Back
Robotics 17
RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
This work proposes a retrieve-and-transfer framework for zero-shot robotic manipulation, dubbed RAM, featuring generalizability across various objects, environments, and embodiments. Unlike existing approaches that learn manipulation from expensive in-domain demonstrations, RAM capitalizes on a retrieval-based affordance transfer paradigm to acquire versatile manipulation capabilities from abundant out-of-domain data. First, RAM extracts unified affordance at scale from diverse sources of demonstrations including robotic data, human-object interaction (HOI) data, and custom data to construct a comprehensive affordance memory. Then given a language instruction, RAM hierarchically retrieves the most similar demonstration from the affordance memory and transfers such out-of-domain 2D affordance to in-domain 3D executable affordance in a zero-shot and embodiment-agnostic manner. Extensive simulation and real-world evaluations demonstrate that our RAM consistently outperforms existing works in diverse daily tasks. Additionally, RAM shows significant potential for downstream applications such as automatic and efficient data collection, one-shot visual imitation, and LLM/VLM-integrated long-horizon manipulation. For more details, please check our website at https://yxkryptonite.github.io/RAM/.
☆ A Tree-based Next-best-trajectory Method for 3D UAV Exploration
This work presents a fully integrated tree-based combined exploration-planning algorithm: Exploration-RRT (ERRT). The algorithm is focused on providing real-time solutions for local exploration in a fully unknown and unstructured environment while directly incorporating exploratory behavior, robot-safe path planning, and robot actuation into the central problem. ERRT provides a complete sampling and tree-based solution for evaluating "where to go next" by considering a trade-off between maximizing information gain, and minimizing the distances travelled and the robot actuation along the path. The complete scheme is evaluated in extensive simulations, comparisons, as well as real-world field experiments in constrained and narrow subterranean and GPS-denied environments. The framework is fully ROS-integrated, straight-forward to use, and we open-source it at https://github.com/LTU-RAI/ExplorationRRT.
comment: 19 pages, 29 figures Transactions on Robotics
☆ Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
Navigating unsignalized intersections in urban environments poses a complex challenge for self-driving vehicles, where issues such as view obstructions, unpredictable pedestrian crossings, and diverse traffic participants demand a great focus on crash prevention. In this paper, we propose a novel state representation for Reinforcement Learning (RL) agents centered around the information perceivable by an autonomous agent, enabling the safe navigation of previously uncharted road maps. Our approach surpasses several baseline models by a sig nificant margin in terms of safety and energy consumption metrics. These improvements are achieved while maintaining a competitive average travel speed. Our findings pave the way for more robust and reliable autonomous navigation strategies, promising safer and more efficient urban traffic environments.
☆ EAGERx: Graph-Based Framework for Sim2real Robot Learning
Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics due to its potential to efficiently handle complex tasks. The sim2real approach faces challenges due to mismatches between simulation and reality. These discrepancies arise from inaccuracies in modeling physical phenomena and asynchronous control, among other factors. To this end, we introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning. It can support various simulators and aids in integrating state, action and time-scale abstractions to facilitate learning. EAGERx's integrated delay simulation, domain randomization features, and proposed synchronization algorithm contribute to narrowing the sim2real gap. We demonstrate (in the context of robot learning and beyond) the efficacy of EAGERx in accommodating diverse robotic systems and maintaining consistent simulation behavior. EAGERx is open source and its code is available at https://eagerx.readthedocs.io.
comment: For an introductory video, see http://www.youtube.com/watch?v=D0CQNnTT010 . The documentation, tutorials, and our open-source code can be found at http://eagerx.readthedocs.io
☆ Gradient-based Regularization for Action Smoothness in Robotic Control with Reinforcement Learning IROS
Deep Reinforcement Learning (DRL) has achieved remarkable success, ranging from complex computer games to real-world applications, showing the potential for intelligent agents capable of learning in dynamic environments. However, its application in real-world scenarios presents challenges, including the jerky problem, in which jerky trajectories not only compromise system safety but also increase power consumption and shorten the service life of robotic and autonomous systems. To address jerky actions, a method called conditioning for action policy smoothness (CAPS) was proposed by adding regularization terms to reduce the action changes. This paper further proposes a novel method, named Gradient-based CAPS (Grad-CAPS), that modifies CAPS by reducing the difference in the gradient of action and then uses displacement normalization to enable the agent to adapt to invariant action scales. Consequently, our method effectively reduces zigzagging action sequences while enhancing policy expressiveness and the adaptability of our method across diverse scenarios and environments. In the experiments, we integrated Grad-CAPS with different reinforcement learning algorithms and evaluated its performance on various robotic-related tasks in DeepMind Control Suite and OpenAI Gym environments. The results demonstrate that Grad-CAPS effectively improves performance while maintaining a comparable level of smoothness compared to CAPS and Vanilla agents.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2024
☆ Corki: Enabling Real-time Embodied AI Robots via Algorithm-Architecture Co-Design
Embodied AI robots have the potential to fundamentally improve the way human beings live and manufacture. Continued progress in the burgeoning field of using large language models to control robots depends critically on an efficient computing substrate. In particular, today's computing systems for embodied AI robots are designed purely based on the interest of algorithm developers, where robot actions are divided into a discrete frame-basis. Such an execution pipeline creates high latency and energy consumption. This paper proposes Corki, an algorithm-architecture co-design framework for real-time embodied AI robot control. Our idea is to decouple LLM inference, robotic control and data communication in the embodied AI robots compute pipeline. Instead of predicting action for one single frame, Corki predicts the trajectory for the near future to reduce the frequency of LLM inference. The algorithm is coupled with a hardware that accelerates transforming trajectory into actual torque signals used to control robots and an execution pipeline that parallels data communication with computation. Corki largely reduces LLM inference frequency by up to 8.0x, resulting in up to 3.6x speed up. The success rate improvement can be up to 17.3%. Code is provided for re-implementation. https://github.com/hyy0613/Corki
☆ WOMD-Reasoning: A Large-Scale Language Dataset for Interaction and Driving Intentions Reasoning
We propose Waymo Open Motion Dataset-Reasoning (WOMD-Reasoning), a language annotation dataset built on WOMD, with a focus on describing and reasoning interactions and intentions in driving scenarios. Previous language datasets primarily captured interactions caused by close distances. However, interactions induced by traffic rules and human intentions, which can occur over long distances, are yet sufficiently covered, despite being very common and more challenging for prediction or planning models to understand. Therefore, our WOMD-Reasoning focuses extensively on these interactions, providing a total of 409k Q&As for varying types of interactions. Additionally, WOMD-Reasoning presents by far the largest Q&A dataset on real-world driving scenarios, with around 3 million Q&As covering various topics of autonomous driving from map descriptions, motion status descriptions, to narratives and analyses of agents' interactions, behaviors, and intentions. This extensive textual information enables fine-tuning driving-related Large Language Models (LLMs) for a wide range of applications like scene description, prediction, planning, etc. By incorporating interaction and intention language from WOMD-Reasoning, we see significant enhancements in the performance of the state-of-the-art trajectory prediction model, Multipath++, with improvements of 10.14% in $MR_6$ and 6.90% in $minFDE_6$, proving the effectiveness of WOMD-Reasoning. We hope WOMD-Reasoning would empower LLMs in driving to offer better interaction understanding and behavioral reasoning. The dataset is available on https://waymo.com/open/download .
☆ PA-LOCO: Learning Perturbation-Adaptive Locomotion for Quadruped Robots IROS 2024
Numerous locomotion controllers have been designed based on Reinforcement Learning (RL) to facilitate blind quadrupedal locomotion traversing challenging terrains. Nevertheless, locomotion control is still a challenging task for quadruped robots traversing diverse terrains amidst unforeseen disturbances. Recently, privileged learning has been employed to learn reliable and robust quadrupedal locomotion over various terrains based on a teacher-student architecture. However, its one-encoder structure is not adequate in addressing external force perturbations. The student policy would experience inevitable performance degradation due to the feature embedding discrepancy between the feature encoder of the teacher policy and the one of the student policy. Hence, this paper presents a privileged learning framework with multiple feature encoders and a residual policy network for robust and reliable quadruped locomotion subject to various external perturbations. The multi-encoder structure can decouple latent features from different privileged information, ultimately leading to enhanced performance of the learned policy in terms of robustness, stability, and reliability. The efficiency of the proposed feature encoding module is analyzed in depth using extensive simulation data. The introduction of the residual policy network helps mitigate the performance degradation experienced by the student policy that attempts to clone the behaviors of a teacher policy. The proposed framework is evaluated on a Unitree GO1 robot, showcasing its performance enhancement over the state-of-the-art privileged learning algorithm through extensive experiments conducted on diverse terrains. Ablation studies are conducted to illustrate the efficiency of the residual policy network.
comment: 8 pages, Accepted by IROS 2024
☆ Safe MPC Alignment with Human Directional Feedback
In safety-critical robot planning or control, manually specifying safety constraints or learning them from demonstrations can be challenging. In this paper, we propose a certifiable alignment method for a robot to learn a safety constraint in its model predictive control (MPC) policy with human online directional feedback. To our knowledge, it is the first method to learn safety constraints from human feedback. The proposed method is based on an empirical observation: human directional feedback, when available, tends to guide the robot toward safer regions. The method only requires the direction of human feedback to update the learning hypothesis space. It is certifiable, providing an upper bound on the total number of human feedback in the case of successful learning of safety constraints, or declaring the misspecification of the hypothesis space, i.e., the true implicit safety constraint cannot be found within the specified hypothesis space. We evaluated the proposed method using numerical examples and user studies in two developed simulation games. Additionally, we implemented and tested the proposed method on a real-world Franka robot arm performing mobile water-pouring tasks in a user study. The simulation and experimental results demonstrate the efficacy and efficiency of our method, showing that it enables a robot to successfully learn safety constraints with a small handful (tens) of human directional corrections.
comment: 18 pages, submission to T-RO
♻ ☆ Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis ECCV 2024
Accurate reconstruction of complex dynamic scenes from just a single viewpoint continues to be a challenging task in computer vision. Current dynamic novel view synthesis methods typically require videos from many different camera viewpoints, necessitating careful recording setups, and significantly restricting their utility in the wild as well as in terms of embodied AI applications. In this paper, we propose $\textbf{GCD}$, a controllable monocular dynamic view synthesis pipeline that leverages large-scale diffusion priors to, given a video of any scene, generate a synchronous video from any other chosen perspective, conditioned on a set of relative camera pose parameters. Our model does not require depth as input, and does not explicitly model 3D scene geometry, instead performing end-to-end video-to-video translation in order to achieve its goal efficiently. Despite being trained on synthetic multi-view video data only, zero-shot real-world generalization experiments show promising results in multiple domains, including robotics, object permanence, and driving environments. We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
comment: Accepted to ECCV 2024. Project webpage is available at: https://gcd.cs.columbia.edu/
♻ ☆ DexDiffuser: Generating Dexterous Grasps with Diffusion Models
We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). The experiment results demonstrate that DexDiffuser consistently outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 9.12% and 19.44% higher grasp success rate in simulation and real robot experiments, respectively. Supplementary materials are available at https://yulihn.github.io/DexDiffuser_page/
comment: 7 pages
♻ ☆ Towards Tight Convex Relaxations for Contact-Rich Manipulation
We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.
♻ ☆ CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor IROS
Navigation of a mobile robot is conditioned on the knowledge of its pose. In observer-based localisation configurations its initial pose may not be knowable in advance, leading to the need of its estimation. Solutions to the problem of global localisation are either robust against noise and environment arbitrariness but require motion and time, which may (need to) be economised on, or require minimal estimation time but assume environmental structure, may be sensitive to noise, and demand preprocessing and tuning. This article proposes a method that retains the strengths and avoids the weaknesses of the two approaches. The method leverages properties of the Cumulative Absolute Error per Ray (CAER) metric with respect to the errors of pose hypotheses of a 2D LIDAR sensor, and utilises scan--to--map-scan matching for fine(r) pose estimations. A large number of tests, in real and simulated conditions, involving disparate environments and sensor properties, illustrate that the proposed method outperforms state-of-the-art methods of both classes of solutions in terms of pose discovery rate and execution time. The source code is available for download.
comment: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ Skill Q-Network: Learning Adaptive Skill Ensemble for Mapless Navigation in Unknown Environments IROS
This paper focuses on the acquisition of mapless navigation skills within unknown environments. We introduce the Skill Q-Network (SQN), a novel reinforcement learning method featuring an adaptive skill ensemble mechanism. Unlike existing methods, our model concurrently learns a high-level skill decision process alongside multiple low-level navigation skills, all without the need for prior knowledge. Leveraging a tailored reward function for mapless navigation, the SQN is capable of learning adaptive maneuvers that incorporate both exploration and goal-directed skills, enabling effective navigation in new environments. Our experiments demonstrate that our SQN can effectively navigate complex environments, exhibiting a 40% higher performance compared to baseline models. Without explicit guidance, SQN discovers how to combine low-level skill policies, showcasing both goal-directed navigations to reach destinations and exploration maneuvers to escape from local minimum regions in challenging scenarios. Remarkably, our adaptive skill ensemble method enables zero-shot transfer to out-of-distribution domains, characterized by unseen observations from non-convex obstacles or uneven, subterranean-like environments.
comment: 8 pages, 8 figures, accepted at the International Conference on Intelligent Robots and Systems (IROS) 2024
♻ ☆ Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning
Autonomous robots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life. Adaptive online path planning in 3D environments is challenging due to the large set of valid actions and the presence of unknown occlusions. To address these issues, we propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments. A key aspect of our approach is a dynamically constructed graph that restricts planning actions local to the robot, allowing us to react to newly discovered static obstacles and targets of interest. For replanning, we propose a new reward function that balances between exploring the unknown environment and exploiting online-discovered targets of interest. Our experiments show that our method enables more efficient target discovery compared to state-of-the-art learning and non-learning baselines. We also showcase our approach for orchard monitoring using an unmanned aerial vehicle in a photorealistic simulator. We open-source our code and model at: https://github.com/dmar-bonn/ipp-rl-3d.
comment: 8 pages, 6 figures
♻ ☆ HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution will be openly available on \href{GitHub}{https://github.com/jiamiya/HOPE}.
comment: 10 pages, 6 tables, 5 figures, 4 page appendix
♻ ☆ ASY-VRNet: Waterway Panoptic Driving Perception Model based on Asymmetric Fair Fusion of Vision and 4D mmWave Radar IROS 2024
Panoptic Driving Perception (PDP) is critical for the autonomous navigation of Unmanned Surface Vehicles (USVs). A PDP model typically integrates multiple tasks, necessitating the simultaneous and robust execution of various perception tasks to facilitate downstream path planning. The fusion of visual and radar sensors is currently acknowledged as a robust and cost-effective approach. However, most existing research has primarily focused on fusing visual and radar features dedicated to object detection or utilizing a shared feature space for multiple tasks, neglecting the individual representation differences between various tasks. To address this gap, we propose a pair of Asymmetric Fair Fusion (AFF) modules with favorable explainability designed to efficiently interact with independent features from both visual and radar modalities, tailored to the specific requirements of object detection and semantic segmentation tasks. The AFF modules treat image and radar maps as irregular point sets and transform these features into a crossed-shared feature space for multitasking, ensuring equitable treatment of vision and radar point cloud features. Leveraging AFF modules, we propose a novel and efficient PDP model, ASY-VRNet, which processes image and radar features based on irregular super-pixel point sets. Additionally, we propose an effective multitask learning method specifically designed for PDP models. Compared to other lightweight models, ASY-VRNet achieves state-of-the-art performance in object detection, semantic segmentation, and drivable-area segmentation on the WaterScenes benchmark. Our project is publicly available at https://github.com/GuanRunwei/ASY-VRNet.
comment: Accepted by IROS 2024
Vision 123
☆ LaRa: Efficient Large-Baseline Radiance Fields
Radiance field methods have achieved photorealistic novel view synthesis and geometry reconstruction. But they are mostly applied in per-scene optimization or small-baseline settings. While several recent works investigate feed-forward reconstruction with large baselines by utilizing transformers, they all operate with a standard global attention mechanism and hence ignore the local nature of 3D reconstruction. We propose a method that unifies local and global reasoning in transformer layers, resulting in improved quality and faster convergence. Our model represents scenes as Gaussian Volumes and combines this with an image encoder and Group Attention Layers for efficient feed-forward reconstruction. Experimental results demonstrate that our model, trained for two days on four GPUs, demonstrates high fidelity in reconstructing 360° radiance fields, and robustness to zero-shot and out-of-domain testing.
☆ VCoME: Verbal Video Composition with Multimodal Editing Effects
Verbal videos, featuring voice-overs or text overlays, provide valuable content but present significant challenges in composition, especially when incorporating editing effects to enhance clarity and visual appeal. In this paper, we introduce the novel task of verbal video composition with editing effects. This task aims to generate coherent and visually appealing verbal videos by integrating multimodal editing effects across textual, visual, and audio categories. To achieve this, we curate a large-scale dataset of video effects compositions from publicly available sources. We then formulate this task as a generative problem, involving the identification of appropriate positions in the verbal content and the recommendation of editing effects for these positions. To address this task, we propose VCoME, a general framework that employs a large multimodal model to generate editing effects for video composition. Specifically, VCoME takes in the multimodal video context and autoregressively outputs where to apply effects within the verbal content and which effects are most appropriate for each position. VCoME also supports prompt-based control of composition density and style, providing substantial flexibility for diverse applications. Through extensive quantitative and qualitative evaluations, we clearly demonstrate the effectiveness of VCoME. A comprehensive user study shows that our method produces videos of professional quality while being 85$\times$ more efficient than professional editors.
RAM: Retrieval-Based Affordance Transfer for Generalizable Zero-Shot Robotic Manipulation
This work proposes a retrieve-and-transfer framework for zero-shot robotic manipulation, dubbed RAM, featuring generalizability across various objects, environments, and embodiments. Unlike existing approaches that learn manipulation from expensive in-domain demonstrations, RAM capitalizes on a retrieval-based affordance transfer paradigm to acquire versatile manipulation capabilities from abundant out-of-domain data. First, RAM extracts unified affordance at scale from diverse sources of demonstrations including robotic data, human-object interaction (HOI) data, and custom data to construct a comprehensive affordance memory. Then given a language instruction, RAM hierarchically retrieves the most similar demonstration from the affordance memory and transfers such out-of-domain 2D affordance to in-domain 3D executable affordance in a zero-shot and embodiment-agnostic manner. Extensive simulation and real-world evaluations demonstrate that our RAM consistently outperforms existing works in diverse daily tasks. Additionally, RAM shows significant potential for downstream applications such as automatic and efficient data collection, one-shot visual imitation, and LLM/VLM-integrated long-horizon manipulation. For more details, please check our website at https://yxkryptonite.github.io/RAM/.
