approach is then used to generate precipitation projections for the near future (2036-2065) and far future (2066-2095) under RCP4.5 and RCP8.5 scenarios. Compared to previous estimates, the MoE projects wetter summers but drier winters over the western Himalayas and Karakoram and wetter winters over the Tibetan Plateau, Hengduan Shan, and South East Tibet.
comment: 16 pages 8 figures (main text), 32 pages 14 figures (total)
♻ ☆ Experimenting, Fast and Slow: Bayesian Optimization of Long-term Outcomes with Online Experiments
Online experiments in internet systems, also known as A/B tests, are used for a wide range of system tuning problems, such as optimizing recommender system ranking policies and learning adaptive streaming controllers. Decision-makers generally wish to optimize for long-term treatment effects of the system changes, which often requires running experiments for a long time as short-term measurements can be misleading due to non-stationarity in treatment effects over time. The sequential experimentation strategies--which typically involve several iterations--can be prohibitively long in such cases. We describe a novel approach that combines fast experiments (e.g., biased experiments run only for a few hours or days) and/or offline proxies (e.g., off-policy evaluation) with long-running, slow experiments to perform sequential, Bayesian optimization over large action spaces in a short amount of time.
♻ ☆ Position: Machine Learning Conferences Should Establish a "Refutations and Critiques" Track
Science progresses by iteratively advancing and correcting humanity's understanding of the world. In machine learning (ML) research, rapid advancements have led to an explosion of publications, but have also led to misleading, incorrect, flawed or perhaps even fraudulent studies being accepted and sometimes highlighted at ML conferences due to the fallibility of peer review. While such mistakes are understandable, ML conferences do not offer robust processes to help the field systematically correct when such errors are made. This position paper argues that ML conferences should establish a dedicated "Refutations and Critiques" (R&C) Track. This R&C Track would provide a high-profile, reputable platform to support vital research that critically challenges prior research, thereby fostering a dynamic self-correcting research ecosystem. We discuss key considerations including track design, review principles, potential pitfalls, and provide an illustrative example submission concerning a recent ICLR 2025 Oral. We conclude that ML conferences should create official, reputable mechanisms to help ML research self-correct.
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Semiparametric Double Reinforcement Learning with Applications to Long-Term Causal Inference
Long-term causal effects often must be estimated from short-term data due to limited follow-up in healthcare, economics, and online platforms. Markov Decision Processes (MDPs) provide a natural framework for capturing such long-term dynamics through sequences of states, actions, and rewards. Double Reinforcement Learning (DRL) enables efficient inference on policy values in MDPs, but nonparametric implementations require strong intertemporal overlap assumptions and often exhibit high variance and instability. We propose a semiparametric extension of DRL for efficient inference on linear functionals of the Q-function--such as policy values--in infinite-horizon, time-homogeneous MDPs. By imposing structural restrictions on the Q-function, our approach relaxes the strong overlap conditions required by nonparametric methods and improves statistical efficiency. Under model misspecification, our estimators target the functional of the best-approximating Q-function, with only second-order bias. We provide conditions for valid inference using sieve methods and data-driven model selection. A central challenge in DRL is the estimation of nuisance functions, such as density ratios, which often involve difficult minimax optimization. To address this, we introduce a novel plug-in estimator based on isotonic Bellman calibration, which combines fitted Q-iteration with an isotonic regression adjustment. The estimator is debiased without requiring estimation of additional nuisance functions and reduces high-dimensional overlap assumptions to a one-dimensional condition. Bellman calibration extends isotonic calibration--widely used in prediction and classification--to the MDP setting and may be of independent interest.
♻ ☆ Connecting phases of matter to the flatness of the loss landscape in analog variational quantum algorithms
Variational quantum algorithms (VQAs) promise near-term quantum advantage, yet parametrized quantum states commonly built from the digital gate-based approach often suffer from scalability issues such as barren plateaus, where the loss landscape becomes flat. We study an analog VQA ans\"atze composed of $M$ quenches of a disordered Ising chain, whose dynamics is native to several quantum simulation platforms. By tuning the disorder strength we place each quench in either a thermalized phase or a many-body-localized (MBL) phase and analyse (i) the ans\"atze's expressivity and (ii) the scaling of loss variance. Numerics shows that both phases reach maximal expressivity at large $M$, but barren plateaus emerge at far smaller $M$ in the thermalized phase than in the MBL phase. Exploiting this gap, we propose an MBL initialisation strategy: initialise the ans\"atze in the MBL regime at intermediate quench $M$, enabling an initial trainability while retaining sufficient expressivity for subsequent optimization. The results link quantum phases of matter and VQA trainability, and provide practical guidelines for scaling analog-hardware VQAs.
comment: 15+7 pages, 7+5 figures
♻ ☆ Pixel super-resolved virtual staining of label-free tissue using diffusion models
Virtual staining of tissue offers a powerful tool for transforming label-free microscopy images of unstained tissue into equivalents of histochemically stained samples. This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process to enhance both the spatial resolution and fidelity of label-free virtual tissue staining, addressing the limitations of traditional deep learning-based methods. Our approach integrates novel sampling techniques into a diffusion model-based image inference process to significantly reduce the variance in the generated virtually stained images, resulting in more stable and accurate outputs. Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy, successfully achieving a super-resolution factor of 4-5x, increasing the output space-bandwidth product by 16-25-fold compared to the input label-free microscopy images. Diffusion-based super-resolved virtual tissue staining not only improves resolution and image quality but also enhances the reliability of virtual staining without traditional chemical staining, offering significant potential for clinical diagnostics.
comment: 39 Pages, 7 Figures
♻ ☆ Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations KDD
Transparency and interpretability are crucial for enhancing customer confidence and user engagement, especially when dealing with black-box Machine Learning (ML)-based recommendation systems. Modern recommendation systems leverage Graph Neural Network (GNN) due to their ability to produce high-quality recommendations in terms of both relevance and diversity. Therefore, the explainability of GNN is especially important for Link Prediction (LP) tasks since recommending relevant items can be viewed as predicting links between users and items. GNN explainability has been a well-studied field, but existing methods primarily focus on node or graph-level tasks, leaving a gap in LP explanation techniques. This work introduces Z-REx, a GNN explanation framework designed explicitly for heterogeneous link prediction tasks. Z-REx utilizes structural and attribute perturbation to identify critical substructures and important features while reducing the search space by leveraging domain-specific knowledge. In our experimentation, we show the efficacy of Z-REx in generating contextually relevant and human-interpretable explanations for ZiGNN, a GNN-based recommendation engine, using a real-world real-estate dataset from Zillow Group, Inc. We compare against State-of-The-Art (SOTA) GNN explainers to show Z-REx outperforms them by 61% in the Fidelity metric by producing superior human-interpretable explanations.
comment: Accepted to be published in KDD Workshop in Machine Learning on Graphs in the Era of Generative Artificial Intelligence (MLoG-GenAI@KDD) 2025
♻ ☆ TTRL: Test-Time Reinforcement Learning
This paper investigates Reinforcement Learning (RL) on data without explicit labels for reasoning tasks in Large Language Models (LLMs). The core challenge of the problem is reward estimation during inference while not having access to ground-truth information. While this setting appears elusive, we find that common practices in Test-Time Scaling (TTS), such as majority voting, yield surprisingly effective rewards suitable for driving RL training. In this work, we introduce Test-Time Reinforcement Learning (TTRL), a novel method for training LLMs using RL on unlabeled data. TTRL enables self-evolution of LLMs by utilizing the priors in the pre-trained models. Our experiments demonstrate that TTRL consistently improves performance across a variety of tasks and models. Notably, TTRL boosts the pass@1 performance of Qwen-2.5-Math-7B by approximately 211% on the AIME 2024 with only unlabeled test data. Furthermore, although TTRL is only supervised by the maj@n metric, TTRL has demonstrated performance to consistently surpass the upper limit of the initial model maj@n, and approach the performance of models trained directly on test data with ground-truth labels. Our experimental findings validate the general effectiveness of TTRL across various tasks and highlight TTRL's potential for broader tasks and domains. GitHub: https://github.com/PRIME-RL/TTRL
♻ ☆ DGSAM: Domain Generalization via Individual Sharpness-Aware Minimization
Domain generalization (DG) aims to learn models that perform well on unseen target domains by training on multiple source domains. Sharpness-Aware Minimization (SAM), known for finding flat minima that improve generalization, has therefore been widely adopted in DG. However, our analysis reveals that SAM in DG may converge to \textit{fake flat minima}, where the total loss surface appears flat in terms of global sharpness but remains sharp with respect to individual source domains. To understand this phenomenon more precisely, we formalize the average worst-case domain risk as the maximum loss under domain distribution shifts within a bounded divergence, and derive a generalization bound that reveals the limitations of global sharpness-aware minimization. In contrast, we show that individual sharpness provides a valid upper bound on this risk, making it a more suitable proxy for robust domain generalization. Motivated by these insights, we shift the DG paradigm toward minimizing individual sharpness across source domains. We propose \textit{Decreased-overhead Gradual SAM (DGSAM)}, which applies gradual domain-wise perturbations in a computationally efficient manner to consistently reduce individual sharpness. Extensive experiments demonstrate that DGSAM not only improves average accuracy but also reduces performance variance across domains, while incurring less computational overhead than SAM.
♻ ☆ ROCK: A variational formulation for occupation kernel methods in Reproducing Kernel Hilbert Spaces
We present a Representer Theorem result for a large class of weak formulation problems. We provide examples of applications of our formulation both in traditional machine learning and numerical methods as well as in new and emerging techniques. Finally we apply our formulation to generalize the multivariate occupation kernel (MOCK) method for learning dynamical systems from data proposing the more general Riesz Occupation Kernel (ROCK) method. Our generalized methods are both more computationally efficient and performant on most of the benchmarks we test against.
♻ ☆ Table Foundation Models: on knowledge pre-training for tabular learning
Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.
♻ ☆ SP$^2$OT: Semantic-Regularized Progressive Partial Optimal Transport for Imbalanced Clustering
Deep clustering, which learns representation and semantic clustering without labels information, poses a great challenge for deep learning-based approaches. Despite significant progress in recent years, most existing methods focus on uniformly distributed datasets, significantly limiting the practical applicability of their methods. In this paper, we propose a more practical problem setting named deep imbalanced clustering, where the underlying classes exhibit an imbalance distribution. To address this challenge, we introduce a novel optimal transport-based pseudo-label learning framework. Our framework formulates pseudo-label generation as a Semantic-regularized Progressive Partial Optimal Transport (SP$^2$OT) problem, which progressively transports each sample to imbalanced clusters under prior and semantic relation constraints, thus generating high-quality and imbalance-aware pseudo-labels. To solve the SP$^2$OT problem, we propose a projected mirror descent algorithm, which alternates between: (1) computing the gradient of the SP$^2$OT objective, and (2) performing gradient descent with projection via an entropy-regularized progressive partial optimal transport formulation. Furthermore, we formulate the second step as an unbalanced optimal transport problem with augmented constraints and develop an efficient solution based on fast matrix scaling algorithms. Experiments on various datasets, including a human-curated long-tailed CIFAR100, challenging ImageNet-R, and large-scale subsets of fine-grained iNaturalist2018 datasets, demonstrate the superiority of our method. Code is available: https://github.com/rhfeiyang/SPPOT
comment: under review. Follow-up work of arXiv:2401.09266
♻ ☆ Intelligent Orchestration of Distributed Large Foundation Model Inference at the Edge
Large Foundation Models (LFMs), including multi-modal and generative models, promise to unlock new capabilities for next-generation Edge AI applications. However, performing inference with LFMs in resource-constrained and heterogeneous edge environments, such as Multi-access Edge Computing (MEC), presents significant challenges for workload orchestration due to time-varying network, compute, and storage conditions. In particular, current split inference strategies, which partition LFM layers across nodes, are not designed to adapt to fluctuating workloads, dynamic bandwidth conditions, or evolving privacy constraints in high-utilization MEC environments. In this work, we propose a novel adaptive split inference orchestration framework that elevates both the placement and partitioning of LFM layers to runtime-tunable variables. Specifically, our framework enables real-time, quality-of-service (QoS)-aware management of inference workloads by extending conventional orchestrators with three key services: (1) Capacity-aware workload distribution, which continuously profiles node resources and selects an optimal subset of MEC nodes; (2) Dynamic partition migration, which transparently relocates pre-cut LFM segments in response to changes in utilization or network conditions; (3) Real-time reconfiguration, which dynamically re-splits LFM layers to balance latency, throughput, and privacy. We formalize the joint placement-partitioning problem, outline a reference architecture and algorithmic workflow, and discuss applicability in representative smart city, V2X, and industrial edge scenarios.
comment: 25 pages, 3 figures, 4 tables, 50 references
♻ ☆ Scaling and renormalization in high-dimensional regression
From benign overfitting in overparameterized models to rich power-law scalings in performance, simple ridge regression displays surprising behaviors sometimes thought to be limited to deep neural networks. This balance of phenomenological richness with analytical tractability makes ridge regression the model system of choice in high-dimensional machine learning. In this paper, we present a unifying perspective on recent results on ridge regression using the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning. We highlight the fact that statistical fluctuations in empirical covariance matrices can be absorbed into a renormalization of the ridge parameter. This `deterministic equivalence' allows us to obtain analytic formulas for the training and generalization errors in a few lines of algebra by leveraging the properties of the $S$-transform of free probability. From these precise asymptotics, we can easily identify sources of power-law scaling in model performance. In all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. This allows us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
comment: 74 pages, 17 figures
♻ ☆ Intrinsic Dimensionality of Fermi-Pasta-Ulam-Tsingou High-Dimensional Trajectories Through Manifold Learning: A Linear Approach
A data-driven approach based on unsupervised machine learning is proposed to infer the intrinsic dimension $m^{\ast}$ of the high-dimensional trajectories of the Fermi-Pasta-Ulam-Tsingou (FPUT) model. Principal component analysis (PCA) is applied to trajectory data consisting of $n_s = 4,000,000$ datapoints, of the FPUT $\beta$ model with $N = 32$ coupled oscillators, revealing a critical relationship between $m^{\ast}$ and the model's nonlinear strength. By estimating the intrinsic dimension $m^{\ast}$ using multiple methods (participation ratio, Kaiser rule, and the Kneedle algorithm), it is found that $m^{\ast}$ increases with the model nonlinearity. Interestingly, in the weakly nonlinear regime, for trajectories initialized by exciting the first mode, the participation ratio estimates $m^{\ast} = 2, 3$, strongly suggesting that quasi-periodic motion on a low-dimensional Riemannian manifold underlies the characteristic energy recurrences observed in the FPUT model.
comment: 15 pages, 15 figures
♻ ☆ Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models ICML 2025
Recent advances in diffusion models hold significant potential in robotics, enabling the generation of diverse and smooth trajectories directly from raw representations of the environment. Despite this promise, applying diffusion models to motion planning remains challenging due to their difficulty in enforcing critical constraints, such as collision avoidance and kinematic feasibility. These limitations become even more pronounced in Multi-Robot Motion Planning (MRMP), where multiple robots must coordinate in shared spaces. To address these challenges, this work proposes Simultaneous MRMP Diffusion (SMD), a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories. Additionally, the paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints. Experimental results show SMD consistently outperforms classical and other learning-based motion planners, achieving higher success rates and efficiency in complex multi-robot environments.
comment: Published at the Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Green AI in Action: Strategic Model Selection for Ensembles in Production
Integrating Artificial Intelligence (AI) into software systems has significantly enhanced their capabilities while escalating energy demands. Ensemble learning, combining predictions from multiple models to form a single prediction, intensifies this problem due to cumulative energy consumption. This paper presents a novel approach to model selection that addresses the challenge of balancing the accuracy of AI models with their energy consumption in a live AI ensemble system. We explore how reducing the number of models or improving the efficiency of model usage within an ensemble during inference can reduce energy demands without substantially sacrificing accuracy. This study introduces and evaluates two model selection strategies, Static and Dynamic, for optimizing ensemble learning systems performance while minimizing energy usage. Our results demonstrate that the Static strategy improves the F1 score beyond the baseline, reducing average energy usage from 100% from the full ensemble to 62%. The Dynamic strategy further enhances F1 scores, using on average 76% compared to 100% of the full ensemble. Moreover, we propose an approach that balances accuracy with resource consumption, significantly reducing energy usage without substantially impacting accuracy. This method decreased the average energy usage of the Static strategy from approximately 62% to 14%, and for the Dynamic strategy, from around 76% to 57%. Our field study of Green AI using an operational AI system developed by a large professional services provider shows the practical applicability of adopting energy-conscious model selection strategies in live production environments.
comment: 10 pages. Accepted at the 1st ACM International Conference on AI-powered Software (AIware), 2024
♻ ☆ CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning
Sampling-based path planning algorithms play an important role in autonomous robotics. However, a common problem among the RRT-based algorithms is that the initial path generated is not optimal, and the convergence is too slow for real-world applications. In this paper, we propose a novel image-based learning algorithm using a Convolutional Block Attention Generative Adversarial Network (CBAGAN-RRT) with a combination of spatial and channel attention and a novel loss function to design the heuristics, find a better optimal path, and improve the convergence of the algorithm, both concerning time and speed. The probability distribution of the paths generated from our GAN model is used to guide the sampling process for the RRT algorithm. We demonstrate that our algorithm outperforms the previous state-of-the-art algorithms using both the image quality generation metrics, like IOU Score, Dice Score, FID score, and path planning metrics like time cost and the number of nodes. Ablation studies show the effectiveness of various components in our network architecture. The advantage of our approach is that we can avoid the complicated preprocessing in the state space, our model can be generalized to complex environments like those containing turns and narrow passages without loss of accuracy, and our model can be easily integrated with other sampling-based path planning algorithms.
♻ ☆ Benchmarking Spiking Neural Network Learning Methods with Varying Locality
Spiking Neural Networks (SNNs), providing more realistic neuronal dynamics, have been shown to achieve performance comparable to Artificial Neural Networks (ANNs) in several machine learning tasks. Information is processed as spikes within SNNs in an event-based mechanism that significantly reduces energy consumption. However, training SNNs is challenging due to the non-differentiable nature of the spiking mechanism. Traditional approaches, such as Backpropagation Through Time (BPTT), have shown effectiveness but come with additional computational and memory costs and are biologically implausible. In contrast, recent works propose alternative learning methods with varying degrees of locality, demonstrating success in classification tasks. In this work, we show that these methods share similarities during the training process, while they present a trade-off between biological plausibility and performance. Further, given the implicitly recurrent nature of SNNs, this research investigates the influence of the addition of explicit recurrence to SNNs. We experimentally prove that the addition of explicit recurrent weights enhances the robustness of SNNs. We also investigate the performance of local learning methods under gradient and non-gradient-based adversarial attacks.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ Pressing Intensity: An Intuitive Measure for Pressing in Soccer
Pressing is a fundamental defensive strategy in football, characterized by applying pressure on the ball owning team to regain possession. Despite its significance, existing metrics for measuring pressing often lack precision or comprehensive consideration of positional data, player movement and speed. This research introduces an innovative framework for quantifying pressing intensity, leveraging advancements in positional tracking data and components from Spearman's Pitch Control model. Our method integrates player velocities, movement directions, and reaction times to compute the time required for a defender to intercept an attacker or the ball. This time-to-intercept measure is then transformed into probabilistic values using a logistic function, enabling dynamic and intuitive analysis of pressing situations at the individual frame level. the model captures how every player's movement influences pressure on the field, offering actionable insights for coaches, analysts, and decision-makers. By providing a robust and intepretable metric, our approach facilitates the identification of pressing strategies, advanced situational analyses, and the derivation of metrics, advancing the analytical capabilities for modern football.
♻ ☆ Robustness of Decentralised Learning to Nodes and Data Disruption
In the vibrant landscape of AI research, decentralised learning is gaining momentum. Decentralised learning allows individual nodes to keep data locally where they are generated and to share knowledge extracted from local data among themselves through an interactive process of collaborative refinement. This paradigm supports scenarios where data cannot leave local nodes due to privacy or sovereignty reasons or real-time constraints imposing proximity of models to locations where inference has to be carried out. The distributed nature of decentralised learning implies significant new research challenges with respect to centralised learning. Among them, in this paper, we focus on robustness issues. Specifically, we study the effect of nodes' disruption on the collective learning process. Assuming a given percentage of "central" nodes disappear from the network, we focus on different cases, characterised by (i) different distributions of data across nodes and (ii) different times when disruption occurs with respect to the start of the collaborative learning task. Through these configurations, we are able to show the non-trivial interplay between the properties of the network connecting nodes, the persistence of knowledge acquired collectively before disruption or lack thereof, and the effect of data availability pre- and post-disruption. Our results show that decentralised learning processes are remarkably robust to network disruption. As long as even minimum amounts of data remain available somewhere in the network, the learning process is able to recover from disruptions and achieve significant classification accuracy. This clearly varies depending on the remaining connectivity after disruption, but we show that even nodes that remain completely isolated can retain significant knowledge acquired before the disruption.
comment: Supported by the H2020 HumaneAI Net (952026), CHIST-ERA-19-XAI010 SAI, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 FAIR, PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000001 RESTART
♻ ☆ Hybrid Quantum Neural Networks with Amplitude Encoding: Advancing Recovery Rate Predictions
Recovery rate prediction plays a pivotal role in bond investment strategies by enhancing risk assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting effective credit risk management. However, accurate forecasting remains challenging due to complex nonlinear dependencies, high-dimensional feature spaces, and limited sample sizes-conditions under which classical machine learning models are prone to overfitting. We propose a hybrid Quantum Machine Learning (QML) model with Amplitude Encoding, leveraging the unitarity constraint of Parametrized Quantum Circuits (PQC) and the exponential data compression capability of qubits. We evaluate the model on a global recovery rate dataset comprising 1,725 observations and 256 features from 1996 to 2023. Our hybrid method significantly outperforms both classical neural networks and QML models using Angle Encoding, achieving a lower Root Mean Squared Error (RMSE) of 0.228, compared to 0.246 and 0.242, respectively. It also performs competitively with ensemble tree methods such as XGBoost. While practical implementation challenges remain for Noisy Intermediate-Scale Quantum (NISQ) hardware, our quantum simulation and preliminary results on noisy simulators demonstrate the promise of hybrid quantum-classical architectures in enhancing the accuracy and robustness of recovery rate forecasting. These findings illustrate the potential of quantum machine learning in shaping the future of credit risk prediction.
♻ ☆ Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
This study investigates the efficacy of machine learning models in network security threat detection through the critical lens of partial versus complete flow information, addressing a common gap between research settings and real-time operational needs. We systematically evaluate how a standard benchmark model, Random Forest, performs under varying training and testing conditions (complete/complete, partial/partial, complete/partial), quantifying the performance impact when dealing with the incomplete data typical in real-time environments. Our findings demonstrate a significant performance difference, with precision and recall dropping by up to 30% under certain conditions when models trained on complete flows are tested against partial flows. The study also reveals that, for the evaluated dataset and model, a minimum threshold around 7 packets in the test set appears necessary for maintaining reliable detection rates, providing valuable, quantified insights for developing more realistic real-time detection strategies.
comment: accepted for presentation at WTMC 2025
♻ ☆ Learning World Models With Hierarchical Temporal Abstractions: A Probabilistic Perspective
Machines that can replicate human intelligence with type 2 reasoning capabilities should be able to reason at multiple levels of spatio-temporal abstractions and scales using internal world models. Devising formalisms to develop such internal world models, which accurately reflect the causal hierarchies inherent in the dynamics of the real world, is a critical research challenge in the domains of artificial intelligence and machine learning. This thesis identifies several limitations with the prevalent use of state space models (SSMs) as internal world models and propose two new probabilistic formalisms namely Hidden-Parameter SSMs and Multi-Time Scale SSMs to address these drawbacks. The structure of graphical models in both formalisms facilitates scalable exact probabilistic inference using belief propagation, as well as end-to-end learning via backpropagation through time. This approach permits the development of scalable, adaptive hierarchical world models capable of representing nonstationary dynamics across multiple temporal abstractions and scales. Moreover, these probabilistic formalisms integrate the concept of uncertainty in world states, thus improving the system's capacity to emulate the stochastic nature of the real world and quantify the confidence in its predictions. The thesis also discuss how these formalisms are in line with related neuroscience literature on Bayesian brain hypothesis and predicitive processing. Our experiments on various real and simulated robots demonstrate that our formalisms can match and in many cases exceed the performance of contemporary transformer variants in making long-range future predictions. We conclude the thesis by reflecting on the limitations of our current models and suggesting directions for future research.
comment: Doctoral Dissertation, Department of Computer Science, Karlsruhe Institute Of Technology, 2024
♻ ☆ HyperMono: A Monotonicity-aware Approach to Hyper-Relational Knowledge Representation
In a hyper-relational knowledge graph (HKG), each fact is composed of a main triple associated with attribute-value qualifiers, which express additional factual knowledge. The hyper-relational knowledge graph completion (HKGC) task aims at inferring plausible missing links in a HKG. Most existing approaches to HKGC focus on enhancing the communication between qualifier pairs and main triples, while overlooking two important properties that emerge from the monotonicity of the hyper-relational graphs representation regime. Stage Reasoning allows for a two-step reasoning process, facilitating the integration of coarse-grained inference results derived solely from main triples and fine-grained inference results obtained from hyper-relational facts with qualifiers. In the initial stage, coarse-grained results provide an upper bound for correct predictions, which are subsequently refined in the fine-grained step. More generally, Qualifier Monotonicity implies that by attaching more qualifier pairs to a main triple, we may only narrow down the answer set, but never enlarge it. This paper proposes the HyperMono model for hyper-relational knowledge graph completion, which realizes stage reasoning and qualifier monotonicity. To implement qualifier monotonicity HyperMono resorts to cone embeddings. Experiments on three real-world datasets with three different scenario conditions demonstrate the strong performance of HyperMono when compared to the SoTA.
♻ ☆ Gibbs randomness-compression proposition: An efficient deep learning
A proposition that connects randomness and compression is put forward via Gibbs entropy over set of measurement vectors associated with a compression process. The proposition states that a lossy compression process is equivalent to {\it directed randomness} that preserves information content. The proposition originated from the observed behaviour in newly proposed {\it Dual Tomographic Compression} (DTC) compress-train framework. This is akin to tomographic reconstruction of layer weight matrices via building compressed sensed projections, via so-called {\it weight rays}. This tomographic approach is applied to previous and next layers in a dual fashion, that triggers neuronal-level pruning. This novel model compress-train scheme appears in iterative fashion and acts as a smart neural architecture search, The experiments demonstrated the utility of this dual-tomography producing state-of-the-art performance with efficient compression during training, accelerating and supporting lottery ticket hypothesis. However, random compress-train iterations having similar performance demonstrated the connection between randomness and compression from statistical physics perspective, we formulated the so-called {\it Gibbs randomness-compression proposition}, signifying randomness-compression relationship via Gibbs entropy. Practically, the DTC framework provides a promising approach for massively energy- and resource-efficient deep learning training.
comment: 5 pages, 5 figures
♻ ☆ NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
♻ ☆ Quantum computing and artificial intelligence: status and perspectives
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.
comment: 33 pages, 3 figures
♻ ☆ Towards Automated Self-Supervised Learning for Truly Unsupervised Graph Anomaly Detection
Self-supervised learning (SSL) is an emerging paradigm that exploits supervisory signals generated from the data itself, and many recent studies have leveraged SSL to conduct graph anomaly detection. However, we empirically found that three important factors can substantially impact detection performance across datasets: 1) the specific SSL strategy employed; 2) the tuning of the strategy's hyperparameters; and 3) the allocation of combination weights when using multiple strategies. Most SSL-based graph anomaly detection methods circumvent these issues by arbitrarily or selectively (i.e., guided by label information) choosing SSL strategies, hyperparameter settings, and combination weights. While an arbitrary choice may lead to subpar performance, using label information in an unsupervised setting is label information leakage and leads to severe overestimation of a method's performance. Leakage has been criticized as "one of the top ten data mining mistakes", yet many recent studies on SSL-based graph anomaly detection have been using label information to select hyperparameters. To mitigate this issue, we propose to use an internal evaluation strategy (with theoretical analysis) to select hyperparameters in SSL for unsupervised anomaly detection. We perform extensive experiments using 10 recent SSL-based graph anomaly detection algorithms on various benchmark datasets, demonstrating both the prior issues with hyperparameter selection and the effectiveness of our proposed strategy.
comment: Manuscript accepted by Data Mining and Knowledge Discovery for publication (June 2025). This is the final revised version
♻ ☆ Addressing the Inconsistency in Bayesian Deep Learning via Generalized Laplace Approximation
In recent years, inconsistency in Bayesian deep learning has attracted significant attention. Tempered or generalized posterior distributions are frequently employed as direct and effective solutions. Nonetheless, the underlying mechanisms and the effectiveness of generalized posteriors remain active research topics. In this work, we interpret posterior tempering as a correction for model misspecification via adjustments to the joint probability, and as a recalibration of priors by reducing aleatoric uncertainty. We also identify a unique property of the Laplace approximation: the generalized normalizing constant remains invariant, in contrast to general Bayesian learning, where this constant typically depends on model parameters after generalization. Leveraging this property, we introduce the generalized Laplace approximation, which requires only a simple modification to the Hessian calculation of the regularized loss. This approach provides a flexible and scalable framework for high-quality posterior inference. We evaluate the proposed method on state-of-the-art neural networks and real-world datasets, demonstrating that the generalized Laplace approximation enhances predictive performance.
♻ ☆ A Consequentialist Critique of Binary Classification Evaluation Practices
ML-supported decisions, such as ordering tests or determining preventive custody, often involve binary classification based on probabilistic forecasts. Evaluation frameworks for such forecasts typically consider whether to prioritize independent-decision metrics (e.g., Accuracy) or top-K metrics (e.g., Precision@K), and whether to focus on fixed thresholds or threshold-agnostic measures like AUC-ROC. We highlight that a consequentialist perspective, long advocated by decision theorists, should naturally favor evaluations that support independent decisions using a mixture of thresholds given their prevalence, such as Brier scores and Log loss. However, our empirical analysis reveals a strong preference for top-K metrics or fixed thresholds in evaluations at major conferences like ICML, FAccT, and CHIL. To address this gap, we use this decision-theoretic framework to map evaluation metrics to their optimal use cases, along with a Python package, briertools, to promote the broader adoption of Brier scores. In doing so, we also uncover new theoretical connections, including a reconciliation between the Brier Score and Decision Curve Analysis, which clarifies and responds to a longstanding critique by (Assel, et al. 2017) regarding the clinical utility of proper scoring rules.
♻ ☆ Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph ACL 2025
The rapid proliferation of large language models (LLMs) has stimulated researchers to seek effective and efficient approaches to deal with LLM hallucinations and low-quality outputs. Uncertainty quantification (UQ) is a key element of machine learning applications in dealing with such challenges. However, research to date on UQ for LLMs has been fragmented in terms of techniques and evaluation methodologies. In this work, we address this issue by introducing a novel benchmark that implements a collection of state-of-the-art UQ baselines and offers an environment for controllable and consistent evaluation of novel UQ techniques over various text generation tasks. Our benchmark also supports the assessment of confidence normalization methods in terms of their ability to provide interpretable scores. Using our benchmark, we conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches. Code: https://github.com/IINemo/lm-polygraph Benchmark: https://huggingface.co/LM-Polygraph
comment: Published at TACL 2025, presented at ACL 2025. Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev contributed equally
♻ ☆ Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Machine learning-based decision support systems are increasingly deployed in clinical settings, where probabilistic scoring functions are used to inform and prioritize patient management decisions. However, widely used scoring rules, such as accuracy and AUC-ROC, fail to adequately reflect key clinical priorities, including calibration, robustness to distributional shifts, and sensitivity to asymmetric error costs. In this work, we propose a principled yet practical evaluation framework for selecting calibrated thresholded classifiers that explicitly accounts for the uncertainty in class prevalences and domain-specific cost asymmetries often found in clinical settings. Building on the theory of proper scoring rules, particularly the Schervish representation, we derive an adjusted variant of cross-entropy (log score) that averages cost-weighted performance over clinically relevant ranges of class balance. The resulting evaluation is simple to apply, sensitive to clinical deployment conditions, and designed to prioritize models that are both calibrated and robust to real-world variations.
♻ ☆ Visual Encoders for Data-Efficient Imitation Learning in Modern Video Games AAMAS 2025
Video games have served as useful benchmarks for the decision-making community, but going beyond Atari games towards modern games has been prohibitively expensive for the vast majority of the research community. Prior work in modern video games typically relied on game-specific integration to obtain game features and enable online training, or on existing large datasets. An alternative approach is to train agents using imitation learning to play video games purely from images. However, this setting poses a fundamental question: which visual encoders obtain representations that retain information critical for decision making? To answer this question, we conduct a systematic study of imitation learning with publicly available pre-trained visual encoders compared to the typical task-specific end-to-end training approach in Minecraft, Counter-Strike: Global Offensive, and Minecraft Dungeons. Our results show that end-to-end training can be effective with comparably low-resolution images and only minutes of demonstrations, but significant improvements can be gained by utilising pre-trained encoders such as DINOv2 depending on the game. In addition to enabling effective decision making, we show that pre-trained encoders can make decision-making research in video games more accessible by significantly reducing the cost of training.
comment: Camera-ready paper presented at the Adaptive and Learning Agents Workshop at the AAMAS 2025 conference
♻ ☆ Value-Free Policy Optimization via Reward Partitioning
Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
♻ ☆ Recovering Imbalanced Clusters via Gradient-Based Projection Pursuit
Projection Pursuit is a classic exploratory technique for finding interesting projections of a dataset. We propose a method for recovering projections containing either Imbalanced Clusters or a Bernoulli-Rademacher distribution using a gradient-based technique to optimize the projection index. As sample complexity is a major limiting factor in Projection Pursuit, we analyze our algorithm's sample complexity within a Planted Vector setting where we can observe that Imbalanced Clusters can be recovered more easily than balanced ones. Additionally, we give a generalized result that works for a variety of data distributions and projection indices. We compare these results to computational lower bounds in the Low-Degree-Polynomial Framework. Finally, we experimentally evaluate our method's applicability to real-world data using FashionMNIST and the Human Activity Recognition Dataset, where our algorithm outperforms others when only a few samples are available.
♻ ☆ Online model learning with data-assimilated reservoir computers
We propose an online learning framework for forecasting nonlinear spatio-temporal signals (fields). The method integrates (i) dimensionality reduction, here, a simple proper orthogonal decomposition (POD) projection; (ii) a generalized autoregressive model to forecast reduced dynamics, here, a reservoir computer; (iii) online adaptation to update the reservoir computer (the model), here, ensemble sequential data assimilation. We demonstrate the framework on a wake past a cylinder governed by the Navier-Stokes equations, exploring the assimilation of full flow fields (projected onto POD modes) and sparse sensors. Three scenarios are examined: a na\"ive physical state estimation; a two-fold estimation of physical and reservoir states; and a three-fold estimation that also adjusts the model parameters. The two-fold strategy significantly improves ensemble convergence and reduces reconstruction error compared to the na\"ive approach. The three-fold approach enables robust online training of partially-trained reservoir computers, overcoming limitations of a priori training. By unifying data-driven reduced order modelling with Bayesian data assimilation, this work opens new opportunities for scalable online model learning for nonlinear time series forecasting.
comment: 8 pages, 5 figures
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ ETTA: Elucidating the Design Space of Text-to-Audio Models ICML 2025
Recent years have seen significant progress in Text-To-Audio (TTA) synthesis, enabling users to enrich their creative workflows with synthetic audio generated from natural language prompts. Despite this progress, the effects of data, model architecture, training objective functions, and sampling strategies on target benchmarks are not well understood. With the purpose of providing a holistic understanding of the design space of TTA models, we set up a large-scale empirical experiment focused on diffusion and flow matching models. Our contributions include: 1) AF-Synthetic, a large dataset of high quality synthetic captions obtained from an audio understanding model; 2) a systematic comparison of different architectural, training, and inference design choices for TTA models; 3) an analysis of sampling methods and their Pareto curves with respect to generation quality and inference speed. We leverage the knowledge obtained from this extensive analysis to propose our best model dubbed Elucidated Text-To-Audio (ETTA). When evaluated on AudioCaps and MusicCaps, ETTA provides improvements over the baselines trained on publicly available data, while being competitive with models trained on proprietary data. Finally, we show ETTA's improved ability to generate creative audio following complex and imaginative captions -- a task that is more challenging than current benchmarks.
comment: ICML 2025. Demo: https://research.nvidia.com/labs/adlr/ETTA/ Code: https://github.com/NVIDIA/elucidated-text-to-audio
♻ ☆ Stacked conformal prediction
We consider a method for conformalizing a stacked ensemble of predictive models, showing that the potentially simple form of the meta-learner at the top of the stack enables a procedure with manageable computational cost that achieves approximate marginal validity without requiring the use of a separate calibration sample. Empirical results indicate that the method compares favorably to a standard inductive alternative.
comment: 12 pages, 2 figures
♻ ☆ TabNSA: Native Sparse Attention for Efficient Tabular Data Learning
Tabular data poses unique challenges for deep learning due to its heterogeneous feature types, lack of spatial structure, and often limited sample sizes. We propose TabNSA, a novel deep learning framework that integrates Native Sparse Attention (NSA) with a TabMixer backbone to efficiently model tabular data. TabNSA tackles computational and representational challenges by dynamically focusing on relevant feature subsets per instance. The NSA module employs a hierarchical sparse attention mechanism, including token compression, selective preservation, and localized sliding windows, to significantly reduce the quadratic complexity of standard attention operations while addressing feature heterogeneity. Complementing this, the TabMixer backbone captures complex, non-linear dependencies through parallel multilayer perceptron (MLP) branches with independent parameters. These modules are synergistically combined via element-wise summation and mean pooling, enabling TabNSA to model both global context and fine-grained interactions. Extensive experiments across supervised and transfer learning settings show that TabNSA consistently outperforms state-of-the-art deep learning models. Furthermore, by augmenting TabNSA with a fine-tuned large language model (LLM), we enable it to effectively address Few-Shot Learning challenges through language-guided generalization on diverse tabular benchmarks.
comment: 26 pages, 11 tables
♻ ☆ Empirical and computer-aided robustness analysis of long-step and accelerated methods in smooth convex optimization
This work assesses both empirically and theoretically, using the performance estimation methodology, how robust different first-order optimization methods are when subject to relative inexactness in their gradient computations. Relative inexactness occurs, for example, when compressing the gradient using fewer bits of information, which happens when dealing with large-scale problems on GPUs. Three major families of methods are analyzed: constant step gradient descent, long-step methods, and accelerated methods. The latter two are first shown to be theoretically not robust to inexactness. Then, a semi-heuristic shortening factor is introduced to improve their theoretical guarantees. All methods are subsequently tested on a concrete inexact problem, with two different types of relative inexactness, and it is observed that both accelerated methods are much more robust than expected, and that the shortening factor significantly helps the long-step methods. In the end, all shortened methods appear to be promising, even in this inexact setting.
♻ ☆ Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity ICML 2024
Large Language Models (LLMs), renowned for their remarkable performance across diverse domains, present a challenge when it comes to practical deployment due to their colossal model size. In response to this challenge, efforts have been directed toward the application of traditional network pruning techniques to LLMs, uncovering a massive number of parameters that can be pruned in one-shot without hurting performance. Prevailing LLM pruning strategies have consistently adhered to the practice of uniformly pruning all layers at equivalent sparsity, resulting in robust performance. However, this observation stands in contrast to the prevailing trends observed in the field of vision models, where non-uniform layerwise sparsity typically yields stronger results. To understand the underlying reasons for this disparity, we conduct a comprehensive study and discover a strong correlation with the emergence of activation outliers in LLMs. Inspired by this finding, we introduce a novel LLM pruning methodology that incorporates a tailored set of non-uniform layerwise sparsity ratios, termed as Outlier Weighed Layerwise sparsity (OWL). The sparsity ratio of OWL is proportional to the outlier ratio observed within each layer, facilitating a more effective alignment between layerwise weight sparsity and outlier ratios. Our empirical evaluation, conducted across the LLaMA-V1 family and OPT, spanning various benchmarks, demonstrates the distinct advantages offered by OWL over previous methods. For instance, OWL exhibits a remarkable performance gain, surpassing the state-of-the-art Wanda and SparseGPT by 61.22 and 6.80 perplexity at a high sparsity level of 70%, respectively, while delivering 2.6x end-to-end inference speed-up in the DeepSparse inference engine. Codes are available at https://github.com/luuyin/OWL.
comment: Published at ICML 2024
♻ ☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
♻ ☆ Making a Pipeline Production-Ready: Challenges and Lessons Learned in the Healthcare Domain
Deploying a Machine Learning (ML) training pipeline into production requires good software engineering practices. Unfortunately, the typical data science workflow often leads to code that lacks critical software quality attributes. This experience report investigates this problem in SPIRA, a project whose goal is to create an ML-Enabled System (MLES) to pre-diagnose insufficiency respiratory via speech analysis. This paper presents an overview of the architecture of the MLES, then compares three versions of its Continuous Training subsystem: from a proof of concept Big Ball of Mud (v1), to a design pattern-based Modular Monolith (v2), to a test-driven set of Microservices (v3) Each version improved its overall extensibility, maintainability, robustness, and resiliency. The paper shares challenges and lessons learned in this process, offering insights for researchers and practitioners seeking to productionize their pipelines.
comment: 8 pages, 3 figures (2 diagrams, 2 code listings), accepted to the workshop SADIS 2025
♻ ☆ Bregman Centroid Guided Cross-Entropy Method
The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.
♻ ☆ Llama-Nemotron: Efficient Reasoning Models
We introduce the Llama-Nemotron series of models, an open family of heterogeneous reasoning models that deliver exceptional reasoning capabilities, inference efficiency, and an open license for enterprise use. The family comes in three sizes -- Nano (8B), Super (49B), and Ultra (253B) -- and performs competitively with state-of-the-art reasoning models such as DeepSeek-R1 while offering superior inference throughput and memory efficiency. In this report, we discuss the training procedure for these models, which entails using neural architecture search from Llama 3 models for accelerated inference, knowledge distillation, and continued pretraining, followed by a reasoning-focused post-training stage consisting of two main parts: supervised fine-tuning and large scale reinforcement learning. Llama-Nemotron models are the first open-source models to support a dynamic reasoning toggle, allowing users to switch between standard chat and reasoning modes during inference. To further support open research and facilitate model development, we provide the following resources: 1. We release the Llama-Nemotron reasoning models -- LN-Nano, LN-Super, and LN-Ultra -- under the commercially permissive NVIDIA Open Model License Agreement. 2. We release the complete post-training dataset: Llama-Nemotron-Post-Training-Dataset. 3. We also release our training codebases: NeMo, NeMo-Aligner, and Megatron-LM.
♻ ☆ Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings NeurIPS 2025
Generating diverse, all-atom conformational ensembles of dynamic proteins such as G-protein-coupled receptors (GPCRs) is critical for understanding their function, yet most generative models simplify atomic detail or ignore conformational diversity altogether. We present latent diffusion for full protein generation (LD-FPG), a framework that constructs complete all-atom protein structures, including every side-chain heavy atom, directly from molecular dynamics (MD) trajectories. LD-FPG employs a Chebyshev graph neural network (ChebNet) to obtain low-dimensional latent embeddings of protein conformations, which are processed using three pooling strategies: blind, sequential and residue-based. A diffusion model trained on these latent representations generates new samples that a decoder, optionally regularized by dihedral-angle losses, maps back to Cartesian coordinates. Using D2R-MD, a 2-microsecond MD trajectory (12 000 frames) of the human dopamine D2 receptor in a membrane environment, the sequential and residue-based pooling strategy reproduces the reference ensemble with high structural fidelity (all-atom lDDT of approximately 0.7; C-alpha-lDDT of approximately 0.8) and recovers backbone and side-chain dihedral-angle distributions with a Jensen-Shannon divergence of less than 0.03 compared to the MD data. LD-FPG thereby offers a practical route to system-specific, all-atom ensemble generation for large proteins, providing a promising tool for structure-based therapeutic design on complex, dynamic targets. The D2R-MD dataset and our implementation are freely available to facilitate further research.
comment: 10 pages (main text), 4 figures, 2 tables. Submitted to NeurIPS 2025. Code and data are publicly available
♻ ☆ Scaling Inference-Time Search with Vision Value Model for Improved Visual Comprehension
Despite significant advancements in vision-language models (VLMs), there lacks effective approaches to enhance response quality by scaling inference-time computation. This capability is known to be a core step towards the self-improving models in recent large language model studies. In this paper, we present Vision Value Model (VisVM) that can guide VLM inference-time search to generate responses with better visual comprehension. Specifically, VisVM not only evaluates the generated sentence quality in the current search step, but also anticipates the quality of subsequent sentences that may result from the current step, thus providing a long-term value. In this way, VisVM steers VLMs away from generating sentences prone to hallucinations or insufficient detail, thereby producing higher quality responses. Experimental results demonstrate that VisVM-guided search significantly enhances VLMs' ability to generate descriptive captions with richer visual details and fewer hallucinations, compared with greedy decoding and search methods with other visual reward signals. Furthermore, we find that self-training the model with the VisVM-guided captions improve VLM's performance across a wide range of multimodal benchmarks, indicating the potential for developing self-improving VLMs. Our value model and code are available at https://github.com/si0wang/VisVM.
♻ ☆ An Unconditional Representation of the Conditional Score in Infinite-Dimensional Linear Inverse Problems
Score-based diffusion models (SDMs) have emerged as a powerful tool for sampling from the posterior distribution in Bayesian inverse problems. However, existing methods often require multiple evaluations of the forward mapping to generate a single sample, resulting in significant computational costs for large-scale inverse problems. To address this, we propose an unconditional representation of the conditional score-function (UCoS) tailored to linear inverse problems, which avoids forward model evaluations during sampling by shifting computational effort to an offline training phase. In this phase, a task-dependent score function is learned based on the linear forward operator. Crucially, we show that the conditional score can be derived exactly from a trained (unconditional) score using affine transformations, eliminating the need for conditional score approximations. Our approach is formulated in infinite-dimensional function spaces, making it inherently discretization-invariant. We support this formulation with a rigorous convergence analysis that justifies UCoS beyond any specific discretization. Finally we validate UCoS through high-dimensional computed tomography (CT) and image deblurring experiments, demonstrating both scalability and accuracy.
comment: Title changed, main text substantially revised, including new experiments, method acronym changed, references added. 34 pages, 11 figures, 2tables
♻ ☆ Causal Machine Learning in IoT-based Engineering Problems: A Tool Comparison in the Case of Household Energy Consumption
The rapid increase in computing power and the ability to store Big Data in the infrastructure has enabled predictions in a large variety of domains by Machine Learning. However, in many cases, existing Machine Learning tools are considered insufficient or incorrect since they exploit only probabilistic dependencies rather than inference logic. Causal Machine Learning methods seem to close this gap. In this paper, two prevalent tools based on Causal Machine Learning methods are compared, as well as their mathematical underpinning background. The operation of the tools is demonstrated by examining their response to 18 queries, based on the IDEAL Household Energy Dataset, published by the University of Edinburgh. First, it was important to evaluate the causal relations assumption that allowed the use of this approach; this was based on the preexisting scientific knowledge of the domain and was implemented by use of the in-built validation tools. Results were encouraging and may easily be extended to other domains.
♻ ☆ A Graph-Based Classical and Quantum Approach to Deterministic L-System Inference
L-systems can be made to model and create simulations of many biological processes, such as plant development. Finding an L-system for a given process is typically solved by hand, by experts, in a massively time-consuming process. It would be significant if this could be done automatically from data, such as from sequences of images. In this paper, we are interested in inferring a particular type of L-system, deterministic context-free L-system (D0L-system) from a sequence of strings. We introduce the characteristic graph of a sequence of strings, which we then utilize to translate our problem (inferring D0L-systems) in polynomial time into the maximum independent set problem (MIS) and the SAT problem. After that, we offer a classical exact algorithm and an approximate quantum algorithm for the problem.
comment: 17 pages, 1 figure
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Avoid Forgetting by Preserving Global Knowledge Gradients in Federated Learning with Non-IID Data
The inevitable presence of data heterogeneity has made federated learning very challenging. There are numerous methods to deal with this issue, such as local regularization, better model fusion techniques, and data sharing. Though effective, they lack a deep understanding of how data heterogeneity can affect the global decision boundary. In this paper, we bridge this gap by performing an experimental analysis of the learned decision boundary using a toy example. Our observations are surprising: (1) we find that the existing methods suffer from forgetting and clients forget the global decision boundary and only learn the perfect local one, and (2) this happens regardless of the initial weights, and clients forget the global decision boundary even starting from pre-trained optimal weights. In this paper, we present FedProj, a federated learning framework that robustly learns the global decision boundary and avoids its forgetting during local training. To achieve better ensemble knowledge fusion, we design a novel server-side ensemble knowledge transfer loss to further calibrate the learned global decision boundary. To alleviate the issue of learned global decision boundary forgetting, we further propose leveraging an episodic memory of average ensemble logits on a public unlabeled dataset to regulate the gradient updates at each step of local training. Experimental results demonstrate that FedProj outperforms state-of-the-art methods by a large margin.
♻ ☆ Storing overlapping associative memories on latent manifolds in low-rank spiking networks NeurIPS 2024
Associative memory architectures such as the Hopfield network have long been important conceptual and theoretical models for neuroscience and artificial intelligence. However, translating these abstract models into spiking neural networks has been surprisingly difficult. Indeed, much previous work has been restricted to storing a small number of primarily non-overlapping memories in large networks, thereby limiting their scalability. Here, we revisit the associative memory problem in light of recent advances in understanding spike-based computation. Using a recently-established geometric framework, we show that the spiking activity for a large class of all-inhibitory networks is situated on a low-dimensional, convex, and piecewise-linear manifold, with dynamics that move along the manifold. We then map the associative memory problem onto these dynamics, and demonstrate how the vertices of a hypercubic manifold can be used to store stable, overlapping activity patterns with a direct correspondence to the original Hopfield model. We propose several learning rules, and demonstrate a linear scaling of the storage capacity with the number of neurons, as well as robust pattern completion abilities. Overall, this work serves as a case study to demonstrate the effectiveness of using a geometrical perspective to design dynamics on neural manifolds, with implications for neuroscience and machine learning.
comment: 17 pages, 5 figures; accepted to NeurIPS 2024 Workshop on Symmetry and Geometry in Neural Representations (NeurReps 2024)
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
♻ ☆ Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version) SP 2025
Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.
comment: Accepted to ACISP 2025. This is the full version
♻ ☆ Intelligent Routing for Sparse Demand Forecasting: A Comparative Evaluation of Selection Strategies
Sparse and intermittent demand forecasting in supply chains presents a critical challenge, as frequent zero-demand periods hinder traditional model accuracy and impact inventory management. We propose and evaluate a Model-Router framework that dynamically selects the most suitable forecasting model-spanning classical, ML, and DL methods for each product based on its unique demand pattern. By comparing rule-based, LightGBM, and InceptionTime routers, our approach learns to assign appropriate forecasting strategies, effectively differentiating between smooth, lumpy, or intermittent demand regimes to optimize predictions. Experiments on the large-scale Favorita dataset show our deep learning (Inception Time) router improves forecasting accuracy by up to 11.8% (NWRMSLE) over strong, single-model benchmarks with 4.67x faster inference time. Ultimately, these gains in forecasting precision will drive substantial reductions in both stockouts and wasteful excess inventory, underscoring the critical role of intelligent, adaptive Al in optimizing contemporary supply chain operations.
comment: 8 pages, 4 figures, conference
♻ ☆ RocketKV: Accelerating Long-Context LLM Inference via Two-Stage KV Cache Compression ICML 2025
Transformer-based Large Language Models rely critically on the KV cache to efficiently handle extended contexts during the decode phase. Yet, the size of the KV cache grows proportionally with the input length, burdening both memory bandwidth and capacity as decoding progresses. To address this challenge, we present RocketKV, a training-free KV cache compression strategy containing two consecutive stages. In the first stage, it performs coarse-grain permanent KV cache eviction on the input sequence tokens. In the second stage, it adopts a hybrid sparse attention method to conduct fine-grain top-k sparse attention, approximating the attention scores by leveraging both head and sequence dimensionality reductions. We show that RocketKV provides a compression ratio of up to 400$\times$, end-to-end speedup of up to 3.7$\times$ as well as peak memory reduction of up to 32.6% in the decode phase on an NVIDIA A100 GPU compared to the full KV cache baseline, while achieving negligible accuracy loss on a variety of long-context tasks. We also propose a variant of RocketKV for multi-turn scenarios, which consistently outperforms other existing methods and achieves accuracy nearly on par with an oracle top-k attention scheme.
comment: ICML 2025
♻ ☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries.
♻ ☆ Generative Intervention Models for Causal Perturbation Modeling
We consider the problem of predicting perturbation effects via causal models. In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation, even though the features of the perturbation are available. For example, in genomics, some properties of a drug may be known, but not their causal effects on the regulatory pathways of cells. We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions in a jointly-estimated causal model. Contrary to prior approaches, this enables us to predict the distribution shifts of unseen perturbation features while gaining insights about their mechanistic effects in the underlying data-generating process. On synthetic data and scRNA-seq drug perturbation data, GIMs achieve robust out-of-distribution predictions on par with unstructured approaches, while effectively inferring the underlying perturbation mechanisms, often better than other causal inference methods.
♻ ☆ Robust Representation Consistency Model via Contrastive Denoising
Robustness is essential for deep neural networks, especially in security-sensitive applications. To this end, randomized smoothing provides theoretical guarantees for certifying robustness against adversarial perturbations. Recently, diffusion models have been successfully employed for randomized smoothing to purify noise-perturbed samples before making predictions with a standard classifier. While these methods excel at small perturbation radii, they struggle with larger perturbations and incur a significant computational overhead during inference compared to classical methods. To address this, we reformulate the generative modeling task along the diffusion trajectories in pixel space as a discriminative task in the latent space. Specifically, we use instance discrimination to achieve consistent representations along the trajectories by aligning temporally adjacent points. After fine-tuning based on the learned representations, our model enables implicit denoising-then-classification via a single prediction, substantially reducing inference costs. We conduct extensive experiments on various datasets and achieve state-of-the-art performance with minimal computation budget during inference. For example, our method outperforms the certified accuracy of diffusion-based methods on ImageNet across all perturbation radii by 5.3% on average, with up to 11.6% at larger radii, while reducing inference costs by 85$\times$ on average. Codes are available at: https://github.com/jiachenlei/rRCM.
System/Control 34
☆ Time Shift Governor-Guided MPC with Collision Cone CBFs for Safe Adaptive Cruise Control in Dynamic Environments
This paper introduces a Time Shift Governor (TSG)-guided Model Predictive Controller with Control Barrier Functions (CBFs)-based constraints for adaptive cruise control (ACC). This MPC-CBF approach is defined for obstacle-free curved road tracking, while following distance and obstacle avoidance constraints are handled using standard CBFs and relaxed Collision Cone CBFs. In order to address scenarios involving rapidly moving obstacles or rapidly changing leading vehicle's behavior, the TSG augmentation is employed which alters the target reference to enforce constraints. Simulation results demonstrate the effectiveness of the TSG-guided MPC-CBF approach.
comment: Robin Inho Kee and Taehyeun Kim contributed equally to this work
☆ Orchestrated Couplings: A Time-Varying Edge Weight Framework for Efficient Event-Triggered Multiagent Networks
In this paper, we focus on reducing node-to-node information exchange in distributed control of multiagent networks while improving the overall network performance. Specifically, we consider a multiagent network that is composed of leader and follower nodes over a time-varying, connected, and undirected graph. In contrast to existing works on the event-triggered distributed control literature, we propose a time-varying edge weight event-triggered control framework. In this framework, each node dynamically adjusts its edge weights by increasing them during the transient (active) phase and decreasing them during the steady-state (idle) phase of the multiagent network. This not only reduces the number of events in the network but also improves the performance (i.e., convergence speed and control effort) of the overall multiagent network. System-theoretically, we first prove the closed-loop stability of the proposed event-triggered distributed control framework, where we then show that this framework does not exhibit a Zeno behavior. Finally, illustrative numerical examples are provided to demonstrate the efficacy of this framework.
☆ Dimension and model reduction approaches for linear Bayesian inverse problems with rank-deficient prior covariances
Bayesian inverse problems use observed data to update a prior probability distribution for an unknown state or parameter of a scientific system to a posterior distribution conditioned on the data. In many applications, the unknown parameter is high-dimensional, making computation of the posterior expensive due to the need to sample in a high-dimensional space and the need to evaluate an expensive high-dimensional forward model relating the unknown parameter to the data. However, inverse problems often exhibit low-dimensional structure due to the fact that the available data are only informative in a low-dimensional subspace of the parameter space. Dimension reduction approaches exploit this structure by restricting inference to the low-dimensional subspace informed by the data, which can be sampled more efficiently. Further computational cost reductions can be achieved by replacing expensive high-dimensional forward models with cheaper lower-dimensional reduced models. In this work, we propose new dimension and model reduction approaches for linear Bayesian inverse problems with rank-deficient prior covariances, which arise in many practical inference settings. The dimension reduction approach is applicable to general linear Bayesian inverse problems whereas the model reduction approaches are specific to the problem of inferring the initial condition of a linear dynamical system. We provide theoretical approximation guarantees as well as numerical experiments demonstrating the accuracy and efficiency of the proposed approaches.
☆ Statistical Modeling for Accurate Characterization of Doppler Effect in LEO-Terrestrial Networks
Low Earth Orbit (LEO) satellite communication is a promising solution for global wireless coverage, especially in underserved and remote areas. However, the high relative velocity of LEO satellites induces significant Doppler shifts that disrupt subcarrier orthogonality and degrade multicarrier system performance. While the common time-varying Doppler shift can be compensated relative to a reference point, the residual differential Doppler across users within the coverage cell remains a significant challenge, causing severe intercarrier interference. This paper presents a generalized analytical framework for characterizing both the Doppler shift magnitude and the differential Doppler in LEO systems. Unlike prior works limited by flat-Earth assumptions or specific orbital configurations, our model incorporates Earth's curvature and supports arbitrary elevation angles. Using spherical geometry, we derive closed-form expressions for Doppler shift based on the central angle between the satellite and ground users. We further provide a statistical characterization of both the Doppler shift magnitude and the differential Doppler in terms of their cumulative distribution function (CDF) and probability density function (PDF) for uniformly distributed users within a spherical cap cell. Additionally, we derive a tight upper bound for the Doppler shift CDF and an exact expression for the maximum differential Doppler experienced across the coverage region. To mitigate intra-cell Doppler variation, we implement a user clustering technique that partitions the coverage area based on a Doppler disparity threshold into spherical sub-cells, ensuring compliance with 3GPP tolerances. Extensive simulations over realistic satellite constellations validate our analysis and reveal the impact of altitude, beamwidth, and satellite-user geometry on Doppler behavior.
☆ Data-Driven Predictive Planning and Control for Aerial 3D Inspection with Back-face Elimination
Automated inspection with Unmanned Aerial Systems (UASs) is a transformative capability set to revolutionize various application domains. However, this task is inherently complex, as it demands the seamless integration of perception, planning, and control which existing approaches often treat separately. Moreover, it requires accurate long-horizon planning to predict action sequences, in contrast to many current techniques, which tend to be myopic. To overcome these limitations, we propose a 3D inspection approach that unifies perception, planning, and control within a single data-driven predictive control framework. Unlike traditional methods that rely on known UAS dynamic models, our approach requires only input-output data, making it easily applicable to off-the-shelf black-box UASs. Our method incorporates back-face elimination, a visibility determination technique from 3D computer graphics, directly into the control loop, thereby enabling the online generation of accurate, long-horizon 3D inspection trajectories.
comment: 2025 European Control Conference (ECC), Thessaloniki, Greece, 24-27 June 2025
☆ Active Estimation of Multiplicative Faults in Dynamical Systems
This paper addresses the problem of estimating multiplicative fault signals in linear time-invariant systems by processing its input and output variables, as well as designing an input signal to maximize the accuracy of such estimates. The proposed real-time fault estimator is based on a residual generator used for fault detection and a multiple-output regressor generator, which feed a moving-horizon linear regression that estimates the parameter changes. Asymptotic performance guarantees are provided in the presence of noise. Motivated by the performance bounds, an optimal input design problem is formulated, for which we provide efficient algorithms and optimality bounds. Numerical examples demonstrate the efficacy of our approach and the importance of the optimal input design for accurate fault estimation.
comment: 27 pages, 7 figures. Submitted to Automatica
☆ On sample-based functional observability of linear systems
Sample-based observability characterizes the ability to reconstruct the internal state of a dynamical system by using limited output information, i.e., when measurements are only infrequently and/or irregularly available. In this work, we investigate the concept of functional observability, which refers to the ability to infer a function of the system state from the outputs, within a samplebased framework. Here, we give necessary and sufficient conditions for a system to be sample-based functionally observable, and formulate conditions on the sampling schemes such that these are satisfied. Furthermore, we provide a numerical example, where we demonstrate the applicability of the obtained results.