☆ Enhancing Vehicle Re-identification and Matching for Weaving Analysis
Vehicle weaving on highways contributes to traffic congestion, raises safety issues, and underscores the need for sophisticated traffic management systems. Current tools are inadequate in offering precise and comprehensive data on lane-specific weaving patterns. This paper introduces an innovative method for collecting non-overlapping video data in weaving zones, enabling the generation of quantitative insights into lane-specific weaving behaviors. Our experimental results confirm the efficacy of this approach, delivering critical data that can assist transportation authorities in enhancing traffic control and roadway infrastructure.
☆ Embracing Massive Medical Data MICCAI 2024
As massive medical data become available with an increasing number of scans, expanding classes, and varying sources, prevalent training paradigms -- where AI is trained with multiple passes over fixed, finite datasets -- face significant challenges. First, training AI all at once on such massive data is impractical as new scans/sources/classes continuously arrive. Second, training AI continuously on new scans/sources/classes can lead to catastrophic forgetting, where AI forgets old data as it learns new data, and vice versa. To address these two challenges, we propose an online learning method that enables training AI from massive medical data. Instead of repeatedly training AI on randomly selected data samples, our method identifies the most significant samples for the current AI model based on their data uniqueness and prediction uncertainty, then trains the AI on these selective data samples. Compared with prevalent training paradigms, our method not only improves data efficiency by enabling training on continual data streams, but also mitigates catastrophic forgetting by selectively training AI on significant data samples that might otherwise be forgotten, outperforming by 15% in Dice score for multi-organ and tumor segmentation. The code is available at https://github.com/MrGiovanni/OnlineLearning
comment: Accepted to MICCAI 2024
☆ Efficient Betti Matching Enables Topology-Aware 3D Segmentation via Persistent Homology
In this work, we propose an efficient algorithm for the calculation of the Betti matching, which can be used as a loss function to train topology aware segmentation networks. Betti matching loss builds on techniques from topological data analysis, specifically persistent homology. A major challenge is the computational cost of computing persistence barcodes. In response to this challenge, we propose a new, highly optimized implementation of Betti matching, implemented in C++ together with a python interface, which achieves significant speedups compared to the state-of-the-art implementation Cubical Ripser. We use Betti matching 3D to train segmentation networks with the Betti matching loss and demonstrate improved topological correctness of predicted segmentations across several datasets. The source code is available at https://github.com/nstucki/Betti-Matching-3D.
☆ Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge
In recent years, multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets, enabling them to generally understand images well. However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs, limiting their ability to answer questions requiring an understanding of detailed or localized visual elements. Drawing inspiration from the Retrieval-Augmented Generation (RAG) concept, this paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models (e.g., instance segmentation/OCR models), into MLLMs. This is a promising yet underexplored direction for enhancing MLLMs' performance. Our approach diverges from concurrent works, which transform external knowledge into additional text prompts, necessitating the model to indirectly learn the correspondence between visual content and text coordinates. Instead, we propose embedding fine-grained knowledge information directly into a spatial embedding map as a visual prompt. This design can be effortlessly incorporated into various MLLMs, such as LLaVA and Mipha, considerably improving their visual understanding performance. Through rigorous experiments, we demonstrate that our method can enhance MLLM performance across nine benchmarks, amplifying their fine-grained context-aware capabilities.
☆ Is plantar thermography a valid digital biomarker for characterising diabetic foot ulceration risk?
Background: In the absence of prospective data on diabetic foot ulcers (DFU), cross-sectional associations with causal risk factors (peripheral neuropathy, and peripheral arterial disease (PAD)) could be used to establish the validity of plantar thermography for DFU risk stratification. Methods: First, we investigated the associations between the intrinsic clusters of plantar thermographic images with several DFU risk factors using an unsupervised deep-learning framework. We then studied associations between obtained thermography clusters and DFU risk factors. Second, to identify those associations with predictive power, we used supervised learning to train Convolutional Neural Network (CNN) regression/classification models that predicted the risk factor based on the thermograph (and visual) input. Findings: Our dataset comprised 282 thermographs from type 2 diabetes mellitus patients (aged 56.31 +- 9.18 years, 51.42 % males). On clustering, we found two overlapping clusters (silhouette score = 0.10, indicating weak separation). There was strong evidence for associations between assigned clusters and several factors related to diabetic foot ulceration such as peripheral neuropathy, PAD, number of diabetes complications, and composite DFU risk prediction scores such as Martins-Mendes, PODUS-2020, and SIGN. However, models predicting said risk factors had poor performances. Interpretation: The strong associations between intrinsic thermography clusters and several DFU risk factors support the validity of using thermography for characterising DFU risk. However, obtained associations did not prove to be predictive, likely due to, spectrum bias, or because thermography and classical risk factors characterise incompletely overlapping portions of the DFU risk construct. Our findings highlight the challenges in standardising ground truths when defining novel digital biomarkers.
comment: 13 pages, 2 Figures, 1 Table. Supplementary files and link to code to be uploaded
Unsupervised 4D Cardiac Motion Tracking with Spatiotemporal Optical Flow Networks
Cardiac motion tracking from echocardiography can be used to estimate and quantify myocardial motion within a cardiac cycle. It is a cost-efficient and effective approach for assessing myocardial function. However, ultrasound imaging has the inherent characteristics of spatially low resolution and temporally random noise, which leads to difficulties in obtaining reliable annotation. Thus it is difficult to perform supervised learning for motion tracking. In addition, there is no end-to-end unsupervised method currently in the literature. This paper presents a motion tracking method where unsupervised optical flow networks are designed with spatial reconstruction loss and temporal-consistency loss. Our proposed loss functions make use of the pair-wise and temporal correlation to estimate cardiac motion from noisy background. Experiments using a synthetic 4D echocardiography dataset has shown the effectiveness of our approach, and its superiority over existing methods on both accuracy and running speed. To the best of our knowledge, this is the first work performed that uses unsupervised end-to-end deep learning optical flow network for 4D cardiac motion tracking.
☆ SAM Fewshot Finetuning for Anatomical Segmentation in Medical Images
We propose a straightforward yet highly effective few-shot fine-tuning strategy for adapting the Segment Anything (SAM) to anatomical segmentation tasks in medical images. Our novel approach revolves around reformulating the mask decoder within SAM, leveraging few-shot embeddings derived from a limited set of labeled images (few-shot collection) as prompts for querying anatomical objects captured in image embeddings. This innovative reformulation greatly reduces the need for time-consuming online user interactions for labeling volumetric images, such as exhaustively marking points and bounding boxes to provide prompts slice by slice. With our method, users can manually segment a few 2D slices offline, and the embeddings of these annotated image regions serve as effective prompts for online segmentation tasks. Our method prioritizes the efficiency of the fine-tuning process by exclusively training the mask decoder through caching mechanisms while keeping the image encoder frozen. Importantly, this approach is not limited to volumetric medical images, but can generically be applied to any 2D/3D segmentation task. To thoroughly evaluate our method, we conducted extensive validation on four datasets, covering six anatomical segmentation tasks across two modalities. Furthermore, we conducted a comparative analysis of different prompting options within SAM and the fully-supervised nnU-Net. The results demonstrate the superior performance of our method compared to SAM employing only point prompts (approximately 50% improvement in IoU) and performs on-par with fully supervised methods whilst reducing the requirement of labeled data by at least an order of magnitude.
comment: 9 pages, Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024
Semi-Supervised Segmentation via Embedding Matching
Deep convolutional neural networks are widely used in medical image segmentation but require many labeled images for training. Annotating three-dimensional medical images is a time-consuming and costly process. To overcome this limitation, we propose a novel semi-supervised segmentation method that leverages mostly unlabeled images and a small set of labeled images in training. Our approach involves assessing prediction uncertainty to identify reliable predictions on unlabeled voxels from the teacher model. These voxels serve as pseudo-labels for training the student model. In voxels where the teacher model produces unreliable predictions, pseudo-labeling is carried out based on voxel-wise embedding correspondence using reference voxels from labeled images. We applied this method to automate hip bone segmentation in CT images, achieving notable results with just 4 CT scans. The proposed approach yielded a Hausdorff distance with 95th percentile (HD95) of 3.30 and IoU of 0.929, surpassing existing methods achieving HD95 (4.07) and IoU (0.927) at their best.
comment: 13 pages, MIDL2024 oral
☆ OneRestore: A Universal Restoration Framework for Composite Degradation
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow. Despite this reality, existing restoration methods typically target isolated degradation types, thereby falling short in environments where multiple degrading factors coexist. To bridge this gap, our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios. In this context, we propose OneRestore, a novel transformer-based framework designed for adaptive, controllable scene restoration. The proposed framework leverages a unique cross-attention mechanism, merging degraded scene descriptors with image features, allowing for nuanced restoration. Our model allows versatile input scene descriptors, ranging from manual text embeddings to automatic extractions based on visual attributes. Our methodology is further enhanced through a composite degradation restoration loss, using extra degraded images as negative samples to fortify model constraints. Comparative results on synthetic and real-world datasets demonstrate OneRestore as a superior solution, significantly advancing the state-of-the-art in addressing complex, composite degradations.
☆ CountGD: Multi-Modal Open-World Counting
The goal of this paper is to improve the generality and accuracy of open-vocabulary object counting in images. To improve the generality, we repurpose an open-vocabulary detection foundation model (GroundingDINO) for the counting task, and also extend its capabilities by introducing modules to enable specifying the target object to count by visual exemplars. In turn, these new capabilities - being able to specify the target object by multi-modalites (text and exemplars) - lead to an improvement in counting accuracy. We make three contributions: First, we introduce the first open-world counting model, CountGD, where the prompt can be specified by a text description or visual exemplars or both; Second, we show that the performance of the model significantly improves the state of the art on multiple counting benchmarks - when using text only, CountGD is comparable to or outperforms all previous text-only works, and when using both text and visual exemplars, we outperform all previous models; Third, we carry out a preliminary study into different interactions between the text and visual exemplar prompts, including the cases where they reinforce each other and where one restricts the other. The code and an app to test the model are available at https://www.robots.ox.ac.uk/~vgg/research/countgd/.
☆ Isomorphic Pruning for Vision Models
Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures. However, assessing the relative importance of different sub-structures remains a significant challenge, particularly in advanced vision models featuring novel mechanisms and architectures like self-attention, depth-wise convolutions, or residual connections. These heterogeneous substructures usually exhibit diverged parameter scales, weight distributions, and computational topology, introducing considerable difficulty to importance comparison. To overcome this, we present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures such as Vision Transformers and CNNs, and delivers competitive performance across different model sizes. Isomorphic Pruning originates from an observation that, when evaluated under a pre-defined importance criterion, heterogeneous sub-structures demonstrate significant divergence in their importance distribution, as opposed to isomorphic structures that present similar importance patterns. This inspires us to perform isolated ranking and comparison on different types of sub-structures for more reliable pruning. Our empirical results on ImageNet-1K demonstrate that Isomorphic Pruning surpasses several pruning baselines dedicatedly designed for Transformers or CNNs. For instance, we improve the accuracy of DeiT-Tiny from 74.52% to 77.50% by pruning an off-the-shelf DeiT-Base model. And for ConvNext-Tiny, we enhanced performance from 82.06% to 82.18%, while reducing the number of parameters and memory usage. Code is available at \url{https://github.com/VainF/Isomorphic-Pruning}.
☆ PartCraft: Crafting Creative Objects by Parts ECCV 2024
This paper propels creative control in generative visual AI by allowing users to "select". Departing from traditional text or sketch-based methods, we for the first time allow users to choose visual concepts by parts for their creative endeavors. The outcome is fine-grained generation that precisely captures selected visual concepts, ensuring a holistically faithful and plausible result. To achieve this, we first parse objects into parts through unsupervised feature clustering. Then, we encode parts into text tokens and introduce an entropy-based normalized attention loss that operates on them. This loss design enables our model to learn generic prior topology knowledge about object's part composition, and further generalize to novel part compositions to ensure the generation looks holistically faithful. Lastly, we employ a bottleneck encoder to project the part tokens. This not only enhances fidelity but also accelerates learning, by leveraging shared knowledge and facilitating information exchange among instances. Visual results in the paper and supplementary material showcase the compelling power of PartCraft in crafting highly customized, innovative creations, exemplified by the "charming" and creative birds. Code is released at https://github.com/kamwoh/partcraft.
comment: ECCV 2024. arXiv admin note: substantial text overlap with arXiv:2311.15477
☆ AWT: Transferring Vision-Language Models via Augmentation, Weighting, and Transportation
Pre-trained vision-language models (VLMs) have shown impressive results in various visual classification tasks. However, we often fail to fully unleash their potential when adapting them for new concept understanding due to limited information on new classes. To address this limitation, we introduce a novel adaptation framework, AWT (Augment, Weight, then Transport). AWT comprises three key components: augmenting inputs with diverse visual perspectives and enriched class descriptions through image transformations and language models; dynamically weighting inputs based on the prediction entropy; and employing optimal transport to mine semantic correlations in the vision-language space. AWT can be seamlessly integrated into various VLMs, enhancing their zero-shot capabilities without additional training and facilitating few-shot learning through an integrated multimodal adapter module. We verify AWT in multiple challenging scenarios, including zero-shot and few-shot image classification, zero-shot video action recognition, and out-of-distribution generalization. AWT consistently outperforms the state-of-the-art methods in each setting. In addition, our extensive studies further demonstrate AWT's effectiveness and adaptability across different VLMs, architectures, and scales.
☆ Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection
In unsupervised anomaly detection (UAD) research, while state-of-the-art models have reached a saturation point with extensive studies on public benchmark datasets, they adopt large-scale tailor-made neural networks (NN) for detection performance or pursued unified models for various tasks. Towards edge computing, it is necessary to develop a computationally efficient and scalable solution that avoids large-scale complex NNs. Motivated by this, we aim to optimize the UAD performance with minimal changes to NN settings. Thus, we revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses. The strength of the SOTA methods is a single deterministic masking approach that addresses the challenges of random multiple masking that is inference latency and output inconsistency. Nevertheless, the issue of failure to provide a mask to completely cover anomalous regions is a remaining weakness. To mitigate this issue, we propose Feature Attenuation of Defective Representation (FADeR) that only employs two MLP layers which attenuates feature information of anomaly reconstruction during decoding. By leveraging FADeR, features of unseen anomaly patterns are reconstructed into seen normal patterns, reducing false alarms. Experimental results demonstrate that FADeR achieves enhanced performance compared to similar-scale NNs. Furthermore, our approach exhibits scalability in performance enhancement when integrated with other single deterministic masking methods in a plug-and-play manner.
comment: 11 pages, 6 figures, 5 tables
☆ Smell and Emotion: Recognising emotions in smell-related artworks
Emotions and smell are underrepresented in digital art history. In this exploratory work, we show that recognising emotions from smell-related artworks is technically feasible but has room for improvement. Using style transfer and hyperparameter optimization we achieve a minor performance boost and open up the field for future extensions.
comment: 5 pages, 3 figures
☆ SH17: A Dataset for Human Safety and Personal Protective Equipment Detection in Manufacturing Industry
Workplace accidents continue to pose significant risks for human safety, particularly in industries such as construction and manufacturing, and the necessity for effective Personal Protective Equipment (PPE) compliance has become increasingly paramount. Our research focuses on the development of non-invasive techniques based on the Object Detection (OD) and Convolutional Neural Network (CNN) to detect and verify the proper use of various types of PPE such as helmets, safety glasses, masks, and protective clothing. This study proposes the SH17 Dataset, consisting of 8,099 annotated images containing 75,994 instances of 17 classes collected from diverse industrial environments, to train and validate the OD models. We have trained state-of-the-art OD models for benchmarking, and initial results demonstrate promising accuracy levels with You Only Look Once (YOLO)v9-e model variant exceeding 70.9% in PPE detection. The performance of the model validation on cross-domain datasets suggests that integrating these technologies can significantly improve safety management systems, providing a scalable and efficient solution for industries striving to meet human safety regulations and protect their workforce. The dataset is available at https://github.com/ahmadmughees/sh17dataset.
☆ Multimodal Classification via Modal-Aware Interactive Enhancement
Due to the notorious modality imbalance problem, multimodal learning (MML) leads to the phenomenon of optimization imbalance, thus struggling to achieve satisfactory performance. Recently, some representative methods have been proposed to boost the performance, mainly focusing on adaptive adjusting the optimization of each modality to rebalance the learning speed of dominant and non-dominant modalities. To better facilitate the interaction of model information in multimodal learning, in this paper, we propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE). Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase. Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase. Therefore, we can improve the generalization ability and alleviate the modality forgetting phenomenon simultaneously for multimodal learning. Extensive experiments on widely used datasets demonstrate that our proposed method can outperform various state-of-the-art baselines to achieve the best performance.
☆ Real Time Emotion Analysis Using Deep Learning for Education, Entertainment, and Beyond
The significance of emotion detection is increasing in education, entertainment, and various other domains. We are developing a system that can identify and transform facial expressions into emojis to provide immediate feedback.The project consists of two components. Initially, we will employ sophisticated image processing techniques and neural networks to construct a deep learning model capable of precisely categorising facial expressions. Next, we will develop a basic application that records live video using the camera on your device. The app will utilise a sophisticated model to promptly analyse facial expressions and promptly exhibit corresponding emojis.Our objective is to develop a dynamic tool that integrates deep learning and real-time video processing for the purposes of online education, virtual events, gaming, and enhancing user experience. This tool enhances interactions and introduces novel emotional intelligence technologies.
comment: 8 pages, 23 figures
☆ Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition
Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition.