☆ A Digital Twinning Approach to Decarbonisation: Research Challenges
Transportation accounts for around 27% of green house gas emissions in the UK. While an obvious priority area for decarbonisation, and aligned to the UK government goal of reducing emissions by 68% for 2030, the free-market nature of the transportation sector combined with its fundamentally implicit and pervasive connections to all aspects of society and national infrastructure mean that all decarbonisation efforts to date have been siloed within a single transport sector, e.g. only considering greener aviation fuels. Truly decarbonising transport requires radical changes to the entire transport infrastructure, and since that transport does not happen in isolation, a single user often using multiple modes, we need a view over the whole transport system. The first step to solving a problem is to understand it. As a result of the fragmented nature of the transportation sector, there is currently no system level view. Without the ability to monitor even adjacent transport domains, the ability for people or organisations to (dynamically) adapt their operations for decarbonisation outcomes is unrealistic. As transportation is a complex social-techno-economic system, information and knowledge sharing is a must to be able to understand and explore potential solutions to the decarbonisation challenge. We believe a Federated Digital Twinning Approach has the potential to tackle transport decarbonisation problems, and, in this extended abstract, we give an overview of the research required to tackle the fundamental challenges around digital twin design, generation, validation and verification.
comment: LOCO 2024, December 3, 2024, Glasgow/Online; Extended Abstract
☆ A Data-Ensemble-Based Approach for Sample-Efficient LQ Control of Linear Time-Varying Systems
This paper presents a sample-efficient, data-driven control framework for finite-horizon linear quadratic (LQ) control of linear time-varying (LTV) systems. In contrast to the time-invariant case, the time-varying LQ problem involves a differential Riccati equation (DRE) with time-dependent parameters and terminal boundary constraints. We formulate the LQ problem as a nonconvex optimization problem and conduct a rigorous analysis of its dual structure. By exploiting the inherent convexity of the dual problem and analyzing the KKT conditions, we derive an explicit relationship between the optimal dual solution and the parameters of the associated Q-function in time-varying case. This theoretical insight supports the development of a novel, sample-efficient, non-iterative semidefinite programming (SDP) algorithm that directly computes the optimal sequence of feedback gains from an ensemble of input-state data sequences without model identification. The resulting convex, data-dependent framework provides global optimality guarantees for completely unknown LTV systems. As a special case, the method also applies to finite-horizon LQ control of linear time-invariant (LTI) systems. In this setting, a single input-state trajectory suffices to identify the optimal LQ feedback policy, improving significantly over existing Q-learning approaches for finite horizon LTI systems that typically require data from multiple episodes. The approach provides a new optimization-based perspective on Q-learning in time-varying settings and contributes to the broader understanding of data-driven control in non-stationary environments. Simulation results show that, compared to recent methods, the proposed approach achieves superior optimality and sample efficiency on LTV systems, and indicates potential for stabilizing and optimal control of nonlinear systems.
☆ Reliability Assessment of Power System Based on the Dichotomy Method
With a sustainable increase in the scale of power system, the number of states in the state space grows exponentially, and the reliability assessment of the power system faces enormous challenges. Traditional state-by-state assessment methods, such as state enumeration (SE) and Monte Carlo simulation (MCS) methods, have encountered performance bottlenecks in terms of efficiency and accuracy. In this paper, the Boolean lattice representation theory of the state space was studied, and a dichotomy method was proposed to efficiently partition the state space into some disjoint sub-lattices with a relatively small number of optimal power flow (OPF) operations. Based on lattice partition, the reliability indices of the entire space can be calculated lattice-by-lattice. In addition, alone with the partitioning procedure, the calculated loss of load probability (LOLP) monotonically increases and rapidly tends to the analytic value with the designated error bound. Moreover, we designed a customized Monte Carlo sampling method in lattices of interest to compute expected energy not supply (EENS). The experiments are conducted on the RBTS and RTS-79 systems. The results show that the proposed method achieves the analytic LOLP of the RBTS system after five hundreds of OPF operations, which is about hundreds of times faster than traditional methods, and the designed Monte Carlo sampling method converged after thousands of OPF operations on test systems.
comment: 10pages, 8figures
☆ Towards Universal Shared Control in Teleoperation Without Haptic Feedback
Teleoperation with non-haptic VR controllers deprives human operators of critical motion feedback. We address this by embedding a multi-objective optimization problem that converts user input into collision-free UR5e joint trajectories while actively suppressing liquid slosh in a glass. The controller maintains 13 ms average planning latency, confirming real-time performance and motivating the augmentation of this teleoperation approach to further objectives.
comment: 5 pages, submitted to IEEE Telepresence 2025 conference
☆ Alleviating CoD in Renewable Energy Profile Clustering Using an Optical Quantum Computer
The traditional clustering problem of renewable energy profiles is typically formulated as a combinatorial optimization that suffers from the Curse of Dimensionality (CoD) on classical computers. To address this issue, this paper first proposed a kernel-based quantum clustering method. More specifically, the kernel-based similarity between profiles with minimal intra-group distance is encoded into the ground-state of the Hamiltonian in the form of an Ising model. Then, this NP-hard problem can be reformulated into a Quadratic Unconstrained Binary Optimization (QUBO), which a Coherent Ising Machine (CIM) can naturally solve with significant improvement over classical computers. The test results from a real optical quantum computer verify the validity of the proposed method. It also demonstrates its ability to address CoD in an NP-hard clustering problem.
☆ A Bidirectional Power Router for Traceable Multi-energy Management
To address challenges in improving self-consumption of renewables and resilience in local residential power systems, the earlier work of the authors introduced a novel multi-energy management concept, integrating bidirectional power routing and electricity-hydrogen conversion. This paper focuses on an experimental verification of the bidirectional power router based on line-switching, the essential hardware to realize the concept. The primary contribution is the validation of the router's capability to handle dynamic change of bidirectional power flow. Furthermore, to achieve bidirectional power routing without affecting the smooth and stable operation of the power system, a novel algorithm for router's switching is designed based on power flow monitoring. The effectiveness of the proposed method is demonstrated through an experiment using a setup with a commercially available stationary battery.
☆ Power-Gas Infrastructure Planning under Weather-induced Supply and Demand Uncertainties
Implementing economy-wide decarbonization strategies based on decarbonizing the power grid via variable renewable energy (VRE) expansion and electrification of end-uses requires new approaches for energy infrastructure planning that consider, among other factors, weather-induced uncertainty in demand and VRE supply. An energy planning model that fails to account for these uncertainties can hinder the intended transition efforts to a low-carbon grid and increase the risk of supply shortage especially during extreme weather conditions. Here, we consider the generation and transmission expansion problem of joint power-gas infrastructure and operations planning under the uncertainty of both demand and renewable supply. We propose two distributionally robust optimization approaches based on moment (MDRO) and Wasserstein distance (WDRO) ambiguity sets to endogenize these uncertainties and account for the change in the underlying distribution of these parameters that is caused by the climate change, among other factors. Furthermore, our model considers the risk-aversion of the energy planners in the modeling framework via the conditional value-at-risk (CVaR) metric. An equivalent mixed-integer linear programming (MILP) reformulation of both modeling frameworks is presented, and a computationally efficient approximation scheme to obtain near-optimal solutions is proposed. We demonstrate the resulting DRO planning models and solution strategy via a New England case study under different levels of end-use electrification and decarbonization targets. Our experiments systematically explore different modeling aspects and compare the DRO models with stochastic programming (SP) results.
☆ Evaluation of a Foundational Model and Stochastic Models for Forecasting Sporadic or Spiky Production Outages of High-Performance Machine Learning Services
Time series forecasting models have diverse real world applications (e.g., from electricity metrics to software workload). Latest foundational models trained for time series forecasting show strengths (e.g., for long sequences and in zero-shot settings). However, foundational model was not yet used for forecasting rare, spiky events, i.e., a challenging target because those are a corner case of extreme events. In this paper, we optimize a state-of-the-art foundational model to forecast sporadic or spiky production outages of high-performance machine learning services powering billions of client devices. We evaluate the forecasting errors of the foundational model compared with classical stochastic forecasting models (e.g., moving average and autoregressive). The analysis helps us understand how each of the evaluated models performs for the sporadic or spiky events. For example, it identifies the key patterns in the target data that are well tracked by the foundational model vs. each of the stochastic models. We use the models with optimal parameters to estimate a year-long outage statistics of a particular root cause with less than 6% value errors.
☆ Iteratively Saturated Kalman Filtering
The Kalman filter (KF) provides optimal recursive state estimates for linear-Gaussian systems and underpins applications in control, signal processing, and others. However, it is vulnerable to outliers in the measurements and process noise. We introduce the iteratively saturated Kalman filter (ISKF), which is derived as a scaled gradient method for solving a convex robust estimation problem. It achieves outlier robustness while preserving the KF's low per-step cost and implementation simplicity, since in practice it typically requires only one or two iterations to achieve good performance. The ISKF also admits a steady-state variant that, like the standard steady-state KF, does not require linear system solves in each time step, making it well-suited for real-time systems.
☆ EMSpice 2.1: A Coupled EM and IR Drop Analysis Tool with Joule Heating and Thermal Map Integration for VLSI Reliability
Electromigration (EM) remains a critical reliability concern in current and future copper-based VLSI circuits. As technology scales down, EM-induced IR drop becomes increasingly severe. While several EM-aware IR drop analysis tools have been proposed, few incorporate the real impact of temperature distribution on both EM and IR drop effects. In this work, we introduce EMSpice 2.1, an enhanced tool built upon the existing coupled IR-EM analysis framework, EMSpice 2.0, for EM-aware IR drop analysis. For the first time, EMSpice 2.1 uniquely integrates Joule heating effects and practical thermal maps derived from actual chip conditions. Additionally, it features improved interoperability with commercial EDA tools, facilitating more comprehensive EM and IR drop sign-off analysis. Our findings demonstrate that specific hotspot patterns significantly impact the lifetime of interconnects and overall chip reliability due to EM failures. Furthermore, our tool exhibits strong agreement with industry-standard tools such as COMSOL, achieving a speedup of over 200 times while maintaining high accuracy.
comment: 4 Pages, accepted to SMACD 2025
Control-Optimized Deep Reinforcement Learning for Artificially Intelligent Autonomous Systems
Deep reinforcement learning (DRL) has become a powerful tool for complex decision-making in machine learning and AI. However, traditional methods often assume perfect action execution, overlooking the uncertainties and deviations between an agent's selected actions and the actual system response. In real-world applications, such as robotics, mechatronics, and communication networks, execution mismatches arising from system dynamics, hardware constraints, and latency can significantly degrade performance. This work advances AI by developing a novel control-optimized DRL framework that explicitly models and compensates for action execution mismatches, a challenge largely overlooked in existing methods. Our approach establishes a structured two-stage process: determining the desired action and selecting the appropriate control signal to ensure proper execution. It trains the agent while accounting for action mismatches and controller corrections. By incorporating these factors into the training process, the AI agent optimizes the desired action with respect to both the actual control signal and the intended outcome, explicitly considering execution errors. This approach enhances robustness, ensuring that decision-making remains effective under real-world uncertainties. Our approach offers a substantial advancement for engineering practice by bridging the gap between idealized learning and real-world implementation. It equips intelligent agents operating in engineering environments with the ability to anticipate and adjust for actuation errors and system disturbances during training. We evaluate the framework in five widely used open-source mechanical simulation environments we restructured and developed to reflect real-world operating conditions, showcasing its robustness against uncertainties and offering a highly practical and efficient solution for control-oriented applications.
comment: 27 pages, 10 figures
☆ Robustness Analysis for Quantum Systems Controlled by Continuous-Time Pulses
Differential sensitivity techniques originally developed to study the robustness of energy landscape controllers are generalized to the important case of closed quantum systems subject to continuously varying controls. Vanishing sensitivity to parameter variation is shown to coincide with perfect fidelity, as was the case for time-invariant controls. Bounds on the magnitude of the differential sensitivity to any parameter variation are derived based simply on knowledge of the system Hamiltonian and the maximum size of the control inputs
comment: 6 pages, 2 figures
☆ Observation of Blood Flow in Major Neck Vessels Modulated 1 by Physiological Maneuvers
Large neck vessels (carotid artery and internal jugular vein, IJV) offer a unique opportunity to monitor hemodynamics non-invasively by optical means. The primary shortcoming of past work has been the focus on healthy volunteers in normal physiological conditions and well-controlled environments. To drive the technology closer to the bedside, testing is required under more re-alistic conditions, including in pathologies and real-world environments (e.g., similar toICU or emergency care settings). The primary goal of the current work was to extend the range of physiological maneuvers for blood flow modulation by introducing new maneuvers and ob-serving PPG response to them. The data from the necks of two healthy volunteers in a supine position were collected by clinical PPG and in-house built PPG sensors, accompanied by ECG signal collection. Seven maneuvers (abdominojugular test, breath holding, Valsalva, proximal occlusion of right IJV, distal occlusion of right IJV, proximal occlusion of left IJV, distal occlusion of left IJV) were performed in sequence with 1 min allocated for each maneuver. The 1 min was split into three segments: baseline (15 s), experiment (15 s), and recovery (30 s). Thus, the overall du-ration of the experiment was 7 min. AC amplitude from clinical PPG, DC amplitudes from in-house built PPG, and ECG signal were compared during all seven physiological maneuvers. Newly proposed maneuvers (Valsalva and IJV occlusions) demonstrated modulation of blood flow, which was more significant than previously reported maneuvers (abdominojugular test and breath holding). The proposed physiological maneuvers demonstrate high potential as instruments for modulating blood flow in major neck vessels.
Graph Neural Networks in Wind Power Forecasting
We study the applicability of GNNs to the problem of wind energy forecasting. We find that certain architectures achieve performance comparable to our best CNN-based benchmark. The study is conducted on three wind power facilities using five years of historical data. Numerical Weather Prediction (NWP) variables were used as predictors, and models were evaluated on a 24 to 36 hour ahead test horizon.
☆ A Data-Driven Model Predictive Controller to manage epidemics: The case of SARS-CoV-2 in Mauritius
This work investigates the benefits of implementing a systematic approach to social isolation policies during epidemics. We develop a mixed integer data-driven model predictive control (MPC) scheme based on an SIHRD model which is identified from available data. The case of the spread of the SARS-CoV-2 virus (also known as COVID-19) in Mauritius is used as a reference point with data obtained during the period December 2021 to May 2022. The isolation scheme is designed with the control decision variable taking a finite set of values corresponding to the desired level of isolation. The control input is further restricted to shifting between levels only after a minimum amount of time. The simulation results validate our design, showing that the need for hospitalisation remains within the capacity of the health centres, with the number of deaths considerably reduced by raising the level of isolation for short periods of time with negligible social and economic impact. We also show that the introduction of additional isolation levels results in a smoother containment approach with a considerably reduced hospitalisation burden.
comment: 6 pages, 6 figures, European Control Conference 2025
♻ ☆ MDR-DeePC: Model-Inspired Distributionally Robust Data-Enabled Predictive Control
This paper presents a Model-Inspired Distributionally Robust Data-enabled Predictive Control (MDR-DeePC) framework for systems with partially known and uncertain dynamics. The proposed method integrates model-based equality constraints for known dynamics with a Hankel matrix-based representation of unknown dynamics. A distributionally robust optimization problem is formulated to account for parametric uncertainty and stochastic disturbances. Simulation results on a triple-mass-spring-damper system demonstrate improved disturbance rejection, reduced output oscillations, and lower control cost compared to standard DeePC. The results validate the robustness and effectiveness of MDR-DeePC, with potential for real-time implementation pending further benchmarking.
comment: Submitted to MECC 2025
♻ ☆ Learning Li-ion battery health and degradation modes from data with aging-aware circuit models
Non-invasive estimation of Li-ion battery state-of-health from operational data is valuable for battery applications, but remains challenging. Pure model-based methods may suffer from inaccuracy and long-term instability of parameter estimates, whereas pure data-driven methods rely heavily on training data quality and quantity, causing lack of generality when extrapolating to unseen cases. We apply an aging-aware equivalent circuit model for health estimation, combining the flexibility of data-driven techniques within a model-based approach. A simplified electrical model with voltage source and resistor incorporates Gaussian process regression to learn capacity fade over time and also the dependence of resistance on operating conditions and time. The approach was validated against two datasets and shown to give accurate performance with less than 1% relative root mean square error (RMSE) in capacity and less than 2% mean absolute percentage error (MAPE). Critically, we show that the open circuit voltage versus state-of-charge function must be accurately known, and any inaccuracies or changes in this over time strongly influence the inferred resistance. However, this feature (or bug) may also be used to estimate in operando differential voltage curves from operational data.
comment: 11 pages, 10 figures
♻ ☆ Controlling Complex Systems
This chapter provides a comprehensive overview of controlling collective behavior in complex systems comprising large ensembles of interacting dynamical agents. Building upon traditional control theory's foundation in individual systems, we introduce tools designed to address the unique challenges of coordinating networks that exhibit emergent phenomena, including consensus, synchronization, and pattern formation. We analyze how local agent interactions generate macroscopic behaviors and investigate the fundamental role of network topology in determining system dynamics. Inspired by natural systems, we emphasize control strategies that achieve global coordination through localized interventions while considering practical implementation challenges. The chapter concludes by presenting novel frameworks for managing very large agent ensembles and leveraging interacting networks for control purposes.
♻ ☆ The Cesàro Value Iteration
In this paper, we consider undiscouted infinitehorizon optimal control for deterministic systems with an uncountable state and input space. We specifically address the case when the classic value iteration does not converge. For such systems, we use the Ces`aro mean to define the infinite-horizon optimal control problem and the corresponding infinite-horizon value function. Moreover, for this value function, we introduce the Ces\`aro value iteration and prove its convergence for the special case of systems with periodic optimal operating behavior. For this instance, we also show that the Ces\`aro value function recovers the undiscounted infinite-horizon optimal cost, if the latter is well-defined.
♻ ☆ A behavioral approach for LPV data-driven representations
In this paper, we present a data-driven representation for linear parameter-varying (LPV) systems, which can be used for direct data-driven analysis and control of such systems. Specifically, we use the behavioral approach to develop a data-driven representation of the finite-horizon behavior of LPV systems for which there exists a kernel representation with shifted-affine scheduling dependence. Moreover, we provide a necessary and sufficient rank-based test on the available data that concludes whether the data fully represents the finite-horizon LPV behavior. Using the proposed data-driven representation, we also solve the data-driven simulation problem for LPV systems. Through multiple examples, we demonstrate that the results in this paper allow us to formulate a novel set of direct data-driven analysis and control methods for LPV systems, which are also applicable for LPV embeddings of nonlinear systems.
comment: 14 pages. Submitted to IEEE-TAC
♻ ☆ Gaussian Process-Based Nonlinear Moving Horizon Estimation
In this paper, we propose a novel Gaussian process-based moving horizon estimation (MHE) framework for unknown nonlinear systems. On the one hand, we approximate the system dynamics by the posterior means of the learned Gaussian processes (GPs). On the other hand, we exploit the posterior variances of the Gaussian processes to design the weighting matrices in the MHE cost function and account for the uncertainty in the learned system dynamics. The data collection and the tuning of the hyperparameters are done offline. We prove robust stability of the GP-based MHE scheme using a Lyapunov-based proof technique. Furthermore, as additional contribution, we derive a sufficient condition under which incremental input/output-to-state stability (a nonlinear detectability notion) is preserved when approximating the system dynamics using, e.g., machine learning techniques. Finally, we illustrate the performance of the GP-based MHE scheme in two simulation case studies and show how the chosen weighting matrices can lead to an improved performance compared to standard cost functions.
comment: 16 pages
♻ ☆ A Coupled Friedkin-Johnsen Model of Popularity Dynamics in Social Media
Popularity dynamics in social media depend on a complex interplay of social influence between users and popularity-based recommendations that are provided by the platforms. In this work, we introduce a discrete-time dynamical system to model the evolution of popularity on social media. Our model generalizes the well-known Friedkin-Johnsen model to a set of influencers vying for popularity. We study the asymptotic behavior of this model and illustrate it with numerical examples. Our results highlight the interplay of social influence, past popularity, and content quality in determining the popularity of influencers.
♻ ☆ Modular Distributed Nonconvex Learning with Error Feedback
In this paper, we design a novel distributed learning algorithm using stochastic compressed communications. In detail, we pursue a modular approach, merging ADMM and a gradient-based approach, benefiting from the robustness of the former and the computational efficiency of the latter. Additionally, we integrate a stochastic integral action (error feedback) enabling almost sure rejection of the compression error. We analyze the resulting method in nonconvex scenarios and guarantee almost sure asymptotic convergence to the set of stationary points of the problem. This result is obtained using system-theoretic tools based on stochastic timescale separation. We corroborate our findings with numerical simulations in nonconvex classification.
♻ ☆ Adaptive event-triggered robust tracking control of soft robots
Soft robots manufactured with flexible materials can be highly compliant and adaptive to their surroundings, which facilitates their application in areas such as dexterous manipulation and environmental exploration. This paper aims at investigating the tracking control problem for soft robots under uncertainty such as unmodeled dynamics and external disturbance. First, we establish a novel switching function and design the compensated tracking error dynamics by virtue of the command filter. Then, based on the backstepping methodology, the virtual controllers and the adaptive logic estimating the supremum of uncertainty impacts are developed for synthesizing an event-triggered control strategy. In addition, the uniformed finite-time stability certification is derived for different scenarios of the switching function. Finally, we perform a case study of a soft robot to illustrate the effectiveness of the proposed control algorithm.
comment: We need to significantly alter the structure of the paper and update the collaboration, in view of supplementing a new experimental study
♻ ☆ KnowSafe: Combined Knowledge and Data Driven Hazard Mitigation in Artificial Pancreas Systems SC'25
Significant progress has been made in anomaly detection and run-time monitoring to improve the safety and security of cyber-physical systems (CPS). However, less attention has been paid to hazard mitigation. This paper proposes a combined knowledge and data driven approach, KnowSafe, for the design of safety engines that can predict and mitigate safety hazards resulting from safety-critical malicious attacks or accidental faults targeting a CPS controller. We integrate domain-specific knowledge of safety constraints and context-specific mitigation actions with machine learning (ML) techniques to estimate system trajectories in the far and near future, infer potential hazards, and generate optimal corrective actions to keep the system safe. Experimental evaluation on two realistic closed-loop testbeds for artificial pancreas systems (APS) and a real-world clinical trial dataset for diabetes treatment demonstrates that KnowSafe outperforms the state-of-the-art by achieving higher accuracy in predicting system state trajectories and potential hazards, a low false positive rate, and no false negatives. It also maintains the safe operation of the simulated APS despite faults or attacks without introducing any new hazards, with a hazard mitigation success rate of 92.8%, which is at least 76% higher than solely rule-based (50.9%) and data-driven (52.7%) methods.
comment: 17 pages, 11 figures, 11 tables, to appear in the IEEE Transactions on Dependable and Secure Computing (TDSC'25)
♻ ☆ Bregman Centroid Guided Cross-Entropy Method
The Cross-Entropy Method (CEM) is a widely adopted trajectory optimizer in model-based reinforcement learning (MBRL), but its unimodal sampling strategy often leads to premature convergence in multimodal landscapes. In this work, we propose Bregman Centroid Guided CEM ($\mathcal{BC}$-EvoCEM), a lightweight enhancement to ensemble CEM that leverages $\textit{Bregman centroids}$ for principled information aggregation and diversity control. $\textbf{$\mathcal{BC}$-EvoCEM}$ computes a performance-weighted Bregman centroid across CEM workers and updates the least contributing ones by sampling within a trust region around the centroid. Leveraging the duality between Bregman divergences and exponential family distributions, we show that $\textbf{$\mathcal{BC}$-EvoCEM}$ integrates seamlessly into standard CEM pipelines with negligible overhead. Empirical results on synthetic benchmarks, a cluttered navigation task, and full MBRL pipelines demonstrate that $\textbf{$\mathcal{BC}$-EvoCEM}$ enhances both convergence and solution quality, providing a simple yet effective upgrade for CEM.
♻ ☆ Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
comment: The views expressed in the article do not necessarily represent the views of the National Commission of Banks and Insurance Companies of Honduras
Robotics 20
☆ A Model Predictive Control Framework to Enhance Safety and Quality in Mobile Additive Manufacturing Systems
In recent years, the demand for customized, on-demand production has grown in the manufacturing sector. Additive Manufacturing (AM) has emerged as a promising technology to enhance customization capabilities, enabling greater flexibility, reduced lead times, and more efficient material usage. However, traditional AM systems remain constrained by static setups and human worker dependencies, resulting in long lead times and limited scalability. Mobile robots can improve the flexibility of production systems by transporting products to designated locations in a dynamic environment. By integrating AM systems with mobile robots, manufacturers can optimize travel time for preparatory tasks and distributed printing operations. Mobile AM robots have been deployed for on-site production of large-scale structures, but often neglect critical print quality metrics like surface roughness. Additionally, these systems do not have the precision necessary for producing small, intricate components. We propose a model predictive control framework for a mobile AM platform that ensures safe navigation on the plant floor while maintaining high print quality in a dynamic environment. Three case studies are used to test the feasibility and reliability of the proposed systems.
comment: 2025 IEEE 21st International Conference on Automation Science and Engineering
☆ GS-NBV: a Geometry-based, Semantics-aware Viewpoint Planning Algorithm for Avocado Harvesting under Occlusions
Efficient identification of picking points is critical for automated fruit harvesting. Avocados present unique challenges owing to their irregular shape, weight, and less-structured growing environments, which require specific viewpoints for successful harvesting. We propose a geometry-based, semantics-aware viewpoint-planning algorithm to address these challenges. The planning process involves three key steps: viewpoint sampling, evaluation, and execution. Starting from a partially occluded view, the system first detects the fruit, then leverages geometric information to constrain the viewpoint search space to a 1D circle, and uniformly samples four points to balance the efficiency and exploration. A new picking score metric is introduced to evaluate the viewpoint suitability and guide the camera to the next-best view. We validate our method through simulation against two state-of-the-art algorithms. Results show a 100% success rate in two case studies with significant occlusions, demonstrating the efficiency and robustness of our approach. Our code is available at https://github.com/lineojcd/GSNBV
comment: Accepted for publication in CASE 2025, 6 pages, 8 figures
☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
☆ Safe and Performant Deployment of Autonomous Systems via Model Predictive Control and Hamilton-Jacobi Reachability Analysis
While we have made significant algorithmic developments to enable autonomous systems to perform sophisticated tasks, it remains difficult for them to perform tasks effective and safely. Most existing approaches either fail to provide any safety assurances or substantially compromise task performance for safety. In this work, we develop a framework, based on model predictive control (MPC) and Hamilton-Jacobi (HJ) reachability, to optimize task performance for autonomous systems while respecting the safety constraints. Our framework guarantees recursive feasibility for the MPC controller, and it is scalable to high-dimensional systems. We demonstrate the effectiveness of our framework with two simulation studies using a 4D Dubins Car and a 6 Dof Kuka iiwa manipulator, and the experiments show that our framework significantly improves the safety constraints satisfaction of the systems over the baselines.
comment: RSS 2025 Workshop on Reliable Robotics
☆ Moving Matter: Using a Single, Simple Robot to Reconfigure a Connected Set of Building Blocks
We implement and evaluate different methods for the reconfiguration of a connected arrangement of tiles into a desired target shape, using a single active robot that can move along the tile structure. This robot can pick up, carry, or drop off one tile at a time, but it must maintain a single connected configuration at all times. Becker et al. (CCCG 2025) recently proposed an algorithm that uses histograms as canonical intermediate configurations, guaranteeing performance within a constant factor of the optimal solution if the start and target configuration are well-separated. We implement and evaluate this algorithm, both in a simulated and practical setting, using an inchworm type robot to compare it with two existing heuristic algorithms.
comment: 8 pages, 12 figures. To appear in the proceedings of the 2025 IEEE 21st International Conference on Automation Science and Engineering (CASE 2025)
☆ Simplifying Data-Driven Modeling of the Volume-Flow-Pressure Relationship in Hydraulic Soft Robotic Actuators
Soft robotic systems are known for their flexibility and adaptability, but traditional physics-based models struggle to capture their complex, nonlinear behaviors. This study explores a data-driven approach to modeling the volume-flow-pressure relationship in hydraulic soft actuators, focusing on low-complexity models with high accuracy. We perform regression analysis on a stacked balloon actuator system using exponential, polynomial, and neural network models with or without autoregressive inputs. The results demonstrate that simpler models, particularly multivariate polynomials, effectively predict pressure dynamics with fewer parameters. This research offers a practical solution for real-time soft robotics applications, balancing model complexity and computational efficiency. Moreover, the approach may benefit various techniques that require explicit analytical models.
comment: This work has been submitted to the IEEE for possible publication
☆ InfGen: Scenario Generation as Next Token Group Prediction
Realistic and interactive traffic simulation is essential for training and evaluating autonomous driving systems. However, most existing data-driven simulation methods rely on static initialization or log-replay data, limiting their ability to model dynamic, long-horizon scenarios with evolving agent populations. We propose InfGen, a scenario generation framework that outputs agent states and trajectories in an autoregressive manner. InfGen represents the entire scene as a sequence of tokens, including traffic light signals, agent states, and motion vectors, and uses a transformer model to simulate traffic over time. This design enables InfGen to continuously insert new agents into traffic, supporting infinite scene generation. Experiments demonstrate that InfGen produces realistic, diverse, and adaptive traffic behaviors. Furthermore, reinforcement learning policies trained in InfGen-generated scenarios achieve superior robustness and generalization, validating its utility as a high-fidelity simulation environment for autonomous driving. More information is available at https://metadriverse.github.io/infgen/.
☆ Mode Collapse Happens: Evaluating Critical Interactions in Joint Trajectory Prediction Models
Autonomous Vehicle decisions rely on multimodal prediction models that account for multiple route options and the inherent uncertainty in human behavior. However, models can suffer from mode collapse, where only the most likely mode is predicted, posing significant safety risks. While existing methods employ various strategies to generate diverse predictions, they often overlook the diversity in interaction modes among agents. Additionally, traditional metrics for evaluating prediction models are dataset-dependent and do not evaluate inter-agent interactions quantitatively. To our knowledge, none of the existing metrics explicitly evaluates mode collapse. In this paper, we propose a novel evaluation framework that assesses mode collapse in joint trajectory predictions, focusing on safety-critical interactions. We introduce metrics for mode collapse, mode correctness, and coverage, emphasizing the sequential dimension of predictions. By testing four multi-agent trajectory prediction models, we demonstrate that mode collapse indeed happens. When looking at the sequential dimension, although prediction accuracy improves closer to interaction events, there are still cases where the models are unable to predict the correct interaction mode, even just before the interaction mode becomes inevitable. We hope that our framework can help researchers gain new insights and advance the development of more consistent and accurate prediction models, thus enhancing the safety of autonomous driving systems.
comment: 12 pages, 8 figures, submitted to a journal
☆ DexH2R: A Benchmark for Dynamic Dexterous Grasping in Human-to-Robot Handover
Handover between a human and a dexterous robotic hand is a fundamental yet challenging task in human-robot collaboration. It requires handling dynamic environments and a wide variety of objects and demands robust and adaptive grasping strategies. However, progress in developing effective dynamic dexterous grasping methods is limited by the absence of high-quality, real-world human-to-robot handover datasets. Existing datasets primarily focus on grasping static objects or rely on synthesized handover motions, which differ significantly from real-world robot motion patterns, creating a substantial gap in applicability. In this paper, we introduce DexH2R, a comprehensive real-world dataset for human-to-robot handovers, built on a dexterous robotic hand. Our dataset captures a diverse range of interactive objects, dynamic motion patterns, rich visual sensor data, and detailed annotations. Additionally, to ensure natural and human-like dexterous motions, we utilize teleoperation for data collection, enabling the robot's movements to align with human behaviors and habits, which is a crucial characteristic for intelligent humanoid robots. Furthermore, we propose an effective solution, DynamicGrasp, for human-to-robot handover and evaluate various state-of-the-art approaches, including auto-regressive models and diffusion policy methods, providing a thorough comparison and analysis. We believe our benchmark will drive advancements in human-to-robot handover research by offering a high-quality dataset, effective solutions, and comprehensive evaluation metrics.
☆ RoboScape: Physics-informed Embodied World Model
World models have become indispensable tools for embodied intelligence, serving as powerful simulators capable of generating realistic robotic videos while addressing critical data scarcity challenges. However, current embodied world models exhibit limited physical awareness, particularly in modeling 3D geometry and motion dynamics, resulting in unrealistic video generation for contact-rich robotic scenarios. In this paper, we present RoboScape, a unified physics-informed world model that jointly learns RGB video generation and physics knowledge within an integrated framework. We introduce two key physics-informed joint training tasks: temporal depth prediction that enhances 3D geometric consistency in video rendering, and keypoint dynamics learning that implicitly encodes physical properties (e.g., object shape and material characteristics) while improving complex motion modeling. Extensive experiments demonstrate that RoboScape generates videos with superior visual fidelity and physical plausibility across diverse robotic scenarios. We further validate its practical utility through downstream applications including robotic policy training with generated data and policy evaluation. Our work provides new insights for building efficient physics-informed world models to advance embodied intelligence research. The code is available at: https://github.com/tsinghua-fib-lab/RoboScape.
comment: 17 pages
☆ Flatness-based Finite-Horizon Multi-UAV Formation Trajectory Planning and Directionally Aware Collision Avoidance Tracking
Collision-free optimal formation control of unmanned aerial vehicle (UAV) teams is challenging. The state-of-the-art optimal control approaches often rely on numerical methods sensitive to initial guesses. This paper presents an innovative collision-free finite-time formation control scheme for multiple UAVs leveraging the differential flatness of the UAV dynamics, eliminating the need for numerical methods. We formulate a finite-time optimal control problem to plan a formation trajectory for feasible initial states. This formation trajectory planning optimal control problem involves a collective performance index to meet the formation requirements of achieving relative positions and velocity consensus. It is solved by applying Pontryagin's principle. Subsequently, a collision-constrained regulating problem is addressed to ensure collision-free tracking of the planned formation trajectory. The tracking problem incorporates a directionally aware collision avoidance strategy that prioritizes avoiding UAVs in the forward path and relative approach. It assigns lower priority to those on the sides with an oblique relative approach and disregards UAVs behind and not in the relative approach. The simulation results for a four-UAV team (re)formation problem confirm the efficacy of the proposed control scheme.
☆ ParticleFormer: A 3D Point Cloud World Model for Multi-Object, Multi-Material Robotic Manipulation
3D world models (i.e., learning-based 3D dynamics models) offer a promising approach to generalizable robotic manipulation by capturing the underlying physics of environment evolution conditioned on robot actions. However, existing 3D world models are primarily limited to single-material dynamics using a particle-based Graph Neural Network model, and often require time-consuming 3D scene reconstruction to obtain 3D particle tracks for training. In this work, we present ParticleFormer, a Transformer-based point cloud world model trained with a hybrid point cloud reconstruction loss, supervising both global and local dynamics features in multi-material, multi-object robot interactions. ParticleFormer captures fine-grained multi-object interactions between rigid, deformable, and flexible materials, trained directly from real-world robot perception data without an elaborate scene reconstruction. We demonstrate the model's effectiveness both in 3D scene forecasting tasks, and in downstream manipulation tasks using a Model Predictive Control (MPC) policy. In addition, we extend existing dynamics learning benchmarks to include diverse multi-material, multi-object interaction scenarios. We validate our method on six simulation and three real-world experiments, where it consistently outperforms leading baselines by achieving superior dynamics prediction accuracy and less rollout error in downstream visuomotor tasks. Experimental videos are available at https://particleformer.github.io/.
☆ Learning Motion Skills with Adaptive Assistive Curriculum Force in Humanoid Robots
Learning policies for complex humanoid tasks remains both challenging and compelling. Inspired by how infants and athletes rely on external support--such as parental walkers or coach-applied guidance--to acquire skills like walking, dancing, and performing acrobatic flips, we propose A2CF: Adaptive Assistive Curriculum Force for humanoid motion learning. A2CF trains a dual-agent system, in which a dedicated assistive force agent applies state-dependent forces to guide the robot through difficult initial motions and gradually reduces assistance as the robot's proficiency improves. Across three benchmarks--bipedal walking, choreographed dancing, and backflip--A2CF achieves convergence 30% faster than baseline methods, lowers failure rates by over 40%, and ultimately produces robust, support-free policies. Real-world experiments further demonstrate that adaptively applied assistive forces significantly accelerate the acquisition of complex skills in high-dimensional robotic control.
comment: 8 pages, 8 figures
☆ Minimizing Acoustic Noise: Enhancing Quiet Locomotion for Quadruped Robots in Indoor Applications IROS2025
Recent advancements in quadruped robot research have significantly improved their ability to traverse complex and unstructured outdoor environments. However, the issue of noise generated during locomotion is generally overlooked, which is critically important in noise-sensitive indoor environments, such as service and healthcare settings, where maintaining low noise levels is essential. This study aims to optimize the acoustic noise generated by quadruped robots during locomotion through the development of advanced motion control algorithms. To achieve this, we propose a novel approach that minimizes noise emissions by integrating optimized gait design with tailored control strategies. This method achieves an average noise reduction of approximately 8 dBA during movement, thereby enhancing the suitability of quadruped robots for deployment in noise-sensitive indoor environments. Experimental results demonstrate the effectiveness of this approach across various indoor settings, highlighting the potential of quadruped robots for quiet operation in noise-sensitive environments.
comment: 8 pages,6 figures, IROS2025
☆ Event-based Stereo Visual-Inertial Odometry with Voxel Map
The event camera, renowned for its high dynamic range and exceptional temporal resolution, is recognized as an important sensor for visual odometry. However, the inherent noise in event streams complicates the selection of high-quality map points, which critically determine the precision of state estimation. To address this challenge, we propose Voxel-ESVIO, an event-based stereo visual-inertial odometry system that utilizes voxel map management, which efficiently filter out high-quality 3D points. Specifically, our methodology utilizes voxel-based point selection and voxel-aware point management to collectively optimize the selection and updating of map points on a per-voxel basis. These synergistic strategies enable the efficient retrieval of noise-resilient map points with the highest observation likelihood in current frames, thereby ensureing the state estimation accuracy. Extensive evaluations on three public benchmarks demonstrate that our Voxel-ESVIO outperforms state-of-the-art methods in both accuracy and computational efficiency.
☆ SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
comment: 23 pages, 6 figures
☆ Automated Vehicles Should be Connected with Natural Language
Multi-agent collaborative driving promises improvements in traffic safety and efficiency through collective perception and decision making. However, existing communication media -- including raw sensor data, neural network features, and perception results -- suffer limitations in bandwidth efficiency, information completeness, and agent interoperability. Moreover, traditional approaches have largely ignored decision-level fusion, neglecting critical dimensions of collaborative driving. In this paper we argue that addressing these challenges requires a transition from purely perception-oriented data exchanges to explicit intent and reasoning communication using natural language. Natural language balances semantic density and communication bandwidth, adapts flexibly to real-time conditions, and bridges heterogeneous agent platforms. By enabling the direct communication of intentions, rationales, and decisions, it transforms collaborative driving from reactive perception-data sharing into proactive coordination, advancing safety, efficiency, and transparency in intelligent transportation systems.
☆ Time Invariant Sensor Tasking for Catalog Maintenance of LEO Space objects using Stochastic Geometry
Catalog maintenance of space objects by limited number of ground-based sensors presents a formidable challenging task to the space community. This article presents a methodology for time-invariant tracking and surveillance of space objects in low Earth orbit (LEO) by optimally directing ground sensors. Our methodology aims to maximize the expected number of space objects from a set of ground stations by utilizing concepts from stochastic geometry, particularly the Poisson point process. We have provided a systematic framework to understand visibility patterns and enhance the efficiency of tracking multiple objects simultaneously. Our approach contributes to more informed decision-making in space operations, ultimately supporting efforts to maintain safety and sustainability in LEO.
comment: This work has been accepted and presented at the 35th AAS/AIAA Space Flight Mechanics Meeting, 2025, Kaua'i, Hawai
♻ ☆ R4: rapid reproducible robotics research open hardware control system
A key component of any robot is the interface between robotics middleware software and physical motors. New robots often use arbitrary, messy mixtures of closed and open motor drivers and error-prone physical mountings, wiring, and connectors to interface them. There is a need for a standardizing OSH component to abstract this complexity, as Arduino did for interfacing to smaller components. We present a OSH printed circuit board to solve this problem once and for all. On the high-level side, it interfaces to Arduino Giga - acting as an unusually large and robust shield - and thus to existing open source software stacks. A ROS2 interface is provided. On the lower-level side, it interfaces to existing emerging standard open hardware including OSH motor drivers and relays, which can already be used to drive fully open hardware wheeled and arm robots. This enables the creation of a family of standardized, fully open hardware, fully reproducible, research platforms.
♻ ☆ Low-Cost Infrared Vision Systems for Improved Safety of Emergency Vehicle Operations Under Low-Visibility Conditions
This study investigates the potential of infrared (IR) camera technology to enhance driver safety for emergency vehicles operating in low-visibility conditions, particularly at night and in dense fog. Such environments significantly increase the risk of collisions, especially for tow trucks and snowplows that must remain operational in challenging conditions. Conventional driver assistance systems often struggle under these conditions due to limited visibility. In contrast, IR cameras, which detect the thermal signatures of obstacles, offer a promising alternative. The evaluation combines controlled laboratory experiments, real-world field tests, and surveys of emergency vehicle operators. In addition to assessing detection performance, the study examines the feasibility of retrofitting existing Department of Transportation (DoT) fleets with cost-effective IR-based driver assistance systems. Results underscore the utility of IR technology in enhancing driver awareness and provide data-driven recommendations for scalable deployment across legacy emergency vehicle fleets.
System/Control 17
☆ Power Flow Analysis of a 5-Bus Power System Based on Newton-Raphson Method
Load flow analysis is a fundamental technique used by electrical engineers to simulate and evaluate power system behavior under steady-state conditions. It enables efficient operation and control by determining how active and reactive power flows throughout the system. Selecting an appropriate solution method is critical to ensuring reliable and economical operation of power generation, transmission, and distribution networks. While the conventional loop method may be used in small-scale systems, it is limited by its reliance on impedance-based load data and its inability to scale to complex networks. In contrast, iterative techniques such as the Gauss-Seidel (GS) and Newton-Raphson (NR) methods are better suited for analyzing large systems. Of these, the NR method offers significant advantages due to its quadratic convergence and improved numerical stability. This study presents a power flow analysis of a 5-bus system using the Newton-Raphson approach. The system was modeled and simulated in PowerWorld Simulator (PWS), and a custom MATLAB implementation was developed to verify the results under a base case scenario. The comparative analysis demonstrates that the NR method provides accurate and robust solutions for power flow problems, making it well-suited for evaluating system performance under various operating conditions.
comment: 8 pages, 27 figures
☆ Predictor-Based Compensators for Networked Control Systems with Stochastic Delays and Sampling Intervals
The stochastic nature of time delays and sampling intervals in Networked Control Systems poses significant challenges for controller synthesis and analysis, often leading to conservative designs and degraded performance. This work presents a modeling approach for Linear Multiple-Input Multiple-Output Networked Control Systems and introduces a compensation scheme based on the Filtered Smith Predictor to mitigate the adverse effects of stochastic time delays on closed-loop performance. The proposed scheme is evaluated through numerical simulations of a well-established Cooperative Adaptive Cruise Control system. Results demonstrate that the compensator achieves near-ideal average closed-loop performance and significantly reduces response variability compared to a traditional Filtered Smith Predictor. Notably, it yields a 45% reduction in worst-case tracking error signal energy relative to an ideal baseline system with no time delays and constant sampling intervals.
comment: This work has been submitted to the IEEE for possible publication
☆ A Model Predictive Control Framework to Enhance Safety and Quality in Mobile Additive Manufacturing Systems
In recent years, the demand for customized, on-demand production has grown in the manufacturing sector. Additive Manufacturing (AM) has emerged as a promising technology to enhance customization capabilities, enabling greater flexibility, reduced lead times, and more efficient material usage. However, traditional AM systems remain constrained by static setups and human worker dependencies, resulting in long lead times and limited scalability. Mobile robots can improve the flexibility of production systems by transporting products to designated locations in a dynamic environment. By integrating AM systems with mobile robots, manufacturers can optimize travel time for preparatory tasks and distributed printing operations. Mobile AM robots have been deployed for on-site production of large-scale structures, but often neglect critical print quality metrics like surface roughness. Additionally, these systems do not have the precision necessary for producing small, intricate components. We propose a model predictive control framework for a mobile AM platform that ensures safe navigation on the plant floor while maintaining high print quality in a dynamic environment. Three case studies are used to test the feasibility and reliability of the proposed systems.
comment: 2025 IEEE 21st International Conference on Automation Science and Engineering
☆ Safe and Performant Deployment of Autonomous Systems via Model Predictive Control and Hamilton-Jacobi Reachability Analysis
While we have made significant algorithmic developments to enable autonomous systems to perform sophisticated tasks, it remains difficult for them to perform tasks effective and safely. Most existing approaches either fail to provide any safety assurances or substantially compromise task performance for safety. In this work, we develop a framework, based on model predictive control (MPC) and Hamilton-Jacobi (HJ) reachability, to optimize task performance for autonomous systems while respecting the safety constraints. Our framework guarantees recursive feasibility for the MPC controller, and it is scalable to high-dimensional systems. We demonstrate the effectiveness of our framework with two simulation studies using a 4D Dubins Car and a 6 Dof Kuka iiwa manipulator, and the experiments show that our framework significantly improves the safety constraints satisfaction of the systems over the baselines.
comment: RSS 2025 Workshop on Reliable Robotics
☆ ANN-Based Grid Impedance Estimation for Adaptive Gain Scheduling in VSG Under Dynamic Grid Conditions
In contrast to grid-following inverters, Virtual Synchronous Generators (VSGs) perform well under weak grid conditions but may become unstable when the grid is strong. Grid strength depends on grid impedance, which unfortunately varies over time. In this paper, we propose a novel adaptive gain-scheduling control scheme for VSGs. First, an Artificial Neural Network (ANN) estimates the fundamental-frequency grid impedance; then these estimates are fed into an adaptive gain-scheduling function to recalculate controller parameters under varying grid conditions. The proposed method is validated in Simulink and compared with a conventional VSG employing fixed controller gains. The results demonstrate that settling times and overshoot percentages remain consistent across different grid conditions. Additionally, previously unseen grid impedance values are estimated with high accuracy and minimal time delay, making the approach well suited for real-time gain-scheduling control.
comment: Paper was accepted for IEEE Energy Conversion Congress and Exposition (ECCE) 2025, Philadelphia, PA, USA
☆ Load Limiting Control for Component Life Extension
This paper presents the development of a novel life-extending control scheme for critical helicopter components subjected to significant fatigue loading. The primary objective is to synthesize a more efficient and less conservative life-extending control scheme than those currently available in the literature. The proposed Load Limiting Control (LLC) scheme is a viable solution that addresses several issues that current life-extending control schemes suffer from, such as the neglect of fatigue damage induced by the harmonic component of loads and the inability to distinguish between aggressive and non-aggressive maneuvers. The proposed LLC scheme treats desired harmonic load limits as limit boundaries and recasts the problem of load limiting as a vehicle limit by computing a Control Margin (CM) using a limit detection and avoidance module. The computed CM is used as a cue to the pilot. The limit detection and avoidance module comprises an optimization algorithm, a model predictive controller, and a computationally simple on-board dynamical model. Simulations were conducted to demonstrate the effectiveness of the LLC scheme in limiting harmonic pitch link loads during flight. One significant outcome is that, with sufficient training, the pilot can skillfully track the cue within 0.5 seconds of initiating the tracking task.
comment: Accepted for publication in Journal of Guidance, Control, and Dynamics, Vol 48 (2), 2025. Version of Record at DOI https://doi.org/10.2514/1.G007854
☆ Joint Trajectory and Resource Optimization for HAPs-SAR Systems with Energy-Aware Constraints
This paper investigates the joint optimization of trajectory planning and resource allocation for a high-altitude platform stations synthetic aperture radar (HAPs-SAR) system. To support real-time sensing and conserve the limited energy budget of the HAPs, the proposed framework assumes that the acquired radar data are transmitted in real time to a ground base station for SAR image reconstruction. A dynamic trajectory model is developed, and the power consumption associated with radar sensing, data transmission, and circular flight is comprehensively analyzed. In addition, solar energy harvesting is considered to enhance system sustainability. An energy-aware mixed-integer nonlinear programming (MINLP) problem is formulated to maximize radar beam coverage while satisfying operational constraints. To solve this challenging problem, a sub-optimal successive convex approximation (SCA)-based framework is proposed, incorporating iterative optimization and finite search. Simulation results validate the convergence of the proposed algorithm and demonstrate its effectiveness in balancing SAR performance, communication reliability, and energy efficiency. A final SAR imaging simulation on a 9-target lattice scenario further confirms the practical feasibility of the proposed solution.
☆ Revisiting Z Transform Laplace Inversion: To Correct flaws in Signal and System Theory
This paper revisits the classical formulation of the Z-transform and its relationship to the inverse Laplace transform (L-1), originally developed by Ragazzini in sampled-data theory. It identifies a longstanding mathematical oversight in standard derivations, which typically neglect the contribution from the infinite arc in the complex plane during inverse Laplace evaluation. This omission leads to inconsistencies, especially at discontinuities such as t = 0. By incorporating the full Bromwich contour, including all boundary contributions, we restore internal consistency between L-1 and the Z-transform, aligning the corrected L-1 with results from Discrete-Time Fourier Transform (DTFT) aliasing theory. Consequently, this necessitates a structural revision of the Z-transform, inverse Laplace transform, and the behavior of the Heaviside step function at discontinuities, providing a more accurate foundation for modeling and analysis of sampled-data systems.
comment: This work is to be submitted to IEEE transactions on automatic control
☆ Data-driven Implementations of Various Generalizations of Balanced Truncation
There exist two main frameworks for non-intrusive implementations of approximate balanced truncation: the quadrature-based framework and the ADI-based framework. Both approaches rely solely on samples of the transfer function to construct truncated balanced models, eliminating the need for access to the original model's state-space realization. Recently, the quadrature-based framework has been extended to various generalizations of balanced truncation, including positive-real balanced truncation, bounded-real balanced truncation, and balanced stochastic truncation. While this extension is theoretically nonintrusive-meaning it does not require the original state-space realization-it depends on samples of spectral factorizations of the transfer function. Since practical methods for obtaining such samples are currently unavailable, this extension remains largely a theoretical contribution. In this work, we present a non-intrusive ADI-type framework for these generalized balanced truncation methods that requires only samples of the original transfer function for implementation.
☆ External Data-Enhanced Meta-Representation for Adaptive Probabilistic Load Forecasting
Accurate residential load forecasting is critical for power system reliability with rising renewable integration and demand-side flexibility. However, most statistical and machine learning models treat external factors, such as weather, calendar effects, and pricing, as extra input, ignoring their heterogeneity, and thus limiting the extraction of useful external information. We propose a paradigm shift: external data should serve as meta-knowledge to dynamically adapt the forecasting model itself. Based on this idea, we design a meta-representation framework using hypernetworks that modulate selected parameters of a base Deep Learning (DL) model in response to external conditions. This provides both expressivity and adaptability. We further integrate a Mixture-of-Experts (MoE) mechanism to enhance efficiency through selective expert activation, while improving robustness by filtering redundant external inputs. The resulting model, dubbed as a Meta Mixture of Experts for External data (M2oE2), achieves substantial improvements in accuracy and robustness with limited additional overhead, outperforming existing state-of-the-art methods in diverse load datasets. The dataset and source code are publicly available at https://github.com/haorandd/M2oE2\_load\_forecast.git.
comment: 10 pages
☆ Extreme Scenario Characterization for High Renewable Energy Penetrated Power Systems over Long Time Scales
Power systems with high renewable energy penetration are highly influenced by weather conditions, often facing significant challenges such as persistent power shortages and severe power fluctuations over long time scales. This paper addresses the critical need for effective characterization of extreme scenarios under these situations. First, novel risk indices are proposed to quantify the severity of continuous power shortages and substantial power fluctuations over long-term operations. These indices are independent of specific scheduling strategies and incorporate the system's resource regulation capabilities. By employing a filtering-based approach, the proposed indices focus on retaining key characteristics of continuous power shortages and fluctuation events, enabling the identification of extreme scenarios on long time scales. Secondly, an extreme scenario generation method is developed using Gaussian mixture models and sequential Monte Carlo simulation. Especially, this method periodically evaluates the severity of generated scenarios based on the defined risk indices, retaining extreme scenarios while discarding less critical ones. Finally, case studies based on real-world data demonstrate the efficacy of the proposed method. The results confirm that integrating the identified extreme scenarios significantly enhances the system's ability to ensure long-term security and reliability under high renewable energy penetration.
comment: Accepted for publication in 2025 IEEE Power & Energy Society General Meeting
☆ Time Invariant Sensor Tasking for Catalog Maintenance of LEO Space objects using Stochastic Geometry
Catalog maintenance of space objects by limited number of ground-based sensors presents a formidable challenging task to the space community. This article presents a methodology for time-invariant tracking and surveillance of space objects in low Earth orbit (LEO) by optimally directing ground sensors. Our methodology aims to maximize the expected number of space objects from a set of ground stations by utilizing concepts from stochastic geometry, particularly the Poisson point process. We have provided a systematic framework to understand visibility patterns and enhance the efficiency of tracking multiple objects simultaneously. Our approach contributes to more informed decision-making in space operations, ultimately supporting efforts to maintain safety and sustainability in LEO.
comment: This work has been accepted and presented at the 35th AAS/AIAA Space Flight Mechanics Meeting, 2025, Kaua'i, Hawai
♻ ☆ A Global Coordinate-Free Approach to Invariant Contraction on Homogeneous Manifolds
In this work, we provide a global condition for contraction with respect to an invariant Riemannian metric on reductive homogeneous spaces. Using left-invariant frames, vector fields on the manifold are horizontally lifted to the ambient Lie group, where the Levi-Civita connection is globally characterized as a real matrix multiplication. By linearizing in these left-invariant frames, we characterize contraction using matrix measures on real square matrices, avoiding the use of local charts. Applying this global condition, we provide a necessary condition for a prescribed subset of the manifold to possibly admit a contracting system, which accounts for the underlying geometry of the invariant metric. Applied to the sphere, this condition implies that no great circle can be contained in a contraction region. Finally, we apply our results to compute reachable sets for an attitude control problem.
♻ ☆ Deep Multi-Manifold Transformation Based Multivariate Time Series Fault Detection
Unsupervised fault detection in multivariate time series plays a vital role in ensuring the stable operation of complex systems. Traditional methods often assume that normal data follow a single Gaussian distribution and identify anomalies as deviations from this distribution. {\color{black} However, this simplified assumption fails to capture the diversity and structural complexity of real-world time series, which can lead to misjudgments and reduced detection performance in practical applications. To address this issue, we propose a new method that combines a neighborhood-driven data augmentation strategy with a multi-manifold representation learning framework.} By incorporating information from local neighborhoods, the augmentation module can simulate contextual variations of normal data, enhancing the model's adaptability to distributional changes. In addition, we design a structure-aware feature learning approach that encourages natural clustering of similar patterns in the feature space while maintaining sufficient distinction between different operational states. Extensive experiments on several public benchmark datasets demonstrate that our method achieves superior performance in terms of both accuracy and robustness, showing strong potential for generalization and real-world deployment.
comment: 11 pages, 7 figures, accepted by TNNLS
♻ ☆ Practical Challenges for Reliable RIS Deployment in Heterogeneous Multi-Operator Multi-Band Networks
Reconfigurable intelligent surfaces (RISs) have been introduced as arrays of nearly passive elements with software-tunable electromagnetic properties to dynamically manipulate the reflection/transmission of radio signals. Research works in this area are focused on two applications, namely {\it user-assist} RIS aiming at tuning the RIS to enhance the quality-of-service (QoS) of target users, and the {\it malicious} RIS aiming for an attacker to degrade the QoS at victim receivers through generating {\it intended} destructive interference. While both user-assist and malicious RIS applications have been explored extensively, the impact of RIS deployments on imposing {\it unintended} interference on various wireless user-equipments (EUs) remains underexplored. This paper investigates the challenges of integrating RISs into multi-carrier, multi-user, and multi-operator networks. We discuss how RIS deployments intended to benefit specific users can negatively impact other users served at various carrier frequencies through different network operators. While not an ideal solution, we discuss how ultra-narrowband metasurfaces can be incorporated into the manufacturing of RISs to mitigate some challenges of RIS deployment in wireless networks. We also present a simulation scenario to illuminate some practical challenges associated with the deployment of RISs in shared public environments.
♻ ☆ Interaction Identification of a Heterogeneous NDS with Quadratic-Bilinear Subsystems
This paper attacks time-domain identification for interaction parameters of a heterogeneous networked dynamic system (NDS), with each of its subsystems being described by a continuous-time descriptor quadratic-bilinear time-invariant (QBTI) model. The obtained results can also be applied to parameter estimations for a lumped QBTI system. No restrictions are put on the sampling rate. Explicit formulas are derived respectively for the transient and steady-state responses of the NDS, provided that the probing signal is generated by a linear time invariant (LTI) system. Some relations have been derived between the NDS steady-state response and its frequency domain input-output mappings. These relations reveal that the value of some NDS associated generalized TFMs can in principle be estimated at almost any interested point of the imaginary axis from time-domain input-output experimental data, as well as its derivatives and a right tangential interpolation along an arbitrary direction. Based on these relations, an estimation algorithm is suggested respectively for the parameters of the NDS and the values of these generalized TFMs. A numerical example is included to illustrate characteristics of the suggested estimation algorithms.
comment: 13 pages, 5 figures
♻ ☆ Efficient malicious information detection method based on set partitioning for large-scale Internet of Things
With the large-scale integration of Internet of Things (IoT) into enterprise information management systems, organizations are pursuing digital transformation that hinges on real-time data insights-and yet face escalating security and governance risks. Detecting and responding to threats at scale without impairing system efficiency has therefore become a critical information-management and decision-support challenge for today's executives. This paper develops a distributed, gain-based anomaly-detection framework tailored to IoT-enabled enterprise systems, underpinned by an optimized sensor-subset partitioning strategy. Starting from the perspective of set partitioning strategies, this study analyzes the key factor that contributes to the performance differences between distributed and centralized algorithms. By examining the gain mutual influence of sensor subsets, an optimal set partitioning strategy is designed to minimize inter-subset mutual influence while enhancing intra-subset correlation. To further reduce the computational cost of gain updates, a suboptimal partitioning strategy based on Grassmann distance is proposed, improving the efficiency of selecting suspicious sensors. Theoretical analysis demonstrates that this approach effectively reduces the computational cost of gain updates while maintaining detection performance. Finally, simulation results validate the effectiveness of the proposed method in enhancing attack detection performance.
comment: 21 pages, 5 figures
Robotics 19
☆ Scenario-Based Hierarchical Reinforcement Learning for Automated Driving Decision Making
Developing decision-making algorithms for highly automated driving systems remains challenging, since these systems have to operate safely in an open and complex environments. Reinforcement Learning (RL) approaches can learn comprehensive decision policies directly from experience and already show promising results in simple driving tasks. However, current approaches fail to achieve generalizability for more complex driving tasks and lack learning efficiency. Therefore, we present Scenario-based Automated Driving Reinforcement Learning (SAD-RL), the first framework that integrates Reinforcement Learning (RL) of hierarchical policy in a scenario-based environment. A high-level policy selects maneuver templates that are evaluated and executed by a low-level control logic. The scenario-based environment allows to control the training experience for the agent and to explicitly introduce challenging, but rate situations into the training process. Our experiments show that an agent trained using the SAD-RL framework can achieve safe behaviour in easy as well as challenging situations efficiently. Our ablation studies confirmed that both HRL and scenario diversity are essential for achieving these results.
comment: 6 pages, 10 figures, submitted to a conference
☆ SPICE-HL3: Single-Photon, Inertial, and Stereo Camera dataset for Exploration of High-Latitude Lunar Landscapes
Exploring high-latitude lunar regions presents an extremely challenging visual environment for robots. The low sunlight elevation angle and minimal light scattering result in a visual field dominated by a high dynamic range featuring long, dynamic shadows. Reproducing these conditions on Earth requires sophisticated simulators and specialized facilities. We introduce a unique dataset recorded at the LunaLab from the SnT - University of Luxembourg, an indoor test facility designed to replicate the optical characteristics of multiple lunar latitudes. Our dataset includes images, inertial measurements, and wheel odometry data from robots navigating seven distinct trajectories under multiple illumination scenarios, simulating high-latitude lunar conditions from dawn to night time with and without the aid of headlights, resulting in 88 distinct sequences containing a total of 1.3M images. Data was captured using a stereo RGB-inertial sensor, a monocular monochrome camera, and for the first time, a novel single-photon avalanche diode (SPAD) camera. We recorded both static and dynamic image sequences, with robots navigating at slow (5 cm/s) and fast (50 cm/s) speeds. All data is calibrated, synchronized, and timestamped, providing a valuable resource for validating perception tasks from vision-based autonomous navigation to scientific imaging for future lunar missions targeting high-latitude regions or those intended for robots operating across perceptually degraded environments. The dataset can be downloaded from https://zenodo.org/records/13970078?preview=1, and a visual overview is available at https://youtu.be/d7sPeO50_2I. All supplementary material can be found at https://github.com/spaceuma/spice-hl3.
comment: 10 pages, 8 figures, dataset
☆ Energy-Constrained Resilient Multi-Robot Coverage Control
The problem of multi-robot coverage control becomes significantly challenging when multiple robots leave the mission space simultaneously to charge their batteries, disrupting the underlying network topology for communication and sensing. To address this, we propose a resilient network design and control approach that allows robots to achieve the desired coverage performance while satisfying energy constraints and maintaining network connectivity throughout the mission. We model the combined motion, energy, and network dynamics of the multirobot systems (MRS) as a hybrid system with three modes, i.e., coverage, return-to-base, and recharge, respectively. We show that ensuring the energy constraints can be transformed into designing appropriate guard conditions for mode transition between each of the three modes. Additionally, we present a systematic procedure to design, maintain, and reconfigure the underlying network topology using an energy-aware bearing rigid network design, enhancing the structural resilience of the MRS even when a subset of robots departs to charge their batteries. Finally, we validate our proposed method using numerical simulations.
comment: 6 pages, 4 figures
☆ Safe Reinforcement Learning with a Predictive Safety Filter for Motion Planning and Control: A Drifting Vehicle Example
Autonomous drifting is a complex and crucial maneuver for safety-critical scenarios like slippery roads and emergency collision avoidance, requiring precise motion planning and control. Traditional motion planning methods often struggle with the high instability and unpredictability of drifting, particularly when operating at high speeds. Recent learning-based approaches have attempted to tackle this issue but often rely on expert knowledge or have limited exploration capabilities. Additionally, they do not effectively address safety concerns during learning and deployment. To overcome these limitations, we propose a novel Safe Reinforcement Learning (RL)-based motion planner for autonomous drifting. Our approach integrates an RL agent with model-based drift dynamics to determine desired drift motion states, while incorporating a Predictive Safety Filter (PSF) that adjusts the agent's actions online to prevent unsafe states. This ensures safe and efficient learning, and stable drift operation. We validate the effectiveness of our method through simulations on a Matlab-Carsim platform, demonstrating significant improvements in drift performance, reduced tracking errors, and computational efficiency compared to traditional methods. This strategy promises to extend the capabilities of autonomous vehicles in safety-critical maneuvers.