☆ Gaussian Eigen Models for Human Heads
We present personalized Gaussian Eigen Models (GEMs) for human heads, a novel method that compresses dynamic 3D Gaussians into low-dimensional linear spaces. Our approach is inspired by the seminal work of Blanz and Vetter, where a mesh-based 3D morphable model (3DMM) is constructed from registered meshes. Based on dynamic 3D Gaussians, we create a lower-dimensional representation of primitives that applies to most 3DGS head avatars. Specifically, we propose a universal method to distill the appearance of a mesh-controlled UNet Gaussian avatar using an ensemble of linear eigenbasis. We replace heavy CNN-based architectures with a single linear layer improving speed and enabling a range of real-time downstream applications. To create a particular facial expression, one simply needs to perform a dot product between the eigen coefficients and the distilled basis. This efficient method removes the requirement for an input mesh during testing, enhancing simplicity and speed in expression generation. This process is highly efficient and supports real-time rendering on everyday devices, leveraging the effectiveness of standard Gaussian Splatting. In addition, we demonstrate how the GEM can be controlled using a ResNet-based regression architecture. We show and compare self-reenactment and cross-person reenactment to state-of-the-art 3D avatar methods, demonstrating higher quality and better control. A real-time demo showcases the applicability of the GEM representation.
comment: https://zielon.github.io/gem/
☆ Rethinking Image Compression on the Web with Generative AI
The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.
☆ PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers ECCV
Computer vision methods that explicitly detect object parts and reason on them are a step towards inherently interpretable models. Existing approaches that perform part discovery driven by a fine-grained classification task make very restrictive assumptions on the geometric properties of the discovered parts; they should be small and compact. Although this prior is useful in some cases, in this paper we show that pre-trained transformer-based vision models, such as self-supervised DINOv2 ViT, enable the relaxation of these constraints. In particular, we find that a total variation (TV) prior, which allows for multiple connected components of any size, substantially outperforms previous work. We test our approach on three fine-grained classification benchmarks: CUB, PartImageNet and Oxford Flowers, and compare our results to previously published methods as well as a re-implementation of the state-of-the-art method PDiscoNet with a transformer-based backbone. We consistently obtain substantial improvements across the board, both on part discovery metrics and the downstream classification task, showing that the strong inductive biases in self-supervised ViT models require to rethink the geometric priors that can be used for unsupervised part discovery.
comment: Accepted as a main conference paper at the European Conference of Computer Vision (ECCV) 2024
☆ Success or Failure? Analyzing Segmentation Refinement with Few-Shot Segmentation
The purpose of segmentation refinement is to enhance the initial coarse masks generated by segmentation algorithms. The refined masks are expected to capture the details and contours of the target objects. Research on segmentation refinement has developed as a response to the need for high-quality initial masks. However, to our knowledge, no method has been developed that can determine the success of segmentation refinement. Such a method could ensure the reliability of segmentation in applications where the outcome of the segmentation is important, and fosters innovation in image processing technologies. To address this research gap, we propose JFS~(Judging From Support-set), a method to identify the success of segmentation refinement leveraging a few-shot segmentation (FSS) model. The traditional goal of the problem in FSS is to find a target object in a query image utilizing target information given by a support set. However, in our proposed method, we use the FSS network in a novel way to assess the segmentation refinement. When there are two masks, a coarse mask and a refined mask from segmentation refinement, these two masks become support masks. The existing support mask works as a ground truth mask to judge whether the quality of the refined segmentation is more accurate than the coarse mask. We first obtained a coarse mask and refined it using SEPL (SAM Enhanced Pseduo-Labels) to get the two masks. Then, these become input to FSS model to judge whether the post-processing was successful. JFS is evaluated on the best and worst cases from SEPL to validate its effectiveness. The results showed that JFS can determine whether the SEPL is a success or not.
comment: 4 pages
☆ LayerShuffle: Enhancing Robustness in Vision Transformers by Randomizing Layer Execution Order
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
☆ Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors
The lack of large annotated datasets in medical imaging is an intrinsic burden for supervised Deep Learning (DL) segmentation models. Few-shot learning approaches are cost-effective solutions to transfer pre-trained models using only limited annotated data. However, such methods can be prone to overfitting due to limited data diversity especially when segmenting complex, diverse, and sparse tubular structures like airways. Furthermore, crafting informative image representations has played a crucial role in medical imaging, enabling discriminative enhancement of anatomical details. In this paper, we initially train a data-driven sparsification module to enhance airways efficiently in lung CT scans. We then incorporate these sparse representations in a standard supervised segmentation pipeline as a pretraining step to enhance the performance of the DL models. Results presented on the ATM public challenge cohort show the effectiveness of using sparse priors in pre-training, leading to segmentation Dice score increase by 1% to 10% in full-scale and few-shot learning scenarios, respectively.
comment: Accepted at 21st IEEE International Symposium on Biomedical Imaging (ISBI)
☆ Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE)
Hyperspectral imaging, a rapidly evolving field, has witnessed the ascendancy of deep learning techniques, supplanting classical feature extraction and classification methods in various applications. However, many researchers employ arbitrary architectures for hyperspectral image processing, often without rigorous analysis of the interplay between spectral and spatial information. This oversight neglects the implications of combining these two modalities on model performance. In this paper, we evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation. Our analysis disentangles the impact of different architectures, spanning various spectral and spatial granularities. Specifically, we investigate the effects of spectral resolution (capturing spectral information) and spatial texture (conveying spatial details) on segmentation outcomes. Additionally, we explore the transferability of knowledge from large pre-trained image foundation models, originally designed for RGB images, to the hyperspectral domain. Results show that incorporating spatial information alongside spectral data leads to improved segmentation results, and that it is essential to further work on novel architectures comprising spectral and spatial information and on the adaption of RGB foundation models into the hyperspectral domain. Furthermore, we contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset. This dataset contains different non-ferrous fractions of Waste Electrical and Electronic Equipment (WEEE), including Copper, Brass, Aluminum, Stainless Steel, and White Copper, spanning the range of 400 to 1000 nm. We expect these conclusions can guide novel researchers in the field of hyperspectral imaging.
☆ Segment Any 4D Gaussians
Modeling, understanding, and reconstructing the real world are crucial in XR/VR. Recently, 3D Gaussian Splatting (3D-GS) methods have shown remarkable success in modeling and understanding 3D scenes. Similarly, various 4D representations have demonstrated the ability to capture the dynamics of the 4D world. However, there is a dearth of research focusing on segmentation within 4D representations. In this paper, we propose Segment Any 4D Gaussians (SA4D), one of the first frameworks to segment anything in the 4D digital world based on 4D Gaussians. In SA4D, an efficient temporal identity feature field is introduced to handle Gaussian drifting, with the potential to learn precise identity features from noisy and sparse input. Additionally, a 4D segmentation refinement process is proposed to remove artifacts. Our SA4D achieves precise, high-quality segmentation within seconds in 4D Gaussians and shows the ability to remove, recolor, compose, and render high-quality anything masks. More demos are available at: https://jsxzs.github.io/sa4d/.
comment: 22 pages
☆ Micro-gesture Online Recognition using Learnable Query Points IJCAI 2024
In this paper, we briefly introduce the solution developed by our team, HFUT-VUT, for the Micro-gesture Online Recognition track in the MiGA challenge at IJCAI 2024. The Micro-gesture Online Recognition task involves identifying the category and locating the start and end times of micro-gestures in video clips. Compared to the typical Temporal Action Detection task, the Micro-gesture Online Recognition task focuses more on distinguishing between micro-gestures and pinpointing the start and end times of actions. Our solution ranks 2nd in the Micro-gesture Online Recognition track.
comment: Technical Report of HFUT-VUT for the MiGA challenge at IJCAI 2024
☆ Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model
Prompt learning methods are gaining increasing attention due to their ability to customize large vision-language models to new domains using pre-trained contextual knowledge and minimal training data. However, existing works typically rely on optimizing unified prompt inputs, often struggling with fine-grained classification tasks due to insufficient discriminative attributes. To tackle this, we consider a new framework based on a dual context of both domain-shared and class-specific contexts, where the latter is generated by Large Language Models (LLMs) such as GPTs. Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in LLM knowledge. Moreover, we formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens. Through partial matching, UOT can properly align discrete sets of visual tokens and prompt embeddings under different mass distributions, which is particularly valuable for handling irrelevant or noisy elements, ensuring that the preservation of mass does not restrict transport solutions. Furthermore, UOT's characteristics integrate seamlessly with image augmentation, expanding the training sample pool while maintaining a reasonable distance between perturbed images and prompt inputs. Extensive experiments across few-shot classification and adapter settings substantiate the superiority of our model over current state-of-the-art baselines.
comment: Version 1
☆ Optimizing the image correction pipeline for pedestrian detection in the thermal-infrared domain
Infrared imagery can help in low-visibility situations such as fog and low-light scenarios, but it is prone to thermal noise and requires further processing and correction. This work studies the effect of different infrared processing pipelines on the performance of a pedestrian detection in an urban environment, similar to autonomous driving scenarios. Detection on infrared images is shown to outperform that on visible images, but the infrared correction pipeline is crucial since the models cannot extract information from raw infrared images. Two thermal correction pipelines are studied, the shutter and the shutterless pipes. Experiments show that some correction algorithms like spatial denoising are detrimental to performance even if they increase visual quality for a human observer. Other algorithms like destriping and, to a lesser extent, temporal denoising, increase computational time, but have some role to play in increasing detection accuracy. As it stands, the optimal trade-off for speed and accuracy is simply to use the shutterless pipe with a tonemapping algorithm only, for autonomous driving applications within varied environments.
comment: 9 pages, 7 figures, 4 tables
☆ Rethinking Data Input for Point Cloud Upsampling
In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction and surface generation. However, existing point cloud upsampling inputs are all patch based, and there is no research discussing the differences and principles between point cloud model full input and patch based input. In order to compare with patch based point cloud input, this article proposes a new data input method, which divides the full point cloud model to ensure shape integrity while training PU-GCN. This article was validated on the PU1K and ABC datasets, but the results showed that Patch based performance is better than model based full input i.e. Average Segment input. Therefore, this article explores the data input factors and model modules that affect the upsampling results of point clouds.
comment: 16 pages, 6 figures
☆ VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing ECCV 2024
Recent research on texture synthesis for 3D shapes benefits a lot from dramatically developed 2D text-to-image diffusion models, including inpainting-based and optimization-based approaches. However, these methods ignore the modal gap between the 2D diffusion model and 3D objects, which primarily render 3D objects into 2D images and texture each image separately. In this paper, we revisit the texture synthesis and propose a Variance alignment based 3D-2D Collaborative Denoising framework, dubbed VCD-Texture, to address these issues. Formally, we first unify both 2D and 3D latent feature learning in diffusion self-attention modules with re-projected 3D attention receptive fields. Subsequently, the denoised multi-view 2D latent features are aggregated into 3D space and then rasterized back to formulate more consistent 2D predictions. However, the rasterization process suffers from an intractable variance bias, which is theoretically addressed by the proposed variance alignment, achieving high-fidelity texture synthesis. Moreover, we present an inpainting refinement to further improve the details with conflicting regions. Notably, there is not a publicly available benchmark to evaluate texture synthesis, which hinders its development. Thus we construct a new evaluation set built upon three open-source 3D datasets and propose to use four metrics to thoroughly validate the texturing performance. Comprehensive experiments demonstrate that VCD-Texture achieves superior performance against other counterparts.
comment: ECCV 2024
☆ Robust Multimodal Learning via Representation Decoupling ECCV2024
Multimodal learning robust to missing modality has attracted increasing attention due to its practicality. Existing methods tend to address it by learning a common subspace representation for different modality combinations. However, we reveal that they are sub-optimal due to their implicit constraint on intra-class representation. Specifically, the sample with different modalities within the same class will be forced to learn representations in the same direction. This hinders the model from capturing modality-specific information, resulting in insufficient learning. To this end, we propose a novel Decoupled Multimodal Representation Network (DMRNet) to assist robust multimodal learning. Specifically, DMRNet models the input from different modality combinations as a probabilistic distribution instead of a fixed point in the latent space, and samples embeddings from the distribution for the prediction module to calculate the task loss. As a result, the direction constraint from the loss minimization is blocked by the sampled representation. This relaxes the constraint on the inference representation and enables the model to capture the specific information for different modality combinations. Furthermore, we introduce a hard combination regularizer to prevent DMRNet from unbalanced training by guiding it to pay more attention to hard modality combinations. Finally, extensive experiments on multimodal classification and segmentation tasks demonstrate that the proposed DMRNet outperforms the state-of-the-art significantly.
comment: ECCV2024 17 pages
☆ Multi-modal Masked Siamese Network Improves Chest X-Ray Representation Learning
Self-supervised learning methods for medical images primarily rely on the imaging modality during pretraining. While such approaches deliver promising results, they do not leverage associated patient or scan information collected within Electronic Health Records (EHR). Here, we propose to incorporate EHR data during self-supervised pretraining with a Masked Siamese Network (MSN) to enhance the quality of chest X-ray representations. We investigate three types of EHR data, including demographic, scan metadata, and inpatient stay information. We evaluate our approach on three publicly available chest X-ray datasets, MIMIC-CXR, CheXpert, and NIH-14, using two vision transformer (ViT) backbones, specifically ViT-Tiny and ViT-Small. In assessing the quality of the representations via linear evaluation, our proposed method demonstrates significant improvement compared to vanilla MSN and state-of-the-art self-supervised learning baselines. Our work highlights the potential of EHR-enhanced self-supervised pre-training for medical imaging. The code is publicly available at: https://github.com/nyuad-cai/CXR-EHR-MSN
comment: Under review
☆ Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing
To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection. This technique aims to boost Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) by promoting sparse connectivity, thereby reducing overfitting and enhancing generalization. HAG achieves this through sparsification with learnable weights, serving as a regularization strategy. GR further refines this process by optimizing HAG parameters via dual forward passes, independently from the main model, to improve feature re-weighting. Our evaluation spanned multiple datasets, including CIFAR-100 for a broad impact assessment and specialized endoscopic datasets (REAL-Colon, Misawa, and SUN) focusing on polyp size estimation, covering over 200 polyps in more than 370,000 frames. The findings indicate that our HAG-enhanced networks substantially enhance performance in both binary and triclass classification tasks related to polyp sizing. Specifically, CNNs experienced an F1 Score improvement to 87.8% in binary classification, while in triclass classification, the ViT-T model reached an F1 Score of 76.5%, outperforming traditional CNNs and ViT-T models. To facilitate further research, we are releasing our codebase, which includes implementations for CNNs, multistream CNNs, ViT, and HAG-augmented variants. This resource aims to standardize the use of endoscopic datasets, providing public training-validation-testing splits for reliable and comparable research in gastroenterological polyp size estimation. The codebase is available at github.com/cosmoimd/feature-selection-gates.
comment: Attention Gates, Hard-Attention Gates, Gradient Routing, Feature Selection Gates, Endoscopy, Medical Image Processing, Computer Vision
Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography MICCAI
Glaucoma is a leading cause of irreversible blindness worldwide. While deep learning approaches using fundus images have largely improved early diagnosis of glaucoma, variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings. To address this, we propose a novel Graph-guided Test-Time Adaptation (GTTA) framework to generalize glaucoma diagnosis models to unseen test environments. GTTA integrates the topological information of fundus images into the model training, enhancing the model's transferability and reducing the risk of learning spurious correlation. During inference, GTTA introduces a novel test-time training objective to make the source-trained classifier progressively adapt to target patterns with reliable class conditional estimation and consistency regularization. Experiments on cross-domain glaucoma diagnosis benchmarks demonstrate the superiority of the overall framework and individual components under different backbone networks.
comment: 11 pages, 3 figures, 3 tables, submitted to MICCAI
Unsupervised Learning of Category-Level 3D Pose from Object-Centric Videos
Category-level 3D pose estimation is a fundamentally important problem in computer vision and robotics, e.g. for embodied agents or to train 3D generative models. However, so far methods that estimate the category-level object pose require either large amounts of human annotations, CAD models or input from RGB-D sensors. In contrast, we tackle the problem of learning to estimate the category-level 3D pose only from casually taken object-centric videos without human supervision. We propose a two-step pipeline: First, we introduce a multi-view alignment procedure that determines canonical camera poses across videos with a novel and robust cyclic distance formulation for geometric and appearance matching using reconstructed coarse meshes and DINOv2 features. In a second step, the canonical poses and reconstructed meshes enable us to train a model for 3D pose estimation from a single image. In particular, our model learns to estimate dense correspondences between images and a prototypical 3D template by predicting, for each pixel in a 2D image, a feature vector of the corresponding vertex in the template mesh. We demonstrate that our method outperforms all baselines at the unsupervised alignment of object-centric videos by a large margin and provides faithful and robust predictions in-the-wild. Our code and data is available at https://github.com/GenIntel/uns-obj-pose3d.
Self-Supervised Representation Learning for Adversarial Attack Detection ECCV 2024
Supervised learning-based adversarial attack detection methods rely on a large number of labeled data and suffer significant performance degradation when applying the trained model to new domains. In this paper, we propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback. Firstly, we map the pixels of augmented input images into an embedding space. Then, we employ the prototype-wise contrastive estimation loss to cluster prototypes as latent variables. Additionally, drawing inspiration from the concept of memory banks, we introduce a discrimination bank to distinguish and learn representations for each individual instance that shares the same or a similar prototype, establishing a connection between instances and their associated prototypes. We propose a parallel axial-attention (PAA)-based encoder to facilitate the training process by parallel training over height- and width-axis of attention maps. Experimental results show that, compared to various benchmark self-supervised vision learning models and supervised adversarial attack detection methods, the proposed model achieves state-of-the-art performance on the adversarial attack detection task across a wide range of images.
comment: ECCV 2024
☆ Multi-Branch Auxiliary Fusion YOLO with Re-parameterization Heterogeneous Convolutional for accurate object detection
Due to the effective performance of multi-scale feature fusion, Path Aggregation FPN (PAFPN) is widely employed in YOLO detectors. However, it cannot efficiently and adaptively integrate high-level semantic information with low-level spatial information simultaneously. We propose a new model named MAF-YOLO in this paper, which is a novel object detection framework with a versatile neck named Multi-Branch Auxiliary FPN (MAFPN). Within MAFPN, the Superficial Assisted Fusion (SAF) module is designed to combine the output of the backbone with the neck, preserving an optimal level of shallow information to facilitate subsequent learning. Meanwhile, the Advanced Assisted Fusion (AAF) module deeply embedded within the neck conveys a more diverse range of gradient information to the output layer. Furthermore, our proposed Re-parameterized Heterogeneous Efficient Layer Aggregation Network (RepHELAN) module ensures that both the overall model architecture and convolutional design embrace the utilization of heterogeneous large convolution kernels. Therefore, this guarantees the preservation of information related to small targets while simultaneously achieving the multi-scale receptive field. Finally, taking the nano version of MAF-YOLO for example, it can achieve 42.4% AP on COCO with only 3.76M learnable parameters and 10.51G FLOPs, and approximately outperforms YOLOv8n by about 5.1%. The source code of this work is available at: https://github.com/yang-0201/MAF-YOLO.
☆ ZARRIO @ Ego4D Short Term Object Interaction Anticipation Challenge: Leveraging Affordances and Attention-based models for STA
Short-Term object-interaction Anticipation (STA) consists of detecting the location of the next-active objects, the noun and verb categories of the interaction, and the time to contact from the observation of egocentric video. We propose STAformer, a novel attention-based architecture integrating frame-guided temporal pooling, dual image-video attention, and multi-scale feature fusion to support STA predictions from an image-input video pair. Moreover, we introduce two novel modules to ground STA predictions on human behavior by modeling affordances. First, we integrate an environment affordance model which acts as a persistent memory of interactions that can take place in a given physical scene. Second, we predict interaction hotspots from the observation of hands and object trajectories, increasing confidence in STA predictions localized around the hotspot. On the test set, our results obtain a final 33.5 N mAP, 17.25 N+V mAP, 11.77 N+{\delta} mAP and 6.75 Overall top-5 mAP metric when trained on the v2 training dataset.
comment: arXiv admin note: substantial text overlap with arXiv:2406.01194
☆ Towards Context-aware Support for Color Vision Deficiency: An Approach Integrating LLM and AR
People with color vision deficiency often face challenges in distinguishing colors such as red and green, which can complicate daily tasks and require the use of assistive tools or environmental adjustments. Current support tools mainly focus on presentation-based aids, like the color vision modes found in iPhone accessibility settings. However, offering context-aware support, like indicating the doneness of meat, remains a challenge since task-specific solutions are not cost-effective for all possible scenarios. To address this, our paper proposes an application that provides contextual and autonomous assistance. This application is mainly composed of: (i) an augmented reality interface that efficiently captures context; and (ii) a multi-modal large language model-based reasoner that serves to cognitize the context and then reason about the appropriate support contents. Preliminary user experiments with two color vision deficient users across five different scenarios have demonstrated the effectiveness and universality of our application.
☆ Shape Prior Segmentation Guided by Harmonic Beltrami Signature
This paper presents a novel shape prior segmentation method guided by the Harmonic Beltrami Signature (HBS). The HBS is a shape representation fully capturing 2D simply connected shapes, exhibiting resilience against perturbations and invariance to translation, rotation, and scaling. The proposed method integrates the HBS within a quasi-conformal topology preserving segmentation framework, leveraging shape prior knowledge to significantly enhance segmentation performance, especially for low-quality or occluded images. The key innovation lies in the bifurcation of the optimization process into two iterative stages: 1) The computation of a quasi-conformal deformation map, which transforms the unit disk into the targeted segmentation area, driven by image data and other regularization terms; 2) The subsequent refinement of this map is contingent upon minimizing the $L_2$ distance between its Beltrami coefficient and the reference HBS. This shape-constrained refinement ensures that the segmentation adheres to the reference shape(s) by exploiting the inherent invariance, robustness, and discerning shape discriminative capabilities afforded by the HBS. Extensive experiments on synthetic and real-world images validate the method's ability to improve segmentation accuracy over baselines, eliminate preprocessing requirements, resist noise corruption, and flexibly acquire and apply shape priors. Overall, the HBS segmentation framework offers an efficient strategy to robustly incorporate the shape prior knowledge, thereby advancing critical low-level vision tasks.
comment: 34 pages, 15 figures
☆ Data-Driven Tissue- and Subject-Specific Elastic Regularization for Medical Image Registration MICCAI 2024
Physics-inspired regularization is desired for intra-patient image registration since it can effectively capture the biomechanical characteristics of anatomical structures. However, a major challenge lies in the reliance on physical parameters: Parameter estimations vary widely across the literature, and the physical properties themselves are inherently subject-specific. In this work, we introduce a novel data-driven method that leverages hypernetworks to learn the tissue-dependent elasticity parameters of an elastic regularizer. Notably, our approach facilitates the estimation of patient-specific parameters without the need to retrain the network. We evaluate our method on three publicly available 2D and 3D lung CT and cardiac MR datasets. We find that with our proposed subject-specific tissue-dependent regularization, a higher registration quality is achieved across all datasets compared to using a global regularizer. The code is available at https://github.com/compai-lab/2024-miccai-reithmeir.
comment: Accepted at MICCAI 2024
☆ Segmenting Medical Images: From UNet to Res-UNet and nnUNet
This study provides a comparative analysis of deep learning models including UNet, Res-UNet, Attention Res-UNet, and nnUNet, and evaluates their performance in brain tumour, polyp, and multi-class heart segmentation tasks. The analysis focuses on precision, accuracy, recall, Dice Similarity Coefficient (DSC), and Intersection over Union (IoU) to assess their clinical applicability. In brain tumour segmentation, Res-UNet and nnUNet significantly outperformed UNet, with Res-UNet leading in DSC and IoU scores, indicating superior accuracy in tumour delineation. Meanwhile, nnUNet excelled in recall and accuracy, which are crucial for reliable tumour detection in clinical diagnosis and planning. In polyp detection, nnUNet was the most effective, achieving the highest metrics across all categories and proving itself as a reliable diagnostic tool in endoscopy. In the complex task of heart segmentation, Res-UNet and Attention Res-UNet were outstanding in delineating the left ventricle, with Res-UNet also leading in right ventricle segmentation. nnUNet was unmatched in myocardium segmentation, achieving top scores in precision, recall, DSC, and IoU. The conclusion notes that although Res-UNet occasionally outperforms nnUNet in specific metrics, the differences are quite small. Moreover, nnUNet consistently shows superior overall performance across the experiments. Particularly noted for its high recall and accuracy, which are crucial in clinical settings to minimize misdiagnosis and ensure timely treatment, nnUNet's robust performance in crucial metrics across all tested categories establishes it as the most effective model for these varied and complex segmentation tasks.
comment: 7 pages, 3 figures
☆ MobileFlow: A Multimodal LLM For Mobile GUI Agent
Currently, the integration of mobile Graphical User Interfaces (GUIs) is ubiquitous in most people's daily lives. And the ongoing evolution of multimodal large-scale models, such as GPT-4v, Qwen-VL-Max, has significantly bolstered the capabilities of GUI comprehension and user action analysis, showcasing the potentiality of intelligent GUI assistants. However, current GUI Agents often need to access page layout information through calling system APIs, which may pose privacy risks. Fixing GUI (such as mobile interfaces) to a certain low resolution might result in the loss of fine-grained image details. At the same time, the multimodal large models built for GUI Agents currently have poor understanding and decision-making abilities for Chinese GUI interfaces, making them difficult to apply to a large number of Chinese apps. This paper introduces MobileFlow, a multimodal large language model meticulously crafted for mobile GUI agents. Transforming from the open-source model Qwen-VL-Chat into GUI domain, MobileFlow contains approximately 21 billion parameters and is equipped with novel hybrid visual encoders, making it possible for variable resolutions of image inputs and good support for multilingual GUI. By incorporating Mixture of Experts (MoE) expansions and pioneering alignment training strategies, MobileFlow has the capacity to fully interpret image data and comprehend user instructions for GUI interaction tasks. Finally, MobileFlow outperforms Qwen-VL-Max and GPT-4v in terms of task execution by GUI agents on both public and our proposed evaluation metrics, and has been successfully deployed in real-world business contexts, proving its effectiveness for practical applications.
☆ CanonicalFusion: Generating Drivable 3D Human Avatars from Multiple Images ECCV 2024
We present a novel framework for reconstructing animatable human avatars from multiple images, termed CanonicalFusion. Our central concept involves integrating individual reconstruction results into the canonical space. To be specific, we first predict Linear Blend Skinning (LBS) weight maps and depth maps using a shared-encoder-dual-decoder network, enabling direct canonicalization of the 3D mesh from the predicted depth maps. Here, instead of predicting high-dimensional skinning weights, we infer compressed skinning weights, i.e., 3-dimensional vector, with the aid of pre-trained MLP networks. We also introduce a forward skinning-based differentiable rendering scheme to merge the reconstructed results from multiple images. This scheme refines the initial mesh by reposing the canonical mesh via the forward skinning and by minimizing photometric and geometric errors between the rendered and the predicted results. Our optimization scheme considers the position and color of vertices as well as the joint angles for each image, thereby mitigating the negative effects of pose errors. We conduct extensive experiments to demonstrate the effectiveness of our method and compare our CanonicalFusion with state-of-the-art methods. Our source codes are available at https://github.com/jsshin98/CanonicalFusion.
comment: ECCV 2024 Accepted (18 pages, 9 figures)
☆ Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network
Geometric shape classification of vector polygons remains a non-trivial learning task in spatial analysis. Previous studies mainly focus on devising deep learning approaches for representation learning of rasterized vector polygons, whereas the study of discrete representations of polygons and subsequent deep learning approaches have not been fully investigated. In this study, we investigate a graph representation of vector polygons and propose a novel graph message-passing neural network (PolyMP) to learn the geometric-invariant features for shape classification of polygons. Through extensive experiments, we show that the graph representation of polygons combined with a permutation-invariant graph message-passing neural network achieves highly robust performances on benchmark datasets (i.e., synthetic glyph and real-world building footprint datasets) as compared to baseline methods. We demonstrate that the proposed graph-based PolyMP network enables the learning of expressive geometric features invariant to geometric transformations of polygons (i.e., translation, rotation, scaling and shearing) and is robust to trivial vertex removals of polygons. We further show the strong generalizability of PolyMP, which enables generalizing the learned geometric features from the synthetic glyph polygons to the real-world building footprints.
☆ TF-SASM: Training-free Spatial-aware Sparse Memory for Multi-object Tracking
Multi-object tracking (MOT) in computer vision remains a significant challenge, requiring precise localization and continuous tracking of multiple objects in video sequences. This task is crucial for various applications, including action recognition and behavior analysis. Key challenges include occlusion, reidentification, tracking fast-moving objects, and handling camera motion artifacts. Past research has explored tracking-by-detection methods and end-to-end models, with recent attention on tracking-by-attention approaches leveraging transformer architectures. The emergence of data sets that emphasize robust reidentification, such as DanceTrack, has highlighted the need for effective solutions. While memory-based approaches have shown promise, they often suffer from high computational complexity and memory usage. We propose a novel sparse memory approach that selectively stores critical features based on object motion and overlapping awareness, aiming to enhance efficiency while minimizing redundancy. Building upon the MOTRv2 model, a hybrid of tracking-by-attention and tracking-by-detection, we introduce a training-free memory designed to bolster reidentification capabilities and preserve the model's flexibility. Our memory approach achieves significant improvements over MOTRv2 in the DanceTrack test set, demonstrating a gain of 1.1\% in HOTA metrics and 2.1\% in IDF1 score.
☆ LMSeg: A deep graph message-passing network for efficient and accurate semantic segmentation of large-scale 3D landscape meshes
Semantic segmentation of large-scale 3D landscape meshes is pivotal for various geospatial applications, including spatial analysis, automatic mapping and localization of target objects, and urban planning and development. This requires an efficient and accurate 3D perception system to understand and analyze real-world environments. However, traditional mesh segmentation methods face challenges in accurately segmenting small objects and maintaining computational efficiency due to the complexity and large size of 3D landscape mesh datasets. This paper presents an end-to-end deep graph message-passing network, LMSeg, designed to efficiently and accurately perform semantic segmentation on large-scale 3D landscape meshes. The proposed approach takes the barycentric dual graph of meshes as inputs and applies deep message-passing neural networks to hierarchically capture the geometric and spatial features from the barycentric graph structures and learn intricate semantic information from textured meshes. The hierarchical and local pooling of the barycentric graph, along with the effective geometry aggregation modules of LMSeg, enable fast inference and accurate segmentation of small-sized and irregular mesh objects in various complex landscapes. Extensive experiments on two benchmark datasets (natural and urban landscapes) demonstrate that LMSeg significantly outperforms existing learning-based segmentation methods in terms of object segmentation accuracy and computational efficiency. Furthermore, our method exhibits strong generalization capabilities across diverse landscapes and demonstrates robust resilience against varying mesh densities and landscape topologies.
☆ SSP-GNN: Learning to Track via Bilevel Optimization
We propose a graph-based tracking formulation for multi-object tracking (MOT) where target detections contain kinematic information and re-identification features (attributes). Our method applies a successive shortest paths (SSP) algorithm to a tracking graph defined over a batch of frames. The edge costs in this tracking graph are computed via a message-passing network, a graph neural network (GNN) variant. The parameters of the GNN, and hence, the tracker, are learned end-to-end on a training set of example ground-truth tracks and detections. Specifically, learning takes the form of bilevel optimization guided by our novel loss function. We evaluate our algorithm on simulated scenarios to understand its sensitivity to scenario aspects and model hyperparameters. Across varied scenario complexities, our method compares favorably to a strong baseline.
☆ Towards Stable 3D Object Detection
In autonomous driving, the temporal stability of 3D object detection greatly impacts the driving safety. However, the detection stability cannot be accessed by existing metrics such as mAP and MOTA, and consequently is less explored by the community. To bridge this gap, this work proposes Stability Index (SI), a new metric that can comprehensively evaluate the stability of 3D detectors in terms of confidence, box localization, extent, and heading. By benchmarking state-of-the-art object detectors on the Waymo Open Dataset, SI reveals interesting properties of object stability that have not been previously discovered by other metrics. To help models improve their stability, we further introduce a general and effective training strategy, called Prediction Consistency Learning (PCL). PCL essentially encourages the prediction consistency of the same objects under different timestamps and augmentations, leading to enhanced detection stability. Furthermore, we examine the effectiveness of PCL with the widely-used CenterPoint, and achieve a remarkable SI of 86.00 for vehicle class, surpassing the baseline by 5.48. We hope our work could serve as a reliable baseline and draw the community's attention to this crucial issue in 3D object detection. Codes will be made publicly available.
☆ MARS: Paying more attention to visual attributes for text-based person search
Text-based person search (TBPS) is a problem that gained significant interest within the research community. The task is that of retrieving one or more images of a specific individual based on a textual description. The multi-modal nature of the task requires learning representations that bridge text and image data within a shared latent space. Existing TBPS systems face two major challenges. One is defined as inter-identity noise that is due to the inherent vagueness and imprecision of text descriptions and it indicates how descriptions of visual attributes can be generally associated to different people; the other is the intra-identity variations, which are all those nuisances e.g. pose, illumination, that can alter the visual appearance of the same textual attributes for a given subject. To address these issues, this paper presents a novel TBPS architecture named MARS (Mae-Attribute-Relation-Sensitive), which enhances current state-of-the-art models by introducing two key components: a Visual Reconstruction Loss and an Attribute Loss. The former employs a Masked AutoEncoder trained to reconstruct randomly masked image patches with the aid of the textual description. In doing so the model is encouraged to learn more expressive representations and textual-visual relations in the latent space. The Attribute Loss, instead, balances the contribution of different types of attributes, defined as adjective-noun chunks of text. This loss ensures that every attribute is taken into consideration in the person retrieval process. Extensive experiments on three commonly used datasets, namely CUHK-PEDES, ICFG-PEDES, and RSTPReid, report performance improvements, with significant gains in the mean Average Precision (mAP) metric w.r.t. the current state of the art.
☆ Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range. At present, cameras used for pedestrian detection are mainly frame-based imaging sensors, which have suffered from lethargic response times and hefty data redundancy. In contrast, event-based cameras address these limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios. On pedestrian detection via event-based cameras, this paper offers an exhaustive review of research and applications particularly in the autonomous driving context. Through methodically scrutinizing relevant literature, the paper outlines the foundational principles, developmental trajectory, and the comparative merits and demerits of eventbased detection relative to traditional frame-based methodologies. This review conducts thorough analyses of various event stream inputs and their corresponding network models to evaluate their applicability across diverse operational environments. It also delves into pivotal elements such as crucial datasets and data acquisition techniques essential for advancing this technology, as well as advanced algorithms for processing event stream data. Culminating with a synthesis of the extant landscape, the review accentuates the unique advantages and persistent challenges inherent in event-based pedestrian detection, offering a prognostic view on potential future developments in this fast-progressing field.
☆ Fine-grained Dynamic Network for Generic Event Boundary Detection ECCV 2024
Generic event boundary detection (GEBD) aims at pinpointing event boundaries naturally perceived by humans, playing a crucial role in understanding long-form videos. Given the diverse nature of generic boundaries, spanning different video appearances, objects, and actions, this task remains challenging. Existing methods usually detect various boundaries by the same protocol, regardless of their distinctive characteristics and detection difficulties, resulting in suboptimal performance. Intuitively, a more intelligent and reasonable way is to adaptively detect boundaries by considering their special properties. In light of this, we propose a novel dynamic pipeline for generic event boundaries named DyBDet. By introducing a multi-exit network architecture, DyBDet automatically learns the subnet allocation to different video snippets, enabling fine-grained detection for various boundaries. Besides, a multi-order difference detector is also proposed to ensure generic boundaries can be effectively identified and adaptively processed. Extensive experiments on the challenging Kinetics-GEBD and TAPOS datasets demonstrate that adopting the dynamic strategy significantly benefits GEBD tasks, leading to obvious improvements in both performance and efficiency compared to the current state-of-the-art.
comment: ECCV 2024
☆ Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts ICML2024
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner. However, their equivariance is fixed to the symmetry of the whole group, limiting adaptability to diverse partial symmetries in real-world datasets, such as limited rotation symmetry of handwritten digit images and limited color-shift symmetry of flower images. Recent efforts address this limitation, one example being Partial G-CNN which restricts the output group space of convolution layers to break full equivariance. However, such an approach still fails to adjust equivariance levels across data. In this paper, we propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance. VP G-CNN redesigns the distribution of the output group elements to be conditioned on input data, leveraging variational inference to avoid overfitting. This enables the model to adjust its equivariance levels according to the needs of individual data points. Additionally, we address training instability inherent in discrete group equivariance models by redesigning the reparametrizable distribution. We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including MNIST67-180, CIFAR10, ColorMNIST, and Flowers102. Our results show robust performance, even in uncertainty metrics.
comment: ICML2024
☆ Parametric Curve Segment Extraction by Support Regions
We introduce a method to extract curve segments in parametric form from the image directly using the Laplacian of Gaussian (LoG) filter response. Our segmentation gives convex and concave curves. To do so, we form curve support regions by grouping pixels of the thresholded filter response. Then, we model each support region boundary by Fourier series and extract the corresponding parametric curve segment.
comment: 10 pages, 5 figures
☆ Efficient Detection of Long Consistent Cycles and its Application to Distributed Synchronization
Group synchronization plays a crucial role in global pipelines for Structure from Motion (SfM). Its formulation is nonconvex and it is faced with highly corrupted measurements. Cycle consistency has been effective in addressing these challenges. However, computationally efficient solutions are needed for cycles longer than three, especially in practical scenarios where 3-cycles are unavailable. To overcome this computational bottleneck, we propose an algorithm for group synchronization that leverages information from cycles of lengths ranging from three to six with a time complexity of order $O(n^3)$ (or $O(n^{2.373})$ when using a faster matrix multiplication algorithm). We establish non-trivial theory for this and related methods that achieves competitive sample complexity, assuming the uniform corruption model. To advocate the practical need for our method, we consider distributed group synchronization, which requires at least 4-cycles, and we illustrate state-of-the-art performance by our method in this context.