☆ Hierarchical Vision-Language Planning for Multi-Step Humanoid Manipulation
Enabling humanoid robots to reliably execute complex multi-step manipulation tasks is crucial for their effective deployment in industrial and household environments. This paper presents a hierarchical planning and control framework designed to achieve reliable multi-step humanoid manipulation. The proposed system comprises three layers: (1) a low-level RL-based controller responsible for tracking whole-body motion targets; (2) a mid-level set of skill policies trained via imitation learning that produce motion targets for different steps of a task; and (3) a high-level vision-language planning module that determines which skills should be executed and also monitors their completion in real-time using pretrained vision-language models (VLMs). Experimental validation is performed on a Unitree G1 humanoid robot executing a non-prehensile pick-and-place task. Over 40 real-world trials, the hierarchical system achieved a 72.5% success rate in completing the full manipulation sequence. These experiments confirm the feasibility of the proposed hierarchical system, highlighting the benefits of VLM-based skill planning and monitoring for multi-step manipulation scenarios. See https://vlp-humanoid.github.io/ for video demonstrations of the policy rollout.
comment: Accepted at the RSS 2025 Workshop on Robot Planning in the Era of Foundation Models
☆ SPI-BoTER: Error Compensation for Industrial Robots via Sparse Attention Masking and Hybrid Loss with Spatial-Physical Information
The widespread application of industrial robots in fields such as cutting and welding has imposed increasingly stringent requirements on the trajectory accuracy of end-effectors. However, current error compensation methods face several critical challenges, including overly simplified mechanism modeling, a lack of physical consistency in data-driven approaches, and substantial data requirements. These issues make it difficult to achieve both high accuracy and strong generalization simultaneously. To address these challenges, this paper proposes a Spatial-Physical Informed Attention Residual Network (SPI-BoTER). This method integrates the kinematic equations of the robotic manipulator with a Transformer architecture enhanced by sparse self-attention masks. A parameter-adaptive hybrid loss function incorporating spatial and physical information is employed to iteratively optimize the network during training, enabling high-precision error compensation under small-sample conditions. Additionally, inverse joint angle compensation is performed using a gradient descent-based optimization method. Experimental results on a small-sample dataset from a UR5 robotic arm (724 samples, with a train:test:validation split of 8:1:1) demonstrate the superior performance of the proposed method. It achieves a 3D absolute positioning error of 0.2515 mm with a standard deviation of 0.15 mm, representing a 35.16\% reduction in error compared to conventional deep neural network (DNN) methods. Furthermore, the inverse angle compensation algorithm converges to an accuracy of 0.01 mm within an average of 147 iterations. This study presents a solution that combines physical interpretability with data adaptability for high-precision control of industrial robots, offering promising potential for the reliable execution of precision tasks in intelligent manufacturing.
☆ Single-Frame Point-Pixel Registration via Supervised Cross-Modal Feature Matching
Point-pixel registration between LiDAR point clouds and camera images is a fundamental yet challenging task in autonomous driving and robotic perception. A key difficulty lies in the modality gap between unstructured point clouds and structured images, especially under sparse single-frame LiDAR settings. Existing methods typically extract features separately from point clouds and images, then rely on hand-crafted or learned matching strategies. This separate encoding fails to bridge the modality gap effectively, and more critically, these methods struggle with the sparsity and noise of single-frame LiDAR, often requiring point cloud accumulation or additional priors to improve reliability. Inspired by recent progress in detector-free matching paradigms (e.g. MatchAnything), we revisit the projection-based approach and introduce the detector-free framework for direct point-pixel matching between LiDAR and camera views. Specifically, we project the LiDAR intensity map into a 2D view from the LiDAR perspective and feed it into an attention-based detector-free matching network, enabling cross-modal correspondence estimation without relying on multi-frame accumulation. To further enhance matching reliability, we introduce a repeatability scoring mechanism that acts as a soft visibility prior. This guides the network to suppress unreliable matches in regions with low intensity variation, improving robustness under sparse input. Extensive experiments on KITTI, nuScenes, and MIAS-LCEC-TF70 benchmarks demonstrate that our method achieves state-of-the-art performance, outperforming prior approaches on nuScenes (even those relying on accumulated point clouds), despite using only single-frame LiDAR.
☆ Learning Efficient Robotic Garment Manipulation with Standardization
Garment manipulation is a significant challenge for robots due to the complex dynamics and potential self-occlusion of garments. Most existing methods of efficient garment unfolding overlook the crucial role of standardization of flattened garments, which could significantly simplify downstream tasks like folding, ironing, and packing. This paper presents APS-Net, a novel approach to garment manipulation that combines unfolding and standardization in a unified framework. APS-Net employs a dual-arm, multi-primitive policy with dynamic fling to quickly unfold crumpled garments and pick-and-place (p and p) for precise alignment. The purpose of garment standardization during unfolding involves not only maximizing surface coverage but also aligning the garment's shape and orientation to predefined requirements. To guide effective robot learning, we introduce a novel factorized reward function for standardization, which incorporates garment coverage (Cov), keypoint distance (KD), and intersection-over-union (IoU) metrics. Additionally, we introduce a spatial action mask and an Action Optimized Module to improve unfolding efficiency by selecting actions and operation points effectively. In simulation, APS-Net outperforms state-of-the-art methods for long sleeves, achieving 3.9 percent better coverage, 5.2 percent higher IoU, and a 0.14 decrease in KD (7.09 percent relative reduction). Real-world folding tasks further demonstrate that standardization simplifies the folding process. Project page: see https://hellohaia.github.io/APS/
☆ Robust Peg-in-Hole Assembly under Uncertainties via Compliant and Interactive Contact-Rich Manipulation
Robust and adaptive robotic peg-in-hole assembly under tight tolerances is critical to various industrial applications. However, it remains an open challenge due to perceptual and physical uncertainties from contact-rich interactions that easily exceed the allowed clearance. In this paper, we study how to leverage contact between the peg and its matching hole to eliminate uncertainties in the assembly process under unstructured settings. By examining the role of compliance under contact constraints, we present a manipulation system that plans collision-inclusive interactions for the peg to 1) iteratively identify its task environment to localize the target hole and 2) exploit environmental contact constraints to refine insertion motions into the target hole without relying on precise perception, enabling a robust solution to peg-in-hole assembly. By conceptualizing the above process as the composition of funneling in different state spaces, we present a formal approach to constructing manipulation funnels as an uncertainty-absorbing paradigm for peg-in-hole assembly. The proposed system effectively generalizes across diverse peg-in-hole scenarios across varying scales, shapes, and materials in a learning-free manner. Extensive experiments on a NIST Assembly Task Board (ATB) and additional challenging scenarios validate its robustness in real-world applications.
comment: Accepted to Robotics: Science and Systems (RSS) 2025; 16 pages, 10 figures
☆ RoboPearls: Editable Video Simulation for Robot Manipulation ICCV 2025
The development of generalist robot manipulation policies has seen significant progress, driven by large-scale demonstration data across diverse environments. However, the high cost and inefficiency of collecting real-world demonstrations hinder the scalability of data acquisition. While existing simulation platforms enable controlled environments for robotic learning, the challenge of bridging the sim-to-real gap remains. To address these challenges, we propose RoboPearls, an editable video simulation framework for robotic manipulation. Built on 3D Gaussian Splatting (3DGS), RoboPearls enables the construction of photo-realistic, view-consistent simulations from demonstration videos, and supports a wide range of simulation operators, including various object manipulations, powered by advanced modules like Incremental Semantic Distillation (ISD) and 3D regularized NNFM Loss (3D-NNFM). Moreover, by incorporating large language models (LLMs), RoboPearls automates the simulation production process in a user-friendly manner through flexible command interpretation and execution. Furthermore, RoboPearls employs a vision-language model (VLM) to analyze robotic learning issues to close the simulation loop for performance enhancement. To demonstrate the effectiveness of RoboPearls, we conduct extensive experiments on multiple datasets and scenes, including RLBench, COLOSSEUM, Ego4D, Open X-Embodiment, and a real-world robot, which demonstrate our satisfactory simulation performance.
comment: ICCV 2025
♻ ☆ BFA: Best-Feature-Aware Fusion for Multi-View Fine-grained Manipulation
In real-world scenarios, multi-view cameras are typically employed for fine-grained manipulation tasks. Existing approaches (e.g., ACT) tend to treat multi-view features equally and directly concatenate them for policy learning. However, it will introduce redundant visual information and bring higher computational costs, leading to ineffective manipulation. For a fine-grained manipulation task, it tends to involve multiple stages while the most contributed view for different stages is varied over time. In this paper, we propose a plug-and-play best-feature-aware (BFA) fusion strategy for multi-view manipulation tasks, which is adaptable to various policies. Built upon the visual backbone of the policy network, we design a lightweight network to predict the importance score of each view. Based on the predicted importance scores, the reweighted multi-view features are subsequently fused and input into the end-to-end policy network, enabling seamless integration. Notably, our method demonstrates outstanding performance in fine-grained manipulations. Experimental results show that our approach outperforms multiple baselines by 22-46% success rate on different tasks. Our work provides new insights and inspiration for tackling key challenges in fine-grained manipulations.
comment: 8 pages, 4 figures
♻ ☆ Can Robots "Taste" Grapes? Estimating SSC with Simple RGB Sensors
In table grape cultivation, harvesting depends on accurately assessing fruit quality. While some characteristics, like color, are visible, others, such as Soluble Solid Content (SSC), or sugar content measured in degrees Brix ({\deg}Brix), require specific tools. SSC is a key quality factor that correlates with ripeness, but lacks a direct causal relationship with color. Hyperspectral cameras can estimate SSC with high accuracy under controlled laboratory conditions, but their practicality in field environments is limited. This study investigates the potential of simple RGB sensors under uncontrolled lighting to estimate SSC and color, enabling cost-effective, robot-assisted harvesting. Over the 2021 and 2022 summer seasons, we collected grape images with corresponding SSC and color labels to evaluate algorithmic solutions for SSC estimation, specifically testing for cross-seasonal and cross-device robustness. We propose two approaches: a computationally efficient histogram-based method for resource-constrained robots and a Deep Neural Network (DNN) model for more complex applications. Our results demonstrate high performance, with the DNN model achieving a Mean Absolute Error (MAE) as low as $1.05$ {\deg}Brix on a challenging cross-device test set. The lightweight histogram-based method also proved effective, reaching an MAE of $1.46$ {\deg}Brix. These results are highly competitive with those from hyperspectral systems, which report errors in the $1.27$--$2.20$ {\deg}Brix range in similar field applications.
♻ ☆ Environment-Driven Online LiDAR-Camera Extrinsic Calibration
LiDAR-camera extrinsic calibration (LCEC) is crucial for multi-modal data fusion in mechatronics. Existing methods, whether target-based or target-free, typically rely on customized calibration targets or fixed scene types, limiting their practicality in real-world applications. To address these challenges, we introduce EdO-LCEC, the first environment-driven online calibration approach. Unlike traditional target-free methods, EdO-LCEC observes the feature density of the application environment through a generalizable scene discriminator. Based on this feature density, EdO-LCEC extracts LiDAR intensity and depth features from varying perspectives to achieve higher calibration accuracy. To overcome the challenges of cross-modal feature matching between LiDAR and camera, we propose dual-path correspondence matching (DPCM), which leverages both structural and textural consistency for reliable 3D-2D correspondences. Additionally, our approach models the calibration process as a joint optimization problem utilizing global constraints from multiple views and scenes to enhance accuracy. Extensive experiments on real-world datasets demonstrate that EdO-LCEC outperforms state-of-the-art methods, particularly in sparse or partially overlapping sensor views.
♻ ☆ SSFold: Learning to Fold Arbitrary Crumpled Cloth Using Graph Dynamics from Human Demonstration
Robotic cloth manipulation faces challenges due to the fabric's complex dynamics and the high dimensionality of configuration spaces. Previous methods have largely focused on isolated smoothing or folding tasks and overly reliant on simulations, often failing to bridge the significant sim-to-real gap in deformable object manipulation. To overcome these challenges, we propose a two-stream architecture with sequential and spatial pathways, unifying smoothing and folding tasks into a single adaptable policy model that accommodates various cloth types and states. The sequential stream determines the pick and place positions for the cloth, while the spatial stream, using a connectivity dynamics model, constructs a visibility graph from partial point cloud data of the self-occluded cloth, allowing the robot to infer the cloth's full configuration from incomplete observations. To bridge the sim-to-real gap, we utilize a hand tracking detection algorithm to gather and integrate human demonstration data into our novel end-to-end neural network, improving real-world adaptability. Our method, validated on a UR5 robot across four distinct cloth folding tasks with different goal shapes, consistently achieves folded states from arbitrary crumpled initial configurations, with success rates of 99\%, 99\%, 83\%, and 67\%. It outperforms existing state-of-the-art cloth manipulation techniques and demonstrates strong generalization to unseen cloth with diverse colors, shapes, and stiffness in real-world experiments.Videos and source code are available at: https://zcswdt.github.io/SSFold/
♻ ☆ GRaD-Nav: Efficiently Learning Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics
Autonomous visual navigation is an essential element in robot autonomy. Reinforcement learning (RL) offers a promising policy training paradigm. However existing RL methods suffer from high sample complexity, poor sim-to-real transfer, and limited runtime adaptability to navigation scenarios not seen during training. These problems are particularly challenging for drones, with complex nonlinear and unstable dynamics, and strong dynamic coupling between control and perception. In this paper, we propose a novel framework that integrates 3D Gaussian Splatting (3DGS) with differentiable deep reinforcement learning (DDRL) to train vision-based drone navigation policies. By leveraging high-fidelity 3D scene representations and differentiable simulation, our method improves sample efficiency and sim-to-real transfer. Additionally, we incorporate a Context-aided Estimator Network (CENet) to adapt to environmental variations at runtime. Moreover, by curriculum training in a mixture of different surrounding environments, we achieve in-task generalization, the ability to solve new instances of a task not seen during training. Drone hardware experiments demonstrate our method's high training efficiency compared to state-of-the-art RL methods, zero shot sim-to-real transfer for real robot deployment without fine tuning, and ability to adapt to new instances within the same task class (e.g. to fly through a gate at different locations with different distractors in the environment). Our simulator and training framework are open-sourced at: https://github.com/Qianzhong-Chen/grad_nav.
♻ ☆ Multi Layered Autonomy and AI Ecologies in Robotic Art Installations
This paper presents Symbiosis of Agents, is a large-scale installation by Baoyang Chen (baoyangchen.com), that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama. Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.
♻ ☆ AsymDex: Asymmetry and Relative Coordinates for RL-based Bimanual Dexterity
We present Asymmetric Dexterity (AsymDex), a novel and simple reinforcement learning (RL) framework that can efficiently learn a large class of bimanual skills in multi-fingered hands without relying on demonstrations. Two crucial insights enable AsymDex to reduce the observation and action space dimensions and improve sample efficiency. First, true ambidexterity is rare in humans and most of us exhibit strong "handedness". Inspired by this observation, we assign complementary roles to each hand: the facilitating hand repositions and reorients one object, while the dominant hand performs complex manipulations to achieve the desired result (e.g., opening a bottle cap, or pouring liquids). Second, controlling the relative motion between the hands is crucial for coordination and synchronization of the two hands. As such, we design relative observation and action spaces and leverage a relative-pose tracking controller. Further, we propose a two-phase decomposition in which AsymDex can be readily integrated with recent advances in grasp learning to facilitate both the acquisition and manipulation of objects using two hands. Unlike existing RL-based methods for bimanual dexterity with multi-fingered hands, which are either sample inefficient or tailored to a specific task, AsymDex can efficiently learn a wide variety of bimanual skills that exhibit asymmetry. Detailed experiments on seven asymmetric bimanual dexterous manipulation tasks (four simulated and three real-world) reveal that AsymDex consistently outperforms strong baselines that challenge our design choices. The project website is at https://sites.google.com/view/asymdex-2025/.
comment: WCBM @ RSS 2025 Spotlight Presentation
♻ ☆ MapNav: A Novel Memory Representation via Annotated Semantic Maps for VLM-based Vision-and-Language Navigation
Vision-and-language navigation (VLN) is a key task in Embodied AI, requiring agents to navigate diverse and unseen environments while following natural language instructions. Traditional approaches rely heavily on historical observations as spatio-temporal contexts for decision making, leading to significant storage and computational overhead. In this paper, we introduce MapNav, a novel end-to-end VLN model that leverages Annotated Semantic Map (ASM) to replace historical frames. Specifically, our approach constructs a top-down semantic map at the start of each episode and update it at each timestep, allowing for precise object mapping and structured navigation information. Then, we enhance this map with explicit textual labels for key regions, transforming abstract semantics into clear navigation cues and generate our ASM. MapNav agent using the constructed ASM as input, and use the powerful end-to-end capabilities of VLM to empower VLN. Extensive experiments demonstrate that MapNav achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, validating the effectiveness of our method. Moreover, we will release our ASM generation source code and dataset to ensure reproducibility, contributing valuable resources to the field. We believe that our proposed MapNav can be used as a new memory representation method in VLN, paving the way for future research in this field.
♻ ☆ Bimanual Regrasp Planning and Control for Active Reduction of Object Pose Uncertainty
Precisely grasping an object is a challenging task due to pose uncertainties. Conventional methods have used cameras and fixtures to reduce object uncertainty. They are effective but require intensive preparation, such as designing jigs based on the object geometry and calibrating cameras with high-precision tools fabricated using lasers. In this study, we propose a method to reduce the uncertainty of the position and orientation of a grasped object without using a fixture or a camera. Our method is based on the concept that the flat finger pads of a parallel gripper can reduce uncertainty along its opening/closing direction through flat surface contact. Three orthogonal grasps by parallel grippers with flat finger pads collectively constrain an object's position and orientation to a unique state. Guided by the concepts, we develop a regrasp planning and admittance control approach that sequentially finds and leverages three orthogonal grasps of two robotic arms to actively reduce uncertainties in the object pose. We evaluated the proposed method on different initial object uncertainties and verified that it had good repeatability. The deviation levels of the experimental trials were on the same order of magnitude as those of an optical tracking system, demonstrating strong relative inference performance.
System/Control 23
☆ Fragile, Robust, and Antifragile: A Perspective from Parameter Responses in Reinforcement Learning Under Stress
This paper explores Reinforcement learning (RL) policy robustness by systematically analyzing network parameters under internal and external stresses. Inspired by synaptic plasticity in neuroscience, synaptic filtering introduces internal stress by selectively perturbing parameters, while adversarial attacks apply external stress through modified agent observations. This dual approach enables the classification of parameters as fragile, robust, or antifragile, based on their influence on policy performance in clean and adversarial settings. Parameter scores are defined to quantify these characteristics, and the framework is validated on PPO-trained agents in Mujoco continuous control environments. The results highlight the presence of antifragile parameters that enhance policy performance under stress, demonstrating the potential of targeted filtering techniques to improve RL policy adaptability. These insights provide a foundation for future advancements in the design of robust and antifragile RL systems.
☆ A Reinforcement Learning Approach for Optimal Control in Microgrids
The increasing integration of renewable energy sources (RESs) is transforming traditional power grid networks, which require new approaches for managing decentralized energy production and consumption. Microgrids (MGs) provide a promising solution by enabling localized control over energy generation, storage, and distribution. This paper presents a novel reinforcement learning (RL)-based methodology for optimizing microgrid energy management. Specifically, we propose an RL agent that learns optimal energy trading and storage policies by leveraging historical data on energy production, consumption, and market prices. A digital twin (DT) is used to simulate the energy storage system dynamics, incorporating degradation factors to ensure a realistic emulation of the analysed setting. Our approach is validated through an experimental campaign using real-world data from a power grid located in the Italian territory. The results indicate that the proposed RL-based strategy outperforms rule-based methods and existing RL benchmarks, offering a robust solution for intelligent microgrid management.
comment: 8 pages, accepted to International Joint Conference on Neural Networks 2025
☆ Resilient-Native and Intelligent Next-Generation Wireless Systems: Key Enablers, Foundations, and Applications
Just like power, water, and transportation systems, wireless networks are a crucial societal infrastructure. As natural and human-induced disruptions continue to grow, wireless networks must be resilient. This requires them to withstand and recover from unexpected adverse conditions, shocks, unmodeled disturbances and cascading failures. Unlike robustness and reliability, resilience is based on the understanding that disruptions will inevitably happen. Resilience, as elasticity, focuses on the ability to bounce back to favorable states, while resilience as plasticity involves agents and networks that can flexibly expand their states and hypotheses through real-time adaptation and reconfiguration. This situational awareness and active preparedness, adapting world models and counterfactually reasoning about potential system failures and the best responses, is a core aspect of resilience. This article will first disambiguate resilience from reliability and robustness, before delving into key mathematical foundations of resilience grounded in abstraction, compositionality and emergence. Subsequently, we focus our attention on a plethora of techniques and methodologies pertaining to the unique characteristics of resilience, as well as their applications through a comprehensive set of use cases. Ultimately, the goal of this paper is to establish a unified foundation for understanding, modeling, and engineering resilience in wireless communication systems, while laying a roadmap for the next-generation of resilient-native and intelligent wireless systems.
☆ Orthogonal Frequency Division Multiplexing Continuous Variable Terahertz Quantum Key Distribution
We propose a novel continuous-variable quantum key distribution (CVQKD) protocol that employs orthogonal frequency-division multiplexing (OFDM) in the terahertz (THz) band to enable high-throughput and secure quantum communication. By encoding quantum information across multiple subcarriers, the protocol enhances spectral efficiency and mitigates channel dispersion and atmospheric attenuation. We present a comprehensive security analysis under collective Gaussian attacks, considering both terrestrial free-space channels, accounting for humidity-induced absorption, and inter-satellite links, incorporating realistic intermodulation noise. Simulations show secret key rates (SKR) reaching ~72 bits per channel use in open-air conditions. While intermodulation noise imposes trade-offs, optimised modulation variance enables resilience and secure communication range. The maximum terrestrial quantum link extends up to 4.5 m due to atmospheric THz absorption, whereas inter-satellite links can support secure communication over distances exceeding 100 km, owing to minimal propagation channel losses in space. We evaluate the practical implementation of our protocol using recently developed on-chip coherent THz sources based on superconducting Josephson junctions. These compact, voltage-tunable emitters produce wideband coherent radiation, making them ideal candidates for integration in scalable quantum networks. By incorporating their characteristics into our simulations, we assess secure key generation under various environmental conditions. Our results show secure communication over distances up to 3 m in open air, and up to 26 km in cryogenic or vacuum environments. This work advances the prospect of compact, high-capacity CVQKD systems for both terrestrial and space-based THz quantum communication.
comment: 12 pages, 9 figures
☆ Hierarchical Decentralized Stochastic Control for Cyber-Physical Systems
This paper presents a two-timescale hierarchical decentralized architecture for control of Cyber-Physical Systems. The architecture consists of $N$ independent sub-processes, a global controller, and $N$ local controllers, each formulated as a Markov Decision Process (MDP). The global controller, operating at a slower timescale optimizes the infinite-horizon discounted cumulative reward under budget constraints. For the local controllers, operating at a faster timescale, we propose two different optimization frameworks, namely the COpt and FOpt. In the COpt framework, the local controller also optimizes an infinite-horizon MDP, while in the FOpt framework, the local controller optimizes a finite-horizon MDP. The FOpt framework mimics a federal structure, where the local controllers have more autonomy in their decision making. First, the existence of stationary deterministic optimal policies for both these frameworks is established. Then, various relationships between the two frameworks are studied, including a bound on the difference between the two optimal value functions. Additionally, sufficiency conditions are provided such that the two frameworks lead to the same optimal values.
comment: 6 pages, 2 figures
☆ Real-Time Energy Management Strategies for Community Microgrids
This study presents a real-time energy management framework for hybrid community microgrids integrating photovoltaic, wind, battery energy storage systems, diesel generators, and grid interconnection. The proposed approach formulates the dispatch problem as a multi-objective optimization task that aims to minimize operational costs. Two control strategies are proposed and evaluated: a conventional rule-based control (RBC) method and an advanced deep reinforcement learning (DRL) approach utilizing proximal policy optimization (PPO). A realistic case study based on Australian load and generation profiles is used to validate the framework. Simulation results demonstrate that DRL-PPO reduces operational costs by 18%, CO_2 emissions by 20%, and improves system reliability by 87.5% compared to RBC. Beside, DRL-PPO increases renewable energy utilization by 13%, effectively reducing dependence on diesel generation and grid imports. These findings demonstrate the potential of DRL-based approaches to enable cost-effective and resilient microgrid operations, particularly in regional and remote communities.
☆ Energy-Aware Model Predictive Control for Batch Manufacturing System Scheduling Under Different Electricity Pricing Strategies
Manufacturing industries are among the highest energy-consuming sectors, facing increasing pressure to reduce energy costs. This paper presents an energy-aware Model Predictive Control (MPC) framework to dynamically schedule manufacturing processes in response to time-varying electricity prices without compromising production goals or violating production constraints. A network-based manufacturing system model is developed to capture complex material flows, batch processing, and capacities of buffers and machines. The scheduling problem is formulated as a Mixed-Integer Quadratic Program (MIQP) that balances energy costs, buffer levels, and production requirements. A case study evaluates the proposed MPC framework under four industrial electricity pricing schemes. Numerical results demonstrate that the approach reduces energy usage expenses while satisfying production goals and adhering to production constraints. The findings highlight the importance of considering the detailed electricity cost structure in manufacturing scheduling decisions and provide practical insights for manufacturers when selecting among different electricity pricing strategies.
☆ Performance Measurements in the AI-Centric Computing Continuum Systems
Over the Eight decades, computing paradigms have shifted from large, centralized systems to compact, distributed architectures, leading to the rise of the Distributed Computing Continuum (DCC). In this model, multiple layers such as cloud, edge, Internet of Things (IoT), and mobile platforms work together to support a wide range of applications. Recently, the emergence of Generative AI and large language models has further intensified the demand for computational resources across this continuum. Although traditional performance metrics have provided a solid foundation, they need to be revisited and expanded to keep pace with changing computational demands and application requirements. Accurate performance measurements benefit both system designers and users by supporting improvements in efficiency and promoting alignment with system goals. In this context, we review commonly used metrics in DCC and IoT environments. We also discuss emerging performance dimensions that address evolving computing needs, such as sustainability, energy efficiency, and system observability. We also outline criteria and considerations for selecting appropriate metrics, aiming to inspire future research and development in this critical area.
☆ Identification of Cellular Automata on Spaces of Bernoulli Probability Measures
Classical Cellular Automata (CCAs) are a powerful computational framework for modeling global spatio-temporal dynamics with local interactions. While CCAs have been applied across numerous scientific fields, identifying the local rule that governs observed dynamics remains a challenging task. Moreover, the underlying assumption of deterministic cell states often limits the applicability of CCAs to systems characterized by inherent uncertainty. This study, therefore, focuses on the identification of Cellular Automata on spaces of probability measures (CAMs), where cell states are represented by probability distributions. This framework enables the modeling of systems with probabilistic uncertainty and spatially varying dynamics. Moreover, we formulate the local rule identification problem as a parameter estimation problem and propose a meta-heuristic search based on Self-adaptive Differential Evolution (SaDE) to estimate local rule parameters accurately from the observed data. The efficacy of the proposed approach is demonstrated through local rule identification in two-dimensional CAMs with varying neighborhood types and radii.
☆ Momentum-based Accelerated Algorithm for Distributed Optimization under Sector-Bound Nonlinearity
Distributed optimization advances centralized machine learning methods by enabling parallel and decentralized learning processes over a network of computing nodes. This work provides an accelerated consensus-based distributed algorithm for locally non-convex optimization using the gradient-tracking technique. The proposed algorithm (i) improves the convergence rate by adding momentum towards the optimal state using the heavy-ball method, while (ii) addressing general sector-bound nonlinearities over the information-sharing network. The link nonlinearity includes any sign-preserving odd sector-bound mapping, for example, log-scale data quantization or clipping in practical applications. For admissible momentum and gradient-tracking parameters, using perturbation theory and eigen-spectrum analysis, we prove convergence even in the presence of sector-bound nonlinearity and for locally non-convex cost functions. Further, in contrast to most existing weight-stochastic algorithms, we adopt weight-balanced (WB) network design. This WB design and perturbation-based analysis allow to handle dynamic directed network of agents to address possible time-varying setups due to link failures or packet drops.
comment: Journal of the Franklin Institute
☆ Terahertz source-on-a-chip with decade-long stability using layered superconductor elliptical microcavities
Coherent, continuous-wave, and electrically tunable chip-scale terahertz (THz) sources are critical for emerging applications in sensing, imaging, spectroscopy, communication, space and quantum technologies. Here, we demonstrate a robust source-on-a-chip THz emitter based on a layered high-temperature superconductor, engineered with an elliptical microcavity and capable of sustained coherent emission over an unprecedented operational lifetime exceeding 11 years. This compact THz source operates up to 60 K, with Tc= 90 K, delivering stable radiation in the 0.7-0.8 THz range, with on-chip electrical tunability from 100 GHz to 1 THz. Coherence arises from the phase-locked oscillation of intrinsic Josephson junction arrays, resonantly coupled to transverse electromagnetic modes within the cavity, analogous to a laser cavity, yielding collective macroscopic oscillations. THz emission remains detectable across a 0.5 m free-space open-air link at room temperature. We analyse the cavity-mode structure and extract THz photon generation rates up to 503 photons fs-1 in cryogenic conditions and 50-260 photons ps-1 over-the-air. These results establish long-term coherent THz emission from superconductors and chart a viable path toward scalable, tunable, solid-state coherent THz laser-on-a-chip platforms, especially for future classical and quantum systems.
comment: 24 pages, 18 Figures
☆ Online Coreset Selection for Learning Dynamic Systems
With the increasing availability of streaming data in dynamic systems, a critical challenge in data-driven modeling for control is how to efficiently select informative data to characterize system dynamics. In this work, we design an online coreset selection method under the framework of set-membership identification for systems subject to process disturbances, with the objective of improving data efficiency while ensuring convergence guarantees. Specifically, we first propose a stacked polyhedral representation that over-approximates the feasible set of system parameters. Leveraging a generalized Gr\"unbaum's inequality, we design a geometric selection criterion for constructing the coreset. To reduce computational complexity, an online double-description-based constraint reduction method is introduced to simplify the polyhedral representation. Finally, we analyze the convergence of the feasible set with respect to the coreset and derive upper bounds on the selection probability and the expected number of data in the coreset. The effectiveness of the proposed method is demonstrated through comprehensive simulation studies.
☆ FairMarket-RL: LLM-Guided Fairness Shaping for Multi-Agent Reinforcement Learning in Peer-to-Peer Markets
Peer-to-peer (P2P) trading is increasingly recognized as a key mechanism for decentralized market regulation, yet existing approaches often lack robust frameworks to ensure fairness. This paper presents FairMarket-RL, a novel hybrid framework that combines Large Language Models (LLMs) with Reinforcement Learning (RL) to enable fairness-aware trading agents. In a simulated P2P microgrid with multiple sellers and buyers, the LLM acts as a real-time fairness critic, evaluating each trading episode using two metrics: Fairness-To-Buyer (FTB) and Fairness-Between-Sellers (FBS). These fairness scores are integrated into agent rewards through scheduled {\lambda}-coefficients, forming an adaptive LLM-guided reward shaping loop that replaces brittle, rule-based fairness constraints. Agents are trained using Independent Proximal Policy Optimization (IPPO) and achieve equitable outcomes, fulfilling over 90% of buyer demand, maintaining fair seller margins, and consistently reaching FTB and FBS scores above 0.80. The training process demonstrates that fairness feedback improves convergence, reduces buyer shortfalls, and narrows profit disparities between sellers. With its language-based critic, the framework scales naturally, and its extension to a large power distribution system with household prosumers illustrates its practical applicability. FairMarket-RL thus offers a scalable, equity-driven solution for autonomous trading in decentralized energy systems.
☆ X-pSRAM: A Photonic SRAM with Embedded XOR Logic for Ultra-Fast In-Memory Computing
Traditional von Neumann architectures suffer from fundamental bottlenecks due to continuous data movement between memory and processing units, a challenge that worsens with technology scaling as electrical interconnect delays become more significant. These limitations impede the performance and energy efficiency required for modern data-intensive applications. In contrast, photonic in-memory computing presents a promising alternative by harnessing the advantages of light, enabling ultra-fast data propagation without length-dependent impedance, thereby significantly reducing computational latency and energy consumption. This work proposes a novel differential photonic static random access memory (pSRAM) bitcell that facilitates electro-optic data storage while enabling ultra-fast in-memory Boolean XOR computation. By employing cross-coupled microring resonators and differential photodiodes, the XOR-augmented pSRAM (X-pSRAM) bitcell achieves at least 10 GHz read, write, and compute operations entirely in the optical domain. Additionally, wavelength-division multiplexing (WDM) enables n-bit XOR computation in a single-shot operation, supporting massively parallel processing and enhanced computational efficiency. Validated on GlobalFoundries' 45SPCLO node, the X-pSRAM consumed 13.2 fJ energy per bit for XOR computation, representing a significant advancement toward next-generation optical computing with applications in cryptography, hyperdimensional computing, and neural networks.
comment: 8 pages, 6 figures, 1 table
☆ A Mixed-Signal Photonic SRAM-based High-Speed Energy-Efficient Photonic Tensor Core with Novel Electro-Optic ADC
The rapid surge in data generated by Internet of Things (IoT), artificial intelligence (AI), and machine learning (ML) applications demands ultra-fast, scalable, and energy-efficient hardware, as traditional von Neumann architectures face significant latency and power challenges due to data transfer bottlenecks between memory and processing units. Furthermore, conventional electrical memory technologies are increasingly constrained by rising bitline and wordline capacitance, as well as the resistance of compact and long interconnects, as technology scales. In contrast, photonics-based in-memory computing systems offer substantial speed and energy improvements over traditional transistor-based systems, owing to their ultra-fast operating frequencies, low crosstalk, and high data bandwidth. Hence, we present a novel differential photonic SRAM (pSRAM) bitcell-augmented scalable mixed-signal multi-bit photonic tensor core, enabling high-speed, energy-efficient matrix multiplication operations using fabrication-friendly integrated photonic components. Additionally, we propose a novel 1-hot encoding electro-optic analog-to-digital converter (eoADC) architecture to convert the multiplication outputs into digital bitstreams, supporting processing in the electrical domain. Our designed photonic tensor core, utilizing GlobalFoundries' monolithic 45SPCLO technology node, achieves computation speeds of 4.10 tera-operations per second (TOPS) and a power efficiency of 3.02 TOPS/W.
comment: 7 pages, 10 figures, 1 table
☆ A Correlation-Based Design of RIS for Reduced Power Consumption and Simplified Control Circuitry
Aiming at simplifying the hardware structure and reducing the energy consumption in wireless communication via reconfigurable intelligent surfaces (RIS), this paper introduces a novel RIS design founded on the correlation between the phase shift values of the surface elements. First, a correlation analysis is conducted, considering the azimuth angle of a target device within a coverage region spanning from $-80^{\circ}$ to $80^{\circ}$. The correlation is demonstrated for different deployment cases, creating the basis for the new RIS structure, termed Connected-RIS, where correlated elements are designed to share the same control signal. The fundamental performance of the proposed design is then analyzed in terms of control signals, power consumption, and communication system performance, comparing it to two RIS structures with full control: one with the same size as the proposed design, and the other employing the minimum number of elements necessary to satisfy the fair coverage criterion. The correlation-based RIS design enables three-dimensional passive beamforming and significantly reduces the number of required load impedances and control signals, thereby lowering the hardware cost and simplifying the control circuitry. It also achieves substantial power savings as compared to the baseline schemes, while maintaining sufficient gain for a fair radio coverage. For instance, numerical simulations demonstrate that the proposed design reduces the power consumption by almost 86-92\% and the control signals by 83-98\% compared to operation with fully controlled RIS.
♻ ☆ Quantifying the benefit of load uncertainty reduction for the design of district energy systems under grid constraints using the Value of Information
Load uncertainty must be accounted for during design to ensure building energy systems can meet energy demands during operation. Reducing building load uncertainty allows for improved designs with less compromise to be identified, reducing the cost of decarbonizing energy usage. However, the building monitoring required to reduce load uncertainty is costly. This study uses Value of Information analysis (VoI) to quantify the economic benefit of practical building monitoring for supporting energy system design decisions, and determine if its benefits outweigh its cost. An extension of the VoI framework, termed 'On-Policy' VoI, is proposed, which admits complex decision making tasks where decision policies are required. This is applied to a case study district energy system design problem, where a Linear Program model is used to size solar-battery systems and grid connection capacity under uncertain building loads, modelled using historic electricity metering data. Load uncertainty is found to significantly impact both system operating costs ($\pm$30%) and the optimal system design ($\pm$20%). However, using building monitoring data to improve the design of the district reduces overall costs by less than 1.5% on average. As this is less than the cost of measurement, using monitoring is not economically worthwhile in this case. This provides the first numerical evidence to support the sufficiency of using standard building load profiles for energy system design. Further, reducing only uncertainty in mean load is found to provide most of the available decision support benefit, meaning using hourly measurement data provides little benefit for energy retrofit design.
comment: 50 pages, 14 figures, 8 tables
♻ ☆ Symmetric Sliding-Mode Control of Grid-Forming Inverters With Controllable Region Under AC and DC Sides Varying
Conventional grid-forming (GFM) controls often entangle voltage formation with power flow and dc-source dynamics, which can degrade voltage tracking performance and stability under grid disturbances, load transients, and dc-side perturbations. To address this issue, a symmetric sliding-mode control (SSMC) method is developed and its explicit voltage controllable region is derived. It illustrates how much ac-side power dynamics and dc-link voltage varying can be decoupled from the voltage regulation task, which helps predict when the entangling appears. While conventional sliding-mode controls address voltage-tracking error through complex sliding surface designs, repetitive correction techniques or special reaching laws, this work identifies that the error at power-line frequency primarily stem from the asymmetry property of inverters with the delay effect and the computational inaccuracy. Guided by this insight, a symmetric compensation structure is proposed, which avoids added design complexity and directly mitigates low-frequency voltage tracking errors. Furthermore, the control design is supported by a physical and quantitative explanation, aiding in parameter tuning. Simulation and experimental results demonstrate that the proposed method achieves faster tracking responses-on the order of hundreds of microseconds-while maintaining robust and more accurate tracking under both dc-link voltage and ac-side current variations. Conventional grid-forming and classical sliding-mode controllers, which handle these disturbances separately, cannot match this combined speed and robustness. Furthermore, the voltage controllability analysis is explicitly verified.
comment: 10 pages, 10 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ Theoretical Grid-Forming Extreme of Inverters
What are the theoretical and physical limits of a grid-forming inverter? This letter proposes that the extreme grid-forming ability of inverters is limited by their dc-side, ac-side, circuit topology dynamics, but not control. While many papers focus on how to improve grid-forming inverters stability, power sharing, inertia emulation, fault response, few, if any, formally define the fundamental theoretical limits or extremes of grid-forming behavior. It seems that the grid-forming can be improved endlessly. No physical system can support a grid indefinitely without limitations, especially under increasing levels of disturbance or uncertainty. Therefore, this boundary is explicitly shown by a mathematical expression in this letter. Consequently, the results show that relatively low dc-side voltage and high active power injection could damage the grid-forming ability. Poor consideration of dc-side, ac-side, and circuit topology dynamics in real practice will cause jeopardizing oscillation even by the theoretical best grid-forming control strategy.
comment: 4 pages, 2 figures, letter, This work has been submitted to the IEEE for possible publication
♻ ☆ Controlled Invariance in Fully Actuated Max-plus Linear Systems with Precedence Semimodules
Given a max-plus linear system and a semimodule, the problem of computing the maximal controlled invariant subsemimodule is still open to this day. In this paper, we consider this problem for the specific class of fully actuated systems and constraints in the form of precedence semimodules. The assumption of full actuation corresponds to the existence of an input for each component of the system state. A precedence semimodule is the set of solutions of inequalities typically used to represent time-window constraints. We prove that, in this setting, it is possible to (i) compute the maximal controlled invariant subsemimodule and (ii) decide the convergence of a fixed-point algorithm introduced by R.D. Katz in strongly polynomial time.
comment: 6 pages, 3 figures, small typos in Theorem 6 and Remarks 7 and 8 corrected, small typo at page 4 corrected
♻ ☆ Identifiability and Maximum Likelihood Estimation for System Identification of Networks of Dynamical Systems
In this paper we investigate identifiability and maximum likelihood estimation for direct system identification of networks of dynamical systems. We provide necessary and sufficient conditions for network identifiability in terms of Gr\"obner bases. We show that the maximum likelihood approach is both consistent and efficient, which is in contrast to existing prediction error approaches. Moreover, our approach has wider applicability, i.e., it is applicable whenever network identifiability holds. Finally, we show that we can formulate the maximum likelihood problem without the use of a predictor, which is the key to numerically being able to solve it efficiently.
comment: This work has been submitted to the IEEE for possible publication. Submitted to IEEE Transactions on Automatic Control
♻ ☆ Consensus seeking in diffusive multidimensional networks with a repeated interaction pattern and time-delays
This paper studies a consensus problem in multidimensional networks having the same agent-to-agent interaction pattern under both intra- and cross-layer time delays. Several conditions for the agents to asymptotically reach a consensus are derived, which involve the overall network's structure, the local interacting pattern, and the assumptions specified on the time delays. The validity of these conditions is proved by direct eigenvalue evaluation and supported by numerical simulations.
comment: 6 pages, 7 figures, accepted to CCTA 2025
♻ ☆ Suboptimality analysis of receding horizon quadratic control with unknown linear systems and its applications in learning-based control
This work analyzes how the trade-off between the modeling error, the terminal value function error, and the prediction horizon affects the performance of a nominal receding-horizon linear quadratic (LQ) controller. By developing a novel perturbation result of the Riccati difference equation, a novel performance upper bound is obtained and suggests that for many cases, the prediction horizon can be either one or infinity to improve the control performance, depending on the relative difference between the modeling error and the terminal value function error. The result also shows that when an infinite horizon is desired, a finite prediction horizon that is larger than the controllability index can be sufficient for achieving a near-optimal performance, revealing a close relation between the prediction horizon and controllability. The obtained suboptimality performance upper bound is applied to provide novel sample complexity and regret guarantees for nominal receding-horizon LQ controllers in a learning-based setting. We show that an adaptive prediction horizon that increases as a logarithmic function of time is beneficial for regret minimization.
Robotics 37
☆ ARMOR: Robust Reinforcement Learning-based Control for UAVs under Physical Attacks
Unmanned Aerial Vehicles (UAVs) depend on onboard sensors for perception, navigation, and control. However, these sensors are susceptible to physical attacks, such as GPS spoofing, that can corrupt state estimates and lead to unsafe behavior. While reinforcement learning (RL) offers adaptive control capabilities, existing safe RL methods are ineffective against such attacks. We present ARMOR (Adaptive Robust Manipulation-Optimized State Representations), an attack-resilient, model-free RL controller that enables robust UAV operation under adversarial sensor manipulation. Instead of relying on raw sensor observations, ARMOR learns a robust latent representation of the UAV's physical state via a two-stage training framework. In the first stage, a teacher encoder, trained with privileged attack information, generates attack-aware latent states for RL policy training. In the second stage, a student encoder is trained via supervised learning to approximate the teacher's latent states using only historical sensor data, enabling real-world deployment without privileged information. Our experiments show that ARMOR outperforms conventional methods, ensuring UAV safety. Additionally, ARMOR improves generalization to unseen attacks and reduces training cost by eliminating the need for iterative adversarial training.
Reinforcement Learning with Physics-Informed Symbolic Program Priors for Zero-Shot Wireless Indoor Navigation
When using reinforcement learning (RL) to tackle physical control tasks, inductive biases that encode physics priors can help improve sample efficiency during training and enhance generalization in testing. However, the current practice of incorporating these helpful physics-informed inductive biases inevitably runs into significant manual labor and domain expertise, making them prohibitive for general users. This work explores a symbolic approach to distill physics-informed inductive biases into RL agents, where the physics priors are expressed in a domain-specific language (DSL) that is human-readable and naturally explainable. Yet, the DSL priors do not translate directly into an implementable policy due to partial and noisy observations and additional physical constraints in navigation tasks. To address this gap, we develop a physics-informed program-guided RL (PiPRL) framework with applications to indoor navigation. PiPRL adopts a hierarchical and modularized neuro-symbolic integration, where a meta symbolic program receives semantically meaningful features from a neural perception module, which form the bases for symbolic programming that encodes physics priors and guides the RL process of a low-level neural controller. Extensive experiments demonstrate that PiPRL consistently outperforms purely symbolic or neural policies and reduces training time by over 26% with the help of the program-based inductive biases.
comment: Spotlight paper at Reinforcement Learning Conference 2025, Workshop on Inductive Biases in Reinforcement Learning
☆ Robotic Multimodal Data Acquisition for In-Field Deep Learning Estimation of Cover Crop Biomass
Accurate weed management is essential for mitigating significant crop yield losses, necessitating effective weed suppression strategies in agricultural systems. Integrating cover crops (CC) offers multiple benefits, including soil erosion reduction, weed suppression, decreased nitrogen requirements, and enhanced carbon sequestration, all of which are closely tied to the aboveground biomass (AGB) they produce. However, biomass production varies significantly due to microsite variability, making accurate estimation and mapping essential for identifying zones of poor weed suppression and optimizing targeted management strategies. To address this challenge, developing a comprehensive CC map, including its AGB distribution, will enable informed decision-making regarding weed control methods and optimal application rates. Manual visual inspection is impractical and labor-intensive, especially given the extensive field size and the wide diversity and variation of weed species and sizes. In this context, optical imagery and Light Detection and Ranging (LiDAR) data are two prominent sources with unique characteristics that enhance AGB estimation. This study introduces a ground robot-mounted multimodal sensor system designed for agricultural field mapping. The system integrates optical and LiDAR data, leveraging machine learning (ML) methods for data fusion to improve biomass predictions. The best ML-based model for dry AGB estimation achieved a coefficient of determination value of 0.88, demonstrating robust performance in diverse field conditions. This approach offers valuable insights for site-specific management, enabling precise weed suppression strategies and promoting sustainable farming practices.
comment: Accepted in the Extended Abstract, The 22nd International Conference on Ubiquitous Robots (UR 2025), Texas, USA
☆ Robust and Accurate Multi-view 2D/3D Image Registration with Differentiable X-ray Rendering and Dual Cross-view Constraints ICRA 2025
Robust and accurate 2D/3D registration, which aligns preoperative models with intraoperative images of the same anatomy, is crucial for successful interventional navigation. To mitigate the challenge of a limited field of view in single-image intraoperative scenarios, multi-view 2D/3D registration is required by leveraging multiple intraoperative images. In this paper, we propose a novel multi-view 2D/3D rigid registration approach comprising two stages. In the first stage, a combined loss function is designed, incorporating both the differences between predicted and ground-truth poses and the dissimilarities (e.g., normalized cross-correlation) between simulated and observed intraoperative images. More importantly, additional cross-view training loss terms are introduced for both pose and image losses to explicitly enforce cross-view constraints. In the second stage, test-time optimization is performed to refine the estimated poses from the coarse stage. Our method exploits the mutual constraints of multi-view projection poses to enhance the robustness of the registration process. The proposed framework achieves a mean target registration error (mTRE) of $0.79 \pm 2.17$ mm on six specimens from the DeepFluoro dataset, demonstrating superior performance compared to state-of-the-art registration algorithms.
comment: ICRA 2025
☆ KnotDLO: Toward Interpretable Knot Tying ICRA20243
This work presents KnotDLO, a method for one-handed Deformable Linear Object (DLO) knot tying that is robust to occlusion, repeatable for varying rope initial configurations, interpretable for generating motion policies, and requires no human demonstrations or training. Grasp and target waypoints for future DLO states are planned from the current DLO shape. Grasp poses are computed from indexing the tracked piecewise linear curve representing the DLO state based on the current curve shape and are piecewise continuous. KnotDLO computes intermediate waypoints from the geometry of the current DLO state and the desired next state. The system decouples visual reasoning from control. In 16 trials of knot tying, KnotDLO achieves a 50% success rate in tying an overhand knot from previously unseen configurations.
comment: 4 pages, 5 figures, presented at the Workshop on 3D Visual Representations for Manipulation at the 2023 IEEE International Conference on Robotics and Automation in Yokohama, Japan. Video presentation [https://youtu.be/mg30uCUtpOk]. Poster [https://hollydinkel.github.io/assets/pdf/ICRA20243DVRM_poster.pdf] 3DVRM Workshop [https://3d-manipulation-workshop.github.io/]
☆ ASVSim (AirSim for Surface Vehicles): A High-Fidelity Simulation Framework for Autonomous Surface Vehicle Research
The transport industry has recently shown significant interest in unmanned surface vehicles (USVs), specifically for port and inland waterway transport. These systems can improve operational efficiency and safety, which is especially relevant in the European Union, where initiatives such as the Green Deal are driving a shift towards increased use of inland waterways. At the same time, a shortage of qualified personnel is accelerating the adoption of autonomous solutions. However, there is a notable lack of open-source, high-fidelity simulation frameworks and datasets for developing and evaluating such solutions. To address these challenges, we introduce AirSim For Surface Vehicles (ASVSim), an open-source simulation framework specifically designed for autonomous shipping research in inland and port environments. The framework combines simulated vessel dynamics with marine sensor simulation capabilities, including radar and camera systems and supports the generation of synthetic datasets for training computer vision models and reinforcement learning agents. Built upon Cosys-AirSim, ASVSim provides a comprehensive platform for developing autonomous navigation algorithms and generating synthetic datasets. The simulator supports research of both traditional control methods and deep learning-based approaches. Through limited experiments, we demonstrate the potential of the simulator in these research areas. ASVSim is provided as an open-source project under the MIT license, making autonomous navigation research accessible to a larger part of the ocean engineering community.
comment: 14 Pages, 11 Figures
☆ RM-Dijkstra: A surface optimal path planning algorithm based on Riemannian metric
The Dijkstra algorithm is a classic path planning method, which operates in a discrete graph space to determine the shortest path from a specified source point to a target node or all other nodes based on non-negative edge weights. Numerous studies have focused on the Dijkstra algorithm due to its potential application. However, its application in surface path planning for mobile robots remains largely unexplored. In this letter, a surface optimal path planning algorithm called RM-Dijkstra is proposed, which is based on Riemannian metric model. By constructing a new Riemannian metric on the 2D projection plane, the surface optimal path planning problem is therefore transformed into a geometric problem on the 2D plane with new Riemannian metric. Induced by the standard Euclidean metric on surface, the constructed new metric reflects environmental information of the robot and ensures that the projection map is an isometric immersion. By conducting a series of simulation tests, the experimental results demonstrate that the RM-Dijkstra algorithm not only effectively solves the optimal path planning problem on surfaces, but also outperforms traditional path planning algorithms in terms of path accuracy and smoothness, particularly in complex scenarios.
comment: 7 pages
☆ Evaluating Pointing Gestures for Target Selection in Human-Robot Collaboration
Pointing gestures are a common interaction method used in Human-Robot Collaboration for various tasks, ranging from selecting targets to guiding industrial processes. This study introduces a method for localizing pointed targets within a planar workspace. The approach employs pose estimation, and a simple geometric model based on shoulder-wrist extension to extract gesturing data from an RGB-D stream. The study proposes a rigorous methodology and comprehensive analysis for evaluating pointing gestures and target selection in typical robotic tasks. In addition to evaluating tool accuracy, the tool is integrated into a proof-of-concept robotic system, which includes object detection, speech transcription, and speech synthesis to demonstrate the integration of multiple modalities in a collaborative application. Finally, a discussion over tool limitations and performance is provided to understand its role in multimodal robotic systems. All developments are available at: https://github.com/NMKsas/gesture_pointer.git.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). Preprint
☆ An Introduction to Zero-Order Optimization Techniques for Robotics
Zero-order optimization techniques are becoming increasingly popular in robotics due to their ability to handle non-differentiable functions and escape local minima. These advantages make them particularly useful for trajectory optimization and policy optimization. In this work, we propose a mathematical tutorial on random search. It offers a simple and unifying perspective for understanding a wide range of algorithms commonly used in robotics. Leveraging this viewpoint, we classify many trajectory optimization methods under a common framework and derive novel competitive RL algorithms.
☆ Multi-Robot Assembly of Deformable Linear Objects Using Multi-Modal Perception
Industrial assembly of deformable linear objects (DLOs) such as cables offers great potential for many industries. However, DLOs pose several challenges for robot-based automation due to the inherent complexity of deformation and, consequentially, the difficulties in anticipating the behavior of DLOs in dynamic situations. Although existing studies have addressed isolated subproblems like shape tracking, grasping, and shape control, there has been limited exploration of integrated workflows that combine these individual processes. To address this gap, we propose an object-centric perception and planning framework to achieve a comprehensive DLO assembly process throughout the industrial value chain. The framework utilizes visual and tactile information to track the DLO's shape as well as contact state across different stages, which facilitates effective planning of robot actions. Our approach encompasses robot-based bin picking of DLOs from cluttered environments, followed by a coordinated handover to two additional robots that mount the DLOs onto designated fixtures. Real-world experiments employing a setup with multiple robots demonstrate the effectiveness of the approach and its relevance to industrial scenarios.
☆ LMPVC and Policy Bank: Adaptive voice control for industrial robots with code generating LLMs and reusable Pythonic policies
Modern industry is increasingly moving away from mass manufacturing, towards more specialized and personalized products. As manufacturing tasks become more complex, full automation is not always an option, human involvement may be required. This has increased the need for advanced human robot collaboration (HRC), and with it, improved methods for interaction, such as voice control. Recent advances in natural language processing, driven by artificial intelligence (AI), have the potential to answer this demand. Large language models (LLMs) have rapidly developed very impressive general reasoning capabilities, and many methods of applying this to robotics have been proposed, including through the use of code generation. This paper presents Language Model Program Voice Control (LMPVC), an LLM-based prototype voice control architecture with integrated policy programming and teaching capabilities, built for use with Robot Operating System 2 (ROS2) compatible robots. The architecture builds on prior works using code generation for voice control by implementing an additional programming and teaching system, the Policy Bank. We find this system can compensate for the limitations of the underlying LLM, and allow LMPVC to adapt to different downstream tasks without a slow and costly training process. The architecture and additional results are released on GitHub (https://github.com/ozzyuni/LMPVC).
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). For further information, videos and code, see https://github.com/ozzyuni/LMPVC
☆ A MILP-Based Solution to Multi-Agent Motion Planning and Collision Avoidance in Constrained Environments
We propose a mixed-integer linear program (MILP) for multi-agent motion planning that embeds Polytopic Action-based Motion Planning (PAAMP) into a sequence-then-solve pipeline. Region sequences confine each agent to adjacent convex polytopes, while a big-M hyperplane model enforces inter-agent separation. Collision constraints are applied only to agents sharing or neighboring a region, which reduces binary variables exponentially compared with naive formulations. An L1 path-length-plus-acceleration cost yields smooth trajectories. We prove finite-time convergence and demonstrate on representative multi-agent scenarios with obstacles that our formulation produces collision-free trajectories an order of magnitude faster than an unstructured MILP baseline.
comment: Accepted to 2025 IEEE International Conference on Automation Science and Engineering (CASE 2025)
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ Integrating Multi-Modal Sensors: A Review of Fusion Techniques for Intelligent Vehicles
Multi-sensor fusion plays a critical role in enhancing perception for autonomous driving, overcoming individual sensor limitations, and enabling comprehensive environmental understanding. This paper first formalizes multi-sensor fusion strategies into data-level, feature-level, and decision-level categories and then provides a systematic review of deep learning-based methods corresponding to each strategy. We present key multi-modal datasets and discuss their applicability in addressing real-world challenges, particularly in adverse weather conditions and complex urban environments. Additionally, we explore emerging trends, including the integration of Vision-Language Models (VLMs), Large Language Models (LLMs), and the role of sensor fusion in end-to-end autonomous driving, highlighting its potential to enhance system adaptability and robustness. Our work offers valuable insights into current methods and future directions for multi-sensor fusion in autonomous driving.
comment: Accepted by IEEE IV 2025
☆ Embodied Domain Adaptation for Object Detection IROS 2025
Mobile robots rely on object detectors for perception and object localization in indoor environments. However, standard closed-set methods struggle to handle the diverse objects and dynamic conditions encountered in real homes and labs. Open-vocabulary object detection (OVOD), driven by Vision Language Models (VLMs), extends beyond fixed labels but still struggles with domain shifts in indoor environments. We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data. We refine pseudo labels via temporal clustering, employ multi-scale threshold fusion, and apply a Mean Teacher framework with contrastive learning. Our Embodied Domain Adaptation for Object Detection (EDAOD) benchmark evaluates adaptation under sequential changes in lighting, layout, and object diversity. Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.
comment: Accepted by IROS 2025
☆ Skill-Nav: Enhanced Navigation with Versatile Quadrupedal Locomotion via Waypoint Interface
Quadrupedal robots have demonstrated exceptional locomotion capabilities through Reinforcement Learning (RL), including extreme parkour maneuvers. However, integrating locomotion skills with navigation in quadrupedal robots has not been fully investigated, which holds promise for enhancing long-distance movement capabilities. In this paper, we propose Skill-Nav, a method that incorporates quadrupedal locomotion skills into a hierarchical navigation framework using waypoints as an interface. Specifically, we train a waypoint-guided locomotion policy using deep RL, enabling the robot to autonomously adjust its locomotion skills to reach targeted positions while avoiding obstacles. Compared with direct velocity commands, waypoints offer a simpler yet more flexible interface for high-level planning and low-level control. Utilizing waypoints as the interface allows for the application of various general planning tools, such as large language models (LLMs) and path planning algorithms, to guide our locomotion policy in traversing terrains with diverse obstacles. Extensive experiments conducted in both simulated and real-world scenarios demonstrate that Skill-Nav can effectively traverse complex terrains and complete challenging navigation tasks.
comment: 17pages, 6 figures
☆ Bootstrapping Human-Like Planning via LLMs
Robot end users increasingly require accessible means of specifying tasks for robots to perform. Two common end-user programming paradigms include drag-and-drop interfaces and natural language programming. Although natural language interfaces harness an intuitive form of human communication, drag-and-drop interfaces enable users to meticulously and precisely dictate the key actions of the robot's task. In this paper, we investigate the degree to which both approaches can be combined. Specifically, we construct a large language model (LLM)-based pipeline that accepts natural language as input and produces human-like action sequences as output, specified at a level of granularity that a human would produce. We then compare these generated action sequences to another dataset of hand-specified action sequences. Although our results reveal that larger models tend to outperform smaller ones in the production of human-like action sequences, smaller models nonetheless achieve satisfactory performance.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
☆ Pixels-to-Graph: Real-time Integration of Building Information Models and Scene Graphs for Semantic-Geometric Human-Robot Understanding
Autonomous robots are increasingly playing key roles as support platforms for human operators in high-risk, dangerous applications. To accomplish challenging tasks, an efficient human-robot cooperation and understanding is required. While typically robotic planning leverages 3D geometric information, human operators are accustomed to a high-level compact representation of the environment, like top-down 2D maps representing the Building Information Model (BIM). 3D scene graphs have emerged as a powerful tool to bridge the gap between human readable 2D BIM and the robot 3D maps. In this work, we introduce Pixels-to-Graph (Pix2G), a novel lightweight method to generate structured scene graphs from image pixels and LiDAR maps in real-time for the autonomous exploration of unknown environments on resource-constrained robot platforms. To satisfy onboard compute constraints, the framework is designed to perform all operation on CPU only. The method output are a de-noised 2D top-down environment map and a structure-segmented 3D pointcloud which are seamlessly connected using a multi-layer graph abstracting information from object-level up to the building-level. The proposed method is quantitatively and qualitatively evaluated during real-world experiments performed using the NASA JPL NeBula-Spot legged robot to autonomously explore and map cluttered garage and urban office like environments in real-time.
comment: Paper accepted to 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ Directed Shape Morphing using Kirigami-enhanced Thermoplastics
We present a simple, accessible method for autonomously transforming flat plastic sheets into intricate three-dimensional structures using only uniform heating and common tools such as household ovens and scissors. Our approach combines heat-shrinkable thermoplastics with Kirigami patterns tailored to the target 3D shape, creating bilayer composites that morph into a wide range of complex structures, e.g., bowls, pyramids, and even custom ergonomic surfaces like mouse covers. Critically, the transformation is driven by a low-information stimulus (uniform heat) yet produces highly intricate shapes through programmed geometric design. The morphing behavior, confirmed by finite element simulations, arises from strain mismatch between the contracting thermoplastic layer and the constraining Kirigami layer. By decoupling material composition from mechanical response, this method avoids detailed process control and enables a broad class of self-morphing structures, offering a versatile platform for adaptive design and scalable manufacturing.
comment: Software and Data: https://github.com/structuresComp/Shrinky-Dink
♻ ☆ eCAV: An Edge-Assisted Evaluation Platform for Connected Autonomous Vehicles
As autonomous vehicles edge closer to widespread adoption, enhancing road safety through collision avoidance and minimization of collateral damage becomes imperative. Vehicle-to-everything (V2X) technologies, which include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C), are being proposed as mechanisms to achieve this safety improvement. Simulation-based testing is crucial for early-stage evaluation of Connected Autonomous Vehicle (CAV) control systems, offering a safer and more cost-effective alternative to real-world tests. However, simulating large 3D environments with many complex single- and multi-vehicle sensors and controllers is computationally intensive. There is currently no evaluation framework that can effectively evaluate realistic scenarios involving large numbers of autonomous vehicles. We propose eCAV -- an efficient, modular, and scalable evaluation platform to facilitate both functional validation of algorithmic approaches to increasing road safety, as well as performance prediction of algorithms of various V2X technologies, including a futuristic Vehicle-to-Edge control plane and correspondingly designed control algorithms. eCAV can model up to 256 vehicles running individual control algorithms without perception enabled, which is $8\times$ more vehicles than what is possible with state-of-the-art alternatives.