Unsupervised Video Summarization via Reinforcement Learning and a Trained Evaluator
This paper presents a novel approach for unsupervised video summarization using reinforcement learning. It aims to address the existing limitations of current unsupervised methods, including unstable training of adversarial generator-discriminator architectures and reliance on hand-crafted reward functions for quality evaluation. The proposed method is based on the concept that a concise and informative summary should result in a reconstructed video that closely resembles the original. The summarizer model assigns an importance score to each frame and generates a video summary. In the proposed scheme, reinforcement learning, coupled with a unique reward generation pipeline, is employed to train the summarizer model. The reward generation pipeline trains the summarizer to create summaries that lead to improved reconstructions. It comprises a generator model capable of reconstructing masked frames from a partially masked video, along with a reward mechanism that compares the reconstructed video from the summary against the original. The video generator is trained in a self-supervised manner to reconstruct randomly masked frames, enhancing its ability to generate accurate summaries. This training pipeline results in a summarizer model that better mimics human-generated video summaries compared to methods relying on hand-crafted rewards. The training process consists of two stable and isolated training steps, unlike adversarial architectures. Experimental results demonstrate promising performance, with F-scores of 62.3 and 54.5 on TVSum and SumMe datasets, respectively. Additionally, the inference stage is 300 times faster than our previously reported state-of-the-art method.
☆ Second Place Solution of WSDM2023 Toloka Visual Question Answering Challenge WSDM2023
In this paper, we present our solution for the WSDM2023 Toloka Visual Question Answering Challenge. Inspired by the application of multimodal pre-trained models to various downstream tasks(e.g., visual question answering, visual grounding, and cross-modal retrieval), we approached this competition as a visual grounding task, where the input is an image and a question, guiding the model to answer the question and display the answer as a bounding box on the image. We designed a three-stage solution for this task. Specifically, we used the visual-language pre-trained model OFA as the foundation. In the first stage, we constructed a large-scale synthetic dataset similar to the competition dataset and coarse-tuned the model to learn generalized semantic information. In the second stage, we treated the competition task as a visual grounding task, loaded the weights from the previous stage, and continued to fine-tune the model on the competition dataset, transferring the semantic information learned in the first stage to the competition task. Finally, we designed a bounding box matching and replacing post-processing strategy to correct the model's prediction results. Our team achieved a score of 76.342 on the final leaderboard, ranking second.
comment: Second Place of WSDM2023 Toloka Visual Question Answering Challenge
☆ FeatureSORT: Essential Features for Effective Tracking
In this work, we introduce a novel tracker designed for online multiple object tracking with a focus on being simple, while being effective. we provide multiple feature modules each of which stands for a particular appearance information. By integrating distinct appearance features, including clothing color, style, and target direction, alongside a ReID network for robust embedding extraction, our tracker significantly enhances online tracking accuracy. Additionally, we propose the incorporation of a stronger detector and also provide an advanced post processing methods that further elevate the tracker's performance. During real time operation, we establish measurement to track associated distance function which includes the IoU, direction, color, style, and ReID features similarity information, where each metric is calculated separately. With the design of our feature related distance function, it is possible to track objects through longer period of occlusions, while keeping the number of identity switches comparatively low. Extensive experimental evaluation demonstrates notable improvement in tracking accuracy and reliability, as evidenced by reduced identity switches and enhanced occlusion handling. These advancements not only contribute to the state of the art in object tracking but also open new avenues for future research and practical applications demanding high precision and reliability.
☆ ArAIEval Shared Task: Propagandistic Techniques Detection in Unimodal and Multimodal Arabic Content
We present an overview of the second edition of the ArAIEval shared task, organized as part of the ArabicNLP 2024 conference co-located with ACL 2024. In this edition, ArAIEval offers two tasks: (i) detection of propagandistic textual spans with persuasion techniques identification in tweets and news articles, and (ii) distinguishing between propagandistic and non-propagandistic memes. A total of 14 teams participated in the final evaluation phase, with 6 and 9 teams participating in Tasks 1 and 2, respectively. Finally, 11 teams submitted system description papers. Across both tasks, we observed that fine-tuning transformer models such as AraBERT was at the core of the majority of the participating systems. We provide a description of the task setup, including a description of the dataset construction and the evaluation setup. We further provide a brief overview of the participating systems. All datasets and evaluation scripts are released to the research community (https://araieval.gitlab.io/). We hope this will enable further research on these important tasks in Arabic.
comment: propaganda, span detection, disinformation, misinformation, fake news, LLMs, GPT-4, multimodality, multimodal LLMs
☆ Every Pixel Has its Moments: Ultra-High-Resolution Unpaired Image-to-Image Translation via Dense Normalization ECCV 2024
Recent advancements in ultra-high-resolution unpaired image-to-image translation have aimed to mitigate the constraints imposed by limited GPU memory through patch-wise inference. Nonetheless, existing methods often compromise between the reduction of noticeable tiling artifacts and the preservation of color and hue contrast, attributed to the reliance on global image- or patch-level statistics in the instance normalization layers. In this study, we introduce a Dense Normalization (DN) layer designed to estimate pixel-level statistical moments. This approach effectively diminishes tiling artifacts while concurrently preserving local color and hue contrasts. To address the computational demands of pixel-level estimation, we further propose an efficient interpolation algorithm. Moreover, we invent a parallelism strategy that enables the DN layer to operate in a single pass. Through extensive experiments, we demonstrate that our method surpasses all existing approaches in performance. Notably, our DN layer is hyperparameter-free and can be seamlessly integrated into most unpaired image-to-image translation frameworks without necessitating retraining. Overall, our work paves the way for future exploration in handling images of arbitrary resolutions within the realm of unpaired image-to-image translation. Code is available at: https://github.com/Kaminyou/Dense-Normalization.
comment: Accepted to ECCV 2024
☆ Exploration of Class Center for Fine-Grained Visual Classification
Different from large-scale classification tasks, fine-grained visual classification is a challenging task due to two critical problems: 1) evident intra-class variances and subtle inter-class differences, and 2) overfitting owing to fewer training samples in datasets. Most existing methods extract key features to reduce intra-class variances, but pay no attention to subtle inter-class differences in fine-grained visual classification. To address this issue, we propose a loss function named exploration of class center, which consists of a multiple class-center constraint and a class-center label generation. This loss function fully utilizes the information of the class center from the perspective of features and labels. From the feature perspective, the multiple class-center constraint pulls samples closer to the target class center, and pushes samples away from the most similar nontarget class center. Thus, the constraint reduces intra-class variances and enlarges inter-class differences. From the label perspective, the class-center label generation utilizes classcenter distributions to generate soft labels to alleviate overfitting. Our method can be easily integrated with existing fine-grained visual classification approaches as a loss function, to further boost excellent performance with only slight training costs. Extensive experiments are conducted to demonstrate consistent improvements achieved by our method on four widely-used fine-grained visual classification datasets. In particular, our method achieves state-of-the-art performance on the FGVC-Aircraft and CUB-200-2011 datasets.
comment: Accpeted by TCSVT. Code and trained models are here:https://github.com/hyao1/ECC
☆ Fine-grained Context and Multi-modal Alignment for Freehand 3D Ultrasound Reconstruction MICCAI 2024
Fine-grained spatio-temporal learning is crucial for freehand 3D ultrasound reconstruction. Previous works mainly resorted to the coarse-grained spatial features and the separated temporal dependency learning and struggles for fine-grained spatio-temporal learning. Mining spatio-temporal information in fine-grained scales is extremely challenging due to learning difficulties in long-range dependencies. In this context, we propose a novel method to exploit the long-range dependency management capabilities of the state space model (SSM) to address the above challenge. Our contribution is three-fold. First, we propose ReMamba, which mines multi-scale spatio-temporal information by devising a multi-directional SSM. Second, we propose an adaptive fusion strategy that introduces multiple inertial measurement units as auxiliary temporal information to enhance spatio-temporal perception. Last, we design an online alignment strategy that encodes the temporal information as pseudo labels for multi-modal alignment to further improve reconstruction performance. Extensive experimental validations on two large-scale datasets show remarkable improvement from our method over competitors.
comment: Accepted at MICCAI 2024. This is the submitted manuscript and the preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections
☆ AnySR: Realizing Image Super-Resolution as Any-Scale, Any-Resource
In an effort to improve the efficiency and scalability of single-image super-resolution (SISR) applications, we introduce AnySR, to rebuild existing arbitrary-scale SR methods into any-scale, any-resource implementation. As a contrast to off-the-shelf methods that solve SR tasks across various scales with the same computing costs, our AnySR innovates in: 1) building arbitrary-scale tasks as any-resource implementation, reducing resource requirements for smaller scales without additional parameters; 2) enhancing any-scale performance in a feature-interweaving fashion, inserting scale pairs into features at regular intervals and ensuring correct feature/scale processing. The efficacy of our AnySR is fully demonstrated by rebuilding most existing arbitrary-scale SISR methods and validating on five popular SISR test datasets. The results show that our AnySR implements SISR tasks in a computing-more-efficient fashion, and performs on par with existing arbitrary-scale SISR methods. For the first time, we realize SISR tasks as not only any-scale in literature, but also as any-resource. Code is available at https://github.com/CrispyFeSo4/AnySR.
☆ GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction ECCV 2024
We present GSD, a diffusion model approach based on Gaussian Splatting (GS) representation for 3D object reconstruction from a single view. Prior works suffer from inconsistent 3D geometry or mediocre rendering quality due to improper representations. We take a step towards resolving these shortcomings by utilizing the recent state-of-the-art 3D explicit representation, Gaussian Splatting, and an unconditional diffusion model. This model learns to generate 3D objects represented by sets of GS ellipsoids. With these strong generative 3D priors, though learning unconditionally, the diffusion model is ready for view-guided reconstruction without further model fine-tuning. This is achieved by propagating fine-grained 2D features through the efficient yet flexible splatting function and the guided denoising sampling process. In addition, a 2D diffusion model is further employed to enhance rendering fidelity, and improve reconstructed GS quality by polishing and re-using the rendered images. The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views. Experiments on the challenging real-world CO3D dataset demonstrate the superiority of our approach.
comment: Accepted for ECCV 2024
☆ Efficient GANs for Document Image Binarization Based on DWT and Normalization
For document image binarization task, generative adversarial networks (GANs) can generate images where shadows and noise are effectively removed, which allow for text information extraction. The current state-of-the-art (SOTA) method proposes a three-stage network architecture that utilizes six GANs. Despite its excellent model performance, the SOTA network architecture requires long training and inference times. To overcome this problem, this work introduces an efficient GAN method based on the three-stage network architecture that incorporates the Discrete Wavelet Transformation and normalization to reduce the input image size, which in turns, decrease both training and inference times. In addition, this work presents novel generators, discriminators, and loss functions to improve the model's performance. Experimental results show that the proposed method reduces the training time by 10% and the inference time by 26% when compared to the SOTA method while maintaining the model performance at 73.79 of Avg-Score. Our implementation code is available on GitHub at https://github.com/RuiyangJu/Efficient_Document_Image_Binarization.
☆ A Physical Model-Guided Framework for Underwater Image Enhancement and Depth Estimation
Due to the selective absorption and scattering of light by diverse aquatic media, underwater images usually suffer from various visual degradations. Existing underwater image enhancement (UIE) approaches that combine underwater physical imaging models with neural networks often fail to accurately estimate imaging model parameters such as depth and veiling light, resulting in poor performance in certain scenarios. To address this issue, we propose a physical model-guided framework for jointly training a Deep Degradation Model (DDM) with any advanced UIE model. DDM includes three well-designed sub-networks to accurately estimate various imaging parameters: a veiling light estimation sub-network, a factors estimation sub-network, and a depth estimation sub-network. Based on the estimated parameters and the underwater physical imaging model, we impose physical constraints on the enhancement process by modeling the relationship between underwater images and desired clean images, i.e., outputs of the UIE model. Moreover, while our framework is compatible with any UIE model, we design a simple yet effective fully convolutional UIE model, termed UIEConv. UIEConv utilizes both global and local features for image enhancement through a dual-branch structure. UIEConv trained within our framework achieves remarkable enhancement results across diverse underwater scenes. Furthermore, as a byproduct of UIE, the trained depth estimation sub-network enables accurate underwater scene depth estimation. Extensive experiments conducted in various real underwater imaging scenarios, including deep-sea environments with artificial light sources, validate the effectiveness of our framework and the UIEConv model.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Batch Transformer: Look for Attention in Batch
Facial expression recognition (FER) has received considerable attention in computer vision, with "in-the-wild" environments such as human-computer interaction. However, FER images contain uncertainties such as occlusion, low resolution, pose variation, illumination variation, and subjectivity, which includes some expressions that do not match the target label. Consequently, little information is obtained from a noisy single image and it is not trusted. This could significantly degrade the performance of the FER task. To address this issue, we propose a batch transformer (BT), which consists of the proposed class batch attention (CBA) module, to prevent overfitting in noisy data and extract trustworthy information by training on features reflected from several images in a batch, rather than information from a single image. We also propose multi-level attention (MLA) to prevent overfitting the specific features by capturing correlations between each level. In this paper, we present a batch transformer network (BTN) that combines the above proposals. Experimental results on various FER benchmark datasets show that the proposed BTN consistently outperforms the state-ofthe-art in FER datasets. Representative results demonstrate the promise of the proposed BTN for FER.
☆ T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models ECCV2024
While text-to-image diffusion models demonstrate impressive generation capabilities, they also exhibit vulnerability to backdoor attacks, which involve the manipulation of model outputs through malicious triggers. In this paper, for the first time, we propose a comprehensive defense method named T2IShield to detect, localize, and mitigate such attacks. Specifically, we find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger. Based on this key insight, we propose two effective backdoor detection methods: Frobenius Norm Threshold Truncation and Covariance Discriminant Analysis. Besides, we introduce a binary-search approach to localize the trigger within a backdoor sample and assess the efficacy of existing concept editing methods in mitigating backdoor attacks. Empirical evaluations on two advanced backdoor attack scenarios show the effectiveness of our proposed defense method. For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$\%$ with low computational cost. Furthermore, T2IShield achieves a localization F1 score of 86.4$\%$ and invalidates 99$\%$ poisoned samples. Codes are released at https://github.com/Robin-WZQ/T2IShield.
comment: Accepted by ECCV2024
☆ AMD: Automatic Multi-step Distillation of Large-scale Vision Models
Transformer-based architectures have become the de-facto standard models for diverse vision tasks owing to their superior performance. As the size of the models continues to scale up, model distillation becomes extremely important in various real applications, particularly on devices limited by computational resources. However, prevailing knowledge distillation methods exhibit diminished efficacy when confronted with a large capacity gap between the teacher and the student, e.g, 10x compression rate. In this paper, we present a novel approach named Automatic Multi-step Distillation (AMD) for large-scale vision model compression. In particular, our distillation process unfolds across multiple steps. Initially, the teacher undergoes distillation to form an intermediate teacher-assistant model, which is subsequently distilled further to the student. An efficient and effective optimization framework is introduced to automatically identify the optimal teacher-assistant that leads to the maximal student performance. We conduct extensive experiments on multiple image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. The findings consistently reveal that our approach outperforms several established baselines, paving a path for future knowledge distillation methods on large-scale vision models.
comment: 19 pages, 5 figures
☆ Elevating All Zero-Shot Sketch-Based Image Retrieval Through Multimodal Prompt Learning ECCV 2024
We address the challenges inherent in sketch-based image retrieval (SBIR) across various settings, including zero-shot SBIR, generalized zero-shot SBIR, and fine-grained zero-shot SBIR, by leveraging the vision-language foundation model, CLIP. While recent endeavors have employed CLIP to enhance SBIR, these approaches predominantly follow uni-modal prompt processing and overlook to fully exploit CLIP's integrated visual and textual capabilities. To bridge this gap, we introduce SpLIP, a novel multi-modal prompt learning scheme designed to operate effectively with frozen CLIP backbones. We diverge from existing multi-modal prompting methods that either treat visual and textual prompts independently or integrate them in a limited fashion, leading to suboptimal generalization. SpLIP implements a bi-directional prompt-sharing strategy that enables mutual knowledge exchange between CLIP's visual and textual encoders, fostering a more cohesive and synergistic prompt processing mechanism that significantly reduces the semantic gap between the sketch and photo embeddings. In addition to pioneering multi-modal prompt learning, we propose two innovative strategies for further refining the embedding space. The first is an adaptive margin generation for the sketch-photo triplet loss, regulated by CLIP's class textual embeddings. The second introduces a novel task, termed conditional cross-modal jigsaw, aimed at enhancing fine-grained sketch-photo alignment, by focusing on implicitly modelling the viable patch arrangement of sketches using knowledge of unshuffled photos. Our comprehensive experimental evaluations across multiple benchmarks demonstrate the superior performance of SpLIP in all three SBIR scenarios. Code is available at https://github.com/mainaksingha01/SpLIP.
comment: Accepted in ECCV 2024
☆ HCS-TNAS: Hybrid Constraint-driven Semi-supervised Transformer-NAS for Ultrasound Image Segmentation
Accurate ultrasound segmentation is pursued because it aids clinicians in achieving a comprehensive diagnosis. Due to the presence of low image quality and high costs associated with annotation, two primary concerns arise: (1) enhancing the understanding of multi-scale features, and (2) improving the resistance to data dependency. To mitigate these concerns, we propose HCS-TNAS, a novel neural architecture search (NAS) method that automatically designs the network. For the first concern, we employ multi-level searching encompassing cellular, layer, and module levels. Specifically, we design an Efficient NAS-ViT module that searches for multi-scale tokens in the vision Transformer (ViT) to capture context and local information, rather than relying solely on simple combinations of operations. For the second concern, we propose a hybrid constraint-driven semi-supervised learning method that considers additional network independence and incorporates contrastive loss in a NAS formulation. By further developing a stage-wise optimization strategy, a rational network structure can be identified. Extensive experiments on three publicly available ultrasound image datasets demonstrate that HCS-TNAS effectively improves segmentation accuracy and outperforms state-of-the-art methods.