♻ ☆ FEAST: A Flexible Mealtime-Assistance System Towards In-the-Wild Personalization
Physical caregiving robots hold promise for improving the quality of life of millions worldwide who require assistance with feeding. However, in-home meal assistance remains challenging due to the diversity of activities (e.g., eating, drinking, mouth wiping), contexts (e.g., socializing, watching TV), food items, and user preferences that arise during deployment. In this work, we propose FEAST, a flexible mealtime-assistance system that can be personalized in-the-wild to meet the unique needs of individual care recipients. Developed in collaboration with two community researchers and informed by a formative study with a diverse group of care recipients, our system is guided by three key tenets for in-the-wild personalization: adaptability, transparency, and safety. FEAST embodies these principles through: (i) modular hardware that enables switching between assisted feeding, drinking, and mouth-wiping, (ii) diverse interaction methods, including a web interface, head gestures, and physical buttons, to accommodate diverse functional abilities and preferences, and (iii) parameterized behavior trees that can be safely and transparently adapted using a large language model. We evaluate our system based on the personalization requirements identified in our formative study, demonstrating that FEAST offers a wide range of transparent and safe adaptations and outperforms a state-of-the-art baseline limited to fixed customizations. To demonstrate real-world applicability, we conduct an in-home user study with two care recipients (who are community researchers), feeding them three meals each across three diverse scenarios. We further assess FEAST's ecological validity by evaluating with an Occupational Therapist previously unfamiliar with the system. In all cases, users successfully personalize FEAST to meet their individual needs and preferences. Website: https://emprise.cs.cornell.edu/feast
comment: RSS 2025 - Best Paper Award
♻ ☆ AirLine: Efficient Learnable Line Detection with Local Edge Voting
Line detection is widely used in many robotic tasks such as scene recognition, 3D reconstruction, and simultaneous localization and mapping (SLAM). Compared to points, lines can provide both low-level and high-level geometrical information for downstream tasks. In this paper, we propose a novel learnable edge-based line detection algorithm, AirLine, which can be applied to various tasks. In contrast to existing learnable endpoint-based methods, which are sensitive to the geometrical condition of environments, AirLine can extract line segments directly from edges, resulting in a better generalization ability for unseen environments. To balance efficiency and accuracy, we introduce a region-grow algorithm and a local edge voting scheme for line parameterization. To the best of our knowledge, AirLine is one of the first learnable edge-based line detection methods. Our extensive experiments have shown that it retains state-of-the-art-level precision, yet with a 3 to 80 times runtime acceleration compared to other learning-based methods, which is critical for low-power robots.
♻ ☆ UAV-based path planning for efficient localization of non-uniformly distributed weeds using prior knowledge: A reinforcement-learning approach
UAVs are becoming popular in agriculture, however, they usually use time-consuming row-by-row flight paths. This paper presents a deep-reinforcement-learning-based approach for path planning to efficiently localize weeds in agricultural fields using UAVs with minimal flight-path length. The method combines prior knowledge about the field containing uncertain, low-resolution weed locations with in-flight weed detections. The search policy was learned using deep Q-learning. We trained the agent in simulation, allowing a thorough evaluation of the weed distribution, typical errors in the perception system, prior knowledge, and different stopping criteria on the planner's performance. When weeds were non-uniformly distributed over the field, the agent found them faster than a row-by-row path, showing its capability to learn and exploit the weed distribution. Detection errors and prior knowledge quality had a minor effect on the performance, indicating that the learned search policy was robust to detection errors and did not need detailed prior knowledge. The agent also learned to terminate the search. To test the transferability of the learned policy to a real-world scenario, the planner was tested on real-world image data without further training, which showed a 66% shorter path compared to a row-by-row path at the cost of a 10% lower percentage of found weeds. Strengths and weaknesses of the planner for practical application are comprehensively discussed, and directions for further development are provided. Overall, it is concluded that the learned search policy can improve the efficiency of finding non-uniformly distributed weeds using a UAV and shows potential for use in agricultural practice.
♻ ☆ RESPLE: Recursive Spline Estimation for LiDAR-Based Odometry
We present a novel recursive Bayesian estimation framework using B-splines for continuous-time 6-DoF dynamic motion estimation. The state vector consists of a recurrent set of position control points and orientation control point increments, enabling efficient estimation via a modified iterated extended Kalman filter without involving error-state formulations. The resulting recursive spline estimator (RESPLE) is further leveraged to develop a versatile suite of direct LiDAR-based odometry solutions, supporting the integration of one or multiple LiDARs and an IMU. We conduct extensive real-world evaluations using public datasets and our own experiments, covering diverse sensor setups, platforms, and environments. Compared to existing systems, RESPLE achieves comparable or superior estimation accuracy and robustness, while attaining real-time efficiency. Our results and analysis demonstrate RESPLE's strength in handling highly dynamic motions and complex scenes within a lightweight and flexible design, showing strong potential as a universal framework for multi-sensor motion estimation. We release the source code and experimental datasets at https://github.com/ASIG-X/RESPLE.
♻ ☆ Efficient Reconfiguration of Tile Arrangements by a Single Active Robot
We consider the problem of reconfiguring a two-dimensional connected grid arrangement of passive building blocks from a start configuration to a goal configuration, using a single active robot that can move on the tiles, remove individual tiles from a given location and physically move them to a new position by walking on the remaining configuration. The objective is to determine a schedule that minimizes the overall makespan, while keeping the tile configuration connected. We provide both negative and positive results. (1) We generalize the problem by introducing weighted movement costs, which can vary depending on whether tiles are carried or not, and prove that this variant is NP-hard. (2) We give a polynomial-time constant-factor approximation algorithm for the case of disjoint start and target bounding boxes, which additionally yields optimal carry distance for 2-scaled instances.
comment: 19 pages, 15 figures, to appear in the proceedings of the 37th Canadian Conference on Computational Geometry (CCCG 2025)
♻ ☆ TrajFlow: Learning Distributions over Trajectories for Human Behavior Prediction
Predicting the future behavior of human road users is an important aspect for the development of risk-aware autonomous vehicles. While many models have been developed towards this end, effectively capturing and predicting the variability inherent to human behavior still remains an open challenge. This paper proposes TrajFlow - a new approach for probabilistic trajectory prediction based on Normalizing Flows. We reformulate the problem of capturing distributions over trajectories into capturing distributions over abstracted trajectory features using an autoencoder, simplifying the learning task of the Normalizing Flows. TrajFlow outperforms state-of-the-art behavior prediction models in capturing full trajectory distributions in two synthetic benchmarks with known true distributions, and is competitive on the naturalistic datasets ETH/UCY, rounD, and nuScenes. Our results demonstrate the effectiveness of TrajFlow in probabilistic prediction of human behavior.
♻ ☆ Hierarchical Intention-Aware Expressive Motion Generation for Humanoid Robots
Effective human-robot interaction requires robots to identify human intentions and generate expressive, socially appropriate motions in real-time. Existing approaches often rely on fixed motion libraries or computationally expensive generative models. We propose a hierarchical framework that combines intention-aware reasoning via in-context learning (ICL) with real-time motion generation using diffusion models. Our system introduces structured prompting with confidence scoring, fallback behaviors, and social context awareness to enable intention refinement and adaptive response. Leveraging large-scale motion datasets and efficient latent-space denoising, the framework generates diverse, physically plausible gestures suitable for dynamic humanoid interactions. Experimental validation on a physical platform demonstrates the robustness and social alignment of our method in realistic scenarios.
comment: 7 pages, 2 figures, IEEE conference paper
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ TritonZ: A Remotely Operated Underwater Rover with Manipulator Arm for Exploration and Rescue Operations
The increasing demand for underwater exploration and rescue operations enforces the development of advanced wireless or semi-wireless underwater vessels equipped with manipulator arms. This paper presents the implementation of a semi-wireless underwater vehicle, "TritonZ" equipped with a manipulator arm, tailored for effective underwater exploration and rescue operations. The vehicle's compact design enables deployment in different submarine surroundings, addressing the need for wireless systems capable of navigating challenging underwater terrains. The manipulator arm can interact with the environment, allowing the robot to perform sophisticated tasks during exploration and rescue missions in emergency situations. TritonZ is equipped with various sensors such as Pi-Camera, Humidity, and Temperature sensors to send real-time environmental data. Our underwater vehicle controlled using a customized remote controller can navigate efficiently in the water where Pi-Camera enables live streaming of the surroundings. Motion control and video capture are performed simultaneously using this camera. The manipulator arm is designed to perform various tasks, similar to grasping, manipulating, and collecting underwater objects. Experimental results shows the efficacy of the proposed remotely operated vehicle in performing a variety of underwater exploration and rescue tasks. Additionally, the results show that TritonZ can maintain an average of 13.5cm/s with a minimal delay of 2-3 seconds. Furthermore, the vehicle can sustain waves underwater by maintaining its position as well as average velocity. The full project details and source code can be accessed at this link: https://github.com/kawser-ahmed-byte/TritonZ
comment: 7 pages, 5 figures
♻ ☆ Cooperative Bearing-Only Target Pursuit via Multiagent Reinforcement Learning: Design and Experiment IROS 2025
This paper addresses the multi-robot pursuit problem for an unknown target, encompassing both target state estimation and pursuit control. First, in state estimation, we focus on using only bearing information, as it is readily available from vision sensors and effective for small, distant targets. Challenges such as instability due to the nonlinearity of bearing measurements and singularities in the two-angle representation are addressed through a proposed uniform bearing-only information filter. This filter integrates multiple 3D bearing measurements, provides a concise formulation, and enhances stability and resilience to target loss caused by limited field of view (FoV). Second, in target pursuit control within complex environments, where challenges such as heterogeneity and limited FoV arise, conventional methods like differential games or Voronoi partitioning often prove inadequate. To address these limitations, we propose a novel multiagent reinforcement learning (MARL) framework, enabling multiple heterogeneous vehicles to search, localize, and follow a target while effectively handling those challenges. Third, to bridge the sim-to-real gap, we propose two key techniques: incorporating adjustable low-level control gains in training to replicate the dynamics of real-world autonomous ground vehicles (AGVs), and proposing spectral-normalized RL algorithms to enhance policy smoothness and robustness. Finally, we demonstrate the successful zero-shot transfer of the MARL controllers to AGVs, validating the effectiveness and practical feasibility of our approach. The accompanying video is available at https://youtu.be/HO7FJyZiJ3E.
comment: To appear in the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Estimating Spatially-Dependent GPS Errors Using a Swarm of Robots
External factors, including urban canyons and adversarial interference, can lead to Global Positioning System (GPS) inaccuracies that vary as a function of the position in the environment. This study addresses the challenge of estimating a static, spatially-varying error function using a team of robots. We introduce a State Bias Estimation Algorithm (SBE) whose purpose is to estimate the GPS biases. The central idea is to use sensed estimates of the range and bearing to the other robots in the team to estimate changes in bias across the environment. A set of drones moves in a 2D environment, each sampling data from GPS, range, and bearing sensors. The biases calculated by the SBE at estimated positions are used to train a Gaussian Process Regression (GPR) model. We use a Sparse Gaussian process-based Informative Path Planning (IPP) algorithm that identifies high-value regions of the environment for data collection. The swarm plans paths that maximize information gain in each iteration, further refining their understanding of the environment's positional bias landscape. We evaluated SBE and IPP in simulation and compared the IPP methodology to an open-loop strategy.
comment: 6 pages, 7 figures, 2025 IEEE 21st International Conference on Automation Science and Engineering
♻ ☆ Aux-Think: Exploring Reasoning Strategies for Data-Efficient Vision-Language Navigation
Vision-Language Navigation (VLN) is a critical task for developing embodied agents that can follow natural language instructions to navigate in complex real-world environments. Recent advances in VLN by large pretrained models have significantly improved generalization and instruction grounding compared to traditional approaches. However, the role of reasoning strategies in navigation-an action-centric, long-horizon task-remains underexplored, despite Chain-of-Thought (CoT) reasoning's demonstrated success in static tasks like visual question answering. To address this gap, we conduct the first systematic evaluation of reasoning strategies for VLN, including No-Think (direct action prediction), Pre-Think (reason before action), and Post-Think (reason after action). Surprisingly, our findings reveal the Inference-time Reasoning Collapse issue, where inference-time reasoning degrades navigation accuracy, highlighting the challenges of integrating reasoning into VLN. Based on this insight, we propose Aux-Think, a framework that trains models to internalize structured reasoning patterns through CoT supervision, while inferring action directly without reasoning in online prediction. To support this framework, we release R2R-CoT-320k, the first Chain-of-Thought annotated dataset for VLN. Extensive experiments show that Aux-Think reduces training effort greatly and achieves the best performance under the same data scale.
♻ ☆ Haptic-ACT -- Pseudo Oocyte Manipulation by a Robot Using Multimodal Information and Action Chunking with Transformers IROS2025
In this paper we introduce Haptic-ACT, an advanced robotic system for pseudo oocyte manipulation, integrating multimodal information and Action Chunking with Transformers (ACT). Traditional automation methods for oocyte transfer rely heavily on visual perception, often requiring human supervision due to biological variability and environmental disturbances. Haptic-ACT enhances ACT by incorporating haptic feedback, enabling real-time grasp failure detection and adaptive correction. Additionally, we introduce a 3D-printed TPU soft gripper to facilitate delicate manipulations. Experimental results demonstrate that Haptic-ACT improves the task success rate, robustness, and adaptability compared to conventional ACT, particularly in dynamic environments. These findings highlight the potential of multimodal learning in robotics for biomedical automation.
comment: Accepted at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2025) Project website https://tanichu-laboratory.github.io/pedro_haptic_act_iros2025/
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ Space-Time Graphs of Convex Sets for Multi-Robot Motion Planning IROS'25
We address the Multi-Robot Motion Planning (MRMP) problem of computing collision-free trajectories for multiple robots in shared continuous environments. While existing frameworks effectively decompose MRMP into single-robot subproblems, spatiotemporal motion planning with dynamic obstacles remains challenging, particularly in cluttered or narrow-corridor settings. We propose Space-Time Graphs of Convex Sets (ST-GCS), a novel planner that systematically covers the collision-free space-time domain with convex sets instead of relying on random sampling. By extending Graphs of Convex Sets (GCS) into the time dimension, ST-GCS formulates time-optimal trajectories in a unified convex optimization that naturally accommodates velocity bounds and flexible arrival times. We also propose Exact Convex Decomposition (ECD) to "reserve" trajectories as spatiotemporal obstacles, maintaining a collision-free space-time graph of convex sets for subsequent planning. Integrated into two prioritized-planning frameworks, ST-GCS consistently achieves higher success rates and better solution quality than state-of-the-art sampling-based planners -- often at orders-of-magnitude faster runtimes -- underscoring its benefits for MRMP in challenging settings.
comment: IROS'25 (to appear)
♻ ☆ Planning under Uncertainty to Goal Distributions
Goals for planning problems are typically conceived of as subsets of the state space. However, for many practical planning problems in robotics, we expect the robot to predict goals, e.g. from noisy sensors or by generalizing learned models to novel contexts. In these cases, sets with uncertainty naturally extend to probability distributions. While a few works have used probability distributions as goals for planning, surprisingly no systematic treatment of planning to goal distributions exists in the literature. This article serves to fill that gap. We argue that goal distributions are a more appropriate goal representation than deterministic sets for many robotics applications. We present a novel approach to planning under uncertainty to goal distributions, which we use to highlight several advantages of the goal distribution formulation. We build on previous results in the literature by formally framing our approach as an instance of planning as inference. We additionally derive reductions of several common planning objectives as special cases of our probabilistic planning framework. Our experiments demonstrate the flexibility of probability distributions as a goal representation on a variety of problems including planar navigation among obstacles, intercepting a moving target, rolling a ball to a target location, and a 7-DOF robot arm reaching to grasp an object.
♻ ☆ ReactEMG: Zero-Shot, Low-Latency Intent Detection via sEMG
Surface electromyography (sEMG) signals show promise for effective human-computer interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly and reliably to user intent, across different subjects and without requiring time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. Unlike traditional gesture recognition models that wait until a gesture is completed before classifying it, our approach uses a segmentation strategy to assign intent labels at every timestep as the gesture unfolds. We introduce a novel masked modeling strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, considering both accuracy and stability for device control, our approach surpasses state-of-the-art performance in zero-shot transfer conditions, demonstrating its potential for wearable robotics and next-generation prosthetic systems. Our project page is available at: https://reactemg.github.io
Vision 149
☆ MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
☆ WarpRF: Multi-View Consistency for Training-Free Uncertainty Quantification and Applications in Radiance Fields
We introduce WarpRF, a training-free general-purpose framework for quantifying the uncertainty of radiance fields. Built upon the assumption that photometric and geometric consistency should hold among images rendered by an accurate model, WarpRF quantifies its underlying uncertainty from an unseen point of view by leveraging backward warping across viewpoints, projecting reliable renderings to the unseen viewpoint and measuring the consistency with images rendered there. WarpRF is simple and inexpensive, does not require any training, and can be applied to any radiance field implementation for free. WarpRF excels at both uncertainty quantification and downstream tasks, e.g., active view selection and active mapping, outperforming any existing method tailored to specific frameworks.
comment: Project page: https://kuis-ai.github.io/WarpRF/
☆ Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
☆ Single-shot HDR using conventional image sensor shutter functions and optical randomization
High-dynamic-range (HDR) imaging is an essential technique for overcoming the dynamic range limits of image sensors. The classic method relies on multiple exposures, which slows capture time, resulting in motion artifacts when imaging dynamic scenes. Single-shot HDR imaging alleviates this issue by encoding HDR data into a single exposure, then computationally recovering it. Many established methods use strong image priors to recover improperly exposed image detail. These approaches struggle with extended highlight regions. We utilize the global reset release (GRR) shutter mode of an off-the-shelf sensor. GRR shutter mode applies a longer exposure time to rows closer to the bottom of the sensor. We use optics that relay a randomly permuted (shuffled) image onto the sensor, effectively creating spatially randomized exposures across the scene. The exposure diversity allows us to recover HDR data by solving an optimization problem with a simple total variation image prior. In simulation, we demonstrate that our method outperforms other single-shot methods when many sensor pixels are saturated (10% or more), and is competitive at a modest saturation (1%). Finally, we demonstrate a physical lab prototype that uses an off-the-shelf random fiber bundle for the optical shuffling. The fiber bundle is coupled to a low-cost commercial sensor operating in GRR shutter mode. Our prototype achieves a dynamic range of up to 73dB using an 8-bit sensor with 48dB dynamic range.
☆ Dehazing Light Microscopy Images with Guided Conditional Flow Matching: finding a sweet spot between fidelity and realism
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 7 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: supplement pending, 4 figures, 10 pages + refs
☆ Test-Time Consistency in Vision Language Models
Vision-Language Models (VLMs) have achieved impressive performance across a wide range of multimodal tasks, yet they often exhibit inconsistent behavior when faced with semantically equivalent inputs, undermining their reliability and robustness. Recent benchmarks, such as MM-R3, highlight that even state-of-the-art VLMs can produce divergent predictions across semantically equivalent inputs, despite maintaining high average accuracy. Prior work addresses this issue by modifying model architectures or conducting large-scale fine-tuning on curated datasets. In contrast, we propose a simple and effective test-time consistency framework that enhances semantic consistency without supervised re-training. Our method is entirely post-hoc, model-agnostic, and applicable to any VLM with access to its weights. Given a single test point, we enforce consistent predictions via two complementary objectives: (i) a Cross-Entropy Agreement Loss that aligns predictive distributions across semantically equivalent inputs, and (ii) a Pseudo-Label Consistency Loss that draws outputs toward a self-averaged consensus. Our method is plug-and-play and leverages information from a single test input itself to improve consistency. Experiments on the MM-R3 benchmark show that our framework yields substantial gains in consistency across state-of-the-art models, establishing a new direction for inference-time adaptation in multimodal learning.
☆ Can Video Large Multimodal Models Think Like Doubters-or Double-Down: A Study on Defeasible Video Entailment
Video Large Multimodal Models (VLMMs) have made impressive strides in understanding video content, but they often struggle with abstract and adaptive reasoning-the ability to revise their interpretations when new information emerges. In reality, conclusions are rarely set in stone; additional context can strengthen or weaken an initial inference. To address this, we introduce Defeasible Video Entailment (DVidE), a new task that challenges models to think like doubters, constantly updating their reasoning based on evolving evidence. In DVidE, given a video premise and a textual hypothesis, models must determine whether a new update strengthens or weakens the hypothesis (classification version) or generate a coherent update that modifies the entailment relationship (generation version). For solving the classification task, we propose the Chain of Counterfactual Thought framework, utilizing counterfactual reasoning, ASR-enhanced video content, and rationale refinement to reduce inference bias. For the generation task, we develop a framework that combines ASR output with a Large Language Model (LLM) to produce coherent, contextually relevant updates aligned with the intended strengthener or weakener goals. Additionally, we introduce a novel benchmark dataset, with strengthener/weakener annotations and an LLM-based evaluation metric specifically designed for assessing generative performance. Experimental results demonstrate significant improvements, highlighting our proposed method in enhancing dynamic reasoning capabilities of VLMMs.
☆ Exploiting Vision Language Model for Training-Free 3D Point Cloud OOD Detection via Graph Score Propagation ICCV 2025
Out-of-distribution (OOD) detection in 3D point cloud data remains a challenge, particularly in applications where safe and robust perception is critical. While existing OOD detection methods have shown progress for 2D image data, extending these to 3D environments involves unique obstacles. This paper introduces a training-free framework that leverages Vision-Language Models (VLMs) for effective OOD detection in 3D point clouds. By constructing a graph based on class prototypes and testing data, we exploit the data manifold structure to enhancing the effectiveness of VLMs for 3D OOD detection. We propose a novel Graph Score Propagation (GSP) method that incorporates prompt clustering and self-training negative prompting to improve OOD scoring with VLM. Our method is also adaptable to few-shot scenarios, providing options for practical applications. We demonstrate that GSP consistently outperforms state-of-the-art methods across synthetic and real-world datasets 3D point cloud OOD detection.
comment: Accepted by ICCV 2025
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Closing the Performance Gap in Biometric Cryptosystems: A Deeper Analysis on Unlinkable Fuzzy Vaults
This paper analyses and addresses the performance gap in the fuzzy vault-based \ac{BCS}. We identify unstable error correction capabilities, which are caused by variable feature set sizes and their influence on similarity thresholds, as a key source of performance degradation. This issue is further compounded by information loss introduced through feature type transformations. To address both problems, we propose a novel feature quantization method based on \it{equal frequent intervals}. This method guarantees fixed feature set sizes and supports training-free adaptation to any number of intervals. The proposed approach significantly reduces the performance gap introduced by template protection. Additionally, it integrates seamlessly with existing systems to minimize the negative effects of feature transformation. Experiments on state-of-the-art face, fingerprint, and iris recognition systems confirm that only minimal performance degradation remains, demonstrating the effectiveness of the method across major biometric modalities.
comment: 10 pages, 4 figures, 4 tables
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ A Deep Learning framework for building damage assessment using VHR SAR and geospatial data: demonstration on the 2023 Turkiye Earthquake
Building damage identification shortly after a disaster is crucial for guiding emergency response and recovery efforts. Although optical satellite imagery is commonly used for disaster mapping, its effectiveness is often hampered by cloud cover or the absence of pre-event acquisitions. To overcome these challenges, we introduce a novel multimodal deep learning (DL) framework for detecting building damage using single-date very high resolution (VHR) Synthetic Aperture Radar (SAR) imagery from the Italian Space Agency (ASI) COSMO SkyMed (CSK) constellation, complemented by auxiliary geospatial data. Our method integrates SAR image patches, OpenStreetMap (OSM) building footprints, digital surface model (DSM) data, and structural and exposure attributes from the Global Earthquake Model (GEM) to improve detection accuracy and contextual interpretation. Unlike existing approaches that depend on pre and post event imagery, our model utilizes only post event data, facilitating rapid deployment in critical scenarios. The framework effectiveness is demonstrated using a new dataset from the 2023 earthquake in Turkey, covering multiple cities with diverse urban settings. Results highlight that incorporating geospatial features significantly enhances detection performance and generalizability to previously unseen areas. By combining SAR imagery with detailed vulnerability and exposure information, our approach provides reliable and rapid building damage assessments without the dependency from available pre-event data. Moreover, the automated and scalable data generation process ensures the framework's applicability across diverse disaster-affected regions, underscoring its potential to support effective disaster management and recovery efforts. Code and data will be made available upon acceptance of the paper.
comment: 13 pages, 6 figures (plus 4 author photos), and 5 tables. Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ MatChA: Cross-Algorithm Matching with Feature Augmentation
State-of-the-art methods fail to solve visual localization in scenarios where different devices use different sparse feature extraction algorithms to obtain keypoints and their corresponding descriptors. Translating feature descriptors is enough to enable matching. However, performance is drastically reduced in cross-feature detector cases, because current solutions assume common keypoints. This means that the same detector has to be used, which is rarely the case in practice when different descriptors are used. The low repeatability of keypoints, in addition to non-discriminatory and non-distinctive descriptors, make the identification of true correspondences extremely challenging. We present the first method tackling this problem, which performs feature descriptor augmentation targeting cross-detector feature matching, and then feature translation to a latent space. We show that our method significantly improves image matching and visual localization in the cross-feature scenario and evaluate the proposed method on several benchmarks.
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ OutDreamer: Video Outpainting with a Diffusion Transformer
Video outpainting is a challenging task that generates new video content by extending beyond the boundaries of an original input video, requiring both temporal and spatial consistency. Many state-of-the-art methods utilize latent diffusion models with U-Net backbones but still struggle to achieve high quality and adaptability in generated content. Diffusion transformers (DiTs) have emerged as a promising alternative because of their superior performance. We introduce OutDreamer, a DiT-based video outpainting framework comprising two main components: an efficient video control branch and a conditional outpainting branch. The efficient video control branch effectively extracts masked video information, while the conditional outpainting branch generates missing content based on these extracted conditions. Additionally, we propose a mask-driven self-attention layer that dynamically integrates the given mask information, further enhancing the model's adaptability to outpainting tasks. Furthermore, we introduce a latent alignment loss to maintain overall consistency both within and between frames. For long video outpainting, we employ a cross-video-clip refiner to iteratively generate missing content, ensuring temporal consistency across video clips. Extensive evaluations demonstrate that our zero-shot OutDreamer outperforms state-of-the-art zero-shot methods on widely recognized benchmarks.
☆ RoomCraft: Controllable and Complete 3D Indoor Scene Generation
Generating realistic 3D indoor scenes from user inputs remains a challenging problem in computer vision and graphics, requiring careful balance of geometric consistency, spatial relationships, and visual realism. While neural generation methods often produce repetitive elements due to limited global spatial reasoning, procedural approaches can leverage constraints for controllable generation but struggle with multi-constraint scenarios. When constraints become numerous, object collisions frequently occur, forcing the removal of furniture items and compromising layout completeness. To address these limitations, we propose RoomCraft, a multi-stage pipeline that converts real images, sketches, or text descriptions into coherent 3D indoor scenes. Our approach combines a scene generation pipeline with a constraint-driven optimization framework. The pipeline first extracts high-level scene information from user inputs and organizes it into a structured format containing room type, furniture items, and spatial relations. It then constructs a spatial relationship network to represent furniture arrangements and generates an optimized placement sequence using a heuristic-based depth-first search (HDFS) algorithm to ensure layout coherence. To handle complex multi-constraint scenarios, we introduce a unified constraint representation that processes both formal specifications and natural language inputs, enabling flexible constraint-oriented adjustments through a comprehensive action space design. Additionally, we propose a Conflict-Aware Positioning Strategy (CAPS) that dynamically adjusts placement weights to minimize furniture collisions and ensure layout completeness. Extensive experiments demonstrate that RoomCraft significantly outperforms existing methods in generating realistic, semantically coherent, and visually appealing room layouts across diverse input modalities.
☆ Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment
Large Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics. These visual tokens often outnumber their textual counterparts by a large margin, leading to substantial computational overhead and limiting the scalability of LVLMs in practice. Previous efforts have explored visual token reduction either prior to or within the large language models (LLM). However, most in-LLM reduction approaches rely on text-conditioned interactions, implicitly assuming that textual tokens can reliably capture the importance of visual tokens. In this work, we revisit this assumption and reveal causal, semantic, and spatial forms of cross-modal misalignment. These misalignments undermine the effectiveness of text-guided visual token reduction. To address this, we introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention, without relying on textual signals. To further suppress redundancy throughout the model hierarchy, we treat the visual encoder and the LLM as a unified system and design a progressive pruning pipeline. Our method performs dominant token selection and lightweight contextual merging at multiple stages, enabling fine-grained visual information to be retained even under aggressive token budgets. Extensive experiments across diverse benchmarks show that VisionDrop achieves consistent improvements over existing methods, despite requiring no additional training or complex modifications. Its simple yet effective design enables efficient inference while preserving strong performance across tasks.
☆ DIGS: Dynamic CBCT Reconstruction using Deformation-Informed 4D Gaussian Splatting and a Low-Rank Free-Form Deformation Model MICCAI 2025
3D Cone-Beam CT (CBCT) is widely used in radiotherapy but suffers from motion artifacts due to breathing. A common clinical approach mitigates this by sorting projections into respiratory phases and reconstructing images per phase, but this does not account for breathing variability. Dynamic CBCT instead reconstructs images at each projection, capturing continuous motion without phase sorting. Recent advancements in 4D Gaussian Splatting (4DGS) offer powerful tools for modeling dynamic scenes, yet their application to dynamic CBCT remains underexplored. Existing 4DGS methods, such as HexPlane, use implicit motion representations, which are computationally expensive. While explicit low-rank motion models have been proposed, they lack spatial regularization, leading to inconsistencies in Gaussian motion. To address these limitations, we introduce a free-form deformation (FFD)-based spatial basis function and a deformation-informed framework that enforces consistency by coupling the temporal evolution of Gaussian's mean position, scale, and rotation under a unified deformation field. We evaluate our approach on six CBCT datasets, demonstrating superior image quality with a 6x speedup over HexPlane. These results highlight the potential of deformation-informed 4DGS for efficient, motion-compensated CBCT reconstruction. The code is available at https://github.com/Yuliang-Huang/DIGS.
comment: Accepted by MICCAI 2025
☆ COOCO -- Common Objects Out-of-Context -- Semantic Violation in Scenes: Investigating Multimodal Context in Referential Communication
Natural scenes provide us with rich contexts for object recognition and reference. In particular, knowing what type of scene one is looking at generates expectations about which objects will occur, and what their spatial configuration should be. Do Vision-Language Models (VLMs) learn to rely on scene contexts in a similar way, when generating references to objects? To address this question, we introduce the \textit{Common Objects Out-of-Context (COOCO)} dataset and test to what extent VLMs rely on scene context to refer to objects under different degrees of scene-object congruency, and different perturbations. Our findings show that models leverage scene context adaptively, depending on both the semantic relatedness between object and scene and the level of noise. In particular, models rely more on context under high target-scene congruence or when objects are degraded. Attention analysis reveals that successful object categorisation involves increased focus on the target in mid-level layers, especially under moderate noise, suggesting that VLMs dynamically balance local and contextual information for reference generation. We make our dataset, code and models available at \href{https://github.com/cs-nlp-uu/scenereg}{https://github.com/cs-nlp-uu/scenereg}.
☆ EAMamba: Efficient All-Around Vision State Space Model for Image Restoration ICCV 2025
Image restoration is a key task in low-level computer vision that aims to reconstruct high-quality images from degraded inputs. The emergence of Vision Mamba, which draws inspiration from the advanced state space model Mamba, marks a significant advancement in this field. Vision Mamba demonstrates excellence in modeling long-range dependencies with linear complexity, a crucial advantage for image restoration tasks. Despite its strengths, Vision Mamba encounters challenges in low-level vision tasks, including computational complexity that scales with the number of scanning sequences and local pixel forgetting. To address these limitations, this study introduces Efficient All-Around Mamba (EAMamba), an enhanced framework that incorporates a Multi-Head Selective Scan Module (MHSSM) with an all-around scanning mechanism. MHSSM efficiently aggregates multiple scanning sequences, which avoids increases in computational complexity and parameter count. The all-around scanning strategy implements multiple patterns to capture holistic information and resolves the local pixel forgetting issue. Our experimental evaluations validate these innovations across several restoration tasks, including super resolution, denoising, deblurring, and dehazing. The results validate that EAMamba achieves a significant 31-89% reduction in FLOPs while maintaining favorable performance compared to existing low-level Vision Mamba methods.
comment: ICCV 2025
☆ 4D-VLA: Spatiotemporal Vision-Language-Action Pretraining with Cross-Scene Calibration
Leveraging diverse robotic data for pretraining remains a critical challenge. Existing methods typically model the dataset's action distribution using simple observations as inputs. However, these inputs are often incomplete, resulting in a dispersed conditional action distribution-an issue we refer to as coordinate system chaos and state chaos. This inconsistency significantly hampers pretraining efficiency. To address this, we propose 4D-VLA, a novel approach that effectively integrates 4D information into the input to mitigate these sources of chaos. Our model introduces depth and temporal information into visual features with sequential RGB-D inputs, aligning the coordinate systems of the robot and the scene. This alignment endows the model with strong spatiotemporal reasoning capabilities while minimizing training overhead. Additionally, we introduce memory bank sampling, a frame sampling strategy designed to extract informative frames from historical images, further improving effectiveness and efficiency. Experimental results demonstrate that our pretraining method and architectural components substantially enhance model performance. In both simulated and real-world experiments, our model achieves a significant increase in success rate over OpenVLA. To further assess spatial perception and generalization to novel views, we introduce MV-Bench, a multi-view simulation benchmark. Our model consistently outperforms existing methods, demonstrating stronger spatial understanding and adaptability.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ Cardiovascular disease classification using radiomics and geometric features from cardiac CT MICCAI 2025
Automatic detection and classification of Cardiovascular disease (CVD) from Computed Tomography (CT) images play an important part in facilitating better-informed clinical decisions. However, most of the recent deep learning based methods either directly work on raw CT data or utilize it in pair with anatomical cardiac structure segmentation by training an end-to-end classifier. As such, these approaches become much more difficult to interpret from a clinical perspective. To address this challenge, in this work, we break down the CVD classification pipeline into three components: (i) image segmentation, (ii) image registration, and (iii) downstream CVD classification. Specifically, we utilize the Atlas-ISTN framework and recent segmentation foundational models to generate anatomical structure segmentation and a normative healthy atlas. These are further utilized to extract clinically interpretable radiomic features as well as deformation field based geometric features (through atlas registration) for CVD classification. Our experiments on the publicly available ASOCA dataset show that utilizing these features leads to better CVD classification accuracy (87.50\%) when compared against classification model trained directly on raw CT images (67.50\%). Our code is publicly available: https://github.com/biomedia-mira/grc-net
comment: Under Review at STACOM 2025 with MICCAI 2025
☆ Advanced Deep Learning Techniques for Automated Segmentation of Type B Aortic Dissections
Purpose: Aortic dissections are life-threatening cardiovascular conditions requiring accurate segmentation of true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT) from CTA images for effective management. Manual segmentation is time-consuming and variable, necessitating automated solutions. Materials and Methods: We developed four deep learning-based pipelines for Type B aortic dissection segmentation: a single-step model, a sequential model, a sequential multi-task model, and an ensemble model, utilizing 3D U-Net and Swin-UnetR architectures. A dataset of 100 retrospective CTA images was split into training (n=80), validation (n=10), and testing (n=10). Performance was assessed using the Dice Coefficient and Hausdorff Distance. Results: Our approach achieved superior segmentation accuracy, with Dice Coefficients of 0.91 $\pm$ 0.07 for TL, 0.88 $\pm$ 0.18 for FL, and 0.47 $\pm$ 0.25 for FLT, outperforming Yao et al. (1), who reported 0.78 $\pm$ 0.20, 0.68 $\pm$ 0.18, and 0.25 $\pm$ 0.31, respectively. Conclusion: The proposed pipelines provide accurate segmentation of TBAD features, enabling derivation of morphological parameters for surveillance and treatment planning
comment: 9 pages, 5 figures, 3 tables
☆ ReF-LLE: Personalized Low-Light Enhancement via Reference-Guided Deep Reinforcement Learning ICME2025
Low-light image enhancement presents two primary challenges: 1) Significant variations in low-light images across different conditions, and 2) Enhancement levels influenced by subjective preferences and user intent. To address these issues, we propose ReF-LLE, a novel personalized low-light image enhancement method that operates in the Fourier frequency domain and incorporates deep reinforcement learning. ReF-LLE is the first to integrate deep reinforcement learning into this domain. During training, a zero-reference image evaluation strategy is introduced to score enhanced images, providing reward signals that guide the model to handle varying degrees of low-light conditions effectively. In the inference phase, ReF-LLE employs a personalized adaptive iterative strategy, guided by the zero-frequency component in the Fourier domain, which represents the overall illumination level. This strategy enables the model to adaptively adjust low-light images to align with the illumination distribution of a user-provided reference image, ensuring personalized enhancement results. Extensive experiments on benchmark datasets demonstrate that ReF-LLE outperforms state-of-the-art methods, achieving superior perceptual quality and adaptability in personalized low-light image enhancement.
comment: 6 pages, 8 figures, accepted by ICME2025
☆ Robust and Accurate Multi-view 2D/3D Image Registration with Differentiable X-ray Rendering and Dual Cross-view Constraints ICRA 2025
Robust and accurate 2D/3D registration, which aligns preoperative models with intraoperative images of the same anatomy, is crucial for successful interventional navigation. To mitigate the challenge of a limited field of view in single-image intraoperative scenarios, multi-view 2D/3D registration is required by leveraging multiple intraoperative images. In this paper, we propose a novel multi-view 2D/3D rigid registration approach comprising two stages. In the first stage, a combined loss function is designed, incorporating both the differences between predicted and ground-truth poses and the dissimilarities (e.g., normalized cross-correlation) between simulated and observed intraoperative images. More importantly, additional cross-view training loss terms are introduced for both pose and image losses to explicitly enforce cross-view constraints. In the second stage, test-time optimization is performed to refine the estimated poses from the coarse stage. Our method exploits the mutual constraints of multi-view projection poses to enhance the robustness of the registration process. The proposed framework achieves a mean target registration error (mTRE) of $0.79 \pm 2.17$ mm on six specimens from the DeepFluoro dataset, demonstrating superior performance compared to state-of-the-art registration algorithms.
comment: ICRA 2025
☆ Frequency-Semantic Enhanced Variational Autoencoder for Zero-Shot Skeleton-based Action Recognition ICCV 2025
Zero-shot skeleton-based action recognition aims to develop models capable of identifying actions beyond the categories encountered during training. Previous approaches have primarily focused on aligning visual and semantic representations but often overlooked the importance of fine-grained action patterns in the semantic space (e.g., the hand movements in drinking water and brushing teeth). To address these limitations, we propose a Frequency-Semantic Enhanced Variational Autoencoder (FS-VAE) to explore the skeleton semantic representation learning with frequency decomposition. FS-VAE consists of three key components: 1) a frequency-based enhancement module with high- and low-frequency adjustments to enrich the skeletal semantics learning and improve the robustness of zero-shot action recognition; 2) a semantic-based action description with multilevel alignment to capture both local details and global correspondence, effectively bridging the semantic gap and compensating for the inherent loss of information in skeleton sequences; 3) a calibrated cross-alignment loss that enables valid skeleton-text pairs to counterbalance ambiguous ones, mitigating discrepancies and ambiguities in skeleton and text features, thereby ensuring robust alignment. Evaluations on the benchmarks demonstrate the effectiveness of our approach, validating that frequency-enhanced semantic features enable robust differentiation of visually and semantically similar action clusters, improving zero-shot action recognition.
comment: Accepted to ICCV 2025
☆ KnotDLO: Toward Interpretable Knot Tying ICRA20243
This work presents KnotDLO, a method for one-handed Deformable Linear Object (DLO) knot tying that is robust to occlusion, repeatable for varying rope initial configurations, interpretable for generating motion policies, and requires no human demonstrations or training. Grasp and target waypoints for future DLO states are planned from the current DLO shape. Grasp poses are computed from indexing the tracked piecewise linear curve representing the DLO state based on the current curve shape and are piecewise continuous. KnotDLO computes intermediate waypoints from the geometry of the current DLO state and the desired next state. The system decouples visual reasoning from control. In 16 trials of knot tying, KnotDLO achieves a 50% success rate in tying an overhand knot from previously unseen configurations.
comment: 4 pages, 5 figures, presented at the Workshop on 3D Visual Representations for Manipulation at the 2023 IEEE International Conference on Robotics and Automation in Yokohama, Japan. Video presentation [https://youtu.be/mg30uCUtpOk]. Poster [https://hollydinkel.github.io/assets/pdf/ICRA20243DVRM_poster.pdf] 3DVRM Workshop [https://3d-manipulation-workshop.github.io/]
☆ Attention-disentangled Uniform Orthogonal Feature Space Optimization for Few-shot Object Detection
Few-shot object detection (FSOD) aims to detect objects with limited samples for novel classes, while relying on abundant data for base classes. Existing FSOD approaches, predominantly built on the Faster R-CNN detector, entangle objectness recognition and foreground classification within shared feature spaces. This paradigm inherently establishes class-specific objectness criteria and suffers from unrepresentative novel class samples. To resolve this limitation, we propose a Uniform Orthogonal Feature Space (UOFS) optimization framework. First, UOFS decouples the feature space into two orthogonal components, where magnitude encodes objectness and angle encodes classification. This decoupling enables transferring class-agnostic objectness knowledge from base classes to novel classes. Moreover, implementing the disentanglement requires careful attention to two challenges: (1) Base set images contain unlabeled foreground instances, causing confusion between potential novel class instances and backgrounds. (2) Angular optimization depends exclusively on base class foreground instances, inducing overfitting of angular distributions to base classes. To address these challenges, we propose a Hybrid Background Optimization (HBO) strategy: (1) Constructing a pure background base set by removing unlabeled instances in original images to provide unbiased magnitude-based objectness supervision. (2) Incorporating unlabeled foreground instances in the original base set into angular optimization to enhance distribution uniformity. Additionally, we propose a Spatial-wise Attention Disentanglement and Association (SADA) module to address task conflicts between class-agnostic and class-specific tasks. Experiments demonstrate that our method significantly outperforms existing approaches based on entangled feature spaces.
☆ Hardware acceleration for ultra-fast Neural Network training on FPGA for MRF map reconstruction
Magnetic Resonance Fingerprinting (MRF) is a fast quantitative MR Imaging technique that provides multi-parametric maps with a single acquisition. Neural Networks (NNs) accelerate reconstruction but require significant resources for training. We propose an FPGA-based NN for real-time brain parameter reconstruction from MRF data. Training the NN takes an estimated 200 seconds, significantly faster than standard CPU-based training, which can be up to 250 times slower. This method could enable real-time brain analysis on mobile devices, revolutionizing clinical decision-making and telemedicine.
comment: 8 pages, 2 figures, to be published in conference proceedings of SDPS 2024: 2024 International Conference of the Society for Design and Process Science on Advances and Challenges of Applying AI/GenAI in Design and Process Science
☆ RetFiner: A Vision-Language Refinement Scheme for Retinal Foundation Models MICCAI 2025
The rise of imaging techniques such as optical coherence tomography (OCT) and advances in deep learning (DL) have enabled clinicians and researchers to streamline retinal disease staging. A popular DL approach is self-supervised learning (SSL), where models learn from vast amounts of unlabeled data, avoiding costly annotation. SSL has allowed the development of foundation models (FMs), large models that can be used for a variety of downstream tasks. However, existing FMs for OCT, trained solely on image data, lack a comprehensive and robust semantic understanding of images, as evidenced by their downstream performance (especially for complex tasks), and thus require supervised fine-tuning (which may be unfeasible) to better adapt to specific applications and populations. To address this, we propose RetFiner, an SSL vision-language refinement scheme that improves the representations of existing FMs and enables their efficient and direct adaptation to specific populations for improved downstream performance. Our method uses a diverse set of training objectives which take advantage of the rich supervisory signal found in textual data. We tested RetFiner on the retinal FMs RETFound, UrFound, and VisionFM, showing significant improvements in linear probing performance on seven highly diverse OCT classification tasks, with an average increase of 5.8, 3.9, and 2.1 percentage points over their baselines, respectively. Our code and model weights are publicly available at https://github.com/ronnief1/RetFiner.
comment: Accepted for presentation at MICCAI 2025
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs ICCV 2025
Multimodal Large Language Models (MLLMs) have demonstrated significant success in visual understanding tasks. However, challenges persist in adapting these models for video comprehension due to the large volume of data and temporal complexity. Existing Video-LLMs using uniform frame sampling often struggle to capture the query-related crucial spatiotemporal clues of videos effectively. In this paper, we introduce Q-Frame, a novel approach for adaptive frame selection and multi-resolution scaling tailored to the video's content and the specific query. Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP, utilizing the Gumbel-Max trick for efficient frame selection. Q-Frame allows Video-LLMs to process more frames without exceeding computational limits, thereby preserving critical temporal and spatial information. We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets, including MLVU, LongVideoBench, and Video-MME, illustrating its superiority over existing methods and its applicability across various video understanding tasks.
comment: Accepted at ICCV 2025
☆ Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization
Higher-order tensors are well-suited for representing multi-dimensional data, such as color images and videos. Low-rank tensor representation has become essential in machine learning and computer vision, but existing methods like Tucker decomposition offer flexibility at the expense of interpretability. In contrast, while the CANDECOMP/PARAFAC (CP) decomposition provides a more natural and interpretable tensor structure, obtaining sparse solutions remains challenging. Leveraging the rich properties of CP decomposition, we propose a CP-based low-rank tensor function parameterized by neural networks for implicit neural representation (CP-INR). This approach enables continuous data representation beyond structured grids, fully exploiting the non-linearity of tensor data with theoretical guarantees on excess risk bounds. To achieve a sparse CP decomposition, we introduce a variational form of the Schatten-p quasi-norm and prove its relationship to multilinear rank minimization. For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator. Our proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations. It can serve as an alternative to Total Variation (TV) regularization in image denoising tasks and is naturally applicable to continuous data. Extensive experiments on multi-dimensional data recovery tasks, including image inpainting, denoising, and point cloud upsampling, demonstrate the superiority and versatility of our method compared to state-of-the-art approaches.
comment: Submitted to IEEE Transactions on Circuits and Systems for Video Technology
☆ Pipe Reconstruction from Point Cloud Data
Accurate digital twins of industrial assets, such as ships and offshore platforms, rely on the precise reconstruction of complex pipe networks. However, manual modelling of pipes from laser scan data is a time-consuming and labor-intensive process. This paper presents a pipeline for automated pipe reconstruction from incomplete laser scan data. The approach estimates a skeleton curve using Laplacian-based contraction, followed by curve elongation. The skeleton axis is then recentred using a rolling sphere technique combined with 2D circle fitting, and refined with a 3D smoothing step. This enables the determination of pipe properties, including radius, length and orientation, and facilitates the creation of detailed 3D models of complex pipe networks. By automating pipe reconstruction, this approach supports the development of digital twins, allowing for rapid and accurate modeling while reducing costs.
☆ Evaluating Pointing Gestures for Target Selection in Human-Robot Collaboration
Pointing gestures are a common interaction method used in Human-Robot Collaboration for various tasks, ranging from selecting targets to guiding industrial processes. This study introduces a method for localizing pointed targets within a planar workspace. The approach employs pose estimation, and a simple geometric model based on shoulder-wrist extension to extract gesturing data from an RGB-D stream. The study proposes a rigorous methodology and comprehensive analysis for evaluating pointing gestures and target selection in typical robotic tasks. In addition to evaluating tool accuracy, the tool is integrated into a proof-of-concept robotic system, which includes object detection, speech transcription, and speech synthesis to demonstrate the integration of multiple modalities in a collaborative application. Finally, a discussion over tool limitations and performance is provided to understand its role in multimodal robotic systems. All developments are available at: https://github.com/NMKsas/gesture_pointer.git.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). Preprint
☆ Pedestrian Intention and Trajectory Prediction in Unstructured Traffic Using IDD-PeD
With the rapid advancements in autonomous driving, accurately predicting pedestrian behavior has become essential for ensuring safety in complex and unpredictable traffic conditions. The growing interest in this challenge highlights the need for comprehensive datasets that capture unstructured environments, enabling the development of more robust prediction models to enhance pedestrian safety and vehicle navigation. In this paper, we introduce an Indian driving pedestrian dataset designed to address the complexities of modeling pedestrian behavior in unstructured environments, such as illumination changes, occlusion of pedestrians, unsignalized scene types and vehicle-pedestrian interactions. The dataset provides high-level and detailed low-level comprehensive annotations focused on pedestrians requiring the ego-vehicle's attention. Evaluation of the state-of-the-art intention prediction methods on our dataset shows a significant performance drop of up to $\mathbf{15\%}$, while trajectory prediction methods underperform with an increase of up to $\mathbf{1208}$ MSE, defeating standard pedestrian datasets. Additionally, we present exhaustive quantitative and qualitative analysis of intention and trajectory baselines. We believe that our dataset will open new challenges for the pedestrian behavior research community to build robust models. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/iddped
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ BézierGS: Dynamic Urban Scene Reconstruction with Bézier Curve Gaussian Splatting ICCV 2025
The realistic reconstruction of street scenes is critical for developing real-world simulators in autonomous driving. Most existing methods rely on object pose annotations, using these poses to reconstruct dynamic objects and move them during the rendering process. This dependence on high-precision object annotations limits large-scale and extensive scene reconstruction. To address this challenge, we propose B\'ezier curve Gaussian splatting (B\'ezierGS), which represents the motion trajectories of dynamic objects using learnable B\'ezier curves. This approach fully leverages the temporal information of dynamic objects and, through learnable curve modeling, automatically corrects pose errors. By introducing additional supervision on dynamic object rendering and inter-curve consistency constraints, we achieve reasonable and accurate separation and reconstruction of scene elements. Extensive experiments on the Waymo Open Dataset and the nuPlan benchmark demonstrate that B\'ezierGS outperforms state-of-the-art alternatives in both dynamic and static scene components reconstruction and novel view synthesis.
comment: Accepted at ICCV 2025, Project Page: https://github.com/fudan-zvg/BezierGS
☆ Towards Accurate Heart Rate Measurement from Ultra-Short Video Clips via Periodicity-Guided rPPG Estimation and Signal Reconstruction
Many remote Heart Rate (HR) measurement methods focus on estimating remote photoplethysmography (rPPG) signals from video clips lasting around 10 seconds but often overlook the need for HR estimation from ultra-short video clips. In this paper, we aim to accurately measure HR from ultra-short 2-second video clips by specifically addressing two key challenges. First, to overcome the limited number of heartbeat cycles in ultra-short video clips, we propose an effective periodicity-guided rPPG estimation method that enforces consistent periodicity between rPPG signals estimated from ultra-short clips and their much longer ground truth signals. Next, to mitigate estimation inaccuracies due to spectral leakage, we propose including a generator to reconstruct longer rPPG signals from ultra-short ones while preserving their periodic consistency to enable more accurate HR measurement. Extensive experiments on four rPPG estimation benchmark datasets demonstrate that our proposed method not only accurately measures HR from ultra-short video clips but also outperform previous rPPG estimation techniques to achieve state-of-the-art performance.
☆ Reasoning in machine vision: learning to think fast and slow
Reasoning is a hallmark of human intelligence, enabling adaptive decision-making in complex and unfamiliar scenarios. In contrast, machine intelligence remains bound to training data, lacking the ability to dynamically refine solutions at inference time. While some recent advances have explored reasoning in machines, these efforts are largely limited to verbal domains such as mathematical problem-solving, where explicit rules govern step-by-step reasoning. Other critical real-world tasks - including visual perception, spatial reasoning, and radiological diagnosis - require non-verbal reasoning, which remains an open challenge. Here we present a novel learning paradigm that enables machine reasoning in vision by allowing performance improvement with increasing thinking time (inference-time compute), even under conditions where labelled data is very limited. Inspired by dual-process theories of human cognition in psychology, our approach integrates a fast-thinking System I module for familiar tasks, with a slow-thinking System II module that iteratively refines solutions using self-play reinforcement learning. This paradigm mimics human reasoning by proposing, competing over, and refining solutions in data-scarce scenarios. We demonstrate superior performance through extended thinking time, compared not only to large-scale supervised learning but also foundation models and even human experts, in real-world vision tasks. These tasks include computer-vision benchmarks and cancer localisation on medical images across five organs, showcasing transformative potential for non-verbal machine reasoning.
Single-Scanline Relative Pose Estimation for Rolling Shutter Cameras ICCV 2025
We propose a novel approach for estimating the relative pose between rolling shutter cameras using the intersections of line projections with a single scanline per image. This allows pose estimation without explicitly modeling camera motion. Alternatively, scanlines can be selected within a single image, enabling single-view relative pose estimation for scanlines of rolling shutter cameras. Our approach is designed as a foundational building block for rolling shutter structure-from-motion (SfM), where no motion model is required, and each scanline's pose can be computed independently. % We classify minimal solvers for this problem in both generic and specialized settings, including cases with parallel lines and known gravity direction, assuming known intrinsics and no lens distortion. Furthermore, we develop minimal solvers for the parallel-lines scenario, both with and without gravity priors, by leveraging connections between this problem and the estimation of 2D structure from 1D cameras. % Experiments on rolling shutter images from the Fastec dataset demonstrate the feasibility of our approach for initializing rolling shutter SfM, highlighting its potential for further development. % The code will be made publicly available.
comment: ICCV 2025, 15 pages, 5 figures, 12 tables
☆ MirrorMe: Towards Realtime and High Fidelity Audio-Driven Halfbody Animation
Audio-driven portrait animation, which synthesizes realistic videos from reference images using audio signals, faces significant challenges in real-time generation of high-fidelity, temporally coherent animations. While recent diffusion-based methods improve generation quality by integrating audio into denoising processes, their reliance on frame-by-frame UNet architectures introduces prohibitive latency and struggles with temporal consistency. This paper introduces MirrorMe, a real-time, controllable framework built on the LTX video model, a diffusion transformer that compresses video spatially and temporally for efficient latent space denoising. To address LTX's trade-offs between compression and semantic fidelity, we propose three innovations: 1. A reference identity injection mechanism via VAE-encoded image concatenation and self-attention, ensuring identity consistency; 2. A causal audio encoder and adapter tailored to LTX's temporal structure, enabling precise audio-expression synchronization; and 3. A progressive training strategy combining close-up facial training, half-body synthesis with facial masking, and hand pose integration for enhanced gesture control. Extensive experiments on the EMTD Benchmark demonstrate MirrorMe's state-of-the-art performance in fidelity, lip-sync accuracy, and temporal stability.
comment: 8 pages, 6 figures
☆ EnLVAM: Enhanced Left Ventricle Linear Measurements Utilizing Anatomical Motion Mode
Linear measurements of the left ventricle (LV) in the Parasternal Long Axis (PLAX) view using B-mode echocardiography are crucial for cardiac assessment. These involve placing 4-6 landmarks along a virtual scanline (SL) perpendicular to the LV axis near the mitral valve tips. Manual placement is time-consuming and error-prone, while existing deep learning methods often misalign landmarks, causing inaccurate measurements. We propose a novel framework that enhances LV measurement accuracy by enforcing straight-line constraints. A landmark detector is trained on Anatomical M-Mode (AMM) images, computed in real time from B-mode videos, then transformed back to B-mode space. This approach addresses misalignment and reduces measurement errors. Experiments show improved accuracy over standard B-mode methods, and the framework generalizes well across network architectures. Our semi-automatic design includes a human-in-the-loop step where the user only places the SL, simplifying interaction while preserving alignment flexibility and clinical relevance.
☆ Few-Shot Identity Adaptation for 3D Talking Heads via Global Gaussian Field
Reconstruction and rendering-based talking head synthesis methods achieve high-quality results with strong identity preservation but are limited by their dependence on identity-specific models. Each new identity requires training from scratch, incurring high computational costs and reduced scalability compared to generative model-based approaches. To overcome this limitation, we propose FIAG, a novel 3D speaking head synthesis framework that enables efficient identity-specific adaptation using only a few training footage. FIAG incorporates Global Gaussian Field, which supports the representation of multiple identities within a shared field, and Universal Motion Field, which captures the common motion dynamics across diverse identities. Benefiting from the shared facial structure information encoded in the Global Gaussian Field and the general motion priors learned in the motion field, our framework enables rapid adaptation from canonical identity representations to specific ones with minimal data. Extensive comparative and ablation experiments demonstrate that our method outperforms existing state-of-the-art approaches, validating both the effectiveness and generalizability of the proposed framework. Code is available at: \textit{https://github.com/gme-hong/FIAG}.