☆ Computer Vision for Clinical Gait Analysis: A Gait Abnormality Video Dataset
Clinical gait analysis (CGA) using computer vision is an emerging field in artificial intelligence that faces barriers of accessible, real-world data, and clear task objectives. This paper lays the foundation for current developments in CGA as well as vision-based methods and datasets suitable for gait analysis. We introduce The Gait Abnormality in Video Dataset (GAVD) in response to our review of over 150 current gait-related computer vision datasets, which highlighted the need for a large and accessible gait dataset clinically annotated for CGA. GAVD stands out as the largest video gait dataset, comprising 1874 sequences of normal, abnormal and pathological gaits. Additionally, GAVD includes clinically annotated RGB data sourced from publicly available content on online platforms. It also encompasses over 400 subjects who have undergone clinical grade visual screening to represent a diverse range of abnormal gait patterns, captured in various settings, including hospital clinics and urban uncontrolled outdoor environments. We demonstrate the validity of the dataset and utility of action recognition models for CGA using pretrained models Temporal Segment Networks(TSN) and SlowFast network to achieve video abnormality detection of 94% and 92% respectively when tested on GAVD dataset. A GitHub repository https://github.com/Rahmyyy/GAVD consisting of convenient URL links, and clinically relevant annotation for CGA is provided for over 450 online videos, featuring diverse subjects performing a range of normal, pathological, and abnormal gait patterns.
♻ ☆ Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis ECCV 2024
Accurate reconstruction of complex dynamic scenes from just a single viewpoint continues to be a challenging task in computer vision. Current dynamic novel view synthesis methods typically require videos from many different camera viewpoints, necessitating careful recording setups, and significantly restricting their utility in the wild as well as in terms of embodied AI applications. In this paper, we propose $\textbf{GCD}$, a controllable monocular dynamic view synthesis pipeline that leverages large-scale diffusion priors to, given a video of any scene, generate a synchronous video from any other chosen perspective, conditioned on a set of relative camera pose parameters. Our model does not require depth as input, and does not explicitly model 3D scene geometry, instead performing end-to-end video-to-video translation in order to achieve its goal efficiently. Despite being trained on synthetic multi-view video data only, zero-shot real-world generalization experiments show promising results in multiple domains, including robotics, object permanence, and driving environments. We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
comment: Accepted to ECCV 2024. Project webpage is available at: https://gcd.cs.columbia.edu/
♻ ☆ Research on target detection method of distracted driving behavior based on improved YOLOv8
With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.
comment: Major revision on content, no replacement available soon
♻ ☆ From Pixel to Cancer: Cellular Automata in Computed Tomography MICCAI 2024
AI for cancer detection encounters the bottleneck of data scarcity, annotation difficulty, and low prevalence of early tumors. Tumor synthesis seeks to create artificial tumors in medical images, which can greatly diversify the data and annotations for AI training. However, current tumor synthesis approaches are not applicable across different organs due to their need for specific expertise and design. This paper establishes a set of generic rules to simulate tumor development. Each cell (pixel) is initially assigned a state between zero and ten to represent the tumor population, and a tumor can be developed based on three rules to describe the process of growth, invasion, and death. We apply these three generic rules to simulate tumor development--from pixel to cancer--using cellular automata. We then integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs. This tumor synthesis approach allows for sampling tumors at multiple stages and analyzing tumor-organ interaction. Clinically, a reader study involving three expert radiologists reveals that the synthetic tumors and their developing trajectories are convincingly realistic. Technically, we analyze and simulate tumor development at various stages using 9,262 raw, unlabeled CT images sourced from 68 hospitals worldwide. The performance in segmenting tumors in the liver, pancreas, and kidneys exceeds prevailing literature benchmarks, underlining the immense potential of tumor synthesis, especially for earlier cancer detection. The code and models are available at https://github.com/MrGiovanni/Pixel2Cancer
comment: Early accepted to MICCAI 2024
♻ ☆ Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view ($360^{\circ}$ viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known 'missing cone' problem, which results in poor reconstruction along the depth axis. In this manuscript, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).
♻ ☆ Improving Semantic Correspondence with Viewpoint-Guided Spherical Maps
Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.
♻ ☆ Generative Adversarial Networks for Spatio-Spectral Compression of Hyperspectral Images
The development of deep learning-based models for the compression of hyperspectral images (HSIs) has recently attracted great attention in remote sensing due to the sharp growing of hyperspectral data archives. Most of the existing models achieve either spectral or spatial compression, and do not jointly consider the spatio-spectral redundancies present in HSIs. To address this problem, in this paper we focus our attention on the High Fidelity Compression (HiFiC) model (which is proven to be highly effective for spatial compression problems) and adapt it to perform spatio-spectral compression of HSIs. In detail, we introduce two new models: i) HiFiC using Squeeze and Excitation (SE) blocks (denoted as HiFiC$_{SE}$); and ii) HiFiC with 3D convolutions (denoted as HiFiC$_{3D}$) in the framework of compression of HSIs. We analyze the effectiveness of HiFiC$_{SE}$ and HiFiC$_{3D}$ in compressing the spatio-spectral redundancies with channel attention and inter-dependency analysis. Experimental results show the efficacy of the proposed models in performing spatio-spectral compression, while reconstructing images at reduced bitrates with higher reconstruction quality. The code of the proposed models is publicly available at https://git.tu-berlin.de/rsim/HSI-SSC .
Learning from Mistakes: Iterative Prompt Relabeling for Text-to-Image Diffusion Model Training
Diffusion models have shown impressive performance in many domains, including image generation, time series prediction, and reinforcement learning. The algorithm demonstrates superior performance over the traditional GAN and transformer-based methods. However, the model's capability to follow natural language instructions (e.g., spatial relationships between objects, generating complex scenes) is still unsatisfactory. It has been an important research area to enhance such capability. Prior works have shown that using Reinforcement Learning can effectively train diffusion models to enhance fidelity on specific objectives. However, existing RL methods require collecting a large amount of data to train an effective reward model. They also don't receive feedback when the generated image is incorrect. In this work, we propose Iterative Prompt Relabeling (IPR), a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling. IPR first samples a batch of images conditioned on the text then relabels the text prompts of unmatched text-image pairs with classifier feedback. We conduct thorough experiments on SDv2 and SDXL, testing their capability to follow instructions on spatial relations. With IPR, we improved up to 15.22% (absolute improvement) on the challenging spatial relation VISOR benchmark, demonstrating superior performance compared to previous RL methods.
♻ ☆ A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection
Video anomaly detection is to determine whether there are any abnormal events, behaviors or objects in a given video, which enables effective and intelligent public safety management. As video anomaly labeling is both time-consuming and expensive, most existing works employ unsupervised or weakly supervised learning methods. This paper focuses on weakly supervised video anomaly detection, in which the training videos are labeled whether or not they contain any anomalies, but there is no information about which frames the anomalies are located. However, the uncertainty of weakly labeled data and the large model size prevent existing methods from wide deployment in real scenarios, especially the resource-limit situations such as edge-computing. In this paper, we develop a lightweight video anomaly detection model. On the one hand, we propose an adaptive instance selection strategy, which is based on the model's current status to select confident instances, thereby mitigating the uncertainty of weakly labeled data and subsequently promoting the model's performance. On the other hand, we design a lightweight multi-level temporal correlation attention module and an hourglass-shaped fully connected layer to construct the model, which can reduce the model parameters to only 0.56\% of the existing methods (e.g. RTFM). Our extensive experiments on two public datasets UCF-Crime and ShanghaiTech show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods, with a significantly reduced number of model parameters.
♻ ☆ Multimodal Variational Autoencoder for Low-cost Cardiac Hemodynamics Instability Detection
Recent advancements in non-invasive detection of cardiac hemodynamic instability (CHDI) primarily focus on applying machine learning techniques to a single data modality, e.g. cardiac magnetic resonance imaging (MRI). Despite their potential, these approaches often fall short especially when the size of labeled patient data is limited, a common challenge in the medical domain. Furthermore, only a few studies have explored multimodal methods to study CHDI, which mostly rely on costly modalities such as cardiac MRI and echocardiogram. In response to these limitations, we propose a novel multimodal variational autoencoder ($\text{CardioVAE}_\text{X,G}$) to integrate low-cost chest X-ray (CXR) and electrocardiogram (ECG) modalities with pre-training on a large unlabeled dataset. Specifically, $\text{CardioVAE}_\text{X,G}$ introduces a novel tri-stream pre-training strategy to learn both shared and modality-specific features, thus enabling fine-tuning with both unimodal and multimodal datasets. We pre-train $\text{CardioVAE}_\text{X,G}$ on a large, unlabeled dataset of $50,982$ subjects from a subset of MIMIC database and then fine-tune the pre-trained model on a labeled dataset of $795$ subjects from the ASPIRE registry. Comprehensive evaluations against existing methods show that $\text{CardioVAE}_\text{X,G}$ offers promising performance (AUROC $=0.79$ and Accuracy $=0.77$), representing a significant step forward in non-invasive prediction of CHDI. Our model also excels in producing fine interpretations of predictions directly associated with clinical features, thereby supporting clinical decision-making.
♻ ☆ Planetary Causal Inference: Implications for the Geography of Poverty
Earth observation data such as satellite imagery can, when combined with machine learning, can have far-reaching impacts on our understanding of the geography of poverty through the prediction of living conditions, especially where government-derived economic indicators are either unavailable or potentially untrustworthy. Recent work has progressed in using Earth Observation (EO) data not only to predict spatial economic outcomes but also to explore cause and effect, an understanding which is critical for downstream policy analysis. In this review, we first document the growth of interest in using satellite images together with EO data in causal analysis. We then trace the relationship between spatial statistics and machine learning methods before discussing four ways in which EO data has been used in causal machine learning pipelines -- (1.) poverty outcome imputation for downstream causal analysis, (2.) EO image deconfounding, (3.) EO-based treatment effect heterogeneity, and (4.) EO-based transportability analysis. We conclude by providing a step-by-step workflow for how researchers can incorporate EO data in causal ML analysis going forward, outlining major choices of data, models, and evaluation metrics.
comment: For a full list of the papers found in the quantitative literature search, see https://github.com/AIandGlobalDevelopmentLab/eo-poverty-review
♻ ☆ Low-Resource Crop Classification from Multi-Spectral Time Series Using Lossless Compressors
Deep learning has significantly improved the accuracy of crop classification using multispectral temporal data. However, these models have complex structures with numerous parameters, requiring large amounts of data and costly training. In low-resource situations with fewer labeled samples, deep learning models perform poorly due to insufficient data. Conversely, compressors are data-type agnostic, and non-parametric methods do not bring underlying assumptions. Inspired by this insight, we propose a non-training alternative to deep learning models, aiming to address these situations. Specifically, the Symbolic Representation Module is proposed to convert the reflectivity into symbolic representations. The symbolic representations are then cross-transformed in both the channel and time dimensions to generate symbolic embeddings. Next, the Multi-scale Normalised Compression Distance (MNCD) is designed to measure the correlation between any two symbolic embeddings. Finally, based on the MNCDs, high quality crop classification can be achieved using only a k-nearest-neighbor classifier kNN. The entire framework is ready-to-use and lightweight. Without any training, it outperformed, on average, 7 advanced deep learning models trained at scale on three benchmark datasets. It also outperforms more than half of these models in the few-shot setting with sparse crop labels. Therefore, the high performance and robustness of our non-training framework makes it truly applicable to real-world crop mapping. Codes are available at: https://github.com/qinfengsama/Compressor-Based-Crop-Mapping.
comment: 8 pages, 10 figures
♻ ☆ Advanced Smart City Monitoring: Real-Time Identification of Indian Citizen Attributes
This project focuses on creating a smart surveillance system for Indian cities that can identify and analyze people's attributes in real time. Using advanced technologies like artificial intelligence and machine learning, the system can recognize attributes such as upper body color, what the person is wearing, accessories they are wearing, headgear, etc., and analyze behavior through cameras installed around the city.
comment: 6 pages , 8 figure , changed title and some alignment issue were resolved, but other contents remains same
♻ ☆ Artwork Protection Against Neural Style Transfer Using Locally Adaptive Adversarial Color Attack
Neural style transfer (NST) generates new images by combining the style of one image with the content of another. However, unauthorized NST can exploit artwork, raising concerns about artists' rights and motivating the development of proactive protection methods. We propose Locally Adaptive Adversarial Color Attack (LAACA), empowering artists to protect their artwork from unauthorized style transfer by processing before public release. By delving into the intricacies of human visual perception and the role of different frequency components, our method strategically introduces frequency-adaptive perturbations in the image. These perturbations significantly degrade the generation quality of NST while maintaining an acceptable level of visual change in the original image, ensuring that potential infringers are discouraged from using the protected artworks, because of its bad NST generation quality. Additionally, existing metrics often overlook the importance of color fidelity in evaluating color-mattered tasks, such as the quality of NST-generated images, which is crucial in the context of artistic works. To comprehensively assess the color-mattered tasks, we propose the Adversarial Color Distance Metric (ACDM), designed to quantify the color difference of images pre- and post-manipulations. Experimental results confirm that attacking NST using LAACA results in visually inferior style transfer, and the ACDM can efficiently measure color-mattered tasks. By providing artists with a tool to safeguard their intellectual property, our work relieves the socio-technical challenges posed by the misuse of NST in the art community.
comment: 9 pages, 5 figures, 4 tables
♻ ☆ Graph Theory and GNNs to Unravel the Topographical Organization of Brain Lesions in Variants of Alzheimer's Disease Progression
In this study, we proposed and evaluated a graph-based framework to assess variations in Alzheimer's disease (AD) neuropathologies, focusing on classic (cAD) and rapid (rpAD) progression forms. Histopathological images are converted into tau-pathology-based (i.e., amyloid plaques and tau tangles) graphs, and derived metrics are used in a machine-learning classifier. This classifier incorporates SHAP value explainability to differentiate between cAD and rpAD. Furthermore, we tested graph neural networks (GNNs) to extract topological embeddings from the graphs and use them in classifying the progression forms of AD. The analysis demonstrated denser networks in rpAD and a distinctive impact on brain cortical layers: rpAD predominantly affects middle layers, whereas cAD influences both superficial and deep layers of the same cortical regions. These results suggest a unique neuropathological network organization for each AD variant.
♻ ☆ AnyMaker: Zero-shot General Object Customization via Decoupled Dual-Level ID Injection
Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.
♻ ☆ MaTe3D: Mask-guided Text-based 3D-aware Portrait Editing
3D-aware portrait editing has a wide range of applications in multiple fields. However, current approaches are limited due that they can only perform mask-guided or text-based editing. Even by fusing the two procedures into a model, the editing quality and stability cannot be ensured. To address this limitation, we propose \textbf{MaTe3D}: mask-guided text-based 3D-aware portrait editing. In this framework, first, we introduce a new SDF-based 3D generator which learns local and global representations with proposed SDF and density consistency losses. This enhances masked-based editing in local areas; second, we present a novel distillation strategy: Conditional Distillation on Geometry and Texture (CDGT). Compared to exiting distillation strategies, it mitigates visual ambiguity and avoids mismatch between texture and geometry, thereby producing stable texture and convincing geometry while editing. Additionally, we create the CatMask-HQ dataset, a large-scale high-resolution cat face annotation for exploration of model generalization and expansion. We perform expensive experiments on both the FFHQ and CatMask-HQ datasets to demonstrate the editing quality and stability of the proposed method. Our method faithfully generates a 3D-aware edited face image based on a modified mask and a text prompt. Our code and models will be publicly released.
comment: 16 pages, 13 figures
♻ ☆ EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture
This paper presents EasyAnimate, an advanced method for video generation that leverages the power of transformer architecture for high-performance outcomes. We have expanded the DiT framework originally designed for 2D image synthesis to accommodate the complexities of 3D video generation by incorporating a motion module block. It is used to capture temporal dynamics, thereby ensuring the production of consistent frames and seamless motion transitions. The motion module can be adapted to various DiT baseline methods to generate video with different styles. It can also generate videos with different frame rates and resolutions during both training and inference phases, suitable for both images and videos. Moreover, we introduce slice VAE, a novel approach to condense the temporal axis, facilitating the generation of long duration videos. Currently, EasyAnimate exhibits the proficiency to generate videos with 144 frames. We provide a holistic ecosystem for video production based on DiT, encompassing aspects such as data pre-processing, VAE training, DiT models training (both the baseline model and LoRA model), and end-to-end video inference. Code is available at: https://github.com/aigc-apps/EasyAnimate. We are continuously working to enhance the performance of our method.
comment: 8 pages, 6 figures
♻ ☆ Conceptual Codebook Learning for Vision-Language Models ECCV 2024
In this paper, we propose Conceptual Codebook Learning (CoCoLe), a novel fine-tuning method for vision-language models (VLMs) to address the challenge of improving the generalization capability of VLMs while fine-tuning them on downstream tasks in a few-shot setting. We recognize that visual concepts, such as textures, shapes, and colors are naturally transferable across domains and play a crucial role in generalization tasks. Motivated by this interesting finding, we learn a conceptual codebook consisting of visual concepts as keys and conceptual prompts as values, which serves as a link between the image encoder's outputs and the text encoder's inputs. Specifically, for a given image, we leverage the codebook to identify the most relevant conceptual prompts associated with the class embeddings to perform the classification. Additionally, we incorporate a handcrafted concept cache as a regularization to alleviate the overfitting issues in low-shot scenarios. We observe that this conceptual codebook learning method is able to achieve enhanced alignment between visual and linguistic modalities. Extensive experimental results demonstrate that our CoCoLe method remarkably outperforms the existing state-of-the-art methods across various evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization tasks. Detailed ablation studies further confirm the efficacy of each component in CoCoLe.
comment: Accepted by ECCV 2024
♻ ☆ Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
Breast cancer poses a profound threat to lives globally, claiming numerous lives each year. Therefore, timely detection is crucial for early intervention and improved chances of survival. Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine, demanding cutting-edge solutions for improved treatment strategies. This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images. A spatial channel attention mechanism is proposed for segmenting tumors from ultrasound images, utilizing a novel LinkNet DL framework with an InceptionResNet backbone. Following this, the paper proposes a deep convolutional neural network with an integrated multi-attention framework (DCNNIMAF) to classify the segmented tumor as benign, malignant, or normal. From experimental results, it is observed that the segmentation model has recorded an accuracy of 98.1%, with a minimal loss of 0.6%. It has also achieved high Intersection over Union (IoU) and Dice Coefficient scores of 96.9% and 97.2%, respectively. Similarly, the classification model has attained an accuracy of 99.2%, with a low loss of 0.31%. Furthermore, the classification framework has achieved outstanding F1-Score, precision, and recall values of 99.1%, 99.3%, and 99.1%, respectively. By offering a robust framework for early detection and accurate classification of breast cancer, this proposed work significantly advances the field of medical image analysis, potentially improving diagnostic precision and patient outcomes.
comment: 29 pages, 15 figures, 6 tables
♻ ☆ MUSES: The Multi-Sensor Semantic Perception Dataset for Driving under Uncertainty
Achieving level-5 driving automation in autonomous vehicles necessitates a robust semantic visual perception system capable of parsing data from different sensors across diverse conditions. However, existing semantic perception datasets often lack important non-camera modalities typically used in autonomous vehicles, or they do not exploit such modalities to aid and improve semantic annotations in challenging conditions. To address this, we introduce MUSES, the MUlti-SEnsor Semantic perception dataset for driving in adverse conditions under increased uncertainty. MUSES includes synchronized multimodal recordings with 2D panoptic annotations for 2500 images captured under diverse weather and illumination. The dataset integrates a frame camera, a lidar, a radar, an event camera, and an IMU/GNSS sensor. Our new two-stage panoptic annotation protocol captures both class-level and instance-level uncertainty in the ground truth and enables the novel task of uncertainty-aware panoptic segmentation we introduce, along with standard semantic and panoptic segmentation. MUSES proves both effective for training and challenging for evaluating models under diverse visual conditions, and it opens new avenues for research in multimodal and uncertainty-aware dense semantic perception. Our dataset and benchmark are publicly available at https://muses.vision.ee.ethz.ch.
comment: Dataset available at http://muses.vision.ee.ethz.ch
♻ ☆ Source Prompt Disentangled Inversion for Boosting Image Editability with Diffusion Models
Text-driven diffusion models have significantly advanced the image editing performance by using text prompts as inputs. One crucial step in text-driven image editing is to invert the original image into a latent noise code conditioned on the source prompt. While previous methods have achieved promising results by refactoring the image synthesizing process, the inverted latent noise code is tightly coupled with the source prompt, limiting the image editability by target text prompts. To address this issue, we propose a novel method called Source Prompt Disentangled Inversion (SPDInv), which aims at reducing the impact of source prompt, thereby enhancing the text-driven image editing performance by employing diffusion models. To make the inverted noise code be independent of the given source prompt as much as possible, we indicate that the iterative inversion process should satisfy a fixed-point constraint. Consequently, we transform the inversion problem into a searching problem to find the fixed-point solution, and utilize the pre-trained diffusion models to facilitate the searching process. The experimental results show that our proposed SPDInv method can effectively mitigate the conflicts between the target editing prompt and the source prompt, leading to a significant decrease in editing artifacts. In addition to text-driven image editing, with SPDInv we can easily adapt customized image generation models to localized editing tasks and produce promising performance. The source code are available at https://github.com/leeruibin/SPDInv.
♻ ☆ UDA4Inst: Unsupervised Domain Adaptation for Instance Segmentation
Unsupervised Domain Adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled target domain. While UDA methods for synthetic to real-world domains (synth-to-real) show remarkable performance in tasks such as semantic segmentation and object detection, very few were proposed for instance segmentation in the field of vision-based autonomous driving, and the existing ones are based on a suboptimal baseline, which severely limits the performance. In this paper, we introduce UDA4Inst, a strong baseline of synth-to-real UDA for instance segmentation. UDA4Inst adopts cross-domain bidirectional data mixing at the instance level to effectively utilize data from both source and target domains. Rare-class balancing and category module training are also employed to further improve the performance. It is worth noting that we are the first to demonstrate results on two new synth-to-real instance segmentation benchmarks, with 39.0 mAP on UrbanSyn->Cityscapes and 35.7 mAP on Synscapes->Cityscapes. Our method outperforms the source-only Mask2Former model by +7 mAP and +7.6 mAP, respectively. On SYNTHIA->Cityscapes, our method improves the source-only Mask2Former by +6.7 mAP, achieving state-of-the-art results.Our code will be released soon.
♻ ☆ UltraCortex: Submillimeter Ultra-High Field 9.4 T1 Brain MR Image Collection and Manual Cortical Segmentations
The UltraCortex repository (https://www.ultracortex.org) houses magnetic resonance imaging data of the human brain obtained at an ultra-high field strength of 9.4 T. It contains 86 structural MR images with spatial resolutions ranging from 0.6 to 0.8 mm. Additionally, the repository includes segmentations of 12 brains into gray and white matter compartments. These segmentations have been independently validated by two expert neuroradiologists, thus establishing them as a reliable gold standard. This resource provides researchers with access to high-quality brain imaging data and validated segmentations, facilitating neuroimaging studies and advancing our understanding of brain structure and function. Existing repositories do not accommodate field strengths beyond 7 T, nor do they offer validated segmentations, underscoring the significance of this new resource.
♻ ☆ Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models
We address the Continual Learning (CL) problem, wherein a model must learn a sequence of tasks from non-stationary distributions while preserving prior knowledge upon encountering new experiences. With the advancement of foundation models, CL research has pivoted from the initial learning-from-scratch paradigm towards utilizing generic features from large-scale pre-training. However, existing approaches to CL with pre-trained models primarily focus on separating class-specific features from the final representation layer and neglect the potential of intermediate representations to capture low- and mid-level features, which are more invariant to domain shifts. In this work, we propose LayUP, a new prototype-based approach to CL that leverages second-order feature statistics from multiple intermediate layers of a pre-trained network. Our method is conceptually simple, does not require access to prior data, and works out of the box with any foundation model. LayUP surpasses the state of the art in four of the seven class-incremental learning benchmarks, all three domain-incremental learning benchmarks and in six of the seven online continual learning benchmarks, while significantly reducing memory and computational requirements compared to existing baselines. Our results demonstrate that fully exhausting the representational capacities of pre-trained models in CL goes well beyond their final embeddings.
comment: Accepted for publication in Transactions of Machine Learning Research (TMLR) journal
♻ ☆ Multi-Modal Video Dialog State Tracking in the Wild ECCV 2024
We present MST-MIXER - a novel video dialog model operating over a generic multi-modal state tracking scheme. Current models that claim to perform multi-modal state tracking fall short of two major aspects: (1) They either track only one modality (mostly the visual input) or (2) they target synthetic datasets that do not reflect the complexity of real-world in the wild scenarios. Our model addresses these two limitations in an attempt to close this crucial research gap. Specifically, MST-MIXER first tracks the most important constituents of each input modality. Then, it predicts the missing underlying structure of the selected constituents of each modality by learning local latent graphs using a novel multi-modal graph structure learning method. Subsequently, the learned local graphs and features are parsed together to form a global graph operating on the mix of all modalities which further refines its structure and node embeddings. Finally, the fine-grained graph node features are used to enhance the hidden states of the backbone Vision-Language Model (VLM). MST-MIXER achieves new state-of-the-art results on five challenging benchmarks.
comment: ECCV 2024
♻ ☆ Learning Rate Curriculum
Most curriculum learning methods require an approach to sort the data samples by difficulty, which is often cumbersome to perform. In this work, we propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC), which leverages the use of a different learning rate for each layer of a neural network to create a data-agnostic curriculum during the initial training epochs. More specifically, LeRaC assigns higher learning rates to neural layers closer to the input, gradually decreasing the learning rates as the layers are placed farther away from the input. The learning rates increase at various paces during the first training iterations, until they all reach the same value. From this point on, the neural model is trained as usual. This creates a model-level curriculum learning strategy that does not require sorting the examples by difficulty and is compatible with any neural network, generating higher performance levels regardless of the architecture. We conduct comprehensive experiments on 12 data sets from the computer vision (CIFAR-10, CIFAR-100, Tiny ImageNet, ImageNet-200, Food-101, UTKFace, PASCAL VOC), language (BoolQ, QNLI, RTE) and audio (ESC-50, CREMA-D) domains, considering various convolutional (ResNet-18, Wide-ResNet-50, DenseNet-121, YOLOv5), recurrent (LSTM) and transformer (CvT, BERT, SepTr) architectures. We compare our approach with the conventional training regime, as well as with Curriculum by Smoothing (CBS), a state-of-the-art data-agnostic curriculum learning approach. Unlike CBS, our performance improvements over the standard training regime are consistent across all data sets and models. Furthermore, we significantly surpass CBS in terms of training time (there is no additional cost over the standard training regime for LeRaC). Our code is freely available at: https://github.com/CroitoruAlin/LeRaC.
comment: Accepted at the International Journal of Computer Vision
♻ ☆ Interpretable Representation Learning of Cardiac MRI via Attribute Regularization
Interpretability is essential in medical imaging to ensure that clinicians can comprehend and trust artificial intelligence models. Several approaches have been recently considered to encode attributes in the latent space to enhance its interpretability. Notably, attribute regularization aims to encode a set of attributes along the dimensions of a latent representation. However, this approach is based on Variational AutoEncoder and suffers from blurry reconstruction. In this paper, we propose an Attributed-regularized Soft Introspective Variational Autoencoder that combines attribute regularization of the latent space within the framework of an adversarially trained variational autoencoder. We demonstrate on short-axis cardiac Magnetic Resonance images of the UK Biobank the ability of the proposed method to address blurry reconstruction issues of variational autoencoder methods while preserving the latent space interpretability.
comment: arXiv admin note: substantial text overlap with arXiv:2312.08915
♻ ☆ FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
♻ ☆ Multi-Task Domain Adaptation for Language Grounding with 3D Objects
The existing works on object-level language grounding with 3D objects mostly focus on improving performance by utilizing the off-the-shelf pre-trained models to capture features, such as viewpoint selection or geometric priors. However, they have failed to consider exploring the cross-modal representation of language-vision alignment in the cross-domain field. To answer this problem, we propose a novel method called Domain Adaptation for Language Grounding (DA4LG) with 3D objects. Specifically, the proposed DA4LG consists of a visual adapter module with multi-task learning to realize vision-language alignment by comprehensive multimodal feature representation. Experimental results demonstrate that DA4LG competitively performs across visual and non-visual language descriptions, independent of the completeness of observation. DA4LG achieves state-of-the-art performance in the single-view setting and multi-view setting with the accuracy of 83.8% and 86.8% respectively in the language grounding benchmark SNARE. The simulation experiments show the well-practical and generalized performance of DA4LG compared to the existing methods. Our project is available at https://sites.google.com/view/da4lg.
♻ ☆ Explicit Abnormality Extraction for Unsupervised Motion Artifact Reduction in Magnetic Resonance Imaging
Motion artifacts compromise the quality of magnetic resonance imaging (MRI) and pose challenges to achieving diagnostic outcomes and image-guided therapies. In recent years, supervised deep learning approaches have emerged as successful solutions for motion artifact reduction (MAR). One disadvantage of these methods is their dependency on acquiring paired sets of motion artifact-corrupted (MA-corrupted) and motion artifact-free (MA-free) MR images for training purposes. Obtaining such image pairs is difficult and therefore limits the application of supervised training. In this paper, we propose a novel UNsupervised Abnormality Extraction Network (UNAEN) to alleviate this problem. Our network is capable of working with unpaired MA-corrupted and MA-free images. It converts the MA-corrupted images to MA-reduced images by extracting abnormalities from the MA-corrupted images using a proposed artifact extractor, which intercepts the residual artifact maps from the MA-corrupted MR images explicitly, and a reconstructor to restore the original input from the MA-reduced images. The performance of UNAEN was assessed by experimenting with various publicly available MRI datasets and comparing them with state-of-the-art methods. The quantitative evaluation demonstrates the superiority of UNAEN over alternative MAR methods and visually exhibits fewer residual artifacts. Our results substantiate the potential of UNAEN as a promising solution applicable in real-world clinical environments, with the capability to enhance diagnostic accuracy and facilitate image-guided therapies. Our codes are publicly available at https://github.com/YuSheng-Zhou/UNAEN.
♻ ☆ MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model
Implicit visual knowledge in a large latent diffusion model (LLDM) pre-trained on natural images is rich and hypothetically universal to natural and medical images. To test this hypothesis from a practical perspective, we propose a novel framework for undersampled MRI Reconstruction by Prompting a large latent Diffusion model (MRPD). While the existing methods trained on MRI datasets are typically of limited generalizability toward diverse data acquisition scenarios, MRPD supports unsupervised and universally adaptive MRI reconstruction. For unsupervised reconstruction, MRSampler guides LLDM with a random-phase-modulated hard-to-soft control. With any single- or multiple-source MRI dataset, MRPD's performance is boosted universally by a lightweight MRAdapter that only finetunes the LLDM's autoencoder. Experiments on FastMRI and IXI show that MRPD is the only model that supports both MRI database-free and database-available scenarios and attains the best generalizability towards out-of-domain (OOD) samplings, contrasts, and organs among compared unsupervised, supervised, and MRI diffusion methods. To our knowledge, MRPD is the first method that empirically shows the universal prowess of an LLDM pre-trained on vast natural images for MRI. Our official implementation is at https://github.com/Z7Gao/MRPD.
comment: 10 pages, 5 figures, 7 tables, 1 pseudocode
♻ ☆ Latent Fingerprint Matching via Dense Minutia Descriptor
Latent fingerprint matching is a daunting task, primarily due to the poor quality of latent fingerprints. In this study, we propose a deep-learning based dense minutia descriptor (DMD) for latent fingerprint matching. A DMD is obtained by extracting the fingerprint patch aligned by its central minutia, capturing detailed minutia information and texture information. Our dense descriptor takes the form of a three-dimensional representation, with two dimensions associated with the original image plane and the other dimension representing the abstract features. Additionally, the extraction process outputs the fingerprint segmentation map, ensuring that the descriptor is only valid in the foreground region. The matching between two descriptors occurs in their overlapping regions, with a score normalization strategy to reduce the impact brought by the differences outside the valid area. Our descriptor achieves state-of-the-art performance on several latent fingerprint datasets. Overall, our DMD is more representative and interpretable compared to previous methods.
comment: accepted by IJCB 2024
♻ ☆ MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval ECML
In the realm of Earth science, effective cloud property retrieval, encompassing cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction, remains pivotal. Traditional methodologies necessitate distinct models for each sensor instrument due to their unique spectral characteristics. Recent strides in Earth Science research have embraced machine learning and deep learning techniques to extract features from satellite datasets' spectral observations. However, prevailing approaches lack novel architectures accounting for hierarchical relationships among retrieval tasks. Moreover, considering the spectral diversity among existing sensors, the development of models with robust generalization capabilities over different sensor datasets is imperative. Surprisingly, there is a dearth of methodologies addressing the selection of an optimal model for diverse datasets. In response, this paper introduces MT-HCCAR, an end-to-end deep learning model employing multi-task learning to simultaneously tackle cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). The MT-HCCAR integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Additionally, a comprehensive model selection method rooted in K-fold cross-validation, one standard error rule, and two introduced performance scores is proposed to select the optimal model over three simulated satellite datasets OCI, VIIRS, and ABI. The experiments comparing MT-HCCAR with baseline methods, the ablation studies, and the model selection affirm the superiority and the generalization capabilities of MT-HCCAR.
comment: 14 pages, 3 figures, accepted by ECML PKDD 2024
♻ ☆ Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs
Post-training quantization (PTQ) is a powerful technique for model compression, reducing the numerical precision in neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point formats(FP8) in the context of PTQ for model inference. However, floating-point formats smaller than 8 bits and their relative comparison in terms of accuracy-hardware cost with integers remains unexplored on FPGAs. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. We implement a custom FPGA-based multiply-accumulate operator library and explore the vast design space, comparing minifloat and integer representations across 3 to 8 bits for both weights and activations. We also examine the applicability of various integerbased quantization techniques to minifloats. Our experiments show that minifloats offer a promising alternative for emerging workloads such as vision transformers.
comment: Accepted in FPL (International Conference on Field-Programmable Logic and Applications) 2024 conference. Revised with updated results
♻ ☆ Rejuvenating image-GPT as Strong Visual Representation Learners ICML2024
This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement is its compelling performance on the ImageNet-1K dataset -- by training on publicly available datasets, D-iGPT unprecedentedly achieves \textbf{90.0\%} top-1 accuracy with a vanilla ViT-H. Additionally, D-iGPT shows strong generalization on the downstream task. Code is available at https://github.com/OliverRensu/D-iGPT.