☆ Towards Scalable and Robust White Matter Lesion Localization via Multimodal Deep Learning
White matter hyperintensities (WMH) are radiological markers of small vessel disease and neurodegeneration, whose accurate segmentation and spatial localization are crucial for diagnosis and monitoring. While multimodal MRI offers complementary contrasts for detecting and contextualizing WM lesions, existing approaches often lack flexibility in handling missing modalities and fail to integrate anatomical localization efficiently. We propose a deep learning framework for WM lesion segmentation and localization that operates directly in native space using single- and multi-modal MRI inputs. Our study evaluates four input configurations: FLAIR-only, T1-only, concatenated FLAIR and T1, and a modality-interchangeable setup. It further introduces a multi-task model for jointly predicting lesion and anatomical region masks to estimate region-wise lesion burden. Experiments conducted on the MICCAI WMH Segmentation Challenge dataset demonstrate that multimodal input significantly improves the segmentation performance, outperforming unimodal models. While the modality-interchangeable setting trades accuracy for robustness, it enables inference in cases with missing modalities. Joint lesion-region segmentation using multi-task learning was less effective than separate models, suggesting representational conflict between tasks. Our findings highlight the utility of multimodal fusion for accurate and robust WMH analysis, and the potential of joint modeling for integrated predictions.
comment: 2nd Sorbonne-Heidelberg Workshop on AI in medicine: Machine Learning for multi-modal data
☆ Partial CLIP is Enough: Chimera-Seg for Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment both seen and unseen classes using supervision from only seen classes. Beyond adaptation-based methods, distillation-based approaches transfer vision-language alignment of vision-language model, e.g., CLIP, to segmentation models. However, such knowledge transfer remains challenging due to: (1) the difficulty of aligning vision-based features with the textual space, which requires combining spatial precision with vision-language alignment; and (2) the semantic gap between CLIP's global representations and the local, fine-grained features of segmentation models. To address challenge (1), we propose Chimera-Seg, which integrates a segmentation backbone as the body and a CLIP-based semantic head as the head, like the Chimera in Greek mythology, combining spatial precision with vision-language alignment. Specifically, Chimera-Seg comprises a trainable segmentation model and a CLIP Semantic Head (CSH), which maps dense features into the CLIP-aligned space. The CSH incorporates a frozen subnetwork and fixed projection layers from the CLIP visual encoder, along with lightweight trainable components. The partial module from CLIP visual encoder, paired with the segmentation model, retains segmentation capability while easing the mapping to CLIP's semantic space. To address challenge (2), we propose Selective Global Distillation (SGD), which distills knowledge from dense features exhibiting high similarity to the CLIP CLS token, while gradually reducing the number of features used for alignment as training progresses. Besides, we also use a Semantic Alignment Module (SAM) to further align dense visual features with semantic embeddings extracted from the frozen CLIP text encoder. Experiments on two benchmarks show improvements of 0.9% and 1.2% in hIoU.
☆ Cross-modal Ship Re-Identification via Optical and SAR Imagery: A Novel Dataset and Method ICCV 2025
Detecting and tracking ground objects using earth observation imagery remains a significant challenge in the field of remote sensing. Continuous maritime ship tracking is crucial for applications such as maritime search and rescue, law enforcement, and shipping analysis. However, most current ship tracking methods rely on geostationary satellites or video satellites. The former offer low resolution and are susceptible to weather conditions, while the latter have short filming durations and limited coverage areas, making them less suitable for the real-world requirements of ship tracking. To address these limitations, we present the Hybrid Optical and Synthetic Aperture Radar (SAR) Ship Re-Identification Dataset (HOSS ReID dataset), designed to evaluate the effectiveness of ship tracking using low-Earth orbit constellations of optical and SAR sensors. This approach ensures shorter re-imaging cycles and enables all-weather tracking. HOSS ReID dataset includes images of the same ship captured over extended periods under diverse conditions, using different satellites of different modalities at varying times and angles. Furthermore, we propose a baseline method for cross-modal ship re-identification, TransOSS, which is built on the Vision Transformer architecture. It refines the patch embedding structure to better accommodate cross-modal tasks, incorporates additional embeddings to introduce more reference information, and employs contrastive learning to pre-train on large-scale optical-SAR image pairs, ensuring the model's ability to extract modality-invariant features. Our dataset and baseline method are publicly available on https://github.com/Alioth2000/Hoss-ReID.
comment: Accepted to ICCV 2025
☆ Advancing Facial Stylization through Semantic Preservation Constraint and Pseudo-Paired Supervision
Facial stylization aims to transform facial images into appealing, high-quality stylized portraits, with the critical challenge of accurately learning the target style while maintaining content consistency with the original image. Although previous StyleGAN-based methods have made significant advancements, the generated results still suffer from artifacts or insufficient fidelity to the source image. We argue that these issues stem from neglecting semantic shift of the generator during stylization. Therefore, we propose a facial stylization method that integrates semantic preservation constraint and pseudo-paired supervision to enhance the content correspondence and improve the stylization effect. Additionally, we develop a methodology for creating multi-level pseudo-paired datasets to implement supervisory constraint. Furthermore, building upon our facial stylization framework, we achieve more flexible multimodal and reference-guided stylization without complex network architecture designs or additional training. Experimental results demonstrate that our approach produces high-fidelity, aesthetically pleasing facial style transfer that surpasses previous methods.
☆ Towards Universal & Efficient Model Compression via Exponential Torque Pruning
The rapid growth in complexity and size of modern deep neural networks (DNNs) has increased challenges related to computational costs and memory usage, spurring a growing interest in efficient model compression techniques. Previous state-of-the-art approach proposes using a Torque-inspired regularization which forces the weights of neural modules around a selected pivot point. Whereas, we observe that the pruning effect of this approach is far from perfect, as the post-trained network is still dense and also suffers from high accuracy drop. In this work, we attribute such ineffectiveness to the default linear force application scheme, which imposes inappropriate force on neural module of different distances. To efficiently prune the redundant and distant modules while retaining those that are close and necessary for effective inference, in this work, we propose Exponential Torque Pruning (ETP), which adopts an exponential force application scheme for regularization. Experimental results on a broad range of domains demonstrate that, though being extremely simple, ETP manages to achieve significantly higher compression rate than the previous state-of-the-art pruning strategies with negligible accuracy drop.
☆ Noise-Inspired Diffusion Model for Generalizable Low-Dose CT Reconstruction
The generalization of deep learning-based low-dose computed tomography (CT) reconstruction models to doses unseen in the training data is important and remains challenging. Previous efforts heavily rely on paired data to improve the generalization performance and robustness through collecting either diverse CT data for re-training or a few test data for fine-tuning. Recently, diffusion models have shown promising and generalizable performance in low-dose CT (LDCT) reconstruction, however, they may produce unrealistic structures due to the CT image noise deviating from Gaussian distribution and imprecise prior information from the guidance of noisy LDCT images. In this paper, we propose a noise-inspired diffusion model for generalizable LDCT reconstruction, termed NEED, which tailors diffusion models for noise characteristics of each domain. First, we propose a novel shifted Poisson diffusion model to denoise projection data, which aligns the diffusion process with the noise model in pre-log LDCT projections. Second, we devise a doubly guided diffusion model to refine reconstructed images, which leverages LDCT images and initial reconstructions to more accurately locate prior information and enhance reconstruction fidelity. By cascading these two diffusion models for dual-domain reconstruction, our NEED requires only normal-dose data for training and can be effectively extended to various unseen dose levels during testing via a time step matching strategy. Extensive qualitative, quantitative, and segmentation-based evaluations on two datasets demonstrate that our NEED consistently outperforms state-of-the-art methods in reconstruction and generalization performance. Source code is made available at https://github.com/qgao21/NEED.
comment: Accepted for publication in Medical Image Analysis, 2025
☆ RoboEnvision: A Long-Horizon Video Generation Model for Multi-Task Robot Manipulation
We address the problem of generating long-horizon videos for robotic manipulation tasks. Text-to-video diffusion models have made significant progress in photorealism, language understanding, and motion generation but struggle with long-horizon robotic tasks. Recent works use video diffusion models for high-quality simulation data and predictive rollouts in robot planning. However, these works predict short sequences of the robot achieving one task and employ an autoregressive paradigm to extend to the long horizon, leading to error accumulations in the generated video and in the execution. To overcome these limitations, we propose a novel pipeline that bypasses the need for autoregressive generation. We achieve this through a threefold contribution: 1) we first decompose the high-level goals into smaller atomic tasks and generate keyframes aligned with these instructions. A second diffusion model then interpolates between each of the two generated frames, achieving the long-horizon video. 2) We propose a semantics preserving attention module to maintain consistency between the keyframes. 3) We design a lightweight policy model to regress the robot joint states from generated videos. Our approach achieves state-of-the-art results on two benchmarks in video quality and consistency while outperforming previous policy models on long-horizon tasks.
comment: 8 pages, 6 figures
☆ R1-Track: Direct Application of MLLMs to Visual Object Tracking via Reinforcement Learning
Visual single object tracking aims to continuously localize and estimate the scale of a target in subsequent video frames, given only its initial state in the first frame. This task has traditionally been framed as a template matching problem, evolving through major phases including correlation filters, two-stream networks, and one-stream networks with significant progress achieved. However, these methods typically require explicit classification and regression modeling, depend on supervised training with large-scale datasets, and are limited to the single task of tracking, lacking flexibility. In recent years, multi-modal large language models (MLLMs) have advanced rapidly. Open-source models like Qwen2.5-VL, a flagship MLLMs with strong foundational capabilities, demonstrate excellent performance in grounding tasks. This has spurred interest in applying such models directly to visual tracking. However, experiments reveal that Qwen2.5-VL struggles with template matching between image pairs (i.e., tracking tasks). Inspired by deepseek-R1, we fine-tuned Qwen2.5-VL using the group relative policy optimization (GRPO) reinforcement learning method on a small-scale dataset with a rule-based reward function. The resulting model, R1-Track, achieved notable performance on the GOT-10k benchmark. R1-Track supports flexible initialization via bounding boxes or text descriptions while retaining most of the original model's general capabilities. And we further discuss potential improvements for R1-Track. This rough technical report summarizes our findings as of May 2025.
comment: 7 pages, 2 figures
☆ StableCodec: Taming One-Step Diffusion for Extreme Image Compression
Diffusion-based image compression has shown remarkable potential for achieving ultra-low bitrate coding (less than 0.05 bits per pixel) with high realism, by leveraging the generative priors of large pre-trained text-to-image diffusion models. However, current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme bitrate constraints, limiting their application in real-time compression scenarios. Additionally, these methods often sacrifice reconstruction fidelity, as diffusion models typically fail to guarantee pixel-level consistency. To address these challenges, we introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression with improved coding efficiency. To achieve ultra-low bitrates, we first develop an efficient Deep Compression Latent Codec to transmit a noisy latent representation for a single-step denoising process. We then propose a Dual-Branch Coding Structure, consisting of a pair of auxiliary encoder and decoder, to enhance reconstruction fidelity. Furthermore, we adopt end-to-end optimization with joint bitrate and pixel-level constraints. Extensive experiments on the CLIC 2020, DIV2K, and Kodak dataset demonstrate that StableCodec outperforms existing methods in terms of FID, KID and DISTS by a significant margin, even at bitrates as low as 0.005 bits per pixel, while maintaining strong fidelity. Additionally, StableCodec achieves inference speeds comparable to mainstream transform coding schemes. All source code are available at https://github.com/LuizScarlet/StableCodec.
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ TASeg: Text-aware RGB-T Semantic Segmentation based on Fine-tuning Vision Foundation Models
Reliable semantic segmentation of open environments is essential for intelligent systems, yet significant problems remain: 1) Existing RGB-T semantic segmentation models mainly rely on low-level visual features and lack high-level textual information, which struggle with accurate segmentation when categories share similar visual characteristics. 2) While SAM excels in instance-level segmentation, integrating it with thermal images and text is hindered by modality heterogeneity and computational inefficiency. To address these, we propose TASeg, a text-aware RGB-T segmentation framework by using Low-Rank Adaptation (LoRA) fine-tuning technology to adapt vision foundation models. Specifically, we propose a Dynamic Feature Fusion Module (DFFM) in the image encoder, which effectively merges features from multiple visual modalities while freezing SAM's original transformer blocks. Additionally, we incorporate CLIP-generated text embeddings in the mask decoder to enable semantic alignment, which further rectifies the classification error and improves the semantic understanding accuracy. Experimental results across diverse datasets demonstrate that our method achieves superior performance in challenging scenarios with fewer trainable parameters.
comment: 6 pages, accepted for publication in lEEE/RSJ international Conference on Intelligent Robots and Systems (lROS 2025)
☆ Exploring Semantic Masked Autoencoder for Self-supervised Point Cloud Understanding IJCAI 2025
Point cloud understanding aims to acquire robust and general feature representations from unlabeled data. Masked point modeling-based methods have recently shown significant performance across various downstream tasks. These pre-training methods rely on random masking strategies to establish the perception of point clouds by restoring corrupted point cloud inputs, which leads to the failure of capturing reasonable semantic relationships by the self-supervised models. To address this issue, we propose Semantic Masked Autoencoder, which comprises two main components: a prototype-based component semantic modeling module and a component semantic-enhanced masking strategy. Specifically, in the component semantic modeling module, we design a component semantic guidance mechanism to direct a set of learnable prototypes in capturing the semantics of different components from objects. Leveraging these prototypes, we develop a component semantic-enhanced masking strategy that addresses the limitations of random masking in effectively covering complete component structures. Furthermore, we introduce a component semantic-enhanced prompt-tuning strategy, which further leverages these prototypes to improve the performance of pre-trained models in downstream tasks. Extensive experiments conducted on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our proposed modules.
comment: Accepted by IJCAI 2025
☆ SDRNET: Stacked Deep Residual Network for Accurate Semantic Segmentation of Fine-Resolution Remotely Sensed Images
Land cover maps generated from semantic segmentation of high-resolution remotely sensed images have drawn mucon in the photogrammetry and remote sensing research community. Currently, massive fine-resolution remotely sensed (FRRS) images acquired by improving sensing and imaging technologies become available. However, accurate semantic segmentation of such FRRS images is greatly affected by substantial class disparities, the invisibility of key ground objects due to occlusion, and object size variation. Despite the extraordinary potential in deep convolutional neural networks (DCNNs) in image feature learning and representation, extracting sufficient features from FRRS images for accurate semantic segmentation is still challenging. These challenges demand the deep learning models to learn robust features and generate sufficient feature descriptors. Specifically, learning multi-contextual features to guarantee adequate coverage of varied object sizes from the ground scene and harnessing global-local contexts to overcome class disparities challenge even profound networks. Deeper networks significantly lose spatial details due to gradual downsampling processes resulting in poor segmentation results and coarse boundaries. This article presents a stacked deep residual network (SDRNet) for semantic segmentation from FRRS images. The proposed framework utilizes two stacked encoder-decoder networks to harness long-range semantics yet preserve spatial information and dilated residual blocks (DRB) between each encoder and decoder network to capture sufficient global dependencies thus improving segmentation performance. Our experimental results obtained using the ISPRS Vaihingen and Potsdam datasets demonstrate that the SDRNet performs effectively and competitively against current DCNNs in semantic segmentation.
☆ CAL-RAG: Retrieval-Augmented Multi-Agent Generation for Content-Aware Layout Design
Automated content-aware layout generation -- the task of arranging visual elements such as text, logos, and underlays on a background canvas -- remains a fundamental yet under-explored problem in intelligent design systems. While recent advances in deep generative models and large language models (LLMs) have shown promise in structured content generation, most existing approaches lack grounding in contextual design exemplars and fall short in handling semantic alignment and visual coherence. In this work we introduce CAL-RAG, a retrieval-augmented, agentic framework for content-aware layout generation that integrates multimodal retrieval, large language models, and collaborative agentic reasoning. Our system retrieves relevant layout examples from a structured knowledge base and invokes an LLM-based layout recommender to propose structured element placements. A vision-language grader agent evaluates the layout with visual metrics, and a feedback agent provides targeted refinements, enabling iterative improvement. We implement our framework using LangGraph and evaluate it on the PKU PosterLayout dataset, a benchmark rich in semantic and structural variability. CAL-RAG achieves state-of-the-art performance across multiple layout metrics -- including underlay effectiveness, element alignment, and overlap -- substantially outperforming strong baselines such as LayoutPrompter. These results demonstrate that combining retrieval augmentation with agentic multi-step reasoning yields a scalable, interpretable, and high-fidelity solution for automated layout generation.
☆ Quality Assessment and Distortion-aware Saliency Prediction for AI-Generated Omnidirectional Images
With the rapid advancement of Artificial Intelligence Generated Content (AIGC) techniques, AI generated images (AIGIs) have attracted widespread attention, among which AI generated omnidirectional images (AIGODIs) hold significant potential for Virtual Reality (VR) and Augmented Reality (AR) applications. AI generated omnidirectional images exhibit unique quality issues, however, research on the quality assessment and optimization of AI-generated omnidirectional images is still lacking. To this end, this work first studies the quality assessment and distortion-aware saliency prediction problems for AIGODIs, and further presents a corresponding optimization process. Specifically, we first establish a comprehensive database to reflect human feedback for AI-generated omnidirectionals, termed OHF2024, which includes both subjective quality ratings evaluated from three perspectives and distortion-aware salient regions. Based on the constructed OHF2024 database, we propose two models with shared encoders based on the BLIP-2 model to evaluate the human visual experience and predict distortion-aware saliency for AI-generated omnidirectional images, which are named as BLIP2OIQA and BLIP2OISal, respectively. Finally, based on the proposed models, we present an automatic optimization process that utilizes the predicted visual experience scores and distortion regions to further enhance the visual quality of an AI-generated omnidirectional image. Extensive experiments show that our BLIP2OIQA model and BLIP2OISal model achieve state-of-the-art (SOTA) results in the human visual experience evaluation task and the distortion-aware saliency prediction task for AI generated omnidirectional images, and can be effectively used in the optimization process. The database and codes will be released on https://github.com/IntMeGroup/AIGCOIQA to facilitate future research.
☆ SPAZER: Spatial-Semantic Progressive Reasoning Agent for Zero-shot 3D Visual Grounding
3D Visual Grounding (3DVG) aims to localize target objects within a 3D scene based on natural language queries. To alleviate the reliance on costly 3D training data, recent studies have explored zero-shot 3DVG by leveraging the extensive knowledge and powerful reasoning capabilities of pre-trained LLMs and VLMs. However, existing paradigms tend to emphasize either spatial (3D-based) or semantic (2D-based) understanding, limiting their effectiveness in complex real-world applications. In this work, we introduce SPAZER - a VLM-driven agent that combines both modalities in a progressive reasoning framework. It first holistically analyzes the scene and produces a 3D rendering from the optimal viewpoint. Based on this, anchor-guided candidate screening is conducted to perform a coarse-level localization of potential objects. Furthermore, leveraging retrieved relevant 2D camera images, 3D-2D joint decision-making is efficiently performed to determine the best-matching object. By bridging spatial and semantic reasoning neural streams, SPAZER achieves robust zero-shot grounding without training on 3D-labeled data. Extensive experiments on ScanRefer and Nr3D benchmarks demonstrate that SPAZER significantly outperforms previous state-of-the-art zero-shot methods, achieving notable gains of 9.0% and 10.9% in accuracy.
☆ ZeroReg3D: A Zero-shot Registration Pipeline for 3D Consecutive Histopathology Image Reconstruction
Histological analysis plays a crucial role in understanding tissue structure and pathology. While recent advancements in registration methods have improved 2D histological analysis, they often struggle to preserve critical 3D spatial relationships, limiting their utility in both clinical and research applications. Specifically, constructing accurate 3D models from 2D slices remains challenging due to tissue deformation, sectioning artifacts, variability in imaging techniques, and inconsistent illumination. Deep learning-based registration methods have demonstrated improved performance but suffer from limited generalizability and require large-scale training data. In contrast, non-deep-learning approaches offer better generalizability but often compromise on accuracy. In this study, we introduced ZeroReg3D, a novel zero-shot registration pipeline tailored for accurate 3D reconstruction from serial histological sections. By combining zero-shot deep learning-based keypoint matching with optimization-based affine and non-rigid registration techniques, ZeroReg3D effectively addresses critical challenges such as tissue deformation, sectioning artifacts, staining variability, and inconsistent illumination without requiring retraining or fine-tuning. The code has been made publicly available at https://github.com/hrlblab/ZeroReg3D
☆ SepFormer: Coarse-to-fine Separator Regression Network for Table Structure Recognition
The automated reconstruction of the logical arrangement of tables from image data, termed Table Structure Recognition (TSR), is fundamental for semantic data extraction. Recently, researchers have explored a wide range of techniques to tackle this problem, demonstrating significant progress. Each table is a set of vertical and horizontal separators. Following this realization, we present SepFormer, which integrates the split-and-merge paradigm into a single step through separator regression with a DETR-style architecture, improving speed and robustness. SepFormer is a coarse-to-fine approach that predicts table separators from single-line to line-strip separators with a stack of two transformer decoders. In the coarse-grained stage, the model learns to gradually refine single-line segments through decoder layers with additional angle loss. At the end of the fine-grained stage, the model predicts line-strip separators by refining sampled points from each single-line segment. Our SepFormer can run on average at 25.6 FPS while achieving comparable performance with state-of-the-art methods on several benchmark datasets, including SciTSR, PubTabNet, WTW, and iFLYTAB.
☆ Generating Attribute-Aware Human Motions from Textual Prompt
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes (such as age, gender, weight, and height) which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating realistic, attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce HumanAttr, a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware text-to-motion generation. Extensive experiments on the new dataset validate our model's effectiveness.
☆ CERBERUS: Crack Evaluation & Recognition Benchmark for Engineering Reliability & Urban Stability
CERBERUS is a synthetic benchmark designed to help train and evaluate AI models for detecting cracks and other defects in infrastructure. It includes a crack image generator and realistic 3D inspection scenarios built in Unity. The benchmark features two types of setups: a simple Fly-By wall inspection and a more complex Underpass scene with lighting and geometry challenges. We tested a popular object detection model (YOLO) using different combinations of synthetic and real crack data. Results show that combining synthetic and real data improves performance on real-world images. CERBERUS provides a flexible, repeatable way to test defect detection systems and supports future research in automated infrastructure inspection. CERBERUS is publicly available at https://github.com/justinreinman/Cerberus-Defect-Generator.
☆ RAUM-Net: Regional Attention and Uncertainty-aware Mamba Network
Fine Grained Visual Categorization (FGVC) remains a challenging task in computer vision due to subtle inter class differences and fragile feature representations. Existing methods struggle in fine grained scenarios, especially when labeled data is scarce. We propose a semi supervised method combining Mamba based feature modeling, region attention, and Bayesian uncertainty. Our approach enhances local to global feature modeling while focusing on key areas during learning. Bayesian inference selects high quality pseudo labels for stability. Experiments show strong performance on FGVC benchmarks with occlusions, demonstrating robustness when labeled data is limited. Code is available at https://github.com/wxqnl/RAUM Net.
☆ Visual Content Detection in Educational Videos with Transfer Learning and Dataset Enrichment
Video is transforming education with online courses and recorded lectures supplementing and replacing classroom teaching. Recent research has focused on enhancing information retrieval for video lectures with advanced navigation, searchability, summarization, as well as question answering chatbots. Visual elements like tables, charts, and illustrations are central to comprehension, retention, and data presentation in lecture videos, yet their full potential for improving access to video content remains underutilized. A major factor is that accurate automatic detection of visual elements in a lecture video is challenging; reasons include i) most visual elements, such as charts, graphs, tables, and illustrations, are artificially created and lack any standard structure, and ii) coherent visual objects may lack clear boundaries and may be composed of connected text and visual components. Despite advancements in deep learning based object detection, current models do not yield satisfactory performance due to the unique nature of visual content in lectures and scarcity of annotated datasets. This paper reports on a transfer learning approach for detecting visual elements in lecture video frames. A suite of state of the art object detection models were evaluated for their performance on lecture video datasets. YOLO emerged as the most promising model for this task. Subsequently YOLO was optimized for lecture video object detection with training on multiple benchmark datasets and deploying a semi-supervised auto labeling strategy. Results evaluate the success of this approach, also in developing a general solution to the problem of object detection in lecture videos. Paper contributions include a publicly released benchmark of annotated lecture video frames, along with the source code to facilitate future research.
comment: This is an extended version of a paper accepted to MIPR 2025
☆ Exploring Task-Solving Paradigm for Generalized Cross-Domain Face Anti-Spoofing via Reinforcement Fine-Tuning
Recently the emergence of novel presentation attacks has drawn increasing attention to face anti-spoofing. However, existing methods tend to memorize data patterns from the training set, resulting in poor generalization to unknown attack types across different scenarios and limited interpretability. To address these challenges, this paper presents a reinforcement fine-tuning-based face anti-spoofing method that stimulates the capabilities of multimodal large language models to think and learn how to solve the anti-spoofing task itself, rather than relying on the memorization of authenticity patterns. We design verifiable class consistent reward and reasoning consistent reward, and employ a GRPO-based optimization strategy to guide the model in exploring reasoning policies from multiple perspectives to maximize expected rewards. As a result, through iterative trial-and-error learning while retaining only high-reward trajectories, the model distills highly generalizable decision-making rules from the extensive solution space to effectively address cross-domain face anti-spoofing tasks. Extensive experimental results demonstrate that our method achieves state-of-the-art cross-domain generalization performance. It generalizes well to diverse unknown attack types in unseen target domains while providing interpretable reasoning for its authenticity decisions without requiring labor-intensive textual annotations for training.
☆ SODA: Out-of-Distribution Detection in Domain-Shifted Point Clouds via Neighborhood Propagation
As point cloud data increases in prevalence in a variety of applications, the ability to detect out-of-distribution (OOD) point cloud objects becomes critical for ensuring model safety and reliability. However, this problem remains under-explored in existing research. Inspired by success in the image domain, we propose to exploit advances in 3D vision-language models (3D VLMs) for OOD detection in point cloud objects. However, a major challenge is that point cloud datasets used to pre-train 3D VLMs are drastically smaller in size and object diversity than their image-based counterparts. Critically, they often contain exclusively computer-designed synthetic objects. This leads to a substantial domain shift when the model is transferred to practical tasks involving real objects scanned from the physical environment. In this paper, our empirical experiments show that synthetic-to-real domain shift significantly degrades the alignment of point cloud with their associated text embeddings in the 3D VLM latent space, hindering downstream performance. To address this, we propose a novel methodology called SODA which improves the detection of OOD point clouds through a neighborhood-based score propagation scheme. SODA is inference-based, requires no additional model training, and achieves state-of-the-art performance over existing approaches across datasets and problem settings.
☆ DIVE: Deep-search Iterative Video Exploration A Technical Report for the CVRR Challenge at CVPR 2025
In this report, we present the winning solution that achieved the 1st place in the Complex Video Reasoning & Robustness Evaluation Challenge 2025. This challenge evaluates the ability to generate accurate natural language answers to questions about diverse, real-world video clips. It uses the Complex Video Reasoning and Robustness Evaluation Suite (CVRR-ES) benchmark, which consists of 214 unique videos and 2,400 question-answer pairs spanning 11 categories. Our method, DIVE (Deep-search Iterative Video Exploration), adopts an iterative reasoning approach, in which each input question is semantically decomposed and solved through stepwise reasoning and progressive inference. This enables our system to provide highly accurate and contextually appropriate answers to even the most complex queries. Applied to the CVRR-ES benchmark, our approach achieves 81.44% accuracy on the test set, securing the top position among all participants. This report details our methodology and provides a comprehensive analysis of the experimental results, demonstrating the effectiveness of our iterative reasoning framework in achieving robust video question answering. The code is available at https://github.com/PanasonicConnect/DIVE
☆ Integrating Multi-Modal Sensors: A Review of Fusion Techniques for Intelligent Vehicles
Multi-sensor fusion plays a critical role in enhancing perception for autonomous driving, overcoming individual sensor limitations, and enabling comprehensive environmental understanding. This paper first formalizes multi-sensor fusion strategies into data-level, feature-level, and decision-level categories and then provides a systematic review of deep learning-based methods corresponding to each strategy. We present key multi-modal datasets and discuss their applicability in addressing real-world challenges, particularly in adverse weather conditions and complex urban environments. Additionally, we explore emerging trends, including the integration of Vision-Language Models (VLMs), Large Language Models (LLMs), and the role of sensor fusion in end-to-end autonomous driving, highlighting its potential to enhance system adaptability and robustness. Our work offers valuable insights into current methods and future directions for multi-sensor fusion in autonomous driving.
comment: Accepted by IEEE IV 2025
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ GRASP-PsONet: Gradient-based Removal of Spurious Patterns for PsOriasis Severity Classification
Psoriasis (PsO) severity scoring is important for clinical trials but is hindered by inter-rater variability and the burden of in person clinical evaluation. Remote imaging using patient captured mobile photos offers scalability but introduces challenges, such as variation in lighting, background, and device quality that are often imperceptible to humans but can impact model performance. These factors, along with inconsistencies in dermatologist annotations, reduce the reliability of automated severity scoring. We propose a framework to automatically flag problematic training images that introduce spurious correlations which degrade model generalization, using a gradient based interpretability approach. By tracing the gradients of misclassified validation images, we detect training samples where model errors align with inconsistently rated examples or are affected by subtle, nonclinical artifacts. We apply this method to a ConvNeXT based weakly supervised model designed to classify PsO severity from phone images. Removing 8.2% of flagged images improves model AUC-ROC by 5% (85% to 90%) on a held out test set. Commonly, multiple annotators and an adjudication process ensure annotation accuracy, which is expensive and time consuming. Our method detects training images with annotation inconsistencies, potentially removing the need for manual review. When applied to a subset of training data rated by two dermatologists, the method identifies over 90% of cases with inter-rater disagreement by reviewing only the top 30% of samples. This improves automated scoring for remote assessments, ensuring robustness despite data collection variability.
☆ Physical Degradation Model-Guided Interferometric Hyperspectral Reconstruction with Unfolding Transformer
Interferometric Hyperspectral Imaging (IHI) is a critical technique for large-scale remote sensing tasks due to its advantages in flux and spectral resolution. However, IHI is susceptible to complex errors arising from imaging steps, and its quality is limited by existing signal processing-based reconstruction algorithms. Two key challenges hinder performance enhancement: 1) the lack of training datasets. 2) the difficulty in eliminating IHI-specific degradation components through learning-based methods. To address these challenges, we propose a novel IHI reconstruction pipeline. First, based on imaging physics and radiometric calibration data, we establish a simplified yet accurate IHI degradation model and a parameter estimation method. This model enables the synthesis of realistic IHI training datasets from hyperspectral images (HSIs), bridging the gap between IHI reconstruction and deep learning. Second, we design the Interferometric Hyperspectral Reconstruction Unfolding Transformer (IHRUT), which achieves effective spectral correction and detail restoration through a stripe-pattern enhancement mechanism and a spatial-spectral transformer architecture. Experimental results demonstrate the superior performance and generalization capability of our method.
☆ Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation ACL 2025
Internal world models (WMs) enable agents to understand the world's state and predict transitions, serving as the basis for advanced deliberative reasoning. Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs. While the latest studies have evaluated and shown limitations in specific capabilities such as visual understanding, a systematic evaluation of VLMs' fundamental WM abilities remains absent. Drawing on comparative psychology and cognitive science, we propose a two-stage framework that assesses Perception (visual, spatial, temporal, quantitative, and motion) and Prediction (mechanistic simulation, transitive inference, compositional inference) to provide an atomic evaluation of VLMs as WMs. Guided by this framework, we introduce WM-ABench, a large-scale benchmark comprising 23 fine-grained evaluation dimensions across 6 diverse simulated environments with controlled counterfactual simulations. Through 660 experiments on 15 latest commercial and open-source VLMs, we find that these models exhibit striking limitations in basic world modeling abilities. For instance, almost all models perform at near-random accuracy when distinguishing motion trajectories. Additionally, they lack disentangled understanding -- e.g., some models tend to believe blue objects move faster than green ones. More rich results and analyses reveal significant gaps between VLMs and human-level world modeling.
comment: ACL 2025 (Findings)
☆ Grounding-Aware Token Pruning: Recovering from Drastic Performance Drops in Visual Grounding Caused by Pruning
Recent Multimodal Large Language Models (MLLMs) have demonstrated strong performance in visual grounding, establishing themselves as a general interface for various vision-language applications. This progress has driven the development of token pruning methods to mitigate the high computational costs associated with processing numerous visual tokens. However, we observe that pruning significantly weakens the model's grounding ability, leading to incorrect predictions and drastic performance degradation. In Referring Expression Comprehension (REC), for instance, pruning causes the accuracy of LLaVA on the RefCOCO validation set to drop from 56.14% to 15.34%. Our analysis identifies misaligned position IDs after pruning as the primary cause of this degradation, as both the order and value of these IDs are crucial for maintaining performance in grounding tasks. To address this issue, we propose Grounding-Aware Token Pruning (GAP), a simple yet effective adjustment to position IDs that recovers REC accuracy back to 51.42%, which is 90% of the original performance in the without pruning setting, all while requiring no additional training, memory, or computational overhead. Applied to models such as Shikra, MiniGPTv2, and the LLaVA series, our method consistently improves performance across various token pruning strategies.
☆ Dual-Perspective United Transformer for Object Segmentation in Optical Remote Sensing Images IJCAI 2025
Automatically segmenting objects from optical remote sensing images (ORSIs) is an important task. Most existing models are primarily based on either convolutional or Transformer features, each offering distinct advantages. Exploiting both advantages is valuable research, but it presents several challenges, including the heterogeneity between the two types of features, high complexity, and large parameters of the model. However, these issues are often overlooked in existing the ORSIs methods, causing sub-optimal segmentation. For that, we propose a novel Dual-Perspective United Transformer (DPU-Former) with a unique structure designed to simultaneously integrate long-range dependencies and spatial details. In particular, we design the global-local mixed attention, which captures diverse information through two perspectives and introduces a Fourier-space merging strategy to obviate deviations for efficient fusion. Furthermore, we present a gated linear feed-forward network to increase the expressive ability. Additionally, we construct a DPU-Former decoder to aggregate and strength features at different layers. Consequently, the DPU-Former model outperforms the state-of-the-art methods on multiple datasets. Code: https://github.com/CSYSI/DPU-Former.
comment: Accepted by IJCAI 2025
☆ Remote Sensing Large Vision-Language Model: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling
Large Vision and Language Models (LVLMs) have shown strong performance across various vision-language tasks in natural image domains. However, their application to remote sensing (RS) remains underexplored due to significant domain differences in visual appearances, object scales, and semantics. These discrepancies hider the effective understanding of RS scenes, which contain rich, multi-level semantic information spanning from coarse-to-fine levels. Hence, it limits the direct adaptation of existing LVLMs to RS imagery. To address this gap, we propose a novel LVLM framework tailored for RS understanding, incorporating two core components: Semantic-augmented Multi-level Alignment and Semantic-aware Expert Modeling. First, to align multi-level visual features, we introduce the retrieval-based Semantic Augmentation Module which enriches the visual features with relevant semantics across fine-to-coarse levels (e.g., object- and scene-level information). It is designed to retrieve relevant semantic cues from a RS semantic knowledge database, followed by aggregation of semantic cues with user query and multi-level visual features, resulting in semantically enriched representation across multiple levels. Second, for Semantic-aware Expert Modeling, we design semantic experts, where each expert is responsible for processing semantic representation at different levels separately. This enables hierarchical semantic understanding from coarse to fine levels. Evaluations across multiple RS tasks-including scene classification and VQA, etc.-demonstrate that the proposed framework achieves consistent improvements across multiple semantic levels. This highlights its capability and effectiveness in bridging the gap between general LVLMs and unique demands of RS-specific vision-language understanding.
comment: 13 pages including reference pages, 7 tables, and 6 figures
☆ LLaVA-Scissor: Token Compression with Semantic Connected Components for Video LLMs
In this paper, we present LLaVA-Scissor, a training-free token compression strategy designed for video multimodal large language models. Previous methods mostly attempt to compress tokens based on attention scores, but fail to effectively capture all semantic regions and often lead to token redundancy. Differently, we propose to leverage the Semantic Connected Components (SCC) approach that assigns tokens to distinct semantic regions within the token set, ensuring comprehensive semantic coverage. The outcome is a two-step spatio-temporal token compression strategy that utilizes SCC in both spatial and temporal domains. This strategy can effectively compress tokens by representing the entire video with a set of non-overlapping semantic tokens. We conduct extensive evaluations of the token compression capabilities of LLaVA-Scissor across diverse video understanding benchmarks, including video question answering, long video understanding, and comprehensive multi-choices benchmarks. Experimental results show that the proposed LLaVA-Scissor outperforms other token compression methods, achieving superior performance in various video understanding benchmarks, particularly at low token retention ratios. Project page: https://github.com/HumanMLLM/LLaVA-Scissor.
comment: 21 pages, 4 figures, 7 tables
☆ Embodied Domain Adaptation for Object Detection IROS 2025
Mobile robots rely on object detectors for perception and object localization in indoor environments. However, standard closed-set methods struggle to handle the diverse objects and dynamic conditions encountered in real homes and labs. Open-vocabulary object detection (OVOD), driven by Vision Language Models (VLMs), extends beyond fixed labels but still struggles with domain shifts in indoor environments. We introduce a Source-Free Domain Adaptation (SFDA) approach that adapts a pre-trained model without accessing source data. We refine pseudo labels via temporal clustering, employ multi-scale threshold fusion, and apply a Mean Teacher framework with contrastive learning. Our Embodied Domain Adaptation for Object Detection (EDAOD) benchmark evaluates adaptation under sequential changes in lighting, layout, and object diversity. Our experiments show significant gains in zero-shot detection performance and flexible adaptation to dynamic indoor conditions.
comment: Accepted by IROS 2025
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ Periodic-MAE: Periodic Video Masked Autoencoder for rPPG Estimation
In this paper, we propose a method that learns a general representation of periodic signals from unlabeled facial videos by capturing subtle changes in skin tone over time. The proposed framework employs the video masked autoencoder to learn a high-dimensional spatio-temporal representation of the facial region through self-supervised learning. Capturing quasi-periodic signals in the video is crucial for remote photoplethysmography (rPPG) estimation. To account for signal periodicity, we apply frame masking in terms of video sampling, which allows the model to capture resampled quasi-periodic signals during the pre-training stage. Moreover, the framework incorporates physiological bandlimit constraints, leveraging the property that physiological signals are sparse within their frequency bandwidth to provide pulse cues to the model. The pre-trained encoder is then transferred to the rPPG task, where it is used to extract physiological signals from facial videos. We evaluate the proposed method through extensive experiments on the PURE, UBFC-rPPG, MMPD, and V4V datasets. Our results demonstrate significant performance improvements, particularly in challenging cross-dataset evaluations. Our code is available at https://github.com/ziiho08/Periodic-MAE.
☆ End-to-End RGB-IR Joint Image Compression With Channel-wise Cross-modality Entropy Model
RGB-IR(RGB-Infrared) image pairs are frequently applied simultaneously in various applications like intelligent surveillance. However, as the number of modalities increases, the required data storage and transmission costs also double. Therefore, efficient RGB-IR data compression is essential. This work proposes a joint compression framework for RGB-IR image pair. Specifically, to fully utilize cross-modality prior information for accurate context probability modeling within and between modalities, we propose a Channel-wise Cross-modality Entropy Model (CCEM). Among CCEM, a Low-frequency Context Extraction Block (LCEB) and a Low-frequency Context Fusion Block (LCFB) are designed for extracting and aggregating the global low-frequency information from both modalities, which assist the model in predicting entropy parameters more accurately. Experimental results demonstrate that our approach outperforms existing RGB-IR image pair and single-modality compression methods on LLVIP and KAIST datasets. For instance, the proposed framework achieves a 23.1% bit rate saving on LLVIP dataset compared to the state-of-the-art RGB-IR image codec presented at CVPR 2022.
comment: IEEE International Conference on Systems, Man, and Cybernetics 2025. (SMC), under review
☆ 3D-Telepathy: Reconstructing 3D Objects from EEG Signals
Reconstructing 3D visual stimuli from Electroencephalography (EEG) data holds significant potential for applications in Brain-Computer Interfaces (BCIs) and aiding individuals with communication disorders. Traditionally, efforts have focused on converting brain activity into 2D images, neglecting the translation of EEG data into 3D objects. This limitation is noteworthy, as the human brain inherently processes three-dimensional spatial information regardless of whether observing 2D images or the real world. The neural activities captured by EEG contain rich spatial information that is inevitably lost when reconstructing only 2D images, thus limiting its practical applications in BCI. The transition from EEG data to 3D object reconstruction faces considerable obstacles. These include the presence of extensive noise within EEG signals and a scarcity of datasets that include both EEG and 3D information, which complicates the extraction process of 3D visual data. Addressing this challenging task, we propose an innovative EEG encoder architecture that integrates a dual self-attention mechanism. We use a hybrid training strategy to train the EEG Encoder, which includes cross-attention, contrastive learning, and self-supervised learning techniques. Additionally, by employing stable diffusion as a prior distribution and utilizing Variational Score Distillation to train a neural radiation field, we successfully generate 3D objects with similar content and structure from EEG data.
☆ GenEscape: Hierarchical Multi-Agent Generation of Escape Room Puzzles
We challenge text-to-image models with generating escape room puzzle images that are visually appealing, logically solid, and intellectually stimulating. While base image models struggle with spatial relationships and affordance reasoning, we propose a hierarchical multi-agent framework that decomposes this task into structured stages: functional design, symbolic scene graph reasoning, layout synthesis, and local image editing. Specialized agents collaborate through iterative feedback to ensure the scene is visually coherent and functionally solvable. Experiments show that agent collaboration improves output quality in terms of solvability, shortcut avoidance, and affordance clarity, while maintaining visual quality.
☆ ProSAM: Enhancing the Robustness of SAM-based Visual Reference Segmentation with Probabilistic Prompts
The recent advancements in large foundation models have driven the success of open-set image segmentation, a task focused on segmenting objects beyond predefined categories. Among various prompt types (such as points, boxes, texts, and visual references), visual reference segmentation stands out for its unique flexibility and strong zero-shot capabilities. Recently, several SAM-based methods have made notable progress in this task by automatically generating prompts to guide SAM. However, these methods often generate prompts at object boundaries due to suboptimal prompt encoder, which results in instability and reduced robustness. In this work, we introduce ProSAM, a simple but effective method to address the stability challenges we identified in existing SAM-based visual reference segmentation approaches. By learning a variational prompt encoder to predict multivariate prompt distributions, ProSAM avoids generating prompts that lie in unstable regions, overcoming the instability caused by less robust prompts. Our approach consistently surpasses state-of-the-art methods on the Pascal-5$^i$ and COCO-20$^i$ datasets, providing a more robust solution for visual reference segmentation.
☆ PrefPaint: Enhancing Image Inpainting through Expert Human Feedback
Inpainting, the process of filling missing or corrupted image parts, has broad applications, including medical imaging. However, in specialized fields like medical polyps imaging, where accuracy and reliability are critical, inpainting models can generate inaccurate images, leading to significant errors in medical diagnosis and treatment. To ensure reliability, medical images should be annotated by experts like oncologists for effective model training. We propose PrefPaint, an approach that incorporates human feedback into the training process of Stable Diffusion Inpainting, bypassing the need for computationally expensive reward models. In addition, we develop a web-based interface streamlines training, fine-tuning, and inference. This interactive interface provides a smooth and intuitive user experience, making it easier to offer feedback and manage the fine-tuning process. User study on various domains shows that PrefPaint outperforms existing methods, reducing visual inconsistencies and improving image rendering, particularly in medical contexts, where our model generates more realistic polyps images.
☆ TaleForge: Interactive Multimodal System for Personalized Story Creation
Storytelling is a deeply personal and creative process, yet existing methods often treat users as passive consumers, offering generic plots with limited personalization. This undermines engagement and immersion, especially where individual style or appearance is crucial. We introduce TaleForge, a personalized story-generation system that integrates large language models (LLMs) and text-to-image diffusion to embed users' facial images within both narratives and illustrations. TaleForge features three interconnected modules: Story Generation, where LLMs create narratives and character descriptions from user prompts; Personalized Image Generation, merging users' faces and outfit choices into character illustrations; and Background Generation, creating scene backdrops that incorporate personalized characters. A user study demonstrated heightened engagement and ownership when individuals appeared as protagonists. Participants praised the system's real-time previews and intuitive controls, though they requested finer narrative editing tools. TaleForge advances multimodal storytelling by aligning personalized text and imagery to create immersive, user-centric experiences.
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models ICDAR2025
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ Bridging the Gap Between Saliency Prediction and Image Quality Assessment
Over the past few years, deep neural models have made considerable advances in image quality assessment (IQA). However, the underlying reasons for their success remain unclear, owing to the complex nature of deep neural networks. IQA aims to describe how the human visual system (HVS) works and to create its efficient approximations. On the other hand, Saliency Prediction task aims to emulate HVS via determining areas of visual interest. Thus, we believe that saliency plays a crucial role in human perception. In this work, we conduct an empirical study that reveals the relation between IQA and Saliency Prediction tasks, demonstrating that the former incorporates knowledge of the latter. Moreover, we introduce a novel SACID dataset of saliency-aware compressed images and conduct a large-scale comparison of classic and neural-based IQA methods. All supplementary code and data will be available at the time of publication.
comment: Accepted to EUSIPCO 2025
♻ ☆ MM-R$^3$: On (In-)Consistency of Vision-Language Models (VLMs)
With the advent of LLMs and variants, a flurry of research has emerged, analyzing the performance of such models across an array of tasks. While most studies focus on evaluating the capabilities of state-of-the-art (SoTA) Vision Language Models (VLMs) through task accuracy (e.g., visual question answering, grounding), our work explores the related but complementary aspect of consistency - the ability of a VLM to produce semantically similar or identical responses to semantically similar queries. We note that consistency is a fundamental prerequisite (necessary but not sufficient condition) for robustness and trust in VLMs. Armed with this perspective, we propose the MM-R3 benchmark, which allows us to analyze performance, in terms of consistency and accuracy, of SoTA VLMs on three tasks: Question Rephrasing, Image Restyling, and Context Reasoning. Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa. Furthermore, we propose a simple yet effective mitigation strategy in the form of an adapter module trained to minimize inconsistency across prompts. With our proposed strategy, we are able to achieve absolute improvements of 5.7% and 12.5%, on average on widely used VLMs such as BLIP-2 and LLaVa 1.5M in terms of consistency over their existing counterparts.
♻ ☆ Exploring Text-Guided Single Image Editing for Remote Sensing Images
Artificial intelligence generative content (AIGC) has significantly impacted image generation in the field of remote sensing. However, the equally important area of remote sensing image (RSI) editing has not received sufficient attention. Deep learning based editing methods generally involve two sequential stages: generation and editing.For natural images, these stages primarily rely on generative backbones pre-trained on large-scale benchmark datasets and text guidance facilitated by vision-language models (VLMs). However, it become less viable for RSIs: First, existing generative RSI benchmark datasets do not fully capture the diversity of RSIs, and is often inadequate for universal editing tasks. Second, the single text semantic corresponds to multiple image semantics, leading to the introduction of incorrect semantics.To solve above problems, this paper proposes a text-guided RSI editing method and can be trained using only a single image. A multi-scale training approach is adopted to preserve consistency without the need for training on extensive benchmarks, while leveraging RSI pre-trained VLMs and prompt ensembling (PE) to ensure accuracy and controllability. Experimental results on multiple RSI editing tasks show that the proposed method offers significant advantages in both CLIP scores and subjective evaluations compared to existing methods. Additionally, we explore the ability of the edited RSIs to support disaster assessment tasks in order to validate their practicality. Codes will be released at https://github.com/HIT-PhilipHan/remote_sensing_image_editing
comment: 17 pages, 18 figures, Accepted by IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
♻ ☆ NSegment : Label-specific Deformations for Remote Sensing Image Segmentation
Labeling errors in remote sensing (RS) image segmentation datasets often remain implicit and subtle due to ambiguous class boundaries, mixed pixels, shadows, complex terrain features, and subjective annotator bias. Furthermore, the scarcity of annotated RS data due to high image acquisition and labeling costs complicates training noise-robust models. While sophisticated mechanisms such as label selection or noise correction might address this issue, they tend to increase training time and add implementation complexity. In this letter, we propose NSegment-a simple yet effective data augmentation solution to mitigate this issue. Unlike traditional methods, it applies elastic transformations only to segmentation labels, varying deformation intensity per sample in each training epoch to address annotation inconsistencies. Experimental results demonstrate that our approach improves the performance of RS image segmentation on various state-of-the-art models.
comment: Preprint
Secure Video Quality Assessment Resisting Adversarial Attacks
The exponential surge in video traffic has intensified the imperative for Video Quality Assessment (VQA). Leveraging cutting-edge architectures, current VQA models have achieved human-comparable accuracy. However, recent studies have revealed the vulnerability of existing VQA models against adversarial attacks. To establish a reliable and practical assessment system, a secure VQA model capable of resisting such malicious attacks is urgently demanded. Unfortunately, no attempt has been made to explore this issue. This paper first attempts to investigate general adversarial defense principles, aiming at endowing existing VQA models with security. Specifically, we first introduce random spatial grid sampling on the video frame for intra-frame defense. Then, we design pixel-wise randomization through a guardian map, globally neutralizing adversarial perturbations. Meanwhile, we extract temporal information from the video sequence as compensation for inter-frame defense. Building upon these principles, we present a novel VQA framework from the security-oriented perspective, termed SecureVQA. Extensive experiments indicate that SecureVQA sets a new benchmark in security while achieving competitive VQA performance compared with state-of-the-art models. Ablation studies delve deeper into analyzing the principles of SecureVQA, demonstrating their generalization and contributions to the security of leading VQA models.
♻ ☆ PhysRig: Differentiable Physics-Based Skinning and Rigging Framework for Realistic Articulated Object Modeling ICCV 2025
Skinning and rigging are fundamental components in animation, articulated object reconstruction, motion transfer, and 4D generation. Existing approaches predominantly rely on Linear Blend Skinning (LBS), due to its simplicity and differentiability. However, LBS introduces artifacts such as volume loss and unnatural deformations, and it fails to model elastic materials like soft tissues, fur, and flexible appendages (e.g., elephant trunks, ears, and fatty tissues). In this work, we propose PhysRig: a differentiable physics-based skinning and rigging framework that overcomes these limitations by embedding the rigid skeleton into a volumetric representation (e.g., a tetrahedral mesh), which is simulated as a deformable soft-body structure driven by the animated skeleton. Our method leverages continuum mechanics and discretizes the object as particles embedded in an Eulerian background grid to ensure differentiability with respect to both material properties and skeletal motion. Additionally, we introduce material prototypes, significantly reducing the learning space while maintaining high expressiveness. To evaluate our framework, we construct a comprehensive synthetic dataset using meshes from Objaverse, The Amazing Animals Zoo, and MixaMo, covering diverse object categories and motion patterns. Our method consistently outperforms traditional LBS-based approaches, generating more realistic and physically plausible results. Furthermore, we demonstrate the applicability of our framework in the pose transfer task highlighting its versatility for articulated object modeling.
comment: Accepted by ICCV 2025 Page: https://physrig.github.io/
♻ ☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ PatchDPO: Patch-level DPO for Finetuning-free Personalized Image Generation
Finetuning-free personalized image generation can synthesize customized images without test-time finetuning, attracting wide research interest owing to its high efficiency. Current finetuning-free methods simply adopt a single training stage with a simple image reconstruction task, and they typically generate low-quality images inconsistent with the reference images during test-time. To mitigate this problem, inspired by the recent DPO (i.e., direct preference optimization) technique, this work proposes an additional training stage to improve the pre-trained personalized generation models. However, traditional DPO only determines the overall superiority or inferiority of two samples, which is not suitable for personalized image generation because the generated images are commonly inconsistent with the reference images only in some local image patches. To tackle this problem, this work proposes PatchDPO that estimates the quality of image patches within each generated image and accordingly trains the model. To this end, PatchDPO first leverages the pre-trained vision model with a proposed self-supervised training method to estimate the patch quality. Next, PatchDPO adopts a weighted training approach to train the model with the estimated patch quality, which rewards the image patches with high quality while penalizing the image patches with low quality. Experiment results demonstrate that PatchDPO significantly improves the performance of multiple pre-trained personalized generation models, and achieves state-of-the-art performance on both single-object and multi-object personalized image generation. Our code is available at https://github.com/hqhQAQ/PatchDPO.
♻ ☆ ProtoSeg: Interpretable Semantic Segmentation with Prototypical Parts
We introduce ProtoSeg, a novel model for interpretable semantic image segmentation, which constructs its predictions using similar patches from the training set. To achieve accuracy comparable to baseline methods, we adapt the mechanism of prototypical parts and introduce a diversity loss function that increases the variety of prototypes within each class. We show that ProtoSeg discovers semantic concepts, in contrast to standard segmentation models. Experiments conducted on Pascal VOC and Cityscapes datasets confirm the precision and transparency of the presented method.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Enhancing Object Detection Robustness: Detecting and Restoring Confidence in the Presence of Adversarial Patch Attacks
The widespread adoption of computer vision systems has underscored their susceptibility to adversarial attacks, particularly adversarial patch attacks on object detectors. This study evaluates defense mechanisms for the YOLOv5 model against such attacks. Optimized adversarial patches were generated and placed in sensitive image regions, by applying EigenCAM and grid search to determine optimal placement. We tested several defenses, including Segment and Complete (SAC), Inpainting, and Latent Diffusion Models. Our pipeline comprises three main stages: patch application, object detection, and defense analysis. Results indicate that adversarial patches reduce average detection confidence by 22.06\%. Defenses restored confidence levels by 3.45\% (SAC), 5.05\% (Inpainting), and significantly improved them by 26.61\%, which even exceeds the original accuracy levels, when using the Latent Diffusion Model, highlighting its superior effectiveness in mitigating the effects of adversarial patches.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities
Recent years have seen remarkable progress in both multimodal understanding models and image generation models. Despite their respective successes, these two domains have evolved independently, leading to distinct architectural paradigms: While autoregressive-based architectures have dominated multimodal understanding, diffusion-based models have become the cornerstone of image generation. Recently, there has been growing interest in developing unified frameworks that integrate these tasks. The emergence of GPT-4o's new capabilities exemplifies this trend, highlighting the potential for unification. However, the architectural differences between the two domains pose significant challenges. To provide a clear overview of current efforts toward unification, we present a comprehensive survey aimed at guiding future research. First, we introduce the foundational concepts and recent advancements in multimodal understanding and text-to-image generation models. Next, we review existing unified models, categorizing them into three main architectural paradigms: diffusion-based, autoregressive-based, and hybrid approaches that fuse autoregressive and diffusion mechanisms. For each category, we analyze the structural designs and innovations introduced by related works. Additionally, we compile datasets and benchmarks tailored for unified models, offering resources for future exploration. Finally, we discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data. As this area is still in its early stages, we anticipate rapid advancements and will regularly update this survey. Our goal is to inspire further research and provide a valuable reference for the community. The references associated with this survey are available on GitHub (https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models).
comment: In this version, we incorporate new papers, datasets, and benchmarks. This work is still in progress; Github project: https://github.com/AIDC-AI/Awesome-Unified-Multimodal-Models
♻ ☆ SegChange-R1: LLM-Augmented Remote Sensing Change Detection
Remote sensing change detection is used in urban planning, terrain analysis, and environmental monitoring by analyzing feature changes in the same area over time. In this paper, we propose a large language model (LLM) augmented inference approach (SegChange-R1), which enhances the detection capability by integrating textual descriptive information and guides the model to focus on relevant change regions, accelerating convergence. We designed a linear attention-based spatial transformation module (BEV) to address modal misalignment by unifying features from different times into a BEV space. Furthermore, we introduce DVCD, a novel dataset for building change detection from UAV viewpoints. Experiments on four widely-used datasets demonstrate significant improvements over existing method The code and pre-trained models are available in {https://github.com/Yu-Zhouz/SegChange-R1}.
♻ ☆ StarFT: Robust Fine-tuning of Zero-shot Models via Spuriosity Alignment IJCAI 2025
Learning robust representations from data often requires scale, which has led to the success of recent zero-shot models such as CLIP. However, the obtained robustness can easily be deteriorated when these models are fine-tuned on other downstream tasks (e.g., of smaller scales). Previous works often interpret this phenomenon in the context of domain shift, developing fine-tuning methods that aim to preserve the original domain as much as possible. However, in a different context, fine-tuned models with limited data are also prone to learning features that are spurious to humans, such as background or texture. In this paper, we propose StarFT (Spurious Textual Alignment Regularization), a novel framework for fine-tuning zero-shot models to enhance robustness by preventing them from learning spuriosity. We introduce a regularization that aligns the output distribution for spuriosity-injected labels with the original zero-shot model, ensuring that the model is not induced to extract irrelevant features further from these descriptions. We leverage recent language models to get such spuriosity-injected labels by generating alternative textual descriptions that highlight potentially confounding features. Extensive experiments validate the robust generalization of StarFT and its emerging properties: zero-shot group robustness and improved zero-shot classification. Notably, StarFT boosts both worst-group and average accuracy by 14.30% and 3.02%, respectively, in the Waterbirds group shift scenario, where other robust fine-tuning baselines show even degraded performance.
comment: IJCAI 2025; Code is available at https://github.com/alinlab/StarFT
♻ ☆ ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation ICCV 2025
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .
comment: Accepted to ICCV 2025
♻ ☆ VideoFusion: A Spatio-Temporal Collaborative Network for Multi-modal Video Fusion and Restoration
Compared to images, videos better align with real-world acquisition scenarios and possess valuable temporal cues. However, existing multi-sensor fusion research predominantly integrates complementary context from multiple images rather than videos. This primarily stems from two factors: 1) the scarcity of large-scale multi-sensor video datasets, limiting research in video fusion, and 2) the inherent difficulty of jointly modeling spatial and temporal dependencies in a unified framework. This paper proactively compensates for the dilemmas. First, we construct M3SVD, a benchmark dataset with $220$ temporally synchronized and spatially registered infrared-visible video pairs comprising 153,797 frames, filling the data gap for the video fusion community. Secondly, we propose VideoFusion, a multi-modal video fusion model that fully exploits cross-modal complementarity and temporal dynamics to generate spatio-temporally coherent videos from (potentially degraded) multi-modal inputs. Specifically, 1) a differential reinforcement module is developed for cross-modal information interaction and enhancement, 2) a complete modality-guided fusion strategy is employed to adaptively integrate multi-modal features, and 3) a bi-temporal co-attention mechanism is devised to dynamically aggregate forward-backward temporal contexts to reinforce cross-frame feature representations. Extensive experiments reveal that VideoFusion outperforms existing image-oriented fusion paradigms in sequential scenarios, effectively mitigating temporal inconsistency and interference.
♻ ☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
♻ ☆ Scale-Aware Pre-Training for Human-Centric Visual Perception: Enabling Lightweight and Generalizable Models
Human-centric visual perception (HVP) has recently achieved remarkable progress due to advancements in large-scale self-supervised pretraining (SSP). However, existing HVP models face limitations in adapting to real-world applications, which require general visual patterns for downstream tasks while maintaining computationally sustainable costs to ensure compatibility with edge devices. These limitations primarily arise from two issues: 1) the pretraining objectives focus solely on specific visual patterns, limiting the generalizability of the learned patterns for diverse downstream tasks; and 2) HVP models often exhibit excessively large model sizes, making them incompatible with real-world applications.To address these limitations, we introduce Scale-Aware Image Pretraining (SAIP), a novel SSP framework pretraining lightweight vision models to acquire general patterns for HVP. Specifically, SAIP incorporates three learning objectives based on the principle of cross-scale consistency: 1) Cross-scale Matching (CSM) which contrastively learns image-level invariant patterns from multi-scale single-person images; 2) Cross-scale Reconstruction (CSR) which learns pixel-level consistent visual structures from multi-scale masked single-person images; and 3) Cross-scale Search (CSS) which learns to capture diverse patterns from multi-scale multi-person images. Three objectives complement one another, enabling lightweight models to learn multi-scale generalizable patterns essential for HVP downstream tasks.Extensive experiments conducted across 12 HVP datasets demonstrate that SAIP exhibits remarkable generalization capabilities across 9 human-centric vision tasks. Moreover, it achieves significant performance improvements over existing methods, with gains of 3%-13% in single-person discrimination tasks, 1%-11% in dense prediction tasks, and 1%-6% in multi-person visual understanding tasks.
♻ ☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
comment: Peinl, Ren\'e; Tischler, Vincent (2025): VLM@school - Evaluation of AI image understanding on German middle school knowledge. Future Technologies Conference (FTC) 2025, Munich, Germany 2025 (accepted)
♻ ☆ VGAT: A Cancer Survival Analysis Framework Transitioning from Generative Visual Question Answering to Genomic Reconstruction ICME2025
Multimodal learning combining pathology images and genomic sequences enhances cancer survival analysis but faces clinical implementation barriers due to limited access to genomic sequencing in under-resourced regions. To enable survival prediction using only whole-slide images (WSI), we propose the Visual-Genomic Answering-Guided Transformer (VGAT), a framework integrating Visual Question Answering (VQA) techniques for genomic modality reconstruction. By adapting VQA's text feature extraction approach, we derive stable genomic representations that circumvent dimensionality challenges in raw genomic data. Simultaneously, a cluster-based visual prompt module selectively enhances discriminative WSI patches, addressing noise from unfiltered image regions. Evaluated across five TCGA datasets, VGAT outperforms existing WSI-only methods, demonstrating the viability of genomic-informed inference without sequencing. This approach bridges multimodal research and clinical feasibility in resource-constrained settings. The code link is https://github.com/CZZZZZZZZZZZZZZZZZ/VGAT.
comment: Accepted by ICME2025
♻ ☆ MimicMotion: High-Quality Human Motion Video Generation with Confidence-aware Pose Guidance ICML 2025
In recent years, generative artificial intelligence has achieved significant advancements in the field of image generation, spawning a variety of applications. However, video generation still faces considerable challenges in various aspects, such as controllability, video length, and richness of details, which hinder the application and popularization of this technology. In this work, we propose a controllable video generation framework, dubbed MimicMotion, which can generate high-quality videos of arbitrary length mimicking specific motion guidance. Compared with previous methods, our approach has several highlights. Firstly, we introduce confidence-aware pose guidance that ensures high frame quality and temporal smoothness. Secondly, we introduce regional loss amplification based on pose confidence, which significantly reduces image distortion. Lastly, for generating long and smooth videos, we propose a progressive latent fusion strategy. By this means, we can produce videos of arbitrary length with acceptable resource consumption. With extensive experiments and user studies, MimicMotion demonstrates significant improvements over previous approaches in various aspects. Detailed results and comparisons are available on our project page: https://tencent.github.io/MimicMotion .
comment: ICML 2025
♻ ☆ Spatial Degradation-Aware and Temporal Consistent Diffusion Model for Compressed Video Super-Resolution
Due to storage and bandwidth limitations, videos transmitted over the Internet often exhibit low quality, characterized by low-resolution and compression artifacts. Although video super-resolution (VSR) is an efficient video enhancing technique, existing VSR methods focus less on compressed videos. Consequently, directly applying general VSR approaches fails to improve practical videos with compression artifacts, especially when frames are highly compressed at a low bit rate. The inevitable quantization information loss complicates the reconstruction of texture details. Recently, diffusion models have shown superior performance in low-level visual tasks. Leveraging the high-realism generation capability of diffusion models, we propose a novel method that exploits the priors of pre-trained diffusion models for compressed VSR. To mitigate spatial distortions and refine temporal consistency, we introduce a Spatial Degradation-Aware and Temporal Consistent (SDATC) diffusion model. Specifically, we incorporate a distortion control module (DCM) to modulate diffusion model inputs, thereby minimizing the impact of noise from low-quality frames on the generation stage. Subsequently, the diffusion model performs a denoising process to generate details, guided by a fine-tuned compression-aware prompt module (CAPM) and a spatio-temporal attention module (STAM). CAPM dynamically encodes compression-related information into prompts, enabling the sampling process to adapt to different degradation levels. Meanwhile, STAM extends the spatial attention mechanism into the spatio-temporal dimension, effectively capturing temporal correlations. Additionally, we utilize optical flow-based alignment during each denoising step to enhance the smoothness of output videos. Extensive experimental results on benchmark datasets demonstrate the effectiveness of our proposed modules in restoring compressed videos.
♻ ☆ Cell Tracking according to Biological Needs -- Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty
Cell tracking and segmentation assist biologists in extracting insights from large-scale microscopy time-lapse data. Driven by local accuracy metrics, current tracking approaches often suffer from a lack of long-term consistency and the ability to reconstruct lineage trees correctly. To address this issue, we introduce an uncertainty estimation technique for motion estimation frameworks and extend the multi-hypothesis tracking framework. Our uncertainty estimation lifts motion representations into probabilistic spatial densities using problem-specific test-time augmentations. Moreover, we introduce a novel mitosis-aware assignment problem formulation that allows multi-hypothesis trackers to model cell splits and to resolve false associations and mitosis detections based on long-term conflicts. In our framework, explicit biological knowledge is modeled in assignment costs. We evaluate our approach on nine competitive datasets and demonstrate that we outperform the current state-of-the-art on biologically inspired metrics substantially, achieving improvements by a factor of approximately 6 and uncover new insights into the behavior of motion estimation uncertainty.
comment: 19 pages, 7 figures, 6 tables. This work has been accepted to the IEEE for publication
♻ ☆ ScienceBoard: Evaluating Multimodal Autonomous Agents in Realistic Scientific Workflows
Large Language Models (LLMs) have extended their impact beyond Natural Language Processing, substantially fostering the development of interdisciplinary research. Recently, various LLM-based agents have been developed to assist scientific discovery progress across multiple aspects and domains. Among these, computer-using agents, capable of interacting with operating systems as humans do, are paving the way to automated scientific problem-solving and addressing routines in researchers' workflows. Recognizing the transformative potential of these agents, we introduce ScienceBoard, which encompasses two complementary contributions: (i) a realistic, multi-domain environment featuring dynamic and visually rich scientific workflows with integrated professional software, where agents can autonomously interact via different interfaces to accelerate complex research tasks and experiments; and (ii) a challenging benchmark of 169 high-quality, rigorously validated real-world tasks curated by humans, spanning scientific-discovery workflows in domains such as biochemistry, astronomy, and geoinformatics. Extensive evaluations of agents with state-of-the-art backbones (e.g., GPT-4o, Claude 3.7, UI-TARS) show that, despite some promising results, they still fall short of reliably assisting scientists in complex workflows, achieving only a 15% overall success rate. In-depth analysis further provides valuable insights for addressing current agent limitations and more effective design principles, paving the way to build more capable agents for scientific discovery. Our code, environment, and benchmark are at https://qiushisun.github.io/ScienceBoard-Home/.
comment: work in progress
♻ ☆ Split Matching for Inductive Zero-shot Semantic Segmentation
Zero-shot Semantic Segmentation (ZSS) aims to segment categories that are not annotated during training. While fine-tuning vision-language models has achieved promising results, these models often overfit to seen categories due to the lack of supervision for unseen classes. As an alternative to fully supervised approaches, query-based segmentation has shown great latent in ZSS, as it enables object localization without relying on explicit labels. However, conventional Hungarian matching, a core component in query-based frameworks, needs full supervision and often misclassifies unseen categories as background in the setting of ZSS. To address this issue, we propose Split Matching (SM), a novel assignment strategy that decouples Hungarian matching into two components: one for seen classes in annotated regions and another for latent classes in unannotated regions (referred to as unseen candidates). Specifically, we partition the queries into seen and candidate groups, enabling each to be optimized independently according to its available supervision. To discover unseen candidates, we cluster CLIP dense features to generate pseudo masks and extract region-level embeddings using CLS tokens. Matching is then conducted separately for the two groups based on both class-level similarity and mask-level consistency. Additionally, we introduce a Multi-scale Feature Enhancement (MFE) module that refines decoder features through residual multi-scale aggregation, improving the model's ability to capture spatial details across resolutions. SM is the first to introduce decoupled Hungarian matching under the inductive ZSS setting, and achieves state-of-the-art performance on two standard benchmarks.
♻ ☆ Real-World Remote Sensing Image Dehazing: Benchmark and Baseline
Remote Sensing Image Dehazing (RSID) poses significant challenges in real-world scenarios due to the complex atmospheric conditions and severe color distortions that degrade image quality. The scarcity of real-world remote sensing hazy image pairs has compelled existing methods to rely primarily on synthetic datasets. However, these methods struggle with real-world applications due to the inherent domain gap between synthetic and real data. To address this, we introduce Real-World Remote Sensing Hazy Image Dataset (RRSHID), the first large-scale dataset featuring real-world hazy and dehazed image pairs across diverse atmospheric conditions. Based on this, we propose MCAF-Net, a novel framework tailored for real-world RSID. Its effectiveness arises from three innovative components: Multi-branch Feature Integration Block Aggregator (MFIBA), which enables robust feature extraction through cascaded integration blocks and parallel multi-branch processing; Color-Calibrated Self-Supervised Attention Module (CSAM), which mitigates complex color distortions via self-supervised learning and attention-guided refinement; and Multi-Scale Feature Adaptive Fusion Module (MFAFM), which integrates features effectively while preserving local details and global context. Extensive experiments validate that MCAF-Net demonstrates state-of-the-art performance in real-world RSID, while maintaining competitive performance on synthetic datasets. The introduction of RRSHID and MCAF-Net sets new benchmarks for real-world RSID research, advancing practical solutions for this complex task. The code and dataset are publicly available at https://github.com/lwCVer/RRSHID.
comment: 14 pages, 11 figures, real-world remote sensing image dehazing dataset
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
comment: Zero-shot video editing
♻ ☆ End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music
Optical Music Recognition (OMR) has made significant progress since its inception, with various approaches now capable of accurately transcribing music scores into digital formats. Despite these advancements, most so-called end-to-end OMR approaches still rely on multi-stage processing pipelines for transcribing full-page score images, which entails challenges such as the need for dedicated layout analysis and specific annotated data, thereby limiting the general applicability of such methods. In this paper, we present the first truly end-to-end approach for page-level OMR in complex layouts. Our system, which combines convolutional layers with autoregressive Transformers, processes an entire music score page and outputs a complete transcription in a music encoding format. This is made possible by both the architecture and the training procedure, which utilizes curriculum learning through incremental synthetic data generation. We evaluate the proposed system using pianoform corpora, which is one of the most complex sources in the OMR literature. This evaluation is conducted first in a controlled scenario with synthetic data, and subsequently against two real-world corpora of varying conditions. Our approach is compared with leading commercial OMR software. The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain, representing a significant contribution to the field of OMR.
♻ ☆ Disentangled and Interpretable Multimodal Attention Fusion for Cancer Survival Prediction MICCAI 2025
To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.
comment: 11 pages, 1 figure, 3 tables. Preprint submitted and accepted to MICCAI 2025. This preprint has not undergone peer review or any post-submission improvements or corrections
♻ ☆ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis ACL 2025
Graphical User Interface (GUI) agents powered by Vision-Language Models (VLMs) have demonstrated human-like computer control capability. Despite their utility in advancing digital automation, a critical bottleneck persists: collecting high-quality trajectory data for training. Common practices for collecting such data rely on human supervision or synthetic data generation through executing pre-defined tasks, which are either resource-intensive or unable to guarantee data quality. Moreover, these methods suffer from limited data diversity and significant gaps between synthetic data and real-world environments. To address these challenges, we propose OS-Genesis, a novel GUI data synthesis pipeline that reverses the conventional trajectory collection process. Instead of relying on pre-defined tasks, OS-Genesis enables agents first to perceive environments and perform step-wise interactions, then retrospectively derive high-quality tasks to enable trajectory-level exploration. A trajectory reward model is then employed to ensure the quality of the generated trajectories. We demonstrate that training GUI agents with OS-Genesis significantly improves their performance on highly challenging online benchmarks. In-depth analysis further validates OS-Genesis's efficiency and its superior data quality and diversity compared to existing synthesis methods. Our codes, data, and checkpoints are available at https://qiushisun.github.io/OS-Genesis-Home/.
comment: ACL 2025 Camera Ready
♻ ☆ PartEdit: Fine-Grained Image Editing using Pre-Trained Diffusion Models SIGGRAPH 2025
We present the first text-based image editing approach for object parts based on pre-trained diffusion models. Diffusion-based image editing approaches capitalized on the deep understanding of diffusion models of image semantics to perform a variety of edits. However, existing diffusion models lack sufficient understanding of many object parts, hindering fine-grained edits requested by users. To address this, we propose to expand the knowledge of pre-trained diffusion models to allow them to understand various object parts, enabling them to perform fine-grained edits. We achieve this by learning special textual tokens that correspond to different object parts through an efficient token optimization process. These tokens are optimized to produce reliable localization masks at each inference step to localize the editing region. Leveraging these masks, we design feature-blending and adaptive thresholding strategies to execute the edits seamlessly. To evaluate our approach, we establish a benchmark and an evaluation protocol for part editing. Experiments show that our approach outperforms existing editing methods on all metrics and is preferred by users 66-90% of the time in conducted user studies.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://gorluxor.github.io/part-edit/
♻ ☆ DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content. However, their massive size and the limited availability of fine-grained annotations pose substantial challenges for conventional supervised learning. We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design. DSAGL explicitly addresses instance-level ambiguity and bag-level semantic consistency by generating multi-scale attention-based pseudo labels and guiding instance-level learning. A shared lightweight encoder (VSSMamba) enables efficient long-range dependency modeling, while a fusion-attentive module (FASA) enhances focus on sparse but diagnostically relevant regions. We further introduce a hybrid loss to enforce mutual consistency between the two streams. Experiments on CIFAR-10, NCT-CRC, and TCGA-Lung datasets demonstrate that DSAGL consistently outperforms state-of-the-art MIL baselines, achieving superior discriminative performance and robustness under weak supervision.
♻ ☆ Preemptive Hallucination Reduction: An Input-Level Approach for Multimodal Language Model
Visual hallucinations in Large Language Models (LLMs), where the model generates responses that are inconsistent with the visual input, pose a significant challenge to their reliability, particularly in contexts where precise and trustworthy outputs are critical. Current research largely emphasizes post-hoc correction or model-specific fine-tuning strategies, with limited exploration of preprocessing techniques to address hallucination issues at the input stage. This study presents a novel ensemble-based preprocessing framework that adaptively selects the most appropriate filtering approach -- noise reduced (NR), edge enhanced (EE), or unaltered input (org) based on the type of question posed, resulting into reduced hallucination without requiring any modifications to the underlying model architecture or training pipeline. Evaluated on the `HaloQuest' dataset -- a benchmark designed to test multimodal reasoning on visually complex inputs, our method achieves a 44.3% reduction in hallucination rates, as measured by Natural Language Inference (NLI) scores using SelfCheckGPT. This demonstrates that intelligent input conditioning alone can significantly enhance factual grounding in LLM responses. The findings highlight the importance of adaptive preprocessing techniques in mitigating hallucinations, paving the way for more reliable multimodal systems capable of addressing real-world challenges.
comment: Submitted for review in NCAA Springer, 21 pages, 4 figures, 4 Tables
♻ ☆ KNN-MMD: Cross Domain Wireless Sensing via Local Distribution Alignment
Wireless sensing has recently found widespread applications in diverse environments, including homes, offices, and public spaces. By analyzing patterns in channel state information (CSI), it is possible to infer human actions for tasks such as person identification, gesture recognition, and fall detection. However, CSI is highly sensitive to environmental changes, where even minor alterations can significantly distort the CSI patterns. This sensitivity often leads to performance degradation or outright failure when applying wireless sensing models trained in one environment to another. To address this challenge, Domain Alignment (DAL) has been widely adopted for cross-domain classification tasks, as it focuses on aligning the global distributions of the source and target domains in feature space. Despite its popularity, DAL often neglects inter-category relationships, which can lead to misalignment between categories across domains, even when global alignment is achieved. To overcome these limitations, we propose K-Nearest Neighbors Maximum Mean Discrepancy (KNN-MMD), a novel few-shot method for cross-domain wireless sensing. Our approach begins by constructing a help set using KNN from the target domain, enabling local alignment between the source and target domains within each category using MMD. Additionally, we address a key instability issue commonly observed in cross-domain methods, where model performance fluctuates sharply between epochs. Further, most existing methods struggle to determine an optimal stopping point during training due to the absence of labeled data from the target domain. Our method resolves this by excluding the support set from the target domain during training and employing it as a validation set to determine the stopping criterion.The dataset and code are publicly available at https://github.com/RS2002/KNN-MMD .
♻ ☆ Event Data Association via Robust Model Fitting for Event-based Object Tracking
Event-based approaches, which are based on bio-inspired asynchronous event cameras, have achieved promising performance on various computer vision tasks. However, the study of the fundamental event data association problem is still in its infancy. In this paper, we propose a novel Event Data Association (called EDA) approach to explicitly address the event association and fusion problem. The proposed EDA seeks for event trajectories that best fit the event data, in order to perform unifying data association and information fusion. In EDA, we first asynchronously fuse the event data based on its information entropy. Then, we introduce a deterministic model hypothesis generation strategy, which effectively generates model hypotheses from the fused events, to represent the corresponding event trajectories. After that, we present a two-stage weighting algorithm, which robustly weighs and selects true models from the generated model hypotheses, through multi-structural geometric model fitting. Meanwhile, we also propose an adaptive model selection strategy to automatically determine the number of the true models. Finally, we use the selected true models to associate and fuse the event data, without being affected by sensor noise and irrelevant structures. We evaluate the performance of the proposed EDA on the object tracking task. The experimental results show the effectiveness of EDA under challenging scenarios, such as high speed, motion blur, and high dynamic range conditions.
comment: 32 pages, 7 figures
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.
♻ ☆ Releasing Inequality Phenomenon in $\ell_{\infty}$-norm Adversarial Training via Input Gradient Distillation
Adversarial training (AT) is considered the most effective defense against adversarial attacks. However, a recent study revealed that \(\ell_{\infty}\)-norm adversarial training (\(\ell_{\infty}\)-AT) will also induce unevenly distributed input gradients, which is called the inequality phenomenon. This phenomenon makes the \(\ell_{\infty}\)-norm adversarially trained model more vulnerable than the standard-trained model when high-attribution or randomly selected pixels are perturbed, enabling robust and practical black-box attacks against \(\ell_{\infty}\)-adversarially trained models. In this paper, we propose a simple yet effective method called Input Gradient Distillation (IGD) to release the inequality phenomenon in $\ell_{\infty}$-AT. IGD distills the standard-trained teacher model's equal decision pattern into the $\ell_{\infty}$-adversarially trained student model by aligning input gradients of the student model and the standard-trained model with the Cosine Similarity. Experiments show that IGD can mitigate the inequality phenomenon and its threats while preserving adversarial robustness. Compared to vanilla $\ell_{\infty}$-AT, IGD reduces error rates against inductive noise, inductive occlusion, random noise, and noisy images in ImageNet-C by up to 60\%, 16\%, 50\%, and 21\%, respectively. Other than empirical experiments, we also conduct a theoretical analysis to explain why releasing the inequality phenomenon can improve such robustness and discuss why the severity of the inequality phenomenon varies according to the dataset's image resolution. Our code is available at https://github.com/fhdnskfbeuv/Inuput-Gradient-Distillation
comment: 16 pages. Accepted by IEEE TIFS
♻ ☆ A Wavelet Diffusion GAN for Image Super-Resolution
In recent years, diffusion models have emerged as a superior alternative to generative adversarial networks (GANs) for high-fidelity image generation, with wide applications in text-to-image generation, image-to-image translation, and super-resolution. However, their real-time feasibility is hindered by slow training and inference speeds. This study addresses this challenge by proposing a wavelet-based conditional Diffusion GAN scheme for Single-Image Super-Resolution (SISR). Our approach utilizes the diffusion GAN paradigm to reduce the timesteps required by the reverse diffusion process and the Discrete Wavelet Transform (DWT) to achieve dimensionality reduction, decreasing training and inference times significantly. The results of an experimental validation on the CelebA-HQ dataset confirm the effectiveness of our proposed scheme. Our approach outperforms other state-of-the-art methodologies successfully ensuring high-fidelity output while overcoming inherent drawbacks associated with diffusion models in time-sensitive applications.
comment: The paper has been accepted at Italian Workshop on Neural Networks (WIRN) 2024
♻ ☆ ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce ShotBench, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct ShotQA, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop ShotVL through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new state-of-the-art performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
♻ ☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
♻ ☆ The Aging Multiverse: Generating Condition-Aware Facial Aging Tree via Training-Free Diffusion
We introduce the Aging Multiverse, a framework for generating multiple plausible facial aging trajectories from a single image, each conditioned on external factors such as environment, health, and lifestyle. Unlike prior methods that model aging as a single deterministic path, our approach creates an aging tree that visualizes diverse futures. To enable this, we propose a training-free diffusion-based method that balances identity preservation, age accuracy, and condition control. Our key contributions include attention mixing to modulate editing strength and a Simulated Aging Regularization strategy to stabilize edits. Extensive experiments and user studies demonstrate state-of-the-art performance across identity preservation, aging realism, and conditional alignment, outperforming existing editing and age-progression models, which often fail to account for one or more of the editing criteria. By transforming aging into a multi-dimensional, controllable, and interpretable process, our approach opens up new creative and practical avenues in digital storytelling, health education, and personalized visualization.
♻ ☆ OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport MICCAI 2025
Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.
comment: Accepted by International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2025)
♻ ☆ Leveraging Semantic Asymmetry for Precise Gross Tumor Volume Segmentation of Nasopharyngeal Carcinoma in Planning CT
In the radiation therapy of nasopharyngeal carcinoma (NPC), clinicians typically delineate the gross tumor volume (GTV) using non-contrast planning computed tomography to ensure accurate radiation dose delivery. However, the low contrast between tumors and adjacent normal tissues necessitates that radiation oncologists manually delineate the tumors, often relying on diagnostic MRI for guidance. % In this study, we propose a novel approach to directly segment NPC gross tumors on non-contrast planning CT images, circumventing potential registration errors when aligning MRI or MRI-derived tumor masks to planning CT. To address the low contrast issues between tumors and adjacent normal structures in planning CT, we introduce a 3D Semantic Asymmetry Tumor segmentation (SATs) method. Specifically, we posit that a healthy nasopharyngeal region is characteristically bilaterally symmetric, whereas the emergence of nasopharyngeal carcinoma disrupts this symmetry. Then, we propose a Siamese contrastive learning segmentation framework that minimizes the voxel-wise distance between original and flipped areas without tumor and encourages a larger distance between original and flipped areas with tumor. Thus, our approach enhances the sensitivity of features to semantic asymmetries. % Extensive experiments demonstrate that the proposed SATs achieves the leading NPC GTV segmentation performance in both internal and external testing, \emph{e.g.}, with at least 2\% absolute Dice score improvement and 12\% average distance error reduction when compared to other state-of-the-art methods in the external testing.
♻ ☆ Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning SC
Few-shot class-incremental learning (FSCIL) aims to incrementally learn novel classes from limited examples while preserving knowledge of previously learned classes. Existing methods face a critical dilemma: static architectures rely on a fixed parameter space to learn from data that arrive sequentially, prone to overfitting to the current session, while dynamic architectures require the expansion of the parameter space continually, leading to increased complexity. In this study, we explore the potential of Selective State Space Models (SSMs) for FSCIL. Mamba leverages its input-dependent parameters to dynamically adjust its processing patterns and generate content-aware scan patterns within a fixed architecture. This enables it to configure distinct processing for base and novel classes, effectively preserving existing knowledge while adapting to new ones. To leverage Mamba's potential for FSCIL, we design two key modules: First, we propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation. The dual-design structurally decouples base and novel class processing with a frozen base branch, employing a frozen base branch to maintain robust base-class features and a dynamic incremental branch that adaptively learns distinctive feature shifts for novel classes. Second, we develop a class-sensitive selective scan mechanism to guide dynamic adaptation of the incremental branch. It minimizes the disruption to base-class representations caused by training on novel data, and meanwhile, forces the selective scan to perform in distinct patterns between base and novel classes. Extensive experiments on miniImageNet, CUB-200, and CIFAR-100 demonstrate that Mamba-FSCIL achieves state-of-the-art performance. The code is available at https://github.com/xiaojieli0903/Mamba-FSCIL.
comment: Code: https://github.com/xiaojieli0903/Mamba-FSCIL
♻ ☆ SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Estimating displacement vector field via a cost volume computed in the feature space has shown great success in image registration, but it suffers excessive computation burdens. Moreover, existing feature descriptors only extract local features incapable of representing the global semantic information, which is especially important for solving large transformations. To address the discussed issues, we propose SAMConvex, a fast coarse-to-fine discrete optimization method for CT registration that includes a decoupled convex optimization procedure to obtain deformation fields based on a self-supervised anatomical embedding (SAM) feature extractor that captures both local and global information. To be specific, SAMConvex extracts per-voxel features and builds 6D correlation volumes based on SAM features, and iteratively updates a flow field by performing lookups on the correlation volumes with a coarse-to-fine scheme. SAMConvex outperforms the state-of-the-art learning-based methods and optimization-based methods over two inter-patient registration datasets (Abdomen CT and HeadNeck CT) and one intra-patient registration dataset (Lung CT). Moreover, as an optimization-based method, SAMConvex only takes $\sim2$s ($\sim5s$ with instance optimization) for one paired images.
♻ ☆ FSDA-DG: Improving Cross-Domain Generalizability of Medical Image Segmentation with Few Source Domain Annotations
Deep learning-based medical image segmentation faces significant challenges arising from limited labeled data and domain shifts. While prior approaches have primarily addressed these issues independently, their simultaneous occurrence is common in medical imaging. A method that generalizes to unseen domains using only minimal annotations offers significant practical value due to reduced data annotation and development costs. In pursuit of this goal, we propose FSDA-DG, a novel solution to improve cross-domain generalizability of medical image segmentation with few single-source domain annotations. Specifically, our approach introduces semantics-guided semi-supervised data augmentation. This method divides images into global broad regions and semantics-guided local regions, and applies distinct augmentation strategies to enrich data distribution. Within this framework, both labeled and unlabeled data are transformed into extensive domain knowledge while preserving domain-invariant semantic information. Additionally, FSDA-DG employs a multi-decoder U-Net pipeline semi-supervised learning (SSL) network to improve domain-invariant representation learning through consistent prior assumption across multiple perturbations. By integrating data-level and model-level designs, FSDA-DG achieves superior performance compared to state-of-the-art methods in two challenging single domain generalization (SDG) tasks with limited annotations. The code is publicly available at https://github.com/yezanting/FSDA-DG.
comment: This work has been accepted by Medcial Image Analysis journal; 15 pages, 11 figures, 10 Tables
♻ ☆ Self is the Best Learner: CT-free Ultra-Low-Dose PET Organ Segmentation via Collaborating Denoising and Segmentation Learning MICCAI2025
Organ segmentation in Positron Emission Tomography (PET) plays a vital role in cancer quantification. Low-dose PET (LDPET) provides a safer alternative by reducing radiation exposure. However, the inherent noise and blurred boundaries make organ segmentation more challenging. Additionally, existing PET organ segmentation methods rely on coregistered Computed Tomography (CT) annotations, overlooking the problem of modality mismatch. In this study, we propose LDOS, a novel CT-free ultra-LDPET organ segmentation pipeline. Inspired by Masked Autoencoders (MAE), we reinterpret LDPET as a naturally masked version of Full-Dose PET (FDPET). LDOS adopts a simple yet effective architecture: a shared encoder extracts generalized features, while task-specific decoders independently refine outputs for denoising and segmentation. By integrating CT-derived organ annotations into the denoising process, LDOS improves anatomical boundary recognition and alleviates the PET/CT misalignments. Experiments demonstrate that LDOS achieves state-of-the-art performance with mean Dice scores of 73.11% (18F-FDG) and 73.97% (68Ga-FAPI) across 18 organs in 5% dose PET. Our code will be available at https://github.com/yezanting/LDOS.
comment: This work has been accepted by MICCAI2025; 9 pages, 5 figures
♻ ☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has emerged as a prominent research topic in computer graphics and multimedia, yet most existing methods often struggle to strike a balance between generation quality and computational efficiency, particularly under real-time constraints. In this paper, we propose a novel framework that integrates Gaussian Splatting with a structured Audio Factorization Plane (Audio-Plane) to enable high-quality, audio-synchronized, and real-time talking head generation. For modeling a dynamic talking head, a 4D volume representation, which consists of three axes in 3D space and one temporal axis aligned with audio progression, is typically required. However, directly storing and processing a dense 4D grid is impractical due to the high memory and computation cost, and lack of scalability for longer durations. We address this challenge by decomposing the 4D volume representation into a set of audio-independent spatial planes and audio-dependent planes, forming a compact and interpretable representation for talking head modeling that we refer to as the Audio-Plane. This factorized design allows for efficient and fine-grained audio-aware spatial encoding, and significantly enhances the model's ability to capture complex lip dynamics driven by speech signals. To further improve region-specific motion modeling, we introduce an audio-guided saliency splatting mechanism based on region-aware modulation, which adaptively emphasizes highly dynamic regions such as the mouth area. This allows the model to focus its learning capacity on where it matters most for accurate speech-driven animation. Extensive experiments on both the self-driven and the cross-driven settings demonstrate that our method achieves state-of-the-art visual quality, precise audio-lip synchronization, and real-time performance, outperforming prior approaches across both 2D- and 3D-based paradigms.
comment: Demo video at \url{https://sstzal.github.io/Audio-Plane/}
♻ ☆ Not All Frame Features Are Equal: Video-to-4D Generation via Decoupling Dynamic-Static Features ICCV2025
Recently, the generation of dynamic 3D objects from a video has shown impressive results. Existing methods directly optimize Gaussians using whole information in frames. However, when dynamic regions are interwoven with static regions within frames, particularly if the static regions account for a large proportion, existing methods often overlook information in dynamic regions and are prone to overfitting on static regions. This leads to producing results with blurry textures. We consider that decoupling dynamic-static features to enhance dynamic representations can alleviate this issue. Thus, we propose a dynamic-static feature decoupling module (DSFD). Along temporal axes, it regards the regions of current frame features that possess significant differences relative to reference frame features as dynamic features. Conversely, the remaining parts are the static features. Then, we acquire decoupled features driven by dynamic features and current frame features. Moreover, to further enhance the dynamic representation of decoupled features from different viewpoints and ensure accurate motion prediction, we design a temporal-spatial similarity fusion module (TSSF). Along spatial axes, it adaptively selects similar information of dynamic regions. Hinging on the above, we construct a novel approach, DS4D. Experimental results verify our method achieves state-of-the-art (SOTA) results in video-to-4D. In addition, the experiments on a real-world scenario dataset demonstrate its effectiveness on the 4D scene. Our code will be publicly available.
comment: Accepted by ICCV2025
♻ ☆ Med-LEGO: Editing and Adapting toward Generalist Medical Image Diagnosis MICCAI
The adoption of visual foundation models has become a common practice in computer-aided diagnosis (CAD). While these foundation models provide a viable solution for creating generalist medical AI, privacy concerns make it difficult to pre-train or continuously update such models across multiple domains and datasets, leading many studies to focus on specialist models. To address this challenge, we propose Med-LEGO, a training-free framework that enables the seamless integration or updating of a generalist CAD model by combining multiple specialist models, similar to assembling LEGO bricks. Med-LEGO enhances LoRA (low-rank adaptation) by incorporating singular value decomposition (SVD) to efficiently capture the domain expertise of each specialist model with minimal additional parameters. By combining these adapted weights through simple operations, Med-LEGO allows for the easy integration or modification of specific diagnostic capabilities without the need for original data or retraining. Finally, the combined model can be further adapted to new diagnostic tasks, making it a versatile generalist model. Our extensive experiments demonstrate that Med-LEGO outperforms existing methods in both cross-domain and in-domain medical tasks while using only 0.18% of full model parameters. These merged models show better convergence and generalization to new tasks, providing an effective path toward generalist medical AI.
comment: Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ DidSee: Diffusion-Based Depth Completion for Material-Agnostic Robotic Perception and Manipulation
Commercial RGB-D cameras often produce noisy, incomplete depth maps for non-Lambertian objects. Traditional depth completion methods struggle to generalize due to the limited diversity and scale of training data. Recent advances exploit visual priors from pre-trained text-to-image diffusion models to enhance generalization in dense prediction tasks. However, we find that biases arising from training-inference mismatches in the vanilla diffusion framework significantly impair depth completion performance. Additionally, the lack of distinct visual features in non-Lambertian regions further hinders precise prediction. To address these issues, we propose \textbf{DidSee}, a diffusion-based framework for depth completion on non-Lambertian objects. First, we integrate a rescaled noise scheduler enforcing a zero terminal signal-to-noise ratio to eliminate signal leakage bias. Second, we devise a noise-agnostic single-step training formulation to alleviate error accumulation caused by exposure bias and optimize the model with a task-specific loss. Finally, we incorporate a semantic enhancer that enables joint depth completion and semantic segmentation, distinguishing objects from backgrounds and yielding precise, fine-grained depth maps. DidSee achieves state-of-the-art performance on multiple benchmarks, demonstrates robust real-world generalization, and effectively improves downstream tasks such as category-level pose estimation and robotic grasping.
comment: Project page: https://wenzhoulyu.github.io/DidSee/
♻ ☆ Shape2Animal: Creative Animal Generation from Natural Silhouettes
Humans possess a unique ability to perceive meaningful patterns in ambiguous stimuli, a cognitive phenomenon known as pareidolia. This paper introduces Shape2Animal framework to mimics this imaginative capacity by reinterpreting natural object silhouettes, such as clouds, stones, or flames, as plausible animal forms. Our automated framework first performs open-vocabulary segmentation to extract object silhouette and interprets semantically appropriate animal concepts using vision-language models. It then synthesizes an animal image that conforms to the input shape, leveraging text-to-image diffusion model and seamlessly blends it into the original scene to generate visually coherent and spatially consistent compositions. We evaluated Shape2Animal on a diverse set of real-world inputs, demonstrating its robustness and creative potential. Our Shape2Animal can offer new opportunities for visual storytelling, educational content, digital art, and interactive media design. Our project page is here: https://shape2image.github.io
♻ ☆ FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen
comment: Project Page: https://jayleejia.github.io/FairyGen/ ; Code: https://github.com/GVCLab/FairyGen
♻ ☆ A Hyperdimensional One Place Signature to Represent Them All: Stackable Descriptors For Visual Place Recognition ICCV 2025
Visual Place Recognition (VPR) enables coarse localization by comparing query images to a reference database of geo-tagged images. Recent breakthroughs in deep learning architectures and training regimes have led to methods with improved robustness to factors like environment appearance change, but with the downside that the required training and/or matching compute scales with the number of distinct environmental conditions encountered. Here, we propose Hyperdimensional One Place Signatures (HOPS) to simultaneously improve the performance, compute and scalability of these state-of-the-art approaches by fusing the descriptors from multiple reference sets captured under different conditions. HOPS scales to any number of environmental conditions by leveraging the Hyperdimensional Computing framework. Extensive evaluations demonstrate that our approach is highly generalizable and consistently improves recall performance across all evaluated VPR methods and datasets by large margins. Arbitrarily fusing reference images without compute penalty enables numerous other useful possibilities, three of which we demonstrate here: descriptor dimensionality reduction with no performance penalty, stacking synthetic images, and coarse localization to an entire traverse or environmental section.
comment: Accepted into ICCV 2025
Machine Learning 129
☆ Beyond ReLU: How Activations Affect Neural Kernels and Random Wide Networks
While the theory of deep learning has made some progress in recent years, much of it is limited to the ReLU activation function. In particular, while the neural tangent kernel (NTK) and neural network Gaussian process kernel (NNGP) have given theoreticians tractable limiting cases of fully connected neural networks, their properties for most activation functions except for powers of the ReLU function are poorly understood. Our main contribution is to provide a more general characterization of the RKHS of these kernels for typical activation functions whose only non-smoothness is at zero, such as SELU, ELU, or LeakyReLU. Our analysis also covers a broad set of special cases such as missing biases, two-layer networks, or polynomial activations. Our results show that a broad class of not infinitely smooth activations generate equivalent RKHSs at different network depths, while polynomial activations generate non-equivalent RKHSs. Finally, we derive results for the smoothness of NNGP sample paths, characterizing the smoothness of infinitely wide neural networks at initialization.
☆ CLoVE: Personalized Federated Learning through Clustering of Loss Vector Embeddings
We propose CLoVE (Clustering of Loss Vector Embeddings), a novel algorithm for Clustered Federated Learning (CFL). In CFL, clients are naturally grouped into clusters based on their data distribution. However, identifying these clusters is challenging, as client assignments are unknown. CLoVE utilizes client embeddings derived from model losses on client data, and leverages the insight that clients in the same cluster share similar loss values, while those in different clusters exhibit distinct loss patterns. Based on these embeddings, CLoVE is able to iteratively identify and separate clients from different clusters and optimize cluster-specific models through federated aggregation. Key advantages of CLoVE over existing CFL algorithms are (1) its simplicity, (2) its applicability to both supervised and unsupervised settings, and (3) the fact that it eliminates the need for near-optimal model initialization, which makes it more robust and better suited for real-world applications. We establish theoretical convergence bounds, showing that CLoVE can recover clusters accurately with high probability in a single round and converges exponentially fast to optimal models in a linear setting. Our comprehensive experiments comparing with a variety of both CFL and generic Personalized Federated Learning (PFL) algorithms on different types of datasets and an extensive array of non-IID settings demonstrate that CLoVE achieves highly accurate cluster recovery in just a few rounds of training, along with state-of-the-art model accuracy, across a variety of both supervised and unsupervised PFL tasks.
comment: 31 pages, 4 figures
☆ ARMOR: Robust Reinforcement Learning-based Control for UAVs under Physical Attacks
Unmanned Aerial Vehicles (UAVs) depend on onboard sensors for perception, navigation, and control. However, these sensors are susceptible to physical attacks, such as GPS spoofing, that can corrupt state estimates and lead to unsafe behavior. While reinforcement learning (RL) offers adaptive control capabilities, existing safe RL methods are ineffective against such attacks. We present ARMOR (Adaptive Robust Manipulation-Optimized State Representations), an attack-resilient, model-free RL controller that enables robust UAV operation under adversarial sensor manipulation. Instead of relying on raw sensor observations, ARMOR learns a robust latent representation of the UAV's physical state via a two-stage training framework. In the first stage, a teacher encoder, trained with privileged attack information, generates attack-aware latent states for RL policy training. In the second stage, a student encoder is trained via supervised learning to approximate the teacher's latent states using only historical sensor data, enabling real-world deployment without privileged information. Our experiments show that ARMOR outperforms conventional methods, ensuring UAV safety. Additionally, ARMOR improves generalization to unseen attacks and reduces training cost by eliminating the need for iterative adversarial training.
☆ The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements
Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.
☆ Exploration from a Primal-Dual Lens: Value-Incentivized Actor-Critic Methods for Sample-Efficient Online RL
Online reinforcement learning (RL) with complex function approximations such as transformers and deep neural networks plays a significant role in the modern practice of artificial intelligence. Despite its popularity and importance, balancing the fundamental trade-off between exploration and exploitation remains a long-standing challenge; in particular, we are still in lack of efficient and practical schemes that are backed by theoretical performance guarantees. Motivated by recent developments in exploration via optimistic regularization, this paper provides an interpretation of the principle of optimism through the lens of primal-dual optimization. From this fresh perspective, we set forth a new value-incentivized actor-critic (VAC) method, which optimizes a single easy-to-optimize objective integrating exploration and exploitation -- it promotes state-action and policy estimates that are both consistent with collected data transitions and result in higher value functions. Theoretically, the proposed VAC method has near-optimal regret guarantees under linear Markov decision processes (MDPs) in both finite-horizon and infinite-horizon settings, which can be extended to the general function approximation setting under appropriate assumptions.
☆ Multi-View Contrastive Learning for Robust Domain Adaptation in Medical Time Series Analysis
Adapting machine learning models to medical time series across different domains remains a challenge due to complex temporal dependencies and dynamic distribution shifts. Current approaches often focus on isolated feature representations, limiting their ability to fully capture the intricate temporal dynamics necessary for robust domain adaptation. In this work, we propose a novel framework leveraging multi-view contrastive learning to integrate temporal patterns, derivative-based dynamics, and frequency-domain features. Our method employs independent encoders and a hierarchical fusion mechanism to learn feature-invariant representations that are transferable across domains while preserving temporal coherence. Extensive experiments on diverse medical datasets, including electroencephalogram (EEG), electrocardiogram (ECG), and electromyography (EMG) demonstrate that our approach significantly outperforms state-of-the-art methods in transfer learning tasks. By advancing the robustness and generalizability of machine learning models, our framework offers a practical pathway for deploying reliable AI systems in diverse healthcare settings.
☆ Towards Distributed Neural Architectures
We introduce and train distributed neural architectures (DNA) in vision and language domains. DNAs are initialized with a proto-architecture that consists of (transformer, MLP, attention, etc.) modules and routers. Any token (or patch) can traverse any series of modules in any order. DNAs are a natural generalization of the sparse methods such as Mixture-of-Experts, Mixture-of-Depths, parameter sharing, etc. Computation and communication patterns of DNA modules are learnt end-to-end during training and depend on the content and context of each token (or patch). These patterns can be shaped by further requirements added to the optimization objective such as compute/memory efficiency or load balancing. We empirically show that (i) trained DNAs are competitive with the dense baselines in both domains and (ii) compute efficiency/parameter sharing can be learnt from data. Next, we analyze the emergent connectivity and computation patterns in the trained DNAs. We find that the paths that tokens take through the models are themselves distributed according to a power-law. We show that some paths (or, equivalently, groups of modules) show emergent specialization. Finally, we demonstrate that models learn to allocate compute and active parameters in an interpretable way.
comment: 36 pages, 25 figures
☆ Probabilistic Optimality for Inference-time Scaling
Inference-time scaling has emerged as a powerful technique for enhancing the reasoning performance of Large Language Models (LLMs). However, existing approaches often rely on heuristic strategies for parallel sampling, lacking a principled foundation. To address this gap, we propose a probabilistic framework that formalizes the optimality of inference-time scaling under the assumption that parallel samples are independently and identically distributed (i.i.d.), and where the Best-of-N selection strategy follows a probability distribution that can be estimated. Within this framework, we derive a theoretical lower bound on the required number of samples to achieve a target performance level, providing the first principled guidance for compute-efficient scaling. Leveraging this insight, we develop \textsc{OptScale}, a practical algorithm that dynamically determines the optimal number of sampled responses. \textsc{OptScale} employs a language model-based predictor to estimate probabilistic prior parameters, enabling the decision of the minimal number of samples needed that satisfy predefined performance thresholds and confidence levels. Extensive experiments on mathematical reasoning benchmarks (including MATH-500, GSM8K, AIME, and AMC) demonstrate that \textsc{OptScale} significantly reduces sampling overhead while remaining better or on par with state-of-the-art reasoning performance. Our work offers both a theoretical foundation and a practical solution for principled inference-time scaling, addressing a critical gap in the efficient deployment of LLMs for complex reasoning.
☆ Sheaf-Based Decentralized Multimodal Learning for Next-Generation Wireless Communication Systems
In large-scale communication systems, increasingly complex scenarios require more intelligent collaboration among edge devices collecting various multimodal sensory data to achieve a more comprehensive understanding of the environment and improve decision-making accuracy. However, conventional federated learning (FL) algorithms typically consider unimodal datasets, require identical model architectures, and fail to leverage the rich information embedded in multimodal data, limiting their applicability to real-world scenarios with diverse modalities and varying client capabilities. To address this issue, we propose Sheaf-DMFL, a novel decentralized multimodal learning framework leveraging sheaf theory to enhance collaboration among devices with diverse modalities. Specifically, each client has a set of local feature encoders for its different modalities, whose outputs are concatenated before passing through a task-specific layer. While encoders for the same modality are trained collaboratively across clients, we capture the intrinsic correlations among clients' task-specific layers using a sheaf-based structure. To further enhance learning capability, we propose an enhanced algorithm named Sheaf-DMFL-Att, which tailors the attention mechanism within each client to capture correlations among different modalities. A rigorous convergence analysis of Sheaf-DMFL-Att is provided, establishing its theoretical guarantees. Extensive simulations are conducted on real-world link blockage prediction and mmWave beamforming scenarios, demonstrate the superiority of the proposed algorithms in such heterogeneous wireless communication systems.
comment: 13 pages, 9 figures
Reinforcement Learning with Physics-Informed Symbolic Program Priors for Zero-Shot Wireless Indoor Navigation
When using reinforcement learning (RL) to tackle physical control tasks, inductive biases that encode physics priors can help improve sample efficiency during training and enhance generalization in testing. However, the current practice of incorporating these helpful physics-informed inductive biases inevitably runs into significant manual labor and domain expertise, making them prohibitive for general users. This work explores a symbolic approach to distill physics-informed inductive biases into RL agents, where the physics priors are expressed in a domain-specific language (DSL) that is human-readable and naturally explainable. Yet, the DSL priors do not translate directly into an implementable policy due to partial and noisy observations and additional physical constraints in navigation tasks. To address this gap, we develop a physics-informed program-guided RL (PiPRL) framework with applications to indoor navigation. PiPRL adopts a hierarchical and modularized neuro-symbolic integration, where a meta symbolic program receives semantically meaningful features from a neural perception module, which form the bases for symbolic programming that encodes physics priors and guides the RL process of a low-level neural controller. Extensive experiments demonstrate that PiPRL consistently outperforms purely symbolic or neural policies and reduces training time by over 26% with the help of the program-based inductive biases.
comment: Spotlight paper at Reinforcement Learning Conference 2025, Workshop on Inductive Biases in Reinforcement Learning
☆ DiffSoundStream: Efficient Speech Tokenization via Diffusion Decoding
Token-based language modeling is a prominent approach for speech generation, where tokens are obtained by quantizing features from self-supervised learning (SSL) models and extracting codes from neural speech codecs, generally referred to as semantic tokens and acoustic tokens. These tokens are often modeled autoregressively, with the inference speed being constrained by the token rate. In this work, we propose DiffSoundStream, a solution that improves the efficiency of speech tokenization in non-streaming scenarios through two techniques: (1) conditioning the neural codec on semantic tokens to minimize redundancy between semantic and acoustic tokens, and (2) leveraging latent diffusion models to synthesize high-quality waveforms from semantic and coarse-level acoustic tokens. Experiments show that at 50 tokens per second, DiffSoundStream achieves speech quality on par with a standard SoundStream model operating at twice the token rate. Additionally, we achieve step-size distillation using just four diffusion sampling steps with only a minor quality loss.
☆ From Ground to Air: Noise Robustness in Vision Transformers and CNNs for Event-Based Vehicle Classification with Potential UAV Applications
This study investigates the performance of the two most relevant computer vision deep learning architectures, Convolutional Neural Network and Vision Transformer, for event-based cameras. These cameras capture scene changes, unlike traditional frame-based cameras with capture static images, and are particularly suited for dynamic environments such as UAVs and autonomous vehicles. The deep learning models studied in this work are ResNet34 and ViT B16, fine-tuned on the GEN1 event-based dataset. The research evaluates and compares these models under both standard conditions and in the presence of simulated noise. Initial evaluations on the clean GEN1 dataset reveal that ResNet34 and ViT B16 achieve accuracies of 88% and 86%, respectively, with ResNet34 showing a slight advantage in classification accuracy. However, the ViT B16 model demonstrates notable robustness, particularly given its pre-training on a smaller dataset. Although this study focuses on ground-based vehicle classification, the methodologies and findings hold significant promise for adaptation to UAV contexts, including aerial object classification and event-based vision systems for aviation-related tasks.
comment: 16 pages, 17 figures, 9 tables. To be presented in AIAA AVIATION Forum 2025
☆ Optimal Estimation of Watermark Proportions in Hybrid AI-Human Texts
Text watermarks in large language models (LLMs) are an increasingly important tool for detecting synthetic text and distinguishing human-written content from LLM-generated text. While most existing studies focus on determining whether entire texts are watermarked, many real-world scenarios involve mixed-source texts, which blend human-written and watermarked content. In this paper, we address the problem of optimally estimating the watermark proportion in mixed-source texts. We cast this problem as estimating the proportion parameter in a mixture model based on \emph{pivotal statistics}. First, we show that this parameter is not even identifiable in certain watermarking schemes, let alone consistently estimable. In stark contrast, for watermarking methods that employ continuous pivotal statistics for detection, we demonstrate that the proportion parameter is identifiable under mild conditions. We propose efficient estimators for this class of methods, which include several popular unbiased watermarks as examples, and derive minimax lower bounds for any measurable estimator based on pivotal statistics, showing that our estimators achieve these lower bounds. Through evaluations on both synthetic data and mixed-source text generated by open-source models, we demonstrate that our proposed estimators consistently achieve high estimation accuracy.
☆ A Framework for Multi-source Privacy Preserving Epidemic Analysis
It is now well understood that diverse datasets provide a lot of value in key epidemiology and public health analyses, such as forecasting and nowcasting, development of epidemic models, evaluation and design of interventions and resource allocation. Some of these datasets are often sensitive, and need adequate privacy protections. There are many models of privacy, but Differential Privacy (DP) has become a de facto standard because of its strong guarantees, without making models about adversaries. In this paper, we develop a framework the integrates deep learning and epidemic models to simultaneously perform epidemic forecasting and learning a mechanistic model of epidemic spread, while incorporating multiple datasets for these analyses, including some with DP guarantees. We demonstrate our framework using a realistic but synthetic financial dataset with DP; such a dataset has not been used in such epidemic analyses. We show that this dataset provides significant value in forecasting and learning an epidemic model, even when used with DP guarantees.
comment: 17 pages, 6 figures
☆ QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Kolmogorov Arnold Networks (KANs), built upon the Kolmogorov Arnold representation theorem (KAR), have demonstrated promising capabilities in expressing complex functions with fewer neurons. This is achieved by implementing learnable parameters on the edges instead of on the nodes, unlike traditional networks such as Multi-Layer Perceptrons (MLPs). However, KANs potential in quantum machine learning has not yet been well explored. In this work, we present an implementation of these KAN architectures in both hybrid and fully quantum forms using a Quantum Circuit Born Machine (QCBM). We adapt the KAN transfer using pre-trained residual functions, thereby exploiting the representational power of parametrized quantum circuits. In the hybrid model we combine classical KAN components with quantum subroutines, while the fully quantum version the entire architecture of the residual function is translated to a quantum model. We demonstrate the feasibility, interpretability and performance of the proposed Quantum KAN (QuKAN) architecture.
☆ Robust quantum reservoir computers for forecasting chaotic dynamics: generalized synchronization and stability
We show that recurrent quantum reservoir computers (QRCs) and their recurrence-free architectures (RF-QRCs) are robust tools for learning and forecasting chaotic dynamics from time-series data. First, we formulate and interpret quantum reservoir computers as coupled dynamical systems, where the reservoir acts as a response system driven by training data; in other words, quantum reservoir computers are generalized-synchronization (GS) systems. Second, we show that quantum reservoir computers can learn chaotic dynamics and their invariant properties, such as Lyapunov spectra, attractor dimensions, and geometric properties such as the covariant Lyapunov vectors. This analysis is enabled by deriving the Jacobian of the quantum reservoir update. Third, by leveraging tools from generalized synchronization, we provide a method for designing robust quantum reservoir computers. We propose the criterion $GS=ESP$: GS implies the echo state property (ESP), and vice versa. We analytically show that RF-QRCs, by design, fulfill $GS=ESP$. Finally, we analyze the effect of simulated noise. We find that dissipation from noise enhances the robustness of quantum reservoir computers. Numerical verifications on systems of different dimensions support our conclusions. This work opens opportunities for designing robust quantum machines for chaotic time series forecasting on near-term quantum hardware.
comment: 28 pages, 12 figures
☆ Less Greedy Equivalence Search
Greedy Equivalence Search (GES) is a classic score-based algorithm for causal discovery from observational data. In the sample limit, it recovers the Markov equivalence class of graphs that describe the data. Still, it faces two challenges in practice: computational cost and finite-sample accuracy. In this paper, we develop Less Greedy Equivalence Search (LGES), a variant of GES that retains its theoretical guarantees while partially addressing these limitations. LGES modifies the greedy step: rather than always applying the highest-scoring insertion, it avoids edge insertions between variables for which the score implies some conditional independence. This more targeted search yields up to a \(10\)-fold speed-up and a substantial reduction in structural error relative to GES. Moreover, LGES can guide the search using prior assumptions, while correcting these assumptions when contradicted by the data. Finally, LGES can exploit interventional data to refine the learned observational equivalence class. We prove that LGES recovers the true equivalence class in the sample limit from observational and interventional data, even with misspecified prior assumptions. Experiments demonstrate that LGES outperforms GES and other baselines in speed, accuracy, and robustness to misspecified assumptions. Our code is available at https://github.com/CausalAILab/lges.
comment: 35 total pages. 14 figures
☆ Conceptual Topic Aggregation
The vast growth of data has rendered traditional manual inspection infeasible, necessitating the adoption of computational methods for efficient data exploration. Topic modeling has emerged as a powerful tool for analyzing large-scale textual datasets, enabling the extraction of latent semantic structures. However, existing methods for topic modeling often struggle to provide interpretable representations that facilitate deeper insights into data structure and content. In this paper, we propose FAT-CAT, an approach based on Formal Concept Analysis (FCA) to enhance meaningful topic aggregation and visualization of discovered topics. Our approach can handle diverse topics and file types -- grouped by directories -- to construct a concept lattice that offers a structured, hierarchical representation of their topic distribution. In a case study on the ETYNTKE dataset, we evaluate the effectiveness of our approach against other representation methods to demonstrate that FCA-based aggregation provides more meaningful and interpretable insights into dataset composition than existing topic modeling techniques.
comment: 16 pages, 4 tables, 11 figures, International Joint Conference on Conceptual Knowledge Structures
☆ Unfolding Generative Flows with Koopman Operators: Fast and Interpretable Sampling
Conditional Flow Matching (CFM) offers a simulation-free framework for training continuous-time generative models, bridging diffusion and flow-based approaches. However, sampling from CFM still relies on numerically solving non-linear ODEs which can be computationally expensive and difficult to interpret. Recent alternatives address sampling speed via trajectory straightening, mini-batch coupling or distillation. However, these methods typically do not shed light on the underlying \textit{structure} of the generative process. In this work, we propose to accelerate CFM and introduce an interpretable representation of its dynamics by integrating Koopman operator theory, which models non-linear flows as linear evolution in a learned space of observables. We introduce a decoder-free Koopman-CFM architecture that learns an embedding where the generative dynamics become linear, enabling closed-form, one-step sampling via matrix exponentiation. This results in significant speedups over traditional CFM as demonstrated on controlled 2D datasets and real-world benchmarks, MNIST, Fashion-MNIST (F-MNIST), and the Toronto Face Dataset (TFD). Unlike previous methods, our approach leads to a well-structured Koopman generator, whose spectral properties, eigenvalues, and eigenfunctions offer principled tools for analyzing generative behavior such as temporal scaling, mode stability, and decomposition in Koopman latent space. By combining sampling efficiency with analytical structure, Koopman-enhanced flow matching offers a potential step toward fast and interpretable generative modeling.
☆ Weakly-Supervised Domain Adaptation with Proportion-Constrained Pseudo-Labeling IJCNN2025
Domain shift is a significant challenge in machine learning, particularly in medical applications where data distributions differ across institutions due to variations in data collection practices, equipment, and procedures. This can degrade performance when models trained on source domain data are applied to the target domain. Domain adaptation methods have been widely studied to address this issue, but most struggle when class proportions between the source and target domains differ. In this paper, we propose a weakly-supervised domain adaptation method that leverages class proportion information from the target domain, which is often accessible in medical datasets through prior knowledge or statistical reports. Our method assigns pseudo-labels to the unlabeled target data based on class proportion (called proportion-constrained pseudo-labeling), improving performance without the need for additional annotations. Experiments on two endoscopic datasets demonstrate that our method outperforms semi-supervised domain adaptation techniques, even when 5% of the target domain is labeled. Additionally, the experimental results with noisy proportion labels highlight the robustness of our method, further demonstrating its effectiveness in real-world application scenarios.
comment: Accepted at IJCNN2025
☆ CoATA: Effective Co-Augmentation of Topology and Attribute for Graph Neural Networks
Graph Neural Networks (GNNs) have garnered substantial attention due to their remarkable capability in learning graph representations. However, real-world graphs often exhibit substantial noise and incompleteness, which severely degrades the performance of GNNs. Existing methods typically address this issue through single-dimensional augmentation, focusing either on refining topology structures or perturbing node attributes, thereby overlooking the deeper interplays between the two. To bridge this gap, this paper presents CoATA, a dual-channel GNN framework specifically designed for the Co-Augmentation of Topology and Attribute. Specifically, CoATA first propagates structural signals to enrich and denoise node attributes. Then, it projects the enhanced attribute space into a node-attribute bipartite graph for further refinement or reconstruction of the underlying structure. Subsequently, CoATA introduces contrastive learning, leveraging prototype alignment and consistency constraints, to facilitate mutual corrections between the augmented and original graphs. Finally, extensive experiments on seven benchmark datasets demonstrate that the proposed CoATA outperforms eleven state-of-the-art baseline methods, showcasing its effectiveness in capturing the synergistic relationship between topology and attributes.
comment: icmr
☆ Score-Based Model for Low-Rank Tensor Recovery
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis. Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions. From a probabilistic perspective, these can be viewed as using Dirac delta distributions to model the relationships between shared factors and the low-rank tensor. However, such prior knowledge is rarely available in practical scenarios, particularly regarding the optimal rank structure and contraction rules. The optimization procedures based on fixed contraction rules are complex, and approximations made during these processes often lead to accuracy loss. To address this issue, we propose a score-based model that eliminates the need for predefined structural or distributional assumptions, enabling the learning of compatibility between tensors and shared factors. Specifically, a neural network is designed to learn the energy function, which is optimized via score matching to capture the gradient of the joint log-probability of tensor entries and shared factors. Our method allows for modeling structures and distributions beyond the Dirac delta assumption. Moreover, integrating the block coordinate descent (BCD) algorithm with the proposed smooth regularization enables the model to perform both tensor completion and denoising. Experimental results demonstrate significant performance improvements across various tensor types, including sparse and continuous-time tensors, as well as visual data.
☆ Breaking Rank Bottlenecks in Knowledge Graph Completion
Many Knowledge Graph Completion (KGC) models, despite using powerful encoders, rely on a simple vector-matrix multiplication to score queries against candidate object entities. When the number of entities is larger than the model's embedding dimension, which in practical scenarios is often by several orders of magnitude, we have a linear output layer with a rank bottleneck. Such bottlenecked layers limit model expressivity. We investigate both theoretically and empirically how rank bottlenecks affect KGC models. We find that, by limiting the set of feasible predictions, rank bottlenecks hurt ranking accuracy and the distribution fidelity of scores. Inspired by the language modelling literature, we propose KGE-MoS, a mixture-based output layer to break rank bottlenecks in many KGC models. Our experiments on four datasets show that KGE-MoS improves performance and probabilistic fit of KGC models for a low parameter cost.
☆ Projected Compression: Trainable Projection for Efficient Transformer Compression
Large language models have steadily increased in size to achieve improved performance; however, this growth has also led to greater inference time and computational demands. Consequently, there is rising interest in model size reduction methods. To address this issue, we propose Projected Compression, a novel model compression technique, that reduces model weights by utilizing projection modules. Specifically, we first train additional trainable projections weights and preserve access to all the original model parameters. Subsequently, these projections are merged into a lower-dimensional product matrix, resulting in a reduced-size standard Transformer-based model. Unlike alternative approaches that require additional computational overhead, our method matches the base model's per-token computation step in FLOPs. Experimental results show that Projected Compression outperforms the comparable hard pruning and retraining approach on higher quality models. Moreover, the performance margin scales well with the number of tokens.
☆ Risk-Averse Best Arm Set Identification with Fixed Budget and Fixed Confidence
Decision making under uncertain environments in the maximization of expected reward while minimizing its risk is one of the ubiquitous problems in many subjects. Here, we introduce a novel problem setting in stochastic bandit optimization that jointly addresses two critical aspects of decision-making: maximizing expected reward and minimizing associated uncertainty, quantified via the mean-variance(MV) criterion. Unlike traditional bandit formulations that focus solely on expected returns, our objective is to efficiently and accurately identify the Pareto-optimal set of arms that strikes the best trade-off between expected performance and risk. We propose a unified meta-algorithmic framework capable of operating under both fixed-confidence and fixed-budget regimes, achieved through adaptive design of confidence intervals tailored to each scenario using the same sample exploration strategy. We provide theoretical guarantees on the correctness of the returned solutions in both settings. To complement this theoretical analysis, we conduct extensive empirical evaluations across synthetic benchmarks, demonstrating that our approach outperforms existing methods in terms of both accuracy and sample efficiency, highlighting its broad applicability to risk-aware decision-making tasks in uncertain environments.
☆ Boosting Classification with Quantum-Inspired Augmentations
Understanding the impact of small quantum gate perturbations, which are common in quantum digital devices but absent in classical computers, is crucial for identifying potential advantages in quantum machine learning. While these perturbations are typically seen as detrimental to quantum computation, they can actually enhance performance by serving as a natural source of data augmentation. Additionally, they can often be efficiently simulated on classical hardware, enabling quantum-inspired approaches to improve classical machine learning methods. In this paper, we investigate random Bloch sphere rotations, which are fundamental SU(2) transformations, as a simple yet effective quantum-inspired data augmentation technique. Unlike conventional augmentations such as flipping, rotating, or cropping, quantum transformations lack intuitive spatial interpretations, making their application to tasks like image classification less straightforward. While common quantum augmentation methods rely on applying quantum models or trainable quanvolutional layers to classical datasets, we focus on the direct application of small-angle Bloch rotations and their effect on classical data. Using the large-scale ImageNet dataset, we demonstrate that our quantum-inspired augmentation method improves image classification performance, increasing Top-1 accuracy by 3%, Top-5 accuracy by 2.5%, and the F$_1$ score from 8% to 12% compared to standard classical augmentation methods. Finally, we examine the use of stronger unitary augmentations. Although these transformations preserve information in principle, they result in visually unrecognizable images with potential applications for privacy computations. However, we show that our augmentation approach and simple SU(2) transformations do not enhance differential privacy and discuss the implications of this limitation.
☆ A Plea for History and Philosophy of Statistics and Machine Learning
The integration of the history and philosophy of statistics was initiated at least by Hacking (1965) and advanced by Mayo (1996), but it has not received sustained follow-up. Yet such integration is more urgent than ever, as the recent success of artificial intelligence has been driven largely by machine learning -- a field historically developed alongside statistics. Today, the boundary between statistics and machine learning is increasingly blurred. What we now need is integration, twice over: of history and philosophy, and of the field they engage -- statistics and machine learning. I present a case study of a philosophical idea in machine learning (and in formal epistemology) whose root can be traced back to an often under-appreciated insight in Neyman and Pearson's 1936 work (a follow-up to their 1933 classic). This leads to the articulation of a foundational assumption -- largely implicit in, but shared by, the practices of frequentist statistics and machine learning -- which I call achievabilism. Another integration also emerges at the level of methodology, combining two ends of the philosophy of science spectrum: history and philosophy of science on the one hand, and formal epistemology on the other hand.
☆ Uncovering smooth structures in single-cell data with PCS-guided neighbor embeddings
Single-cell sequencing is revolutionizing biology by enabling detailed investigations of cell-state transitions. Many biological processes unfold along continuous trajectories, yet it remains challenging to extract smooth, low-dimensional representations from inherently noisy, high-dimensional single-cell data. Neighbor embedding (NE) algorithms, such as t-SNE and UMAP, are widely used to embed high-dimensional single-cell data into low dimensions. But they often introduce undesirable distortions, resulting in misleading interpretations. Existing evaluation methods for NE algorithms primarily focus on separating discrete cell types rather than capturing continuous cell-state transitions, while dynamic modeling approaches rely on strong assumptions about cellular processes and specialized data. To address these challenges, we build on the Predictability-Computability-Stability (PCS) framework for reliable and reproducible data-driven discoveries. First, we systematically evaluate popular NE algorithms through empirical analysis, simulation, and theory, and reveal their key shortcomings, such as artifacts and instability. We then introduce NESS, a principled and interpretable machine learning approach to improve NE representations by leveraging algorithmic stability and to enable robust inference of smooth biological structures. NESS offers useful concepts, quantitative stability metrics, and efficient computational workflows to uncover developmental trajectories and cell-state transitions in single-cell data. Finally, we apply NESS to six single-cell datasets, spanning pluripotent stem cell differentiation, organoid development, and multiple tissue-specific lineage trajectories. Across these diverse contexts, NESS consistently yields useful biological insights, such as identification of transitional and stable cell states and quantification of transcriptional dynamics during development.
☆ Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport ICLR 2025
Physics phenomena are often described by ordinary and/or partial differential equations (ODEs/PDEs), and solved analytically or numerically. Unfortunately, many real-world systems are described only approximately with missing or unknown terms in the equations. This makes the distribution of the physics model differ from the true data-generating process (DGP). Using limited and unpaired data between DGP observations and the imperfect model simulations, we investigate this particular setting by completing the known-physics model, combining theory-driven models and data-driven to describe the shifted distribution involved in the DGP. We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models. Our method implements OT maps in data space while maintaining minimal source distribution distortion, demonstrating superior performance in resolving the unpaired problem and ensuring correct usage of physics parameters. Unlike black-box alternatives, our approach leverages physics-based inductive biases to accurately learn system dynamics while preserving interpretability through its domain knowledge foundation. Experimental results validate our method's effectiveness in both generation tasks and model transparency, offering detailed insights into learned physics dynamics.
comment: Workshop paper at ICLR 2025 (XAI4Science Workshop)
EFRame: Deeper Reasoning via Exploration-Filtering-Replay Reinforcement Learning Framework
Recent advances in reinforcement learning (RL) have significantly enhanced the reasoning capabilities of large language models (LLMs). Group Relative Policy Optimization (GRPO), an efficient variant of PPO that lowers RL's computational cost, still faces limited exploration, low sample efficiency and instability, constraining its performance on complex reasoning tasks. To address these limitations, we introduce EFRame, an Exploration-Filtering-Replay framework that systematically augments GRPO along three critical dimensions. EFRame performs additional rollouts to explore high-quality trajectories, applies online filtering to eliminate low-quality samples that introduce noise and variance, and leverages experience replay to repeatedly exploit rare but informative samples. EFRame establishes a complete and stable learning cycle, guiding the model through a structured transition from exploration to convergence. Our experiments across a variety of reasoning benchmarks demonstrate that EFRame not only improves the robustness and efficiency of training, but also enables access to deeper reasoning capabilities that remain unattainable under vanilla GRPO. Furthermore, EFRame enables a more fine-grained categorization of training samples, allowing for a deeper analysis of how different types of samples contribute to the learning process in RL. Our code is available at https://github.com/597358816/EFRame.
☆ REDELEX: A Framework for Relational Deep Learning Exploration ECML
Relational databases (RDBs) are widely regarded as the gold standard for storing structured information. Consequently, predictive tasks leveraging this data format hold significant application promise. Recently, Relational Deep Learning (RDL) has emerged as a novel paradigm wherein RDBs are conceptualized as graph structures, enabling the application of various graph neural architectures to effectively address these tasks. However, given its novelty, there is a lack of analysis into the relationships between the performance of various RDL models and the characteristics of the underlying RDBs. In this study, we present REDELEX$-$a comprehensive exploration framework for evaluating RDL models of varying complexity on the most diverse collection of over 70 RDBs, which we make available to the community. Benchmarked alongside key representatives of classic methods, we confirm the generally superior performance of RDL while providing insights into the main factors shaping performance, including model complexity, database sizes and their structural properties.
comment: Accepted to ECMLPKDD 2025 at Porto, Portugal
☆ dreaMLearning: Data Compression Assisted Machine Learning
Despite rapid advancements, machine learning, particularly deep learning, is hindered by the need for large amounts of labeled data to learn meaningful patterns without overfitting and immense demands for computation and storage, which motivate research into architectures that can achieve good performance with fewer resources. This paper introduces dreaMLearning, a novel framework that enables learning from compressed data without decompression, built upon Entropy-based Generalized Deduplication (EntroGeDe), an entropy-driven lossless compression method that consolidates information into a compact set of representative samples. DreaMLearning accommodates a wide range of data types, tasks, and model architectures. Extensive experiments on regression and classification tasks with tabular and image data demonstrate that dreaMLearning accelerates training by up to 8.8x, reduces memory usage by 10x, and cuts storage by 42%, with a minimal impact on model performance. These advancements enhance diverse ML applications, including distributed and federated learning, and tinyML on resource-constrained edge devices, unlocking new possibilities for efficient and scalable learning.
comment: 18 pages, 11 figures
☆ Exploring Modularity of Agentic Systems for Drug Discovery
Large-language models (LLMs) and agentic systems present exciting opportunities to accelerate drug discovery and design. In this study, we critically examine the modularity of LLM-based agentic systems for drug discovery, i.e., whether parts of the agentic system such as the LLM are interchangeable, a topic that has received limited attention in drug discovery applications. We compare the performance of different large language models (LLMs) and the effectiveness of tool-calling agents versus code-generating agents in this domain. Our case study, comparing performance in orchestrating tools for chemistry and drug discovery using an LLM-as-a-judge score, shows that Claude-3.5-Sonnet, Claude-3.7-Sonnet and GPT-4o outperform alternative language models such as Llama-3.1-8B, Llama-3.1-70B, GPT-3.5-Turbo, and Nova-Micro. Although we confirm that code-generating agents outperform the tool-calling ones on average, we show that this is highly question and model dependent. Furthermore, the impact of replacing system prompts is dependent on the specific question asked and the model used, underscoring that -- even in this particular domain -- one cannot just replace language models without considering prompt re-engineering. Our study highlights the necessity of further research into the modularity of agentic systems to enable the development of stable and scalable solutions for real-world problems.
☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is an effective method to explore parametric uncertainties and can therefore be used for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work pro poses a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to explore potential optimal control laws, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
☆ ASVSim (AirSim for Surface Vehicles): A High-Fidelity Simulation Framework for Autonomous Surface Vehicle Research
The transport industry has recently shown significant interest in unmanned surface vehicles (USVs), specifically for port and inland waterway transport. These systems can improve operational efficiency and safety, which is especially relevant in the European Union, where initiatives such as the Green Deal are driving a shift towards increased use of inland waterways. At the same time, a shortage of qualified personnel is accelerating the adoption of autonomous solutions. However, there is a notable lack of open-source, high-fidelity simulation frameworks and datasets for developing and evaluating such solutions. To address these challenges, we introduce AirSim For Surface Vehicles (ASVSim), an open-source simulation framework specifically designed for autonomous shipping research in inland and port environments. The framework combines simulated vessel dynamics with marine sensor simulation capabilities, including radar and camera systems and supports the generation of synthetic datasets for training computer vision models and reinforcement learning agents. Built upon Cosys-AirSim, ASVSim provides a comprehensive platform for developing autonomous navigation algorithms and generating synthetic datasets. The simulator supports research of both traditional control methods and deep learning-based approaches. Through limited experiments, we demonstrate the potential of the simulator in these research areas. ASVSim is provided as an open-source project under the MIT license, making autonomous navigation research accessible to a larger part of the ocean engineering community.
comment: 14 Pages, 11 Figures
☆ Visual Structures Helps Visual Reasoning: Addressing the Binding Problem in VLMs
Despite progress in Vision-Language Models (VLMs), their capacity for visual reasoning is often limited by the \textit{binding problem}: the failure to reliably associate perceptual features with their correct visual referents. This limitation underlies persistent errors in tasks such as counting, visual search, scene description, and spatial relationship understanding. A key factor is that current VLMs process visual features largely in parallel, lacking mechanisms for spatially grounded, serial attention. This paper introduces a simple yet effective intervention: augmenting visual inputs with low-level spatial structures (e.g., horizontal lines) and pairing this with a textual prompt that encourages sequential, spatially-aware parsing. We empirically demonstrate substantial performance improvements across core visual reasoning tasks. Specifically, our method improves GPT-4o visual search accuracy by 25.00%, increases counting accuracy by 26.83%, reduces edit distance error in scene description by 0.32, and enhances performance on spatial relationship tasks by 9.50% on a a 2D synthetic dataset. Furthermore, we find that the visual modification is essential for these gains; purely textual strategies, including Chain-of-Thought prompting, are insufficient and can even degrade performance. Our method enhances binding only with a single-query inference, underscoring the importance of visual input design over purely linguistically-based approaches. These findings suggest that low-level visual structuring is a powerful and underexplored direction for improving compositional visual reasoning and could serve as a general strategy for enhancing VLM performance on spatially grounded tasks.
☆ Earthquake Damage Grades Prediction using An Ensemble Approach Integrating Advanced Machine and Deep Learning Models
In the aftermath of major earthquakes, evaluating structural and infrastructural damage is vital for coordinating post-disaster response efforts. This includes assessing damage's extent and spatial distribution to prioritize rescue operations and resource allocation. Accurately estimating damage grades to buildings post-earthquake is paramount for effective response and recovery, given the significant impact on lives and properties, underscoring the urgency of streamlining relief fund allocation processes. Previous studies have shown the effectiveness of multi-class classification, especially XGBoost, along with other machine learning models and ensembling methods, incorporating regularization to address class imbalance. One consequence of class imbalance is that it may give rise to skewed models that undervalue minority classes and give preference to the majority class. This research deals with the problem of class imbalance with the help of the synthetic minority oversampling technique (SMOTE). We delve into multiple multi-class classification machine learning, deep learning models, and ensembling methods to forecast structural damage grades. The study elucidates performance determinants through comprehensive feature manipulation experiments and diverse training approaches. It identifies key factors contributing to seismic vulnerability while evaluating model performance using techniques like the confusion matrix further to enhance understanding of the effectiveness of earthquake damage prediction.
comment: 3rd International Conference on Applied Mathematics in Science and Engineering
☆ Identifying a Circuit for Verb Conjugation in GPT-2
I implement a procedure to isolate and interpret the sub-network (or "circuit") responsible for subject-verb agreement in GPT-2 Small. In this study, the model is given prompts where the subject is either singular (e.g. "Alice") or plural (e.g. "Alice and Bob"), and the task is to correctly predict the appropriate verb form ("walks" for singular subjects, "walk" for plural subjects). Using a series of techniques-including performance verification automatic circuit discovery via direct path patching, and direct logit attribution- I isolate a candidate circuit that contributes significantly to the model's correct verb conjugation. The results suggest that only a small fraction of the network's component-token pairs is needed to achieve near-model performance on the base task but substantially more for more complex settings.
☆ Tied Prototype Model for Few-Shot Medical Image Segmentation MICCAI
Common prototype-based medical image few-shot segmentation (FSS) methods model foreground and background classes using class-specific prototypes. However, given the high variability of the background, a more promising direction is to focus solely on foreground modeling, treating the background as an anomaly -- an approach introduced by ADNet. Yet, ADNet faces three key limitations: dependence on a single prototype per class, a focus on binary classification, and fixed thresholds that fail to adapt to patient and organ variability. To address these shortcomings, we propose the Tied Prototype Model (TPM), a principled reformulation of ADNet with tied prototype locations for foreground and background distributions. Building on its probabilistic foundation, TPM naturally extends to multiple prototypes and multi-class segmentation while effectively separating non-typical background features. Notably, both extensions lead to improved segmentation accuracy. Finally, we leverage naturally occurring class priors to define an ideal target for adaptive thresholds, boosting segmentation performance. Taken together, TPM provides a fresh perspective on prototype-based FSS for medical image segmentation. The code can be found at https://github.com/hjk92g/TPM-FSS.
comment: Submitted version (MICCAI). Accepted at MICCAI 2025. The code repo will be made publicly available soon
☆ Transfer Learning for Assessing Heavy Metal Pollution in Seaports Sediments
Detecting heavy metal pollution in soils and seaports is vital for regional environmental monitoring. The Pollution Load Index (PLI), an international standard, is commonly used to assess heavy metal containment. However, the conventional PLI assessment involves laborious procedures and data analysis of sediment samples. To address this challenge, we propose a deep-learning-based model that simplifies the heavy metal assessment process. Our model tackles the issue of data scarcity in the water-sediment domain, which is traditionally plagued by challenges in data collection and varying standards across nations. By leveraging transfer learning, we develop an accurate quantitative assessment method for predicting PLI. Our approach allows the transfer of learned features across domains with different sets of features. We evaluate our model using data from six major ports in New South Wales, Australia: Port Yamba, Port Newcastle, Port Jackson, Port Botany, Port Kembla, and Port Eden. The results demonstrate significantly lower Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of approximately 0.5 and 0.03, respectively, compared to other models. Our model performance is up to 2 orders of magnitude than other baseline models. Our proposed model offers an innovative, accessible, and cost-effective approach to predicting water quality, benefiting marine life conservation, aquaculture, and industrial pollution monitoring.
☆ Learning to Solve Multi-Objective Routing Problems on Multigraphs
Learning-based methods for routing have gained significant attention in recent years, both in single-objective and multi-objective contexts. However, the multigraph setting, where multiple paths with distinct attributes can exist between destinations, has largely been overlooked, despite its high practical relevancy. In this paper, we introduce two neural approaches to address multi-objective routing on multigraphs. Our first approach works directly on the multigraph, by autoregressively selecting edges until a tour is completed. On the other hand, our second model first prunes the multigraph into a simple graph and then builds routes. We validate both models experimentally and find that they demonstrate strong performance across a variety of problems, including the Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP).
comment: 18 pages, 5 Figures
☆ Transformers are Graph Neural Networks
We establish connections between the Transformer architecture, originally introduced for natural language processing, and Graph Neural Networks (GNNs) for representation learning on graphs. We show how Transformers can be viewed as message passing GNNs operating on fully connected graphs of tokens, where the self-attention mechanism capture the relative importance of all tokens w.r.t. each-other, and positional encodings provide hints about sequential ordering or structure. Thus, Transformers are expressive set processing networks that learn relationships among input elements without being constrained by apriori graphs. Despite this mathematical connection to GNNs, Transformers are implemented via dense matrix operations that are significantly more efficient on modern hardware than sparse message passing. This leads to the perspective that Transformers are GNNs currently winning the hardware lottery.
comment: This paper is a technical version of an article in The Gradient at https://thegradient.pub/transformers-are-graph-neural-networks/
☆ crypto price prediction using lstm+xgboost
The volatility and complex dynamics of cryptocurrency markets present unique challenges for accurate price forecasting. This research proposes a hybrid deep learning and machine learning model that integrates Long Short-Term Memory (LSTM) networks and Extreme Gradient Boosting (XGBoost) for cryptocurrency price prediction. The LSTM component captures temporal dependencies in historical price data, while XGBoost enhances prediction by modeling nonlinear relationships with auxiliary features such as sentiment scores and macroeconomic indicators. The model is evaluated on historical datasets of Bitcoin, Ethereum, Dogecoin, and Litecoin, incorporating both global and localized exchange data. Comparative analysis using Mean Absolute Percentage Error (MAPE) and Min-Max Normalized Root Mean Square Error (MinMax RMSE) demonstrates that the LSTM+XGBoost hybrid consistently outperforms standalone models and traditional forecasting methods. This study underscores the potential of hybrid architectures in financial forecasting and provides insights into model adaptability across different cryptocurrencies and market contexts.
☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the residual path to dominate over sub-layer outputs and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings.
☆ UniCA: Adapting Time Series Foundation Model to General Covariate-Aware Forecasting
Time Series Foundation Models (TSFMs) have achieved remarkable success through large-scale pretraining. However, their design primarily targets real-valued series, limiting their ability to handle general forecasting tasks involving diverse and often heterogeneous covariates--such as categorical variables and multimodal data (e.g., images, text)--which are typically task-specific and difficult to leverage during pretraining. To address this gap, we propose Unified Covariate Adaptation (UniCA), a framework to bridge TSFMs with general covariate-aware forecasting. UniCA first performs covariate homogenization to transform heterogeneous covariates into high-level homogeneous series representations and then fuses them via a unified attention-based fusion mechanism. UniCA is compatible and universal for adaptation with both homogeneous and heterogeneous covariates, incorporating extra covariate information while preserving the generalization ability of TSFMs.Extensive experiments on multiple unimodal and multimodal covariate-aware forecasting benchmarks demonstrate the superiority of UniCA, highlighting the promise of covariate-aware TSFM adaptation in real-world forecasting scenarios. Codes are released on https://github.com/hanlu-nju/UniCA.
☆ Hyper-modal Imputation Diffusion Embedding with Dual-Distillation for Federated Multimodal Knowledge Graph Completion
With the increasing multimodal knowledge privatization requirements, multimodal knowledge graphs in different institutes are usually decentralized, lacking of effective collaboration system with both stronger reasoning ability and transmission safety guarantees. In this paper, we propose the Federated Multimodal Knowledge Graph Completion (FedMKGC) task, aiming at training over federated MKGs for better predicting the missing links in clients without sharing sensitive knowledge. We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC. (1) Inside the clients, our proposed Hyper-modal Imputation Diffusion Embedding model (HidE) recovers the complete multimodal distributions from incomplete entity embeddings constrained by available modalities. (2) Among clients, our proposed Multimodal FeDerated Dual Distillation (MMFeD3) transfers knowledge mutually between clients and the server with logit and feature distillation to improve both global convergence and semantic consistency. We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines. Experiments conducted on our benchmark validate the effectiveness, semantic consistency, and convergence robustness of MMFeD3-HidE.
comment: Submitted to the IEEE for possible publication
☆ TROFI: Trajectory-Ranked Offline Inverse Reinforcement Learning
In offline reinforcement learning, agents are trained using only a fixed set of stored transitions derived from a source policy. However, this requires that the dataset be labeled by a reward function. In applied settings such as video game development, the availability of the reward function is not always guaranteed. This paper proposes Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach to effectively learn a policy offline without a pre-defined reward function. TROFI first learns a reward function from human preferences, which it then uses to label the original dataset making it usable for training the policy. In contrast to other approaches, our method does not require optimal trajectories. Through experiments on the D4RL benchmark we demonstrate that TROFI consistently outperforms baselines and performs comparably to using the ground truth reward to learn policies. Additionally, we validate the efficacy of our method in a 3D game environment. Our studies of the reward model highlight the importance of the reward function in this setting: we show that to ensure the alignment of a value function to the actual future discounted reward, it is fundamental to have a well-engineered and easy-to-learn reward function.
comment: Published at Reinforcement Learning and Video Games Workshop at RLC 2025
☆ GKNet: Graph Kalman Filtering and Model Inference via Model-based Deep Learning
Inference tasks with time series over graphs are of importance in applications such as urban water networks, economics, and networked neuroscience. Addressing these tasks typically relies on identifying a computationally affordable model that jointly captures the graph-temporal patterns of the data. In this work, we propose a graph-aware state space model for graph time series, where both the latent state and the observation equation are parametric graph-induced models with a limited number of parameters that need to be learned. More specifically, we consider the state equation to follow a stochastic partial differential equation driven by noise over the graphs edges accounting not only for potential edge uncertainties but also for increasing the degrees of freedom in the latter in a tractable manner. The graph structure conditioning of the noise dispersion allows the state variable to deviate from the stochastic process in certain neighborhoods. The observation model is a sampled and graph-filtered version of the state capturing multi-hop neighboring influence. The goal is to learn the parameters in both state and observation models from the partially observed data for downstream tasks such as prediction and imputation. The model is inferred first through a maximum likelihood approach that provides theoretical tractability but is limited in expressivity and scalability. To improve on the latter, we use the state-space formulation to build a principled deep learning architecture that jointly learns the parameters and tracks the state in an end-to-end manner in the spirit of Kalman neural networks.
☆ Binned semiparametric Bayesian networks
This paper introduces a new type of probabilistic semiparametric model that takes advantage of data binning to reduce the computational cost of kernel density estimation in nonparametric distributions. Two new conditional probability distributions are developed for the new binned semiparametric Bayesian networks, the sparse binned kernel density estimation and the Fourier kernel density estimation. These two probability distributions address the curse of dimensionality, which typically impacts binned models, by using sparse tensors and restricting the number of parent nodes in conditional probability calculations. To evaluate the proposal, we perform a complexity analysis and conduct several comparative experiments using synthetic data and datasets from the UCI Machine Learning repository. The experiments include different binning rules, parent restrictions, grid sizes, and number of instances to get a holistic view of the model's behavior. As a result, our binned semiparametric Bayesian networks achieve structural learning and log-likelihood estimations with no statistically significant differences compared to the semiparametric Bayesian networks, but at a much higher speed. Thus, the new binned semiparametric Bayesian networks prove to be a reliable and more efficient alternative to their non-binned counterparts.
☆ Analyzing and Fine-Tuning Whisper Models for Multilingual Pilot Speech Transcription in the Cockpit CVPR
The developments in transformer encoder-decoder architectures have led to significant breakthroughs in machine translation, Automatic Speech Recognition (ASR), and instruction-based chat machines, among other applications. The pre-trained models were trained on vast amounts of generic data over a few epochs (fewer than five in most cases), resulting in their strong generalization capabilities. Nevertheless, the performance of these models does suffer when applied to niche domains like transcribing pilot speech in the cockpit, which involves a lot of specific vocabulary and multilingual conversations. This paper investigates and improves the transcription accuracy of cockpit conversations with Whisper models. We have collected around 85 minutes of cockpit simulator recordings and 130 minutes of interview recordings with pilots and manually labeled them. The speakers are middle aged men speaking both German and English. To improve the accuracy of transcriptions, we propose multiple normalization schemes to refine the transcripts and improve Word Error Rate (WER). We then employ fine-tuning to enhance ASR performance, utilizing performance-efficient fine-tuning with Low-Rank Adaptation (LoRA). Hereby, WER decreased from 68.49 \% (pretrained whisper Large model without normalization baseline) to 26.26\% (finetuned whisper Large model with the proposed normalization scheme).
comment: Computer Vision and Pattern Recognition (CVPR) 2025 Workshops
☆ SceneDiffuser++: City-Scale Traffic Simulation via a Generative World Model CVPR 2025
The goal of traffic simulation is to augment a potentially limited amount of manually-driven miles that is available for testing and validation, with a much larger amount of simulated synthetic miles. The culmination of this vision would be a generative simulated city, where given a map of the city and an autonomous vehicle (AV) software stack, the simulator can seamlessly simulate the trip from point A to point B by populating the city around the AV and controlling all aspects of the scene, from animating the dynamic agents (e.g., vehicles, pedestrians) to controlling the traffic light states. We refer to this vision as CitySim, which requires an agglomeration of simulation technologies: scene generation to populate the initial scene, agent behavior modeling to animate the scene, occlusion reasoning, dynamic scene generation to seamlessly spawn and remove agents, and environment simulation for factors such as traffic lights. While some key technologies have been separately studied in various works, others such as dynamic scene generation and environment simulation have received less attention in the research community. We propose SceneDiffuser++, the first end-to-end generative world model trained on a single loss function capable of point A-to-B simulation on a city scale integrating all the requirements above. We demonstrate the city-scale traffic simulation capability of SceneDiffuser++ and study its superior realism under long simulation conditions. We evaluate the simulation quality on an augmented version of the Waymo Open Motion Dataset (WOMD) with larger map regions to support trip-level simulation.
comment: Accepted to CVPR 2025
☆ Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses
The advancement of Pre-Trained Language Models (PTLMs) and Large Language Models (LLMs) has led to their widespread adoption across diverse applications. Despite their success, these models remain vulnerable to attacks that exploit their inherent weaknesses to bypass safety measures. Two primary inference-phase threats are token-level and prompt-level jailbreaks. Token-level attacks embed adversarial sequences that transfer well to black-box models like GPT but leave detectable patterns and rely on gradient-based token optimization, whereas prompt-level attacks use semantically structured inputs to elicit harmful responses yet depend on iterative feedback that can be unreliable. To address the complementary limitations of these methods, we propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs. GCG + PAIR and the newly explored GCG + WordGame hybrids were evaluated across multiple Vicuna and Llama models. GCG + PAIR consistently raised attack-success rates over its constituent techniques on undefended models; for instance, on Llama-3, its Attack Success Rate (ASR) reached 91.6%, a substantial increase from PAIR's 58.4% baseline. Meanwhile, GCG + WordGame matched the raw performance of WordGame maintaining a high ASR of over 80% even under stricter evaluators like Mistral-Sorry-Bench. Crucially, both hybrids retained transferability and reliably pierced advanced defenses such as Gradient Cuff and JBShield, which fully blocked single-mode attacks. These findings expose previously unreported vulnerabilities in current safety stacks, highlight trade-offs between raw success and defensive robustness, and underscore the need for holistic safeguards against adaptive adversaries.
☆ More Vulnerable than You Think: On the Stability of Tool-Integrated LLM Agents
Current evaluations of tool-integrated LLM agents typically focus on end-to-end tool-usage evaluation while neglecting their stability. This limits their real-world applicability, as various internal or external factors can cause agents to crash or behave abnormally. Our research addresses this by investigating whether agents are vulnerable to errors throughout the entire tool invocation process, including reading tool documentation, selecting tools and generating parameters, and processing the tool's response. Through extensive experiments, we observe that agents are highly susceptible to errors at each stage and agents based on open-source models are more vulnerable than those based on proprietary models. We also find that increasing the model size does not significantly improve tool invocation reasoning and may make agents more vulnerable to attacks resembling normal user instructions. This highlights the importance of evaluating agent stability and offers valuable insights for future LLM development and evaluation.
☆ Optimal Return-to-Go Guided Decision Transformer for Auto-Bidding in Advertisement
In the realm of online advertising, advertisers partake in ad auctions to obtain advertising slots, frequently taking advantage of auto-bidding tools provided by demand-side platforms. To improve the automation of these bidding systems, we adopt generative models, namely the Decision Transformer (DT), to tackle the difficulties inherent in automated bidding. Applying the Decision Transformer to the auto-bidding task enables a unified approach to sequential modeling, which efficiently overcomes short-sightedness by capturing long-term dependencies between past bidding actions and user behavior. Nevertheless, conventional DT has certain drawbacks: (1) DT necessitates a preset return-to-go (RTG) value before generating actions, which is not inherently produced; (2) The policy learned by DT is restricted by its training data, which is consists of mixed-quality trajectories. To address these challenges, we introduce the R* Decision Transformer (R* DT), developed in a three-step process: (1) R DT: Similar to traditional DT, R DT stores actions based on state and RTG value, as well as memorizing the RTG for a given state using the training set; (2) R^ DT: We forecast the highest value (within the training set) of RTG for a given state, deriving a suboptimal policy based on the current state and the forecasted supreme RTG value; (3) R* DT: Based on R^ DT, we generate trajectories and select those with high rewards (using a simulator) to augment our training dataset. This data enhancement has been shown to improve the RTG of trajectories in the training data and gradually leads the suboptimal policy towards optimality. Comprehensive tests on a publicly available bidding dataset validate the R* DT's efficacy and highlight its superiority when dealing with mixed-quality trajectories.
☆ Physics-informed network paradigm with data generation and background noise removal for diverse distributed acoustic sensing applications
Distributed acoustic sensing (DAS) has attracted considerable attention across various fields and artificial intelligence (AI) technology plays an important role in DAS applications to realize event recognition and denoising. Existing AI models require real-world data (RWD), whether labeled or not, for training, which is contradictory to the fact of limited available event data in real-world scenarios. Here, a physics-informed DAS neural network paradigm is proposed, which does not need real-world events data for training. By physically modeling target events and the constraints of real world and DAS system, physical functions are derived to train a generative network for generation of DAS events data. DAS debackground net is trained by using the generated DAS events data to eliminate background noise in DAS data. The effectiveness of the proposed paradigm is verified in event identification application based on a public dataset of DAS spatiotemporal data and in belt conveyor fault monitoring application based on DAS time-frequency data, and achieved comparable or better performance than data-driven networks trained with RWD. Owing to the introduction of physical information and capability of background noise removal, the paradigm demonstrates generalization in same application on different sites. A fault diagnosis accuracy of 91.8% is achieved in belt conveyor field with networks which transferred from simulation test site without any fault events data of test site and field for training. The proposed paradigm is a prospective solution to address significant obstacles of data acquisition and intense noise in practical DAS applications and explore more potential fields for DAS.
☆ Hitchhiking Rides Dataset: Two decades of crowd-sourced records on stochastic traveling
Hitchhiking, a spontaneous and decentralized mode of travel, has long eluded systematic study due to its informal nature. This paper presents and analyzes the largest known structured dataset of hitchhiking rides, comprising over 63,000 entries collected over nearly two decades through platforms associated with hitchwiki.org and lately on hitchmap.com. By leveraging crowd-sourced contributions, the dataset captures key spatiotemporal and strategic aspects of hitchhiking. This work documents the dataset's origins, evolution, and community-driven maintenance, highlighting its Europe-centric distribution, seasonal patterns, and reliance on a small number of highly active contributors. Through exploratory analyses, I examine waiting times, user behavior, and comment metadata, shedding light on the lived realities of hitchhikers. While the dataset has inherent biases and limitations - such as demographic skew and unverifiable entries it offers a rare and valuable window into an alternative form of mobility. I conclude by outlining future directions for enriching the dataset and advancing research on hitchhiking as both a transportation practice and cultural phenomenon.
☆ GuiderNet: A Meta-Learning Framework for Optimizing Quantum Circuit Geometry and Mitigating Barren Plateaus
Variational Quantum Algorithms (VQAs) offer potential for near-term quantum advantage but face challenges from barren plateaus, where gradients vanish, and poorly conditioned optimization landscapes. We introduce GuiderNet, a meta-learning framework that conditions Parameterized Quantum Circuits (PQCs) using data-dependent parameter shifts aimed at minimizing the log condition number of the Fubini-Study metric tensor. Implemented as a classical neural network, GuiderNet is meta-trained to guide PQC parameters into geometrically favorable regions and is embedded within hybrid quantum-classical pipelines to steer both initialization and adaptive modulation during training. Applied to the Kaggle Diabetes classification task, GuiderNet reduces cumulative training loss by over 5x, improves test accuracy from 75.3% to 98.6%, and increases the minority-class F1 score from 0.67 to 0.95. It also suppresses gradient explosion and stabilizes parameter updates, enabling smoother and more robust optimization. These results demonstrate that geometric meta-conditioning can mitigate barren plateaus and ill-conditioning, providing a scalable approach to enhance trainability and generalization in quantum machine learning.
☆ HQCM-EBTC: A Hybrid Quantum-Classical Model for Explainable Brain Tumor Classification
We propose HQCM-EBTC, a hybrid quantum-classical model for automated brain tumor classification using MRI images. Trained on a dataset of 7,576 scans covering normal, meningioma, glioma, and pituitary classes, HQCM-EBTC integrates a 5-qubit, depth-2 quantum layer with 5 parallel circuits, optimized via AdamW and a composite loss blending cross-entropy and attention consistency. HQCM-EBTC achieves 96.48% accuracy, substantially outperforming the classical baseline (86.72%). It delivers higher precision and F1-scores, especially for glioma detection. t-SNE projections reveal enhanced feature separability in quantum space, and confusion matrices show lower misclassification. Attention map analysis (Jaccard Index) confirms more accurate and focused tumor localization at high-confidence thresholds. These results highlight the promise of quantum-enhanced models in medical imaging, advancing both diagnostic accuracy and interpretability for clinical brain tumor assessment.
☆ Joint Task Offloading and Resource Allocation in Low-Altitude MEC via Graph Attention Diffusion
With the rapid development of the low-altitude economy, air-ground integrated multi-access edge computing (MEC) systems are facing increasing demands for real-time and intelligent task scheduling. In such systems, task offloading and resource allocation encounter multiple challenges, including node heterogeneity, unstable communication links, and dynamic task variations. To address these issues, this paper constructs a three-layer heterogeneous MEC system architecture for low-altitude economic networks, encompassing aerial and ground users as well as edge servers. The system is systematically modeled from the perspectives of communication channels, computational costs, and constraint conditions, and the joint optimization problem of offloading decisions and resource allocation is uniformly abstracted into a graph-structured modeling task. On this basis, we propose a graph attention diffusion-based solution generator (GADSG). This method integrates the contextual awareness of graph attention networks with the solution distribution learning capability of diffusion models, enabling joint modeling and optimization of discrete offloading variables and continuous resource allocation variables within a high-dimensional latent space. We construct multiple simulation datasets with varying scales and topologies. Extensive experiments demonstrate that the proposed GADSG model significantly outperforms existing baseline methods in terms of optimization performance, robustness, and generalization across task structures, showing strong potential for efficient task scheduling in dynamic and complex low-altitude economic network environments.
☆ TOAST: Task-Oriented Adaptive Semantic Transmission over Dynamic Wireless Environments
The evolution toward 6G networks demands a fundamental shift from bit-centric transmission to semantic-aware communication that emphasizes task-relevant information. This work introduces TOAST (Task-Oriented Adaptive Semantic Transmission), a unified framework designed to address the core challenge of multi-task optimization in dynamic wireless environments through three complementary components. First, we formulate adaptive task balancing as a Markov decision process, employing deep reinforcement learning to dynamically adjust the trade-off between image reconstruction fidelity and semantic classification accuracy based on real-time channel conditions. Second, we integrate module-specific Low-Rank Adaptation (LoRA) mechanisms throughout our Swin Transformer-based joint source-channel coding architecture, enabling parameter-efficient fine-tuning that dramatically reduces adaptation overhead while maintaining full performance across diverse channel impairments including Additive White Gaussian Noise (AWGN), fading, phase noise, and impulse interference. Third, we incorporate an Elucidating diffusion model that operates in the latent space to restore features corrupted by channel noises, providing substantial quality improvements compared to baseline approaches. Extensive experiments across multiple datasets demonstrate that TOAST achieves superior performance compared to baseline approaches, with significant improvements in both classification accuracy and reconstruction quality at low Signal-to-Noise Ratio (SNR) conditions while maintaining robust performance across all tested scenarios.
☆ Advancements and Challenges in Continual Reinforcement Learning: A Comprehensive Review
The diversity of tasks and dynamic nature of reinforcement learning (RL) require RL agents to be able to learn sequentially and continuously, a learning paradigm known as continuous reinforcement learning. This survey reviews how continual learning transforms RL agents into dynamic continual learners. This enables RL agents to acquire and retain useful and reusable knowledge seamlessly. The paper delves into fundamental aspects of continual reinforcement learning, exploring key concepts, significant challenges, and novel methodologies. Special emphasis is placed on recent advancements in continual reinforcement learning within robotics, along with a succinct overview of evaluation environments utilized in prominent research, facilitating accessibility for newcomers to the field. The review concludes with a discussion on limitations and promising future directions, providing valuable insights for researchers and practitioners alike.
comment: 65 pages, 9 figures
☆ Thompson Sampling in Function Spaces via Neural Operators
We propose an extension of Thompson sampling to optimization problems over function spaces where the objective is a known functional of an unknown operator's output. We assume that functional evaluations are inexpensive, while queries to the operator (such as running a high-fidelity simulator) are costly. Our algorithm employs a sample-then-optimize approach using neural operator surrogates. This strategy avoids explicit uncertainty quantification by treating trained neural operators as approximate samples from a Gaussian process. We provide novel theoretical convergence guarantees, based on Gaussian processes in the infinite-dimensional setting, under minimal assumptions. We benchmark our method against existing baselines on functional optimization tasks involving partial differential equations and other nonlinear operator-driven phenomena, demonstrating improved sample efficiency and competitive performance.
comment: Under review
☆ Interactive Multi-Objective Probabilistic Preference Learning with Soft and Hard Bounds
High-stakes decision-making involves navigating multiple competing objectives with expensive evaluations. For instance, in brachytherapy, clinicians must balance maximizing tumor coverage (e.g., an aspirational target or soft bound of >95% coverage) against strict organ dose limits (e.g., a non-negotiable hard bound of <601 cGy to the bladder), with each plan evaluation being resource-intensive. Selecting Pareto-optimal solutions that match implicit preferences is challenging, as exhaustive Pareto frontier exploration is computationally and cognitively prohibitive, necessitating interactive frameworks to guide users. While decision-makers (DMs) often possess domain knowledge to narrow the search via such soft-hard bounds, current methods often lack systematic approaches to iteratively refine these multi-faceted preference structures. Critically, DMs must trust their final decision, confident they haven't missed superior alternatives; this trust is paramount in high-consequence scenarios. We present Active-MoSH, an interactive local-global framework designed for this process. Its local component integrates soft-hard bounds with probabilistic preference learning, maintaining distributions over DM preferences and bounds for adaptive Pareto subset refinement. This is guided by an active sampling strategy optimizing exploration-exploitation while minimizing cognitive burden. To build DM trust, Active-MoSH's global component, T-MoSH, leverages multi-objective sensitivity analysis to identify potentially overlooked, high-value points beyond immediate feedback. We demonstrate Active-MoSH's performance benefits through diverse synthetic and real-world applications. A user study on AI-generated image selection further validates our hypotheses regarding the framework's ability to improve convergence, enhance DM trust, and provide expressive preference articulation, enabling more effective DMs.
☆ UnMix-NeRF: Spectral Unmixing Meets Neural Radiance Fields ICCV 2025
Neural Radiance Field (NeRF)-based segmentation methods focus on object semantics and rely solely on RGB data, lacking intrinsic material properties. This limitation restricts accurate material perception, which is crucial for robotics, augmented reality, simulation, and other applications. We introduce UnMix-NeRF, a framework that integrates spectral unmixing into NeRF, enabling joint hyperspectral novel view synthesis and unsupervised material segmentation. Our method models spectral reflectance via diffuse and specular components, where a learned dictionary of global endmembers represents pure material signatures, and per-point abundances capture their distribution. For material segmentation, we use spectral signature predictions along learned endmembers, allowing unsupervised material clustering. Additionally, UnMix-NeRF enables scene editing by modifying learned endmember dictionaries for flexible material-based appearance manipulation. Extensive experiments validate our approach, demonstrating superior spectral reconstruction and material segmentation to existing methods. Project page: https://www.factral.co/UnMix-NeRF.
comment: Paper accepted at ICCV 2025 main conference
☆ A Survey of Continual Reinforcement Learning
Reinforcement Learning (RL) is an important machine learning paradigm for solving sequential decision-making problems. Recent years have witnessed remarkable progress in this field due to the rapid development of deep neural networks. However, the success of RL currently relies on extensive training data and computational resources. In addition, RL's limited ability to generalize across tasks restricts its applicability in dynamic and real-world environments. With the arisen of Continual Learning (CL), Continual Reinforcement Learning (CRL) has emerged as a promising research direction to address these limitations by enabling agents to learn continuously, adapt to new tasks, and retain previously acquired knowledge. In this survey, we provide a comprehensive examination of CRL, focusing on its core concepts, challenges, and methodologies. Firstly, we conduct a detailed review of existing works, organizing and analyzing their metrics, tasks, benchmarks, and scenario settings. Secondly, we propose a new taxonomy of CRL methods, categorizing them into four types from the perspective of knowledge storage and/or transfer. Finally, our analysis highlights the unique challenges of CRL and provides practical insights into future directions.
comment: This work has been submitted to the IEEE TPAMI
☆ SPADE: Spatial Transcriptomics and Pathology Alignment Using a Mixture of Data Experts for an Expressive Latent Space
The rapid growth of digital pathology and advances in self-supervised deep learning have enabled the development of foundational models for various pathology tasks across diverse diseases. While multimodal approaches integrating diverse data sources have emerged, a critical gap remains in the comprehensive integration of whole-slide images (WSIs) with spatial transcriptomics (ST), which is crucial for capturing critical molecular heterogeneity beyond standard hematoxylin & eosin (H&E) staining. We introduce SPADE, a foundation model that integrates histopathology with ST data to guide image representation learning within a unified framework, in effect creating an ST-informed latent space. SPADE leverages a mixture-of-data experts technique, where experts, created via two-stage feature-space clustering, use contrastive learning to learn representations of co-registered WSI patches and gene expression profiles. Pre-trained on the comprehensive HEST-1k dataset, SPADE is evaluated on 14 downstream tasks, demonstrating significantly superior few-shot performance compared to baseline models, highlighting the benefits of integrating morphological and molecular information into one latent space.
☆ The Consistency Hypothesis in Uncertainty Quantification for Large Language Models UAI
Estimating the confidence of large language model (LLM) outputs is essential for real-world applications requiring high user trust. Black-box uncertainty quantification (UQ) methods, relying solely on model API access, have gained popularity due to their practical benefits. In this paper, we examine the implicit assumption behind several UQ methods, which use generation consistency as a proxy for confidence, an idea we formalize as the consistency hypothesis. We introduce three mathematical statements with corresponding statistical tests to capture variations of this hypothesis and metrics to evaluate LLM output conformity across tasks. Our empirical investigation, spanning 8 benchmark datasets and 3 tasks (question answering, text summarization, and text-to-SQL), highlights the prevalence of the hypothesis under different settings. Among the statements, we highlight the `Sim-Any' hypothesis as the most actionable, and demonstrate how it can be leveraged by proposing data-free black-box UQ methods that aggregate similarities between generations for confidence estimation. These approaches can outperform the closest baselines, showcasing the practical value of the empirically observed consistency hypothesis.
comment: Accepted by The Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ Koopman operator-based discussion on partial observation in stochastic systems
It is sometimes difficult to achieve a complete observation for a full set of observables, and partial observations are necessary. For deterministic systems, the Mori-Zwanzig formalism provides a theoretical framework for handling partial observations. Recently, data-driven algorithms based on the Koopman operator theory have made significant progress, and there is a discussion to connect the Mori-Zwanzig formalism with the Koopman operator theory. In this work, we discuss the effects of partial observation in stochastic systems using the Koopman operator theory. The discussion clarifies the importance of distinguishing the state space and the function space in stochastic systems. Even in stochastic systems, the delay embedding technique is beneficial for partial observation, and several numerical experiments showed a power-law behavior of the accuracy for the amplitude of the additive noise. We also discuss the relation between the exponent of the power-law behavior and the effects of partial observation.
comment: 23 pages, 5 figures
☆ Adversarial Threats in Quantum Machine Learning: A Survey of Attacks and Defenses
Quantum Machine Learning (QML) integrates quantum computing with classical machine learning, primarily to solve classification, regression and generative tasks. However, its rapid development raises critical security challenges in the Noisy Intermediate-Scale Quantum (NISQ) era. This chapter examines adversarial threats unique to QML systems, focusing on vulnerabilities in cloud-based deployments, hybrid architectures, and quantum generative models. Key attack vectors include model stealing via transpilation or output extraction, data poisoning through quantum-specific perturbations, reverse engineering of proprietary variational quantum circuits, and backdoor attacks. Adversaries exploit noise-prone quantum hardware and insufficiently secured QML-as-a-Service (QMLaaS) workflows to compromise model integrity, ownership, and functionality. Defense mechanisms leverage quantum properties to counter these threats. Noise signatures from training hardware act as non-invasive watermarks, while hardware-aware obfuscation techniques and ensemble strategies disrupt cloning attempts. Emerging solutions also adapt classical adversarial training and differential privacy to quantum settings, addressing vulnerabilities in quantum neural networks and generative architectures. However, securing QML requires addressing open challenges such as balancing noise levels for reliability and security, mitigating cross-platform attacks, and developing quantum-classical trust frameworks. This chapter summarizes recent advances in attacks and defenses, offering a roadmap for researchers and practitioners to build robust, trustworthy QML systems resilient to evolving adversarial landscapes.
comment: 23 pages, 5 figures
☆ The Cost of Avoiding Backpropagation
Forward-mode automatic differentiation (FmAD) and zero-order (ZO) optimization have been proposed as memory-efficient alternatives to backpropagation (BP) for gradient computation, especially in low-resource settings. However, their practical benefits remain unclear due to two key gaps: a lack of comparison against memory-efficient BP variants, such as activation checkpointing, and a lack of a unified theoretical analysis. This work presents a comprehensive theoretical and empirical comparison of BP, FmAD, and ZO methods. Our theoretical analysis shows that while FmAD, and ZO can reduce memory usage, they incur significant costs in accuracy, convergence speed, and computation compared to BP with checkpointing. These drawbacks worsen with larger models or constrained perturbation budgets. Empirical experiments on large language and vision-language models show that BP with checkpointing outperforms FmAD and ZO variants, including those enhanced with variance reduction, achieving up to 31.1% higher accuracy, 34.8% faster convergence, and 3.8x fewer computations at comparable memory usage. Our results highlight fundamental limitations of FmAD and ZO, and reaffirm BP with checkpointing as the most effective strategy for model training under memory-constrained settings. Our code is available at https://github.com/Astuary/The_Cost_of_Avoiding_Backpropagation.
☆ Fetal Sleep: A Cross-Species Review of Physiology, Measurement, and Classification
Fetal sleep is a relatively underexplored yet vital aspect of prenatal neurodevelopment. Understanding fetal sleep patterns could provide insights into early brain maturation and help clinicians detect signs of neurological compromise that arise due to fetal hypoxia or fetal growth restriction. This review synthesizes over eight decades of research on the physiological characteristics, ontogeny, and regulation of fetal sleep. We compare sleep-state patterns in humans and large animal models, highlighting species-specific differences and the presence of sleep-state analogs. We review both invasive techniques in animals and non-invasive modalities in humans. Computational methods for sleep-state classification are also examined, including rule-based approaches (with and without clustering-based preprocessing) and state-of-the-art deep learning techniques. Finally, we discuss how intrauterine conditions such as hypoxia and fetal growth restriction can disrupt fetal sleep. This review provides a comprehensive foundation for the development of objective, multimodal, and non-invasive fetal sleep monitoring technologies to support early diagnosis and intervention in prenatal care.
comment: Review article, 17 pages, 1 figure, 5 tables, submitted to Sleep (under review)
☆ Few-Shot Segmentation of Historical Maps via Linear Probing of Vision Foundation Models ICDAR2025
As rich sources of history, maps provide crucial insights into historical changes, yet their diverse visual representations and limited annotated data pose significant challenges for automated processing. We propose a simple yet effective approach for few-shot segmentation of historical maps, leveraging the rich semantic embeddings of large vision foundation models combined with parameter-efficient fine-tuning. Our method outperforms the state-of-the-art on the Siegfried benchmark dataset in vineyard and railway segmentation, achieving +5% and +13% relative improvements in mIoU in 10-shot scenarios and around +20% in the more challenging 5-shot setting. Additionally, it demonstrates strong performance on the ICDAR 2021 competition dataset, attaining a mean PQ of 67.3% for building block segmentation, despite not being optimized for this shape-sensitive metric, underscoring its generalizability. Notably, our approach maintains high performance even in extremely low-data regimes (10- & 5-shot), while requiring only 689k trainable parameters - just 0.21% of the total model size. Our approach enables precise segmentation of diverse historical maps while drastically reducing the need for manual annotations, advancing automated processing and analysis in the field. Our implementation is publicly available at: https://github.com/RafaelSterzinger/few-shot-map-segmentation.
comment: 18 pages, accepted at ICDAR2025
♻ ☆ L2MAC: Large Language Model Automatic Computer for Extensive Code Generation ICLR
Transformer-based large language models (LLMs) are constrained by the fixed context window of the underlying transformer architecture, hindering their ability to produce long and coherent outputs. Memory-augmented LLMs are a promising solution, but current approaches cannot handle long output generation tasks since they (1) only focus on reading memory and reduce its evolution to the concatenation of new memories or (2) use very specialized memories that cannot adapt to other domains. This paper presents L2MAC, the first practical LLM-based general-purpose stored-program automatic computer (von Neumann architecture) framework, an LLM-based multi-agent system, for long and consistent output generation. Its memory has two components: the instruction registry, which is populated with a prompt program to solve the user-given task, and a file store, which will contain the final and intermediate outputs. Each instruction in turn is executed by a separate LLM agent, whose context is managed by a control unit capable of precise memory reading and writing to ensure effective interaction with the file store. These components enable L2MAC to generate extensive outputs, bypassing the constraints of the finite context window while producing outputs that fulfill a complex user-specified task. We empirically demonstrate that L2MAC achieves state-of-the-art performance in generating large codebases for system design tasks, significantly outperforming other coding methods in implementing the detailed user-specified task; we show that L2MAC works for general-purpose extensive text-based tasks, such as writing an entire book; and we provide valuable insights into L2MAC's performance improvement over existing methods.
comment: Published in The Twelfth International Conference on Learning Representations (ICLR), 2024. Copyright 2023 by the author(s)
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen, Mistral, and Llama families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Decoupled SGDA for Games with Intermittent Strategy Communication
We focus on reducing communication overhead in multiplayer games, where frequently exchanging strategies between players is not feasible and players have noisy or outdated strategies of the other players. We introduce Decoupled SGDA, a novel adaptation of Stochastic Gradient Descent Ascent (SGDA). In this approach, players independently update their strategies based on outdated opponent strategies, with periodic synchronization to align strategies. For Strongly-Convex-Strongly-Concave (SCSC) games, we demonstrate that Decoupled SGDA achieves near-optimal communication complexity comparable to the best-known GDA rates. For weakly coupled games where the interaction between players is lower relative to the non-interactive part of the game, Decoupled SGDA significantly reduces communication costs compared to standard SGDA. Our findings extend to multi-player games. To provide insights into the effect of communication frequency and convergence, we extensively study the convergence of Decoupled SGDA for quadratic minimax problems. Lastly, in settings where the noise over the players is imbalanced, Decoupled SGDA significantly outperforms federated minimax methods.
♻ ☆ How to Train Long-Context Language Models (Effectively) ACL 2025
We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context downstream tasks, and we evaluate models after SFT as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices such as position extrapolation. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short-context data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.1-8B-Instruct on the majority of long-context tasks despite using only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.
comment: Accepted to ACL 2025. Our code, data, and models are available at https://github.com/princeton-nlp/ProLong
♻ ☆ Robust Detection of Watermarks for Large Language Models Under Human Edits
Watermarking has offered an effective approach to distinguishing text generated by large language models (LLMs) from human-written text. However, the pervasive presence of human edits on LLM-generated text dilutes watermark signals, thereby significantly degrading detection performance of existing methods. In this paper, by modeling human edits through mixture model detection, we introduce a new method in the form of a truncated goodness-of-fit test for detecting watermarked text under human edits, which we refer to as Tr-GoF. We prove that the Tr-GoF test achieves optimality in robust detection of the Gumbel-max watermark in a certain asymptotic regime of substantial text modifications and vanishing watermark signals. Importantly, Tr-GoF achieves this optimality \textit{adaptively} as it does not require precise knowledge of human edit levels or probabilistic specifications of the LLMs, in contrast to the optimal but impractical (Neyman--Pearson) likelihood ratio test. Moreover, we establish that the Tr-GoF test attains the highest detection efficiency rate in a certain regime of moderate text modifications. In stark contrast, we show that sum-based detection rules, as employed by existing methods, fail to achieve optimal robustness in both regimes because the additive nature of their statistics is less resilient to edit-induced noise. Finally, we demonstrate the competitive and sometimes superior empirical performance of the Tr-GoF test on both synthetic data and open-source LLMs in the OPT and LLaMA families.
♻ ☆ Learning Non-Local Molecular Interactions via Equivariant Local Representations and Charge Equilibration
Graph Neural Network (GNN) potentials relying on chemical locality offer near-quantum mechanical accuracy at significantly reduced computational costs. Message-passing GNNs model interactions beyond their immediate neighborhood by propagating local information between neighboring particles while remaining effectively local. However, locality precludes modeling long-range effects critical to many real-world systems, such as charge transfer, electrostatic interactions, and dispersion effects. In this work, we propose the Charge Equilibration Layer for Long-range Interactions (CELLI) to address the challenge of efficiently modeling non-local interactions. This novel architecture generalizes the classical charge equilibration (Qeq) method to a model-agnostic building block for modern equivariant GNN potentials. Therefore, CELLI extends the capability of GNNs to model long-range interactions while providing high interpretability through explicitly modeled charges. On benchmark systems, CELLI achieves state-of-the-art results for strictly local models. CELLI generalizes to diverse datasets and large structures while providing high computational efficiency and robust predictions.
♻ ☆ Learning Networks from Wide-Sense Stationary Stochastic Processes
Complex networked systems driven by latent inputs are common in fields like neuroscience, finance, and engineering. A key inference problem here is to learn edge connectivity from node outputs (potentials). We focus on systems governed by steady-state linear conservation laws: $X_t = {L^{\ast}}Y_{t}$, where $X_t, Y_t \in \mathbb{R}^p$ denote inputs and potentials, respectively, and the sparsity pattern of the $p \times p$ Laplacian $L^{\ast}$ encodes the edge structure. Assuming $X_t$ to be a wide-sense stationary stochastic process with a known spectral density matrix, we learn the support of $L^{\ast}$ from temporally correlated samples of $Y_t$ via an $\ell_1$-regularized Whittle's maximum likelihood estimator (MLE). The regularization is particularly useful for learning large-scale networks in the high-dimensional setting where the network size $p$ significantly exceeds the number of samples $n$. We show that the MLE problem is strictly convex, admitting a unique solution. Under a novel mutual incoherence condition and certain sufficient conditions on $(n, p, d)$, we show that the ML estimate recovers the sparsity pattern of $L^\ast$ with high probability, where $d$ is the maximum degree of the graph underlying $L^{\ast}$. We provide recovery guarantees for $L^\ast$ in element-wise maximum, Frobenius, and operator norms. Finally, we complement our theoretical results with several simulation studies on synthetic and benchmark datasets, including engineered systems (power and water networks), and real-world datasets from neural systems (such as the human brain).
♻ ☆ Scalable Hypergraph Structure Learning with Diverse Smoothness Priors
In graph signal processing, learning the weighted connections between nodes from a set of sample signals is a fundamental task when the underlying relationships are not known a priori. This task is typically addressed by finding a graph Laplacian on which the observed signals are smooth. With the extension of graphs to hypergraphs - where edges can connect more than two nodes - graph learning methods have similarly been generalized to hypergraphs. However, the absence of a unified framework for calculating total variation has led to divergent definitions of smoothness and, consequently, differing approaches to hyperedge recovery. We confront this challenge through generalization of several previously proposed hypergraph total variations, subsequently allowing ease of substitution into a vector based optimization. To this end, we propose a novel hypergraph learning method that recovers a hypergraph topology from time-series signals based on a smoothness prior. Our approach, designated as Hypergraph Structure Learning with Smoothness (HSLS), addresses key limitations in prior works, such as hyperedge selection and convergence issues, by formulating the problem as a convex optimization solved via a forward-backward-forward algorithm, ensuring guaranteed convergence. Additionally, we introduce a process that simultaneously limits the span of the hyperedge search and maintains a valid hyperedge selection set. In doing so, our method becomes scalable in increasingly complex network structures. The experimental results demonstrate improved performance, in terms of accuracy, over other state-of-the-art hypergraph inference methods; furthermore, we empirically show our method to be robust to total variation terms, biased towards global smoothness, and scalable to larger hypergraphs.
comment: 15 pages, 7 figures, submitted to IEEE for possible publication; Section I includes more applications, comparisons, and enumerated list of novel contributions; removed numerical analysis of TV terms in Section II, added more general discussion; updated Algorithm 1 and corresponding text; third experiment of Section V-C replaced with new experiment
♻ ☆ Multi-Turn Code Generation Through Single-Step Rewards
We address the problem of code generation from multi-turn execution feedback. Existing methods either generate code without feedback or use complex, hierarchical reinforcement learning to optimize multi-turn rewards. We propose a simple yet scalable approach, $\mu$Code, that solves multi-turn code generation using only single-step rewards. Our key insight is that code generation is a one-step recoverable MDP, where the correct code can be recovered from any intermediate code state in a single turn. $\mu$Code iteratively trains both a generator to provide code solutions conditioned on multi-turn execution feedback and a verifier to score the newly generated code. Experimental evaluations show that our approach achieves significant improvements over the state-of-the-art baselines. We provide analysis of the design choices of the reward models and policy, and show the efficacy of $\mu$Code at utilizing the execution feedback. Our code is available at https://github.com/portal-cornell/muCode.
comment: 9 pages (not including references or appendix); 5 figures (in main paper); (v2) camera-ready version
♻ ☆ Gradual Domain Adaptation for Graph Learning
Existing literature lacks a graph domain adaptation technique for handling large distribution shifts, primarily due to the difficulty in simulating an evolving path from source to target graph. To make a breakthrough, we present a graph gradual domain adaptation (GGDA) framework with the construction of a compact domain sequence that minimizes information loss in adaptations. Our approach starts with an efficient generation of knowledge-preserving intermediate graphs over the Fused Gromov-Wasserstein (FGW) metric. With the bridging data pool, GGDA domains are then constructed via a novel vertex-based domain progression, which comprises "close" vertex selections and adaptive domain advancement to enhance inter-domain information transferability. Theoretically, our framework concretizes the intractable inter-domain distance $W_p(\mu_t,\mu_{t+1})$ via implementable upper and lower bounds, enabling flexible adjustments of this metric for optimizing domain formation. Extensive experiments under various transfer scenarios validate the superior performance of our GGDA framework.
♻ ☆ How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data?
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
♻ ☆ KITAB-Bench: A Comprehensive Multi-Domain Benchmark for Arabic OCR and Document Understanding ACL 2025
With the growing adoption of Retrieval-Augmented Generation (RAG) in document processing, robust text recognition has become increasingly critical for knowledge extraction. While OCR (Optical Character Recognition) for English and other languages benefits from large datasets and well-established benchmarks, Arabic OCR faces unique challenges due to its cursive script, right-to-left text flow, and complex typographic and calligraphic features. We present KITAB-Bench, a comprehensive Arabic OCR benchmark that fills the gaps in current evaluation systems. Our benchmark comprises 8,809 samples across 9 major domains and 36 sub-domains, encompassing diverse document types including handwritten text, structured tables, and specialized coverage of 21 chart types for business intelligence. Our findings show that modern vision-language models (such as GPT-4o, Gemini, and Qwen) outperform traditional OCR approaches (like EasyOCR, PaddleOCR, and Surya) by an average of 60% in Character Error Rate (CER). Furthermore, we highlight significant limitations of current Arabic OCR models, particularly in PDF-to-Markdown conversion, where the best model Gemini-2.0-Flash achieves only 65% accuracy. This underscores the challenges in accurately recognizing Arabic text, including issues with complex fonts, numeral recognition errors, word elongation, and table structure detection. This work establishes a rigorous evaluation framework that can drive improvements in Arabic document analysis methods and bridge the performance gap with English OCR technologies.
comment: 17 pages, 5 figures, ACL 2025
♻ ☆ Spring-block theory of feature learning in deep neural networks
Feature-learning deep nets progressively collapse data to a regular low-dimensional geometry. How this emerges from the collective action of nonlinearity, noise, learning rate, and other factors, has eluded first-principles theories built from microscopic neuronal dynamics. We exhibit a noise-nonlinearity phase diagram that identifies regimes where shallow or deep layers learn more effectively and propose a macroscopic mechanical theory that reproduces the diagram and links feature learning across layers to generalization.
♻ ☆ Fairness-Optimized Synthetic EHR Generation for Arbitrary Downstream Predictive Tasks
Among various aspects of ensuring the responsible design of AI tools for healthcare applications, addressing fairness concerns has been a key focus area. Specifically, given the wide spread of electronic health record (EHR) data and their huge potential to inform a wide range of clinical decision support tasks, improving fairness in this category of health AI tools is of key importance. While such a broad problem (mitigating fairness in EHR-based AI models) has been tackled using various methods, task- and model-agnostic methods are noticeably rare. In this study, we aimed to target this gap by presenting a new pipeline that generates synthetic EHR data, which is not only consistent with (faithful to) the real EHR data but also can reduce the fairness concerns (defined by the end-user) in the downstream tasks, when combined with the real data. We demonstrate the effectiveness of our proposed pipeline across various downstream tasks and two different EHR datasets. Our proposed pipeline can add a widely applicable and complementary tool to the existing toolbox of methods to address fairness in health AI applications, such as those modifying the design of a downstream model. The codebase for our project is available at https://github.com/healthylaife/FairSynth
comment: The paper has been accepted at the IEEE/ACM conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 2025
♻ ☆ Performance of Rank-One Tensor Approximation on Incomplete Data
We are interested in the estimation of a rank-one tensor signal when only a portion $\varepsilon$ of its noisy observation is available. We show that the study of this problem can be reduced to that of a random matrix model whose spectral analysis gives access to the reconstruction performance. These results shed light on and specify the loss of performance induced by an artificial reduction of the memory cost of a tensor via the deletion of a random part of its entries.
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones. The code is avaialble: https://github.com/Youngseok0001/open_nmsw.
♻ ☆ Communication-Efficient Heterogeneous Federated Learning with Generalized Heavy-Ball Momentum
Federated Learning (FL) has emerged as the state-of-the-art approach for learning from decentralized data in privacy-constrained scenarios.However, system and statistical challenges hinder its real-world applicability, requiring efficient learning from edge devices and robustness to data heterogeneity. Despite significant research efforts, existing approaches often degrade severely due to the joint effect of heterogeneity and partial client participation. In particular, while momentum appears as a promising approach for overcoming statistical heterogeneity, in current approaches its update is biased towards the most recently sampled clients. As we show in this work, this is the reason why it fails to outperform FedAvg, preventing its effective use in real-world large-scale scenarios. In this work, we propose a novel Generalized Heavy-Ball Momentum (GHBM) and theoretically prove it enables convergence under unbounded data heterogeneity in cyclic partial participation, thereby advancing the understanding of momentum's effectiveness in FL. We then introduce adaptive and communication-efficient variants of GHBM that match the communication complexity of FedAvg in settings where clients can be stateful. Extensive experiments on vision and language tasks confirm our theoretical findings, demonstrating that GHBM substantially improves state-of-the-art performance under random uniform client sampling, particularly in large-scale settings with high data heterogeneity and low client participation. Code is available at https://rickzack.github.io/GHBM.
comment: Accepted at TMLR - reviews at https://openreview.net/forum?id=LNoFjcLywb
♻ ☆ No Metric to Rule Them All: Toward Principled Evaluations of Graph-Learning Datasets ICML 2025
Benchmark datasets have proved pivotal to the success of graph learning, and good benchmark datasets are crucial to guide the development of the field. Recent research has highlighted problems with graph-learning datasets and benchmarking practices -- revealing, for example, that methods which ignore the graph structure can outperform graph-based approaches. Such findings raise two questions: (1) What makes a good graph-learning dataset, and (2) how can we evaluate dataset quality in graph learning? Our work addresses these questions. As the classic evaluation setup uses datasets to evaluate models, it does not apply to dataset evaluation. Hence, we start from first principles. Observing that graph-learning datasets uniquely combine two modes -- graph structure and node features --, we introduce Rings, a flexible and extensible mode-perturbation framework to assess the quality of graph-learning datasets based on dataset ablations -- i.e., quantifying differences between the original dataset and its perturbed representations. Within this framework, we propose two measures -- performance separability and mode complementarity -- as evaluation tools, each assessing the capacity of a graph dataset to benchmark the power and efficacy of graph-learning methods from a distinct angle. We demonstrate the utility of our framework for dataset evaluation via extensive experiments on graph-level tasks and derive actionable recommendations for improving the evaluation of graph-learning methods. Our work opens new research directions in data-centric graph learning, and it constitutes a step toward the systematic evaluation of evaluations.
comment: Accepted at ICML 2025
♻ ☆ Soft Condorcet Optimization for Ranking of General Agents
Driving progress of AI models and agents requires comparing their performance on standardized benchmarks; for general agents, individual performances must be aggregated across a potentially wide variety of different tasks. In this paper, we describe a novel ranking scheme inspired by social choice frameworks, called Soft Condorcet Optimization (SCO), to compute the optimal ranking of agents: the one that makes the fewest mistakes in predicting the agent comparisons in the evaluation data. This optimal ranking is the maximum likelihood estimate when evaluation data (which we view as votes) are interpreted as noisy samples from a ground truth ranking, a solution to Condorcet's original voting system criteria. SCO ratings are maximal for Condorcet winners when they exist, which we show is not necessarily true for the classical rating system Elo. We propose three optimization algorithms to compute SCO ratings and evaluate their empirical performance. When serving as an approximation to the Kemeny-Young voting method, SCO rankings are on average 0 to 0.043 away from the optimal ranking in normalized Kendall-tau distance across 865 preference profiles from the PrefLib open ranking archive. In a simulated noisy tournament setting, SCO achieves accurate approximations to the ground truth ranking and the best among several baselines when 59\% or more of the preference data is missing. Finally, SCO ranking provides the best approximation to the optimal ranking, measured on held-out test sets, in a problem containing 52,958 human players across 31,049 games of the classic seven-player game of Diplomacy.
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching 100 million, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce Anchored-Branched Universal Physics Transformers (AB-UPT) as a novel modeling scheme for building neural surrogates for computational fluid dynamics (CFD) simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a computer-aided design geometry alone, omitting the need for costly CFD meshing procedures.
comment: Preprint. Github: https://github.com/Emmi-AI/AB-UPT
♻ ☆ LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models
Text-Attributed Graphs (TAGs), where each node is associated with text descriptions, are ubiquitous in real-world scenarios. They typically exhibit distinctive structure and domain-specific knowledge, motivating the development of a Graph Foundation Model (GFM) that generalizes across diverse graphs and tasks. Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures with two-stage alignment, limiting their synergistic potential. Even worse, existing methods assign out-of-vocabulary (OOV) tokens to graph nodes, leading to graph-specific semantics, token explosion, and incompatibility with task-oriented prompt templates, which hinders cross-graph and cross-task transferability. To address these challenges, we propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning. PromptGFM comprises two key components: (1) Graph Understanding Module, which explicitly prompts LLMs to replicate the finest GNN workflow within the text space, facilitating seamless GNN-LLM integration and elegant graph-text alignment; (2) Graph Inference Module, which establishes a language-based graph vocabulary ensuring expressiveness, transferability, and scalability, enabling readable instructions for LLM fine-tuning. Extensive experiments demonstrate our superiority and transferability across diverse graphs and tasks. The code is available at this: https://github.com/agiresearch/PromptGFM.
♻ ☆ ROME: Robust Multi-Modal Density Estimator
The estimation of probability density functions is a fundamental problem in science and engineering. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estimation problems. In this paper, we present ROME (RObust Multi-modal Estimator), a non-parametric approach for density estimation which addresses the challenge of estimating multi-modal, non-normal, and highly correlated distributions. ROME utilizes clustering to segment a multi-modal set of samples into multiple uni-modal ones and then combines simple KDE estimates obtained for individual clusters in a single multi-modal estimate. We compared our approach to state-of-the-art methods for density estimation as well as ablations of ROME, showing that it not only outperforms established methods but is also more robust to a variety of distributions. Our results demonstrate that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators.
♻ ☆ Graph-Reward-SQL: Execution-Free Reinforcement Learning for Text-to-SQL via Graph Matching and Stepwise Reward
Reinforcement learning (RL) has been widely adopted to enhance the performance of large language models (LLMs) on Text-to-SQL tasks. However, existing methods often rely on execution-based or LLM-based Bradley-Terry reward models. The former suffers from high execution latency caused by repeated database calls, whereas the latter imposes substantial GPU memory overhead, both of which significantly hinder the efficiency and scalability of RL pipelines. To this end, we propose a novel Text-to-SQL RL fine-tuning framework named Graph-Reward-SQL, which employs the GMNScore outcome reward model. We leverage SQL graph representations to provide accurate reward signals while significantly reducing inference time and GPU memory usage. Building on this foundation, we further introduce StepRTM, a stepwise reward model that provides intermediate supervision over Common Table Expression (CTE) subqueries. This encourages both functional correctness and structural clarity of SQL. Extensive comparative and ablation experiments on standard benchmarks, including Spider and BIRD, demonstrate that our method consistently outperforms existing reward models.
♻ ☆ Near Field Localization via AI-Aided Subspace Methods
The increasing demands for high-throughput and energy-efficient wireless communications are driving the adoption of extremely large antennas operating at high-frequency bands. In these regimes, multiple users will reside in the radiative near-field, and accurate localization becomes essential. Unlike conventional far-field systems that rely solely on DOA estimation, near-field localization exploits spherical wavefront propagation to recover both DOA and range information. While subspace-based methods, such as MUSIC and its extensions, offer high resolution and interpretability for near-field localization, their performance is significantly impacted by model assumptions, including non-coherent sources, well-calibrated arrays, and a sufficient number of snapshots. To address these limitations, this work proposes AI-aided subspace methods for near-field localization that enhance robustness to real-world challenges. Specifically, we introduce NF-SubspaceNet, a deep learning-augmented 2D MUSIC algorithm that learns a surrogate covariance matrix to improve localization under challenging conditions, and DCD-MUSIC, a cascaded AI-aided approach that decouples angle and range estimation to reduce computational complexity. We further develop a novel model-order-aware training method to accurately estimate the number of sources, that is combined with casting of near field subspace methods as AI models for learning. Extensive simulations demonstrate that the proposed methods outperform classical and existing deep-learning-based localization techniques, providing robust near-field localization even under coherent sources, miscalibrations, and few snapshots.
comment: Under review for publication in the IEEE
♻ ☆ Design Patterns for Securing LLM Agents against Prompt Injections
As AI agents powered by Large Language Models (LLMs) become increasingly versatile and capable of addressing a broad spectrum of tasks, ensuring their security has become a critical challenge. Among the most pressing threats are prompt injection attacks, which exploit the agent's resilience on natural language inputs -- an especially dangerous threat when agents are granted tool access or handle sensitive information. In this work, we propose a set of principled design patterns for building AI agents with provable resistance to prompt injection. We systematically analyze these patterns, discuss their trade-offs in terms of utility and security, and illustrate their real-world applicability through a series of case studies.
♻ ☆ Generative AI for O-RAN Slicing: A Semi-Supervised Approach with VAE and Contrastive Learning
This paper introduces a novel generative AI (GAI)-driven, unified semi-supervised learning architecture for optimizing resource allocation and network slicing in O-RAN. Termed Generative Semi-Supervised VAE-Contrastive Learning, our approach maximizes the weighted user equipment (UE) throughput and allocates physical resource blocks (PRBs) to enhance the quality of service for eMBB and URLLC services. The GAI framework utilizes a dedicated xApp for intelligent power control and PRB allocation. This integrated GAI model synergistically combines the generative power of a VAE with contrastive learning to achieve robustness in an end-to-end trainable system. It is a semi-supervised training approach that concurrently optimizes supervised regression of resource allocation decisions (i.e., power, UE association, PRB) and unsupervised contrastive objectives. This intrinsic fusion improves the precision of resource management and model generalization in dynamic mobile networks. We evaluated our GAI methodology against exhaustive search and deep Q-Network algorithms using key performance metrics. Results show our integrated GAI approach offers superior efficiency and effectiveness in various scenarios, presenting a compelling GAI-based solution for critical network slicing and resource management challenges in next-generation O-RAN systems.
♻ ☆ SONG: Self-Organizing Neural Graphs WACV 2023
Recent years have seen a surge in research on deep interpretable neural networks with decision trees as one of the most commonly incorporated tools. There are at least three advantages of using decision trees over logistic regression classification models: they are easy to interpret since they are based on binary decisions, they can make decisions faster, and they provide a hierarchy of classes. However, one of the well-known drawbacks of decision trees, as compared to decision graphs, is that decision trees cannot reuse the decision nodes. Nevertheless, decision graphs were not commonly used in deep learning due to the lack of efficient gradient-based training techniques. In this paper, we fill this gap and provide a general paradigm based on Markov processes, which allows for efficient training of the special type of decision graphs, which we call Self-Organizing Neural Graphs (SONG). We provide an extensive theoretical study of SONG, complemented by experiments conducted on Letter, Connect4, MNIST, CIFAR, and TinyImageNet datasets, showing that our method performs on par or better than existing decision models.
comment: Accepted in WACV 2023
♻ ☆ Forecasting the future development in quality and value of professional football players
Transfers in professional football (soccer) are risky investments because of the large transfer fees and high risks involved. Although data-driven models can be used to improve transfer decisions, existing models focus on describing players' historical progress, leaving their future performance unknown. Moreover, recent developments have called for the use of explainable models combined with uncertainty quantification of predictions. This paper assesses explainable machine learning models based on predictive accuracy and uncertainty quantification methods for the prediction of the future development in quality and transfer value of professional football players. The predictive accuracy is studied by training the models to predict the quality and value of players one year ahead. This is carried out by training them on two data sets containing data-driven indicators describing the player quality and player value in historical settings. In general, the random forest model is found to be the most suitable model because it provides accurate predictions as well as an uncertainty quantification method that naturally arises from the bagging procedure of the random forest model. Additionally, this research shows that the development of player performance contains nonlinear patterns and interactions between variables, and that time series information can provide useful information for the modeling of player performance metrics. The resulting models can help football clubs make more informed, data-driven transfer decisions by forecasting player quality and transfer value.
comment: The article itself is on the pages 1-31. The data set used in this article is described in the appendix at the pages 32-39
♻ ☆ CAPM: Fast and Robust Verification on Maxpool-based CNN via Dual Network
This study uses CAPM (Convex Adversarial Polytope for Maxpool-based CNN) to improve the verified bound for general purpose maxpool-based convolutional neural networks (CNNs) under bounded norm adversarial perturbations. The maxpool function is decomposed as a series of ReLU functions to extend the convex relaxation technique to maxpool functions, by which the verified bound can be efficiently computed through a dual network. The experimental results demonstrate that this technique allows the state-of-the-art verification precision for maxpool-based CNNs and involves a much lower computational cost than current verification methods, such as DeepZ, DeepPoly and PRIMA. This method is also applicable to large-scale CNNs, which previous studies show to be often computationally prohibitively expensive. Under certain circumstances, CAPM is 40-times, 20-times or twice as fast and give a significantly higher verification bound (CAPM 98% vs. PRIMA 76%/DeepPoly 73%/DeepZ 8%) as compared to PRIMA/DeepPoly/DeepZ. Furthermore, we additionally present the time complexity of our algorithm as $O(W^2NK)$, where $W$ is the maximum width of the neural network, $N$ is the number of neurons, and $K$ is the size of the maxpool layer's kernel.
♻ ☆ Learning Data-Driven Uncertainty Set Partitions for Robust and Adaptive Energy Forecasting with Missing Data
Short-term forecasting models typically assume the availability of input data (features) when they are deployed and in use. However, equipment failures, disruptions, cyberattacks, may lead to missing features when such models are used operationally, which could negatively affect forecast accuracy, and result in suboptimal operational decisions. In this paper, we use adaptive robust optimization and adversarial machine learning to develop forecasting models that seamlessly handle missing data operationally. We propose linear- and neural network-based forecasting models with parameters that adapt to available features, combining linear adaptation with a novel algorithm for learning data-driven uncertainty set partitions. The proposed adaptive models do not rely on identifying historical missing data patterns and are suitable for real-time operations under stringent time constraints. Extensive numerical experiments on short-term wind power forecasting considering horizons from 15 minutes to 4 hours ahead illustrate that our proposed adaptive models are on par with imputation when data are missing for very short periods (e.g., when only the latest measurement is missing) whereas they significantly outperform imputation when data are missing for longer periods. We further provide insights by showcasing how linear adaptation and data-driven partitions (even with a few subsets) approach the performance of the optimal, yet impractical, method of retraining for every possible realization of missing data.
comment: Revised version, submitted to IEEE-TSG
♻ ☆ C-Learner: Constrained Learning for Causal Inference
Popular debiased estimation methods for causal inference -- such as augmented inverse propensity weighting and targeted maximum likelihood estimation -- enjoy desirable asymptotic properties like statistical efficiency and double robustness but they can produce unstable estimates when there is limited overlap between treatment and control, requiring additional assumptions or ad hoc adjustments in practice (e.g., truncating propensity scores). In contrast, simple plug-in estimators are stable but lack desirable asymptotic properties. We propose a novel debiasing approach that achieves the best of both worlds, producing stable plug-in estimates with desirable asymptotic properties. Our constrained learning framework solves for the best plug-in estimator under the constraint that the first-order error with respect to the plugged-in quantity is zero, and can leverage flexible model classes including neural networks and tree ensembles. In several experimental settings, including ones in which we handle text-based covariates by fine-tuning language models, our constrained learning-based estimator outperforms basic versions of one-step estimation and targeting in challenging settings with limited overlap between treatment and control, and performs similarly otherwise.
♻ ☆ Distilling the Unknown to Unveil Certainty
Out-of-distribution (OOD) detection is critical for identifying test samples that deviate from in-distribution (ID) data, ensuring network robustness and reliability. This paper presents a flexible framework for OOD knowledge distillation that extracts OOD-sensitive information from a network to develop a binary classifier capable of distinguishing between ID and OOD samples in both scenarios, with and without access to training ID data. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the network to enhance OOD sensitivity. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.
♻ ☆ Generative adversarial neural networks for simulating neutrino interactions
We propose a new approach to simulate neutrino scattering events as an alternative to the standard Monte Carlo generator approach. Generative adversarial neural network (GAN) models are developed to simulate charged current neutrino-carbon collisions in the few-GeV energy range. We consider a simplified framework to generate muon kinematic variables, specifically its energy and scattering angle. GAN models are trained on simulation data from \nuwro{} Monte Carlo event generator. Two GAN models have been obtained: one simulating quasielastic neutrino-nucleus scatterings and another simulating all interactions at given neutrino energy. The models work for neutrino energy ranging from 300 MeV to 10 GeV. The performance of both models has been assessed using two statistical metrics. It is shown that both GAN models successfully reproduce the distribution of muon kinematics.
comment: 16 pages, 16 figures
♻ ☆ Time series classification with random convolution kernels: pooling operators and input representations matter
This article presents a new approach based on MiniRocket, called SelF-Rocket, for fast time series classification (TSC). Unlike existing approaches based on random convolution kernels, it dynamically selects the best couple of input representations and pooling operator during the training process. SelF-Rocket achieves state-of-the-art accuracy on the University of California Riverside (UCR) TSC benchmark datasets.
comment: v1: initial version, incorrect evaluation. v2: Method improved, evaluation corrected, title simplified. v3: Add acknowledgments. v4: text correction
♻ ☆ Federated Data-Efficient Instruction Tuning for Large Language Models ACL 2025
Instruction tuning is a crucial step in improving the responsiveness of pretrained large language models (LLMs) to human instructions. Federated learning (FL) helps to exploit the use of vast private instruction data from clients, becoming popular for LLM tuning by improving data diversity. Existing federated tuning simply consumes all local data, causing excessive computational overhead and overfitting to local data, while centralized data-efficient solutions are not suitable for FL due to privacy concerns. This work presents FedHDS, a federated data-efficient instruction tuning approach, which tunes LLMs with a representative subset of edge-side data. It reduces the data redundancy at both intra- and inter-client levels without sharing raw data. Experiments with various LLMs, datasets and partitions show that FedHDS improves Rouge-L on unseen tasks by an average of 10.72% over the SOTA full-data federated instruction tuning methods, while using less than 1.5% of the data samples, improving training efficiency by up to tens of times.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ The Mamba in the Llama: Distilling and Accelerating Hybrid Models NeurIPS 2024
Linear RNN architectures, like Mamba, can be competitive with Transformer models in language modeling while having advantageous deployment characteristics. Given the focus on training large-scale Transformer models, we consider the challenge of converting these pretrained models for deployment. We demonstrate that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources. The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks and outperforms open-source hybrid Mamba models trained from scratch with trillions of tokens in both chat benchmarks and general benchmarks. Moreover, we introduce a hardware-aware speculative decoding algorithm that accelerates the inference speed of Mamba and hybrid models. Overall we show how, with limited computation resources, we can remove many of the original attention layers and generate from the resulting model more efficiently. Our top-performing model, distilled from Llama3-8B-Instruct, achieves a 29.61 length-controlled win rate on AlpacaEval 2 against GPT-4 and 7.35 on MT-Bench, surpassing the best 8B scale instruction-tuned linear RNN model. We also find that the distilled model has natural length extrapolation, showing almost perfect accuracy in the needle-in-a-haystack test at 20x the distillation length. Code and pre-trained checkpoints are open-sourced at https://github.com/jxiw/MambaInLlama and https://github.com/itsdaniele/speculative_mamba.
comment: NeurIPS 2024. v4 updates: mention concurrent work of speculative decoding for SSM
♻ ☆ BeamLLM: Vision-Empowered mmWave Beam Prediction with Large Language Models
In this paper, we propose BeamLLM, a vision-aided millimeter-wave (mmWave) beam prediction framework leveraging large language models (LLMs) to address the challenges of high training overhead and latency in mmWave communication systems. By combining computer vision (CV) with LLMs' cross-modal reasoning capabilities, the framework extracts user equipment (UE) positional features from RGB images and aligns visual-temporal features with LLMs' semantic space through reprogramming techniques. Evaluated on a realistic vehicle-to-infrastructure (V2I) scenario, the proposed method achieves 61.01% top-1 accuracy and 97.39% top-3 accuracy in standard prediction tasks, significantly outperforming traditional deep learning models. In few-shot prediction scenarios, the performance degradation is limited to 12.56% (top-1) and 5.55% (top-3) from time sample 1 to 10, demonstrating superior prediction capability.
comment: 6 pages, 7 figures, conference
♻ ☆ Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets. Traditionally, this involves using dimensionality reduction (DR) methods to project data onto lower-dimensional spaces or organizing points into meaningful clusters (clustering). In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem. This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem. We empirically demonstrate its relevance to the identification of low-dimensional prototypes representing data at different scales, across multiple image and genomic datasets.
comment: 45 pages, 20 figures
♻ ☆ Green LIME: Improving AI Explainability through Design of Experiments
In artificial intelligence (AI), the complexity of many models and processes surpasses human understanding, making it challenging to determine why a specific prediction is made. This lack of transparency is particularly problematic in critical fields like healthcare, where trust in a model's predictions is paramount. As a result, the explainability of machine learning (ML) and other complex models has become a key area of focus. Efforts to improve model explainability often involve experimenting with AI systems and approximating their behavior through interpretable surrogate mechanisms. However, these procedures can be resource-intensive. Optimal design of experiments, which seeks to maximize the information obtained from a limited number of observations, offers promising methods for improving the efficiency of these explainability techniques. To demonstrate this potential, we explore Local Interpretable Model-agnostic Explanations (LIME), a widely used method introduced by Ribeiro et al. (2016). LIME provides explanations by generating new data points near the instance of interest and passing them through the model. While effective, this process can be computationally expensive, especially when predictions are costly or require many samples. LIME is highly versatile and can be applied to a wide range of models and datasets. In this work, we focus on models involving tabular data, regression tasks, and linear models as interpretable local approximations. By utilizing optimal design of experiments' techniques, we reduce the number of function evaluations of the complex model, thereby reducing the computational effort of LIME by a significant amount. We consider this modified version of LIME to be energy-efficient or "green".
♻ ☆ A Survey on Federated Fine-tuning of Large Language Models
Large Language Models (LLMs) have demonstrated impressive success across various tasks. Integrating LLMs with Federated Learning (FL), a paradigm known as FedLLM, offers a promising avenue for collaborative model adaptation while preserving data privacy. This survey provides a systematic and comprehensive review of FedLLM. We begin by tracing the historical development of both LLMs and FL, summarizing relevant prior research to set the context. Subsequently, we delve into an in-depth analysis of the fundamental challenges inherent in deploying FedLLM. Addressing these challenges often requires efficient adaptation strategies; therefore, we conduct an extensive examination of existing Parameter-Efficient Fine-tuning (PEFT) methods and explore their applicability within the FL framework. To rigorously evaluate the performance of FedLLM, we undertake a thorough review of existing fine-tuning datasets and evaluation benchmarks. Furthermore, we discuss FedLLM's diverse real-world applications across multiple domains. Finally, we identify critical open challenges and outline promising research directions to foster future advancements in FedLLM. This survey aims to serve as a foundational resource for researchers and practitioners, offering valuable insights into the rapidly evolving landscape of federated fine-tuning for LLMs. It also establishes a roadmap for future innovations in privacy-preserving AI. We actively maintain a GitHub repo \href{https://github.com/Clin0212/Awesome-Federated-LLM-Learning}{https://github.com/Clin0212/Awesome-Federated-LLM-Learning} to track cutting-edge advancements in this field.
♻ ☆ Spectraformer: A Unified Random Feature Framework for Transformer
Linearization of attention using various kernel approximation and kernel learning techniques has shown promise. Past methods used a subset of combinations of component functions and weight matrices within the random feature paradigm. We identify the need for a systematic comparison of different combinations of weight matrices and component functions for attention learning in Transformer. Hence, we introduce Spectraformer, a unified framework for approximating and learning the kernel function in the attention mechanism of the Transformer. Our empirical results demonstrate, for the first time, that a random feature-based approach can achieve performance comparable to top-performing sparse and low-rank methods on the challenging Long Range Arena benchmark. Thus, we establish a new state-of-the-art for random feature-based efficient Transformers. The framework also produces many variants that offer different advantages in accuracy, training time, and memory consumption. Our code is available at: https://github.com/cruiseresearchgroup/spectraformer .
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ On the Lipschitz Continuity of Set Aggregation Functions and Neural Networks for Sets
The Lipschitz constant of a neural network is connected to several important properties of the network such as its robustness and generalization. It is thus useful in many settings to estimate the Lipschitz constant of a model. Prior work has focused mainly on estimating the Lipschitz constant of multi-layer perceptrons and convolutional neural networks. Here we focus on data modeled as sets or multisets of vectors and on neural networks that can handle such data. These models typically apply some permutation invariant aggregation function, such as the sum, mean or max operator, to the input multisets to produce a single vector for each input sample. In this paper, we investigate whether these aggregation functions are Lipschitz continuous with respect to three distance functions for unordered multisets, and we compute their Lipschitz constants. In the general case, we find that each aggregation function is Lipschitz continuous with respect to only one of the three distance functions. Then, we build on these results to derive upper bounds on the Lipschitz constant of neural networks that can process multisets of vectors, while we also study their stability to perturbations and generalization under distribution shifts. To empirically verify our theoretical analysis, we conduct a series of experiments on datasets from different domains.
♻ ☆ deCIFer: Crystal Structure Prediction from Powder Diffraction Data using Autoregressive Language Models
Novel materials drive progress across applications from energy storage to electronics. Automated characterization of material structures with machine learning methods offers a promising strategy for accelerating this key step in material design. In this work, we introduce an autoregressive language model that performs crystal structure prediction (CSP) from powder diffraction data. The presented model, deCIFer, generates crystal structures in the widely used Crystallographic Information File (CIF) format and can be conditioned on powder X-ray diffraction (PXRD) data. Unlike earlier works that primarily rely on high-level descriptors like composition, deCIFer is also able to use diffraction data to perform CSP. We train deCIFer on nearly 2.3M crystal structures and validate on diverse sets of PXRD patterns for characterizing challenging inorganic crystal systems. Qualitative checks and quantitative assessments using the residual weighted profile show that deCIFer produces structures that more accurately match the target diffraction data. Notably, deCIFer can achieve a 94% match rate on test data. deCIFer bridges experimental diffraction data with computational CSP, lending itself as a powerful tool for crystal structure characterization.
comment: 24 pages, 18 figures, 8 tables. v2: Figure 8 revision. v3: added benchmarks, text revisions
♻ ☆ Embedding-based Approaches to Hyperpartisan News Detection
In this paper, we describe our systems in which the objective is to determine whether a given news article could be considered as hyperpartisan. Hyperpartisan news is news that takes an extremely polarized political standpoint with an intention of creating political divide among the public. We attempted several approaches, including n-grams, sentiment analysis, as well as sentence and document representation using pre-tained ELMo. Our best system using pre-trained ELMo with Bidirectional LSTM achieved an accuracy of 83% through 10-fold cross-validation without much hyperparameter tuning.
comment: The authorship dispute of this article could not be resolved, and it was submitted without the consent of P. Chen
♻ ☆ Step-by-Step Video-to-Audio Synthesis via Negative Audio Guidance
We propose a novel step-by-step video-to-audio generation method that sequentially produces individual audio tracks, each corresponding to a specific sound event in the video. Our approach mirrors traditional Foley workflows, aiming to capture all sound events induced by a given video comprehensively. Each generation step is formulated as a guided video-to-audio synthesis task, conditioned on a target text prompt and previously generated audio tracks. This design is inspired by the idea of concept negation from prior compositional generation frameworks. To enable this guided generation, we introduce a training framework that leverages pre-trained video-to-audio models and eliminates the need for specialized paired datasets, allowing training on more accessible data. Experimental results demonstrate that our method generates multiple semantically distinct audio tracks for a single input video, leading to higher-quality composite audio synthesis than existing baselines.
♻ ☆ Causal Inference Isn't Special: Why It's Just Another Prediction Problem
Causal inference is often portrayed as fundamentally distinct from predictive modeling, with its own terminology, goals, and intellectual challenges. But at its core, causal inference is simply a structured instance of prediction under distribution shift. In both cases, we begin with labeled data from a source domain and seek to generalize to a target domain where outcomes are not observed. The key difference is that in causal inference, the labels -- potential outcomes -- are selectively observed based on treatment assignment, introducing bias that must be addressed through assumptions. This perspective reframes causal estimation as a familiar generalization problem and highlights how techniques from predictive modeling, such as reweighting and domain adaptation, apply directly to causal tasks. It also clarifies that causal assumptions are not uniquely strong -- they are simply more explicit. By viewing causal inference through the lens of prediction, we demystify its logic, connect it to familiar tools, and make it more accessible to practitioners and educators alike.
♻ ☆ Mic-hackathon 2024: Hackathon on Machine Learning for Electron and Scanning Probe Microscopy
Microscopy is a primary source of information on materials structure and functionality at nanometer and atomic scales. The data generated is often well-structured, enriched with metadata and sample histories, though not always consistent in detail or format. The adoption of Data Management Plans (DMPs) by major funding agencies promotes preservation and access. However, deriving insights remains difficult due to the lack of standardized code ecosystems, benchmarks, and integration strategies. As a result, data usage is inefficient and analysis time is extensive. In addition to post-acquisition analysis, new APIs from major microscope manufacturers enable real-time, ML-based analytics for automated decision-making and ML-agent-controlled microscope operation. Yet, a gap remains between the ML and microscopy communities, limiting the impact of these methods on physics, materials discovery, and optimization. Hackathons help bridge this divide by fostering collaboration between ML researchers and microscopy experts. They encourage the development of novel solutions that apply ML to microscopy, while preparing a future workforce for instrumentation, materials science, and applied ML. This hackathon produced benchmark datasets and digital twins of microscopes to support community growth and standardized workflows. All related code is available at GitHub: https://github.com/KalininGroup/Mic-hackathon-2024-codes-publication/tree/1.0.0.1
♻ ☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
♻ ☆ Enhancing Cloud Security through Topic Modelling
Protecting cloud applications is critical in an era where security threats are increasingly sophisticated and persistent. Continuous Integration and Continuous Deployment (CI/CD) pipelines are particularly vulnerable, making innovative security approaches essential. This research explores the application of Natural Language Processing (NLP) techniques, specifically Topic Modelling, to analyse security-related text data and anticipate potential threats. We focus on Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic Analysis (PLSA) to extract meaningful patterns from data sources, including logs, reports, and deployment traces. Using the Gensim framework in Python, these methods categorise log entries into security-relevant topics (e.g., phishing, encryption failures). The identified topics are leveraged to highlight patterns indicative of security issues across CI/CD's continuous stages (build, test, deploy). This approach introduces a semantic layer that supports early vulnerability recognition and contextual understanding of runtime behaviours.
comment: 7 pages, 5 figures, 28th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2024-Winter)
♻ ☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 30 pages; 4 figures
♻ ☆ Advances in Temporal Point Processes: Bayesian, Neural, and LLM Approaches
Temporal point processes (TPPs) are stochastic process models used to characterize event sequences occurring in continuous time. Traditional statistical TPPs have a long-standing history, with numerous models proposed and successfully applied across diverse domains. In recent years, advances in deep learning have spurred the development of neural TPPs, enabling greater flexibility and expressiveness in capturing complex temporal dynamics. The emergence of large language models (LLMs) has further sparked excitement, offering new possibilities for modeling and analyzing event sequences by leveraging their rich contextual understanding. This survey presents a comprehensive review of recent research on TPPs from three perspectives: Bayesian, deep learning, and LLM approaches. We begin with a review of the fundamental concepts of TPPs, followed by an in-depth discussion of model design and parameter estimation techniques in these three frameworks. We also revisit classic application areas of TPPs to highlight their practical relevance. Finally, we outline challenges and promising directions for future research.
♻ ☆ Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation ICML 2025
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
comment: ICML 2025 Camera Ready
♻ ☆ Unveiling the Power of Noise Priors: Enhancing Diffusion Models for Mobile Traffic Prediction
Accurate prediction of mobile traffic, i.e., network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into prior and residual components, with the prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain. We provide code and data at https://github.com/tsinghua-fib-lab/NPDiff.
♻ ☆ QT-DoG: Quantization-aware Training for Domain Generalization ICML
A key challenge in Domain Generalization (DG) is preventing overfitting to source domains, which can be mitigated by finding flatter minima in the loss landscape. In this work, we propose Quantization-aware Training for Domain Generalization (QT-DoG) and demonstrate that weight quantization effectively leads to flatter minima in the loss landscape, thereby enhancing domain generalization. Unlike traditional quantization methods focused on model compression, QT-DoG exploits quantization as an implicit regularizer by inducing noise in model weights, guiding the optimization process toward flatter minima that are less sensitive to perturbations and overfitting. We provide both an analytical perspective and empirical evidence demonstrating that quantization inherently encourages flatter minima, leading to better generalization across domains. Moreover, with the benefit of reducing the model size through quantization, we demonstrate that an ensemble of multiple quantized models further yields superior accuracy than the state-of-the-art DG approaches with no computational or memory overheads. Code is released at: https://saqibjaved1.github.io/QT_DoG/.
comment: Accepted at International Conference on Machine Learning (ICML) 2025. Project website: https://saqibjaved1.github.io/QT_DoG/
♻ ☆ Computational Efficient and Minimax Optimal Nonignorable Matrix Completion
While the matrix completion problem has attracted considerable attention over the decades, few works address the nonignorable missing issue and all have their limitations. In this article, we propose a nuclear norm regularized row- and column-wise matrix U-statistic loss function for the generalized nonignorable missing mechanism, a flexible and generally applicable missing mechanism which contains both ignorable and nonignorable missing mechanism assumptions. The proposed method achieves computational efficiency comparable to the existing missing-at-random approaches, while providing the near minimax optimal statistical convergence rate guarantees for the more general nonignorable missing case. We propose an accelerated proximal gradient algorithm to solve the associated optimization problem, and characterize the interaction between algorithmic and statistical convergence. Simulations and real data analyzes further support the practical utility of the proposed method.
♻ ☆ RLSF: Fine-tuning LLMs via Symbolic Feedback
Large Language Models (LLMs) have transformed AI but often struggle with tasks that require domain-specific reasoning and logical alignment. Traditional fine-tuning methods do not leverage the vast amount of symbolic domain-knowledge available to us via symbolic reasoning tools (e.g., provers), and are further limited by sparse rewards and unreliable reward models. We introduce Reinforcement Learning via Symbolic Feedback (RLSF), a novel fine-tuning paradigm where symbolic reasoning tools (e.g., solvers, provers, and algebra systems) provide fine-grained feedback to LLMs. RLSF uses poly-sized certificates (e.g., proofs) generated by symbolic tools to identify and correct errors in model outputs, offering token-level guidance without requiring differentiable reasoning systems. This paradigm bridges the gap between symbolic reasoning and LLM fine-tuning, enabling precise alignment with domain-specific constraints while addressing key limitations of traditional reward signals. Via extensive evaluations, we show that our RLSF-based fine-tuning of LLMs outperforms traditional approaches on five different applications (that have some associated logical or domain constraints), namely, program synthesis from natural language pseudo-code to programming language, three chemistry tasks, and solving the Game of 24. A key takeaway is that fine-tuning via RLSF enables relatively smaller LLMs to significantly outperform closed-source models that are orders of magnitude larger.
System/Control 24
☆ Spherical Pendulum with Quad-Rotor Thrust Vectoring Actuation -- A Novel Mechatronics and Control Benchmark Platform
Motor-actuated pendulums have been established as arguably the most common laboratory prototypes used in control system education because of the relevance to robot manipulator control in industry. Meanwhile, multi-rotor drones like quadcopters have become popular in industrial applications but have not been broadly employed in control education laboratory. Platforms with pendulums and multi-rotor copters present classical yet intriguing multi-degree of freedom (DoF) dynamics and coordinate systems for the control system investigation. In this paper, we introduce a novel control platform in which a 2-DoF pendulum capable of azimuth and elevation rotation is actuated through vectored thrust generated by a quadcopter. Designed as a benchmark for mechatronics and nonlinear control education and research, the system integrates detailed mechatronic implementation with different control strategies. Specifically, we apply and compare small perturbation linearization (SPL), state feedback linearization (SFL), and partial feedback linearization (PFL) to the nonlinear system dynamics. The performances are evaluated by time specifications of step response and Root-Mean-Square (RMS) error of trajectory tracking. The robustness of the closed-loop system is validated under external disturbances, and both simulation and experimental results are presented to highlight the strengths and limitations of the nonlinear model-based control approaches.
☆ Economic Model Predictive Control with a Non-Fixed Reference Trajectory for Optimal Microgrid Dispatch
Economic Model Predictive Control (EMPC), instead of stabilizing a reference trajectory/state in the objective function like a Tracking MPC, optimizes the economic performance over the prediction horizon, making it attractive for economical microgrid (MG) dispatch. However, the demand charge component in the monthly electricity cost, make it difficult to be encapsulated in additive stage costs, and can make solutions violate the principle of optimality if naively introduced in the objective function. Moreover, previous EMPC based works mostly rely on a-priori knowledge of an optimal economic steady state or optimal periodic trajectory for performance guarantees, which are not useful or possibly don't exist respectively, for real-time economical MG dispatch where load/generation forecasts are known only 24-48 h in advance. This paper, first, proposes an EMPC formulation for a generic deterministic discrete non-linear time varying system with hard state and input constraints, without any a-priori requirements of an optimal economic steady state or optimal periodic trajectory. It is proved that under mild assumptions on terminal cost and region, the asymptotic average economic cost of the proposed method is no worse than the asymptotic average economic cost of any other non-fixed arbitrary reference trajectory which is known only until the current time-step. The EMPC framework is then leveraged for optimal MG dispatch by showing that the problem can be reformulated to satisfy the assumptions required for the asymptotic performance guarantee. Realistic simulations at the Port of San Diego MG demonstrated that the proposed method can also reduce monthly electricity costs in closed-loop with respect to reference trajectories generated by directly optimizing the electricity cost function over the prediction horizon or by tracking an ideal grid import curve in a majority of the cases.
comment: 18 pages, 4 tables, Manuscript under review
☆ Data-Driven Intrusion Detection in Vehicles: Integrating Unscented Kalman Filter (UKF) with Machine Learning
In the realm of Cyber-Physical System (CPS), accurately identifying attacks without detailed knowledge of the system's parameters remains a major challenge. When it comes to Advanced Driver Assistance Systems (ADAS), identifying the parameters of vehicle dynamics could be impractical or prohibitively costly. To tackle this challenge, we propose a novel framework for attack detection in vehicles that effectively addresses the uncertainty in their dynamics. Our method integrates the widely used Unscented Kalman Filter (UKF), a well-known technique for nonlinear state estimation in dynamic systems, with machine learning algorithms. This combination eliminates the requirement for precise vehicle modeling in the detection process, enhancing the system's adaptability and accuracy. To validate the efficacy and practicality of our proposed framework, we conducted extensive comparative simulations by introducing Denial of Service (DoS) attacks on the vehicle systems' sensors and actuators.
comment: Accepted in Proceedings of the 21st International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO; ISBN 978-989-758-717-7, SciTePress, pages 714-723. DOI: 10.5220/0013063900003822
☆ The Effect of Network Topology on the Equilibria of Influence-Opinion Games
Online social networks exert a powerful influence on public opinion. Adversaries weaponize these networks to manipulate discourse, underscoring the need for more resilient social networks. To this end, we investigate the impact of network connectivity on Stackelberg equilibria in a two-player game to shape public opinion. We model opinion evolution as a repeated competitive influence-propagation process. Players iteratively inject \textit{messages} that diffuse until reaching a steady state, modeling the dispersion of two competing messages. Opinions then update according to the discounted sum of exposure to the messages. This bi-level model captures viral-media correlation effects omitted by standard opinion-dynamics models. To solve the resulting high-dimensional game, we propose a scalable, iterative algorithm based on linear-quadratic regulators that approximates local feedback Stackelberg strategies for players with limited cognition. We analyze how the network topology shapes equilibrium outcomes through experiments on synthetic networks and real Facebook data. Our results identify structural characteristics that improve a network's resilience to adversarial influence, guiding the design of more resilient social networks.
comment: 12 pages, 2 figures
☆ A Matlab-based Toolbox for Automatic EMT Modeling and Small-Signal Stability Analysis of Modern Power Systems
The intensive integration of power converters is changing the way that power systems operate, leading to the emergence of new types of dynamic phenomena and instabilities. At the same time, converters act as an interface between traditional AC grids and their more recent DC counterparts, giving rise to hybrid AC/DC networks. These conditions increase the necessity for stability analysis tools that can simultaneously account for the newly-introduced dynamic phenomena and can also be applied for the stability study of hybrid networks. This paper presents a Matlab-based toolbox for small-signal analysis of hybrid AC/DC power systems considering electromagnetic-transient (EMT) models. The toolbox allows the automatized modeling of the system from the input data and offers options for modal, impedance and passivity analyses. In the paper, the structure and internal processes of the toolbox are duly discussed, together with all its features, both main and complementary. Its capabilities for stability analysis are demonstrated via comprehensive case studies of converter-based system of various size and topology.
comment: 12 pages, 11 figures
☆ Autonomic Microservice Management via Agentic AI and MAPE-K Integration
While microservices are revolutionizing cloud computing by offering unparalleled scalability and independent deployment, their decentralized nature poses significant security and management challenges that can threaten system stability. We propose a framework based on MAPE-K, which leverages agentic AI, for autonomous anomaly detection and remediation to address the daunting task of highly distributed system management. Our framework offers practical, industry-ready solutions for maintaining robust and secure microservices. Practitioners and researchers can customize the framework to enhance system stability, reduce downtime, and monitor broader system quality attributes such as system performance level, resilience, security, and anomaly management, among others.
☆ Learning Distributed Safe Multi-Agent Navigation via Infinite-Horizon Optimal Graph Control
Distributed multi-agent navigation faces inherent challenges due to the competing requirements of maintaining safety and achieving goal-directed behavior, particularly for agents with limited sensing range operating in unknown environments with dense obstacles. Existing approaches typically project predefined goal-reaching controllers onto control barrier function (CBF) constraints, often resulting in conservative and suboptimal trade-offs between safety and goal-reaching performance. We propose an infinite-horizon CBF-constrained optimal graph control formulation for distributed safe multi-agent navigation. By deriving the analytical solution structure, we develop a novel Hamilton-Jacobi-Bellman (HJB)-based learning framework to approximate the solution. In particular, our algorithm jointly learns a CBF and a distributed control policy, both parameterized by graph neural networks (GNNs), along with a value function that robustly guides agents toward their goals. Moreover, we introduce a state-dependent parameterization of Lagrange multipliers, enabling dynamic trade-offs between safety and performance. Unlike traditional short-horizon, quadratic programming-based CBF methods, our approach leverages long-horizon optimization to proactively avoid deadlocks and navigate complex environments more effectively. Extensive simulation results demonstrate substantial improvements in safety and task success rates across various agent dynamics, with strong scalability and generalization to large-scale teams in previously unseen environments. Real-world experiments using Crazyflie drone swarms on challenging antipodal position-swapping tasks further validate the practicality, generalizability, and robustness of the proposed HJB-GNN learning framework.
☆ Linear-Quadratic Discrete-Time Dynamic Games with Unknown Dynamics
Considering linear-quadratic discrete-time games with unknown input/output/state (i/o/s) dynamics and state, we provide necessary and sufficient conditions for the existence and uniqueness of feedback Nash equilibria (FNE) in the finite-horizon game, based entirely on offline input/output data. We prove that the finite-horizon unknown-dynamics game and its corresponding known-dynamics game have the same FNEs, and provide detailed relationships between their respective FNE matrices. To simplify the computation of FNEs, we provide an invertibility condition and a corresponding algorithm that computes one FNE by solving a finite number of linear equation systems using offline data. For the infinite-horizon unknown-dynamics game, limited offline data restricts players to computing optimal strategies only over a finite horizon. We prove that the finite-horizon strategy ``watching $T$ steps into the future and moving one step now,'' which is commonly used in classical optimal control, exhibits convergence in both the FNE matrices and the total costs in the infinite-horizon unknown-dynamics game, and further provide an analysis of the convergence rate of the total cost. The corresponding algorithm for the infinite-horizon game is proposed and its efficacy is demonstrated through a non-scalar numerical example.
comment: 25 pages, 2 figures, 2 algorithms
☆ Complex Phase Analysis of Power Grid Dynamics
With an increasing share of renewable energy sources, accurate and efficient modeling of grid-forming inverters is becoming crucial for system stability. Linear methods are a powerful tool for understanding dynamics close to an operating point, but usually depend on the reference trajectory. Thus, small deviations can render linear models invalid over time, posing a significant challenge in practice, and complicating theoretical analysis. As a solution, we show that the complex phase offers a robust formulation independent of reference phases and frequencies, thus preserving invariance properties under linearization. This enables robust system identification during realistic conditions and opens the road to powerful stability analysis of inverter-based grids.
comment: IEEE PowerTech 2025
☆ A MILP-Based Solution to Multi-Agent Motion Planning and Collision Avoidance in Constrained Environments
We propose a mixed-integer linear program (MILP) for multi-agent motion planning that embeds Polytopic Action-based Motion Planning (PAAMP) into a sequence-then-solve pipeline. Region sequences confine each agent to adjacent convex polytopes, while a big-M hyperplane model enforces inter-agent separation. Collision constraints are applied only to agents sharing or neighboring a region, which reduces binary variables exponentially compared with naive formulations. An L1 path-length-plus-acceleration cost yields smooth trajectories. We prove finite-time convergence and demonstrate on representative multi-agent scenarios with obstacles that our formulation produces collision-free trajectories an order of magnitude faster than an unstructured MILP baseline.
comment: Accepted to 2025 IEEE International Conference on Automation Science and Engineering (CASE 2025)
☆ QoS-aware State-Augmented Learnable Algorithm for Wireless Coexistence Parameter Management
Efficient and fair coexistence in unlicensed spectrum is essential to support heterogeneous networks such as 5G NR-U and Wi-Fi, which often contend for shared wireless resources. We introduce a general framework for wireless Coexistence Parameter Management (CPM) based on state-augmented constrained reinforcement learning. We propose a novel algorithm, QaSAL-CPM, which incorporates state-augmentation by embedding the dual variables in the constrained optimization formulation directly into the agent's observation space. This method enables the agent to respond to constraint violations in real time while continuing to optimize a primary performance objective. Through extensive simulations of 5G NR-U and Wi-Fi coexistence scenarios, we show that QaSAL-CPM achieves reliable QoS compliance and improved policy robustness across various transmitter densities compared to previous approaches. The proposed framework offers a scalable and adaptive solution for real-time coexistence optimization in next-generation wireless networks.
comment: 13 pages, 7 figures
☆ On beam characterization of ground-based CMB radio telescopes using UAV-mounted sources: application to the QUIJOTE TFGI and plans for LSPE-Strip
The Large Scale Polarization Explorer (LSPE) project, funded by the Italian Space Agency (ASI), includes the development of LSPE-Strip, a ground-based radio telescope for observing Cosmic Microwave Background (CMB) anisotropies. LSPE-Strip, nearing its construction phase, will operate from the Teide Observatory in Tenerife, employing 49 coherent polarimeters at 43 GHz to deliver critical data on CMB anisotropies and 6 channels at 95 GHz as atmospheric monitor. On-site characterization of such advanced instruments is crucial to detect possible systematic effects, such as gain fluctuations, beam distortions, and pointing errors, that can compromise performance by introducing spurious polarizations or radiation collection from unintended directions. To address these challenges, a drone-mounted Q-band test source for on-site characterization of LSPE-Strip's polarimeter array was developed. Modern Unmanned Aerial Vehicles (UAVs) offer a flexible approach for antenna pattern measurements, yet their use in high-frequency radio astronomy is not consolidated practice. In October 2022, a UAV-based measurement campaign was conducted with the TFGI instrument on the second QUIJOTE telescope in Tenerife, in collaboration with the Instituto de Astrofisica de Canarias. This pioneering effort aimed to validate UAV-based beam characterization methods and assess QUIJOTE's performance under operational conditions. Preliminary results demonstrated high measurement accuracy, leveraging QUIJOTE's dual-receiver configuration for beam validation. These findings provide valuable insights for optimizing UAV systems in preparation for LSPE-Strip's future characterization.
☆ Data-Efficient Excavation Force Estimation for Wheel Loaders
Accurate excavation force prediction is essential for enabling autonomous operation and optimizing control strategies in earthmoving machinery. Conventional methods typically require extensive data collection or simulations across diverse soil types, limiting scalability and adaptability. This paper proposes a data-efficient framework that calibrates soil parameters using force data from the prior bucket-loading cycle. Leveraging an analytical soil-tool interaction model, the fundamental earthmoving equation (FEE), our approach uses a multi-stage optimization strategy, on soil parameters during the loading phase. These fitted parameters are then used to predict excavation forces in the upcoming digging cycle, allowing the system to adapt its control inputs without the need for extensive data collection or machine learning-based model training. The framework is validated in high-fidelity simulations using the Algoryx Dynamics engine, across multiple soil types and excavation trajectories, demonstrating accurate force predictions with root-mean-square errors of 10\% to 15\% in primary test cases. This cycle-to-cycle adaptation strategy showcases the potential for online and scalable efficient path planning for wheel loader operations.
comment: Preprint version of the paper submitted to IEEE Transaction of Vehicular Technology
☆ Enhancing Car-Following Models with Bike Dynamics for Improved Traffic Simulation
Road traffic simulations are crucial for establishing safe and efficient traffic environments. They are used to test various road applications before real-world implementation. SUMO is a well-known simulator for road networks and intermodal traffic, often used in conjunction with other tools to test various types of applications. Realistic simulations require accurate movement models for different road users, such as cars, bicycles, and buses. While realistic models are already implemented for most vehicle types, bicycles, which are essential for achieving safe and efficient traffic, can only be modeled as slow vehicles or fast pedestrians at present. This paper introduces the Realistic Bicycle Dynamics Model (RBDM), the first dedicated bicycle model for SUMO, addressing this significant gap. Leveraging real-world bicycle data from the SimRa dataset, the RBDM implements realistic speed, acceleration, and deceleration behaviors of bicycles in urban scenarios. The evaluation is conducted using the Monaco SUMO traffic scenario and a newly generated Berlin scenario in SUMO. The RBDM significantly outperforms the existing slow-vehicle approximation in SUMO, aligning more closely with real-world data. These results underscore the necessity of a realistic bicycle movement model for accurate simulations, given the significant differences in the movement profiles of bicycles, cars, and pedestrians. Furthermore, the model is tested for its ability to generalize to disparate scenarios and urban topologies, which is dependent on the manner and geographical region in which the SimRa data were gathered. In addition, recommendations are provided for how it could be adapted for use in different city topologies.
♻ ☆ eCAV: An Edge-Assisted Evaluation Platform for Connected Autonomous Vehicles
As autonomous vehicles edge closer to widespread adoption, enhancing road safety through collision avoidance and minimization of collateral damage becomes imperative. Vehicle-to-everything (V2X) technologies, which include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C), are being proposed as mechanisms to achieve this safety improvement. Simulation-based testing is crucial for early-stage evaluation of Connected Autonomous Vehicle (CAV) control systems, offering a safer and more cost-effective alternative to real-world tests. However, simulating large 3D environments with many complex single- and multi-vehicle sensors and controllers is computationally intensive. There is currently no evaluation framework that can effectively evaluate realistic scenarios involving large numbers of autonomous vehicles. We propose eCAV -- an efficient, modular, and scalable evaluation platform to facilitate both functional validation of algorithmic approaches to increasing road safety, as well as performance prediction of algorithms of various V2X technologies, including a futuristic Vehicle-to-Edge control plane and correspondingly designed control algorithms. eCAV can model up to 256 vehicles running individual control algorithms without perception enabled, which is $8\times$ more vehicles than what is possible with state-of-the-art alternatives.
♻ ☆ On the Eigenvalue Tracking of Large-Scale Systems
The paper focuses on the problem of tracking eigenvalue trajectories in large-scale power system models as system parameters vary. A continuation-based formulation is presented for tracing any single eigenvalue of interest, which supports sparse matrix representations and accommodates both explicit and semi-implicit differential-algebraic models. Key implementation aspects, such as numerical integration, matrix updates, derivative approximations, and handling defective eigenvalues, are discussed in detail and practical recommendations are duly provided. The tracking approach is demonstrated through a comprehensive case study on the IEEE 39-bus system, as well as on a realistic dynamic model of the Irish transmission system.
♻ ☆ Day-Ahead Bidding Strategies for Wind Farm Operators under a One-Price Balancing Scheme
We study day-ahead bidding strategies for wind farm operators under a one-price balancing scheme, prevalent in European electricity markets. In this setting, the profit-maximising strategy becomes an all-or-nothing strategy, aiming to take advantage of open positions in the balancing market. However, balancing prices are difficult, if not impossible, to forecast in the day-ahead stage and large open positions can affect the balancing price by changing the direction of the system imbalance. This paper addresses day-ahead bidding as a decision-making problem under uncertainty, with the objective of maximising the expected profit while reducing the imbalance risk related to the strategy. To this end, we develop a stochastic optimisation problem with explicit constraints on the positions in the balancing market, providing risk certificates, and derive an analytical solution to this problem. Moreover, we show how the price-impact of the trading strategy on the balancing market can be included in the ex-post evaluation. Using real data from the Belgian electricity market and an offshore wind farm in the North Sea, we demonstrate that the all-or-nothing strategy negatively impacts the balancing price, resulting in long-term losses for the wind farm. Our risk-constrained strategy, however, can still significantly enhance operational profit compared to traditional point-forecast bidding.
♻ ☆ Finite-Horizon Strategy in Infinite-Horizon Linear-Quadratic Discrete-Time Dynamic Games
This paper explores a finite-horizon strategy, ``watching $T$ steps into the future and moving one step now,'' in an $N$-person infinite-horizon discrete-time linear-quadratic dynamic game. The game involves linear input/output/state dynamics and quadratic cost functions with heterogeneous discount factors. For the finite-horizon version, which forms the basis of the infinite-horizon game, we analyze the structure of the coupled generalized discrete Riccati difference equations related to the feedback Nash equilibrium (FNE) and derive a sufficient condition for the uniqueness of the finite-horizon FNE. Under this condition, the FNE can be efficiently computed via the proposed algorithm. In the infinite-horizon game, assume all players adopt this finite-horizon strategy. If the iterations of the coupled equations related to the FNE converge, and the invertibility and stability conditions hold, we prove the convergence of each player's total cost under the finite-horizon strategy, even when players use individual prediction horizons. Furthermore, we provide an explicit upper bound on the cost difference between the finite-horizon strategy and the infinite-horizon FNE associated with the limiting matrices, expressed via the distance between their feedback strategy matrices. This bound vanishes as $T$ tends to infinity, implying convergence to the infinite-horizon FNE cost. A non-scalar numerical example illustrates the convergence behavior.
comment: 10 pages, 2 figures
♻ ☆ Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
comment: Accepted for publication at Transportation Research Part C: Emerging Technologies
♻ ☆ Release Date Optimization Using Clearing Functions in MRP
This paper integrates a clearing function (CF)-based release planning approach into Material Requirements Planning (MRP) to address its limitations in modeling capacity constraints and dynamic lead times. The proposed CF-based optimization model replaces MRP's backward scheduling step while preserving its overall structure. Performance is evaluated through simulation experiments on two flow shop systems: a compact three-level system with three shared resources (PS1) and a more complex four-stage system with 32 end items and 16 machines (PS2). The experiments explore a range of demand uncertainties and utilization levels. Results show that CF-based planning consistently reduces total costs and tardiness while improving schedule feasibility, particularly under imperfect forecasts. These findings demonstrate the potential of CFs to enhance MRP by introducing workload responsiveness and dynamic adaptability, without compromising computational tractability.
♻ ☆ Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems
We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.
comment: 30 pages; 4 figures
♻ ☆ Cooperative Bearing-Only Target Pursuit via Multiagent Reinforcement Learning: Design and Experiment IROS 2025
This paper addresses the multi-robot pursuit problem for an unknown target, encompassing both target state estimation and pursuit control. First, in state estimation, we focus on using only bearing information, as it is readily available from vision sensors and effective for small, distant targets. Challenges such as instability due to the nonlinearity of bearing measurements and singularities in the two-angle representation are addressed through a proposed uniform bearing-only information filter. This filter integrates multiple 3D bearing measurements, provides a concise formulation, and enhances stability and resilience to target loss caused by limited field of view (FoV). Second, in target pursuit control within complex environments, where challenges such as heterogeneity and limited FoV arise, conventional methods like differential games or Voronoi partitioning often prove inadequate. To address these limitations, we propose a novel multiagent reinforcement learning (MARL) framework, enabling multiple heterogeneous vehicles to search, localize, and follow a target while effectively handling those challenges. Third, to bridge the sim-to-real gap, we propose two key techniques: incorporating adjustable low-level control gains in training to replicate the dynamics of real-world autonomous ground vehicles (AGVs), and proposing spectral-normalized RL algorithms to enhance policy smoothness and robustness. Finally, we demonstrate the successful zero-shot transfer of the MARL controllers to AGVs, validating the effectiveness and practical feasibility of our approach. The accompanying video is available at https://youtu.be/HO7FJyZiJ3E.
comment: To appear in the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ Estimating Spatially-Dependent GPS Errors Using a Swarm of Robots
External factors, including urban canyons and adversarial interference, can lead to Global Positioning System (GPS) inaccuracies that vary as a function of the position in the environment. This study addresses the challenge of estimating a static, spatially-varying error function using a team of robots. We introduce a State Bias Estimation Algorithm (SBE) whose purpose is to estimate the GPS biases. The central idea is to use sensed estimates of the range and bearing to the other robots in the team to estimate changes in bias across the environment. A set of drones moves in a 2D environment, each sampling data from GPS, range, and bearing sensors. The biases calculated by the SBE at estimated positions are used to train a Gaussian Process Regression (GPR) model. We use a Sparse Gaussian process-based Informative Path Planning (IPP) algorithm that identifies high-value regions of the environment for data collection. The swarm plans paths that maximize information gain in each iteration, further refining their understanding of the environment's positional bias landscape. We evaluated SBE and IPP in simulation and compared the IPP methodology to an open-loop strategy.
comment: 6 pages, 7 figures, 2025 IEEE 21st International Conference on Automation Science and Engineering
♻ ☆ Generalized Ellipsoids
We introduce a family of symmetric convex bodies called generalized ellipsoids of degree $d$ (GE-$d$s), with ellipsoids corresponding to the case of $d=0$. Generalized ellipsoids (GEs) retain many geometric, algebraic, and algorithmic properties of ellipsoids. We show that the conditions that the parameters of a GE must satisfy can be checked in strongly polynomial time, and that one can search for GEs of a given degree by solving a semidefinite program whose size grows only linearly with dimension. We give an example of a GE which does not have a second-order cone representation, but show that every GE has a semidefinite representation whose size depends linearly on both its dimension and degree. In terms of expressiveness, we prove that for any integer $m\geq 2$, every symmetric full-dimensional polytope with $2m$ facets and every intersection of $m$ co-centered ellipsoids can be represented exactly as a GE-$d$ with $d \leq 2m-3$. Using this result, we show that every symmetric convex body can be approximated arbitrarily well by a GE-$d$ and we quantify the quality of the approximation as a function of the degree $d$. Finally, we present applications of GEs to several areas, such as time-varying portfolio optimization, stability analysis of switched linear systems, robust-to-dynamics optimization, and robust polynomial regression.