comment: This paper is accepted by ICML2024
♻ ☆ Towards Multimodal Sentiment Analysis Debiasing via Bias Purification ECCV 2024
Multimodal Sentiment Analysis (MSA) aims to understand human intentions by integrating emotion-related clues from diverse modalities, such as visual, language, and audio. Unfortunately, the current MSA task invariably suffers from unplanned dataset biases, particularly multimodal utterance-level label bias and word-level context bias. These harmful biases potentially mislead models to focus on statistical shortcuts and spurious correlations, causing severe performance bottlenecks. To alleviate these issues, we present a Multimodal Counterfactual Inference Sentiment (MCIS) analysis framework based on causality rather than conventional likelihood. Concretely, we first formulate a causal graph to discover harmful biases from already-trained vanilla models. In the inference phase, given a factual multimodal input, MCIS imagines two counterfactual scenarios to purify and mitigate these biases. Then, MCIS can make unbiased decisions from biased observations by comparing factual and counterfactual outcomes. We conduct extensive experiments on several standard MSA benchmarks. Qualitative and quantitative results show the effectiveness of the proposed framework.
comment: Accepted by ECCV 2024
♻ ☆ TalkingGaussian: Structure-Persistent 3D Talking Head Synthesis via Gaussian Splatting ECCV 2024
Radiance fields have demonstrated impressive performance in synthesizing lifelike 3D talking heads. However, due to the difficulty in fitting steep appearance changes, the prevailing paradigm that presents facial motions by directly modifying point appearance may lead to distortions in dynamic regions. To tackle this challenge, we introduce TalkingGaussian, a deformation-based radiance fields framework for high-fidelity talking head synthesis. Leveraging the point-based Gaussian Splatting, facial motions can be represented in our method by applying smooth and continuous deformations to persistent Gaussian primitives, without requiring to learn the difficult appearance change like previous methods. Due to this simplification, precise facial motions can be synthesized while keeping a highly intact facial feature. Under such a deformation paradigm, we further identify a face-mouth motion inconsistency that would affect the learning of detailed speaking motions. To address this conflict, we decompose the model into two branches separately for the face and inside mouth areas, therefore simplifying the learning tasks to help reconstruct more accurate motion and structure of the mouth region. Extensive experiments demonstrate that our method renders high-quality lip-synchronized talking head videos, with better facial fidelity and higher efficiency compared with previous methods.
comment: Accepted at ECCV 2024. Project page: https://fictionarry.github.io/TalkingGaussian/
♻ ☆ Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting CVPR
Artificial neural networks often suffer from catastrophic forgetting, where learning new concepts leads to a complete loss of previously acquired knowledge. We observe that this issue is particularly magnified in vision transformers (ViTs), where post-pre-training and fine-tuning on new tasks can significantly degrade the model's original general abilities. For instance, a DINO ViT-Base/16 pre-trained on ImageNet-1k loses over 70% accuracy on ImageNet-1k after just 10 iterations of fine-tuning on CIFAR-100. Overcoming this stability-plasticity dilemma is crucial for enabling ViTs to continuously learn and adapt to new domains while preserving their initial knowledge. In this work, we study two new parameter-efficient fine-tuning strategies: (1)~Block Expansion, and (2) Low-rank adaptation (LoRA). Our experiments reveal that using either Block Expansion or LoRA on self-supervised pre-trained ViTs surpass fully fine-tuned ViTs in new domains while offering significantly greater parameter efficiency. Notably, we find that Block Expansion experiences only a minimal performance drop in the pre-training domain, thereby effectively mitigating catastrophic forgetting in pre-trained ViTs.
comment: Accepted at eLVM Workshop, CVPR, 2024
♻ ☆ Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection
The Detection Transformer (DETR) has revolutionized the design of CNN-based object detection systems, showcasing impressive performance. However, its potential in the domain of multi-frame 3D object detection remains largely unexplored. In this paper, we present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection by addressing three key aspects specifically tailored for this task. First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network, which represents queries as nodes in a graph and enables effective modeling of object interactions within a social context. To solve the problem of missing hard cases in the proposed output of the encoder in the current frame, we incorporate the output of the previous frame to initialize the query input of the decoder. Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match. And similar queries are insufficiently suppressed and turn into redundant prediction boxes. To address this issue, our proposed IoU regularization term encourages similar queries to be distinct during the refinement. Through extensive experiments, we demonstrate the effectiveness of our approach in handling challenging scenarios, while incurring only a minor additional computational overhead. The code is publicly available at https://github.com/Eaphan/STEMD.
comment: 16 pages, 9 figures
♻ ☆ Identification of Novel Modes in Generative Models via Fourier-based Differential Clustering
An interpretable comparison of generative models requires the identification of sample types produced more frequently by each of the involved models. While several quantitative scores have been proposed in the literature to rank different generative models, such score-based evaluations do not reveal the nuanced differences between the generative models in capturing various sample types. In this work, we attempt to solve a differential clustering problem to detect sample types expressed differently by two generative models. To solve the differential clustering problem, we propose a method called Fourier-based Identification of Novel Clusters (FINC) to identify modes produced by a generative model with a higher frequency in comparison to a reference distribution. FINC provides a scalable stochastic algorithm based on random Fourier features to estimate the eigenspace of kernel covariance matrices of two generative models and utilize the principal eigendirections to detect the sample types present more dominantly in each model. We demonstrate the application of the FINC method to large-scale computer vision datasets and generative model frameworks. Our numerical results suggest the scalability of the developed Fourier-based method in highlighting the sample types produced with different frequencies by widely-used generative models. Code is available at \url{https://github.com/buyeah1109/FINC}
♻ ☆ 360 in the Wild: Dataset for Depth Prediction and View Synthesis
The large abundance of perspective camera datasets facilitated the emergence of novel learning-based strategies for various tasks, such as camera localization, single image depth estimation, or view synthesis. However, panoramic or omnidirectional image datasets, including essential information, such as pose and depth, are mostly made with synthetic scenes. In this work, we introduce a large scale 360$^{\circ}$ videos dataset in the wild. This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide. Hence, this dataset exhibits very diversified environments (e.g., indoor and outdoor) and contexts (e.g., with and without moving objects). Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map. We illustrate the relevance of our dataset for two main tasks, namely, single image depth estimation and view synthesis.
♻ ☆ Attention-Challenging Multiple Instance Learning for Whole Slide Image Classification ECCV2024
In the application of Multiple Instance Learning (MIL) methods for Whole Slide Image (WSI) classification, attention mechanisms often focus on a subset of discriminative instances, which are closely linked to overfitting. To mitigate overfitting, we present Attention-Challenging MIL (ACMIL). ACMIL combines two techniques based on separate analyses for attention value concentration. Firstly, UMAP of instance features reveals various patterns among discriminative instances, with existing attention mechanisms capturing only some of them. To remedy this, we introduce Multiple Branch Attention (MBA) to capture more discriminative instances using multiple attention branches. Secondly, the examination of the cumulative value of Top-K attention scores indicates that a tiny number of instances dominate the majority of attention. In response, we present Stochastic Top-K Instance Masking (STKIM), which masks out a portion of instances with Top-K attention values and allocates their attention values to the remaining instances. The extensive experimental results on three WSI datasets with two pre-trained backbones reveal that our ACMIL outperforms state-of-the-art methods. Additionally, through heatmap visualization and UMAP visualization, this paper extensively illustrates ACMIL's effectiveness in suppressing attention value concentration and overcoming the overfitting challenge. The source code is available at \url{https://github.com/dazhangyu123/ACMIL}.
comment: Accepted by ECCV2024
♻ ☆ HeartBeat: Towards Controllable Echocardiography Video Synthesis with Multimodal Conditions-Guided Diffusion Models MICCAI 2024
Echocardiography (ECHO) video is widely used for cardiac examination. In clinical, this procedure heavily relies on operator experience, which needs years of training and maybe the assistance of deep learning-based systems for enhanced accuracy and efficiency. However, it is challenging since acquiring sufficient customized data (e.g., abnormal cases) for novice training and deep model development is clinically unrealistic. Hence, controllable ECHO video synthesis is highly desirable. In this paper, we propose a novel diffusion-based framework named HeartBeat towards controllable and high-fidelity ECHO video synthesis. Our highlight is three-fold. First, HeartBeat serves as a unified framework that enables perceiving multimodal conditions simultaneously to guide controllable generation. Second, we factorize the multimodal conditions into local and global ones, with two insertion strategies separately provided fine- and coarse-grained controls in a composable and flexible manner. In this way, users can synthesize ECHO videos that conform to their mental imagery by combining multimodal control signals. Third, we propose to decouple the visual concepts and temporal dynamics learning using a two-stage training scheme for simplifying the model training. One more interesting thing is that HeartBeat can easily generalize to mask-guided cardiac MRI synthesis in a few shots, showcasing its scalability to broader applications. Extensive experiments on two public datasets show the efficacy of the proposed HeartBeat.
comment: Accepted by MICCAI 2024
♻ ☆ ASY-VRNet: Waterway Panoptic Driving Perception Model based on Asymmetric Fair Fusion of Vision and 4D mmWave Radar IROS 2024
Panoptic Driving Perception (PDP) is critical for the autonomous navigation of Unmanned Surface Vehicles (USVs). A PDP model typically integrates multiple tasks, necessitating the simultaneous and robust execution of various perception tasks to facilitate downstream path planning. The fusion of visual and radar sensors is currently acknowledged as a robust and cost-effective approach. However, most existing research has primarily focused on fusing visual and radar features dedicated to object detection or utilizing a shared feature space for multiple tasks, neglecting the individual representation differences between various tasks. To address this gap, we propose a pair of Asymmetric Fair Fusion (AFF) modules with favorable explainability designed to efficiently interact with independent features from both visual and radar modalities, tailored to the specific requirements of object detection and semantic segmentation tasks. The AFF modules treat image and radar maps as irregular point sets and transform these features into a crossed-shared feature space for multitasking, ensuring equitable treatment of vision and radar point cloud features. Leveraging AFF modules, we propose a novel and efficient PDP model, ASY-VRNet, which processes image and radar features based on irregular super-pixel point sets. Additionally, we propose an effective multitask learning method specifically designed for PDP models. Compared to other lightweight models, ASY-VRNet achieves state-of-the-art performance in object detection, semantic segmentation, and drivable-area segmentation on the WaterScenes benchmark. Our project is publicly available at https://github.com/GuanRunwei/ASY-VRNet.
comment: Accepted by IROS 2024
♻ ☆ Instance-dependent Noisy-label Learning with Graphical Model Based Noise-rate Estimation ECCV 2024
Deep learning faces a formidable challenge when handling noisy labels, as models tend to overfit samples affected by label noise. This challenge is further compounded by the presence of instance-dependent noise (IDN), a realistic form of label noise arising from ambiguous sample information. To address IDN, Label Noise Learning (LNL) incorporates a sample selection stage to differentiate clean and noisy-label samples. This stage uses an arbitrary criterion and a pre-defined curriculum that initially selects most samples as noisy and gradually decreases this selection rate during training. Such curriculum is sub-optimal since it does not consider the actual label noise rate in the training set. This paper addresses this issue with a new noise-rate estimation method that is easily integrated with most state-of-the-art (SOTA) LNL methods to produce a more effective curriculum. Synthetic and real-world benchmark results demonstrate that integrating our approach with SOTA LNL methods improves accuracy in most cases.
comment: ECCV 2024
♻ ☆ Minimalist and High-Quality Panoramic Imaging with PSF-aware Transformers
High-quality panoramic images with a Field of View (FoV) of 360{\deg} are essential for contemporary panoramic computer vision tasks. However, conventional imaging systems come with sophisticated lens designs and heavy optical components. This disqualifies their usage in many mobile and wearable applications where thin and portable, minimalist imaging systems are desired. In this paper, we propose a Panoramic Computational Imaging Engine (PCIE) to achieve minimalist and high-quality panoramic imaging. With less than three spherical lenses, a Minimalist Panoramic Imaging Prototype (MPIP) is constructed based on the design of the Panoramic Annular Lens (PAL), but with low-quality imaging results due to aberrations and small image plane size. We propose two pipelines, i.e. Aberration Correction (AC) and Super-Resolution and Aberration Correction (SR&AC), to solve the image quality problems of MPIP, with imaging sensors of small and large pixel size, respectively. To leverage the prior information of the optical system, we propose a Point Spread Function (PSF) representation method to produce a PSF map as an additional modality. A PSF-aware Aberration-image Recovery Transformer (PART) is designed as a universal network for the two pipelines, in which the self-attention calculation and feature extraction are guided by the PSF map. We train PART on synthetic image pairs from simulation and put forward the PALHQ dataset to fill the gap of real-world high-quality PAL images for low-level vision. A comprehensive variety of experiments on synthetic and real-world benchmarks demonstrates the impressive imaging results of PCIE and the effectiveness of the PSF representation. We further deliver heuristic experimental findings for minimalist and high-quality panoramic imaging. Our dataset and code will be available at https://github.com/zju-jiangqi/PCIE-PART.
comment: Accepted to IEEE Transactions on Image Processing (TIP). The dataset and code will be available at https://github.com/zju-jiangqi/PCIE-PART
Machine Learning 150
☆ Me, Myself, and AI: The Situational Awareness Dataset (SAD) for LLMs
AI assistants such as ChatGPT are trained to respond to users by saying, "I am a large language model". This raises questions. Do such models know that they are LLMs and reliably act on this knowledge? Are they aware of their current circumstances, such as being deployed to the public? We refer to a model's knowledge of itself and its circumstances as situational awareness. To quantify situational awareness in LLMs, we introduce a range of behavioral tests, based on question answering and instruction following. These tests form the $\textbf{Situational Awareness Dataset (SAD)}$, a benchmark comprising 7 task categories and over 13,000 questions. The benchmark tests numerous abilities, including the capacity of LLMs to (i) recognize their own generated text, (ii) predict their own behavior, (iii) determine whether a prompt is from internal evaluation or real-world deployment, and (iv) follow instructions that depend on self-knowledge. We evaluate 16 LLMs on SAD, including both base (pretrained) and chat models. While all models perform better than chance, even the highest-scoring model (Claude 3 Opus) is far from a human baseline on certain tasks. We also observe that performance on SAD is only partially predicted by metrics of general knowledge (e.g. MMLU). Chat models, which are finetuned to serve as AI assistants, outperform their corresponding base models on SAD but not on general knowledge tasks. The purpose of SAD is to facilitate scientific understanding of situational awareness in LLMs by breaking it down into quantitative abilities. Situational awareness is important because it enhances a model's capacity for autonomous planning and action. While this has potential benefits for automation, it also introduces novel risks related to AI safety and control. Code and latest results available at https://situational-awareness-dataset.org .
comment: 11 page main body, 98 page appendix, 58 figures
☆ Missed Causes and Ambiguous Effects: Counterfactuals Pose Challenges for Interpreting Neural Networks
Interpretability research takes counterfactual theories of causality for granted. Most causal methods rely on counterfactual interventions to inputs or the activations of particular model components, followed by observations of the change in models' output logits or behaviors. While this yields more faithful evidence than correlational methods, counterfactuals nonetheless have key problems that bias our findings in specific and predictable ways. Specifically, (i) counterfactual theories do not effectively capture multiple independently sufficient causes of the same effect, which leads us to miss certain causes entirely; and (ii) counterfactual dependencies in neural networks are generally not transitive, which complicates methods for extracting and interpreting causal graphs from neural networks. We discuss the implications of these challenges for interpretability researchers and propose concrete suggestions for future work.
☆ Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge
In recent years, multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets, enabling them to generally understand images well. However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs, limiting their ability to answer questions requiring an understanding of detailed or localized visual elements. Drawing inspiration from the Retrieval-Augmented Generation (RAG) concept, this paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models (e.g., instance segmentation/OCR models), into MLLMs. This is a promising yet underexplored direction for enhancing MLLMs' performance. Our approach diverges from concurrent works, which transform external knowledge into additional text prompts, necessitating the model to indirectly learn the correspondence between visual content and text coordinates. Instead, we propose embedding fine-grained knowledge information directly into a spatial embedding map as a visual prompt. This design can be effortlessly incorporated into various MLLMs, such as LLaVA and Mipha, considerably improving their visual understanding performance. Through rigorous experiments, we demonstrate that our method can enhance MLLM performance across nine benchmarks, amplifying their fine-grained context-aware capabilities.
☆ The diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks
Bayesian networks are one of the most widely used classes of probabilistic models for risk management and decision support because of their interpretability and flexibility in including heterogeneous pieces of information. In any applied modelling, it is critical to assess how robust the inferences on certain target variables are to changes in the model. In Bayesian networks, these analyses fall under the umbrella of sensitivity analysis, which is most commonly carried out by quantifying dissimilarities using Kullback-Leibler information measures. In this paper, we argue that robustness methods based instead on the familiar total variation distance provide simple and more valuable bounds on robustness to misspecification, which are both formally justifiable and transparent. We introduce a novel measure of dependence in conditional probability tables called the diameter to derive such bounds. This measure quantifies the strength of dependence between a variable and its parents. We demonstrate how such formal robustness considerations can be embedded in building a Bayesian network.
Unsupervised 4D Cardiac Motion Tracking with Spatiotemporal Optical Flow Networks
Cardiac motion tracking from echocardiography can be used to estimate and quantify myocardial motion within a cardiac cycle. It is a cost-efficient and effective approach for assessing myocardial function. However, ultrasound imaging has the inherent characteristics of spatially low resolution and temporally random noise, which leads to difficulties in obtaining reliable annotation. Thus it is difficult to perform supervised learning for motion tracking. In addition, there is no end-to-end unsupervised method currently in the literature. This paper presents a motion tracking method where unsupervised optical flow networks are designed with spatial reconstruction loss and temporal-consistency loss. Our proposed loss functions make use of the pair-wise and temporal correlation to estimate cardiac motion from noisy background. Experiments using a synthetic 4D echocardiography dataset has shown the effectiveness of our approach, and its superiority over existing methods on both accuracy and running speed. To the best of our knowledge, this is the first work performed that uses unsupervised end-to-end deep learning optical flow network for 4D cardiac motion tracking.
☆ Multitaper mel-spectrograms for keyword spotting
Keyword spotting (KWS) is one of the speech recognition tasks most sensitive to the quality of the feature representation. However, the research on KWS has traditionally focused on new model topologies, putting little emphasis on other aspects like feature extraction. This paper investigates the use of the multitaper technique to create improved features for KWS. The experimental study is carried out for different test scenarios, windows and parameters, datasets, and neural networks commonly used in embedded KWS applications. Experiment results confirm the advantages of using the proposed improved features.
☆ Lazarus: Resilient and Elastic Training of Mixture-of-Experts Models with Adaptive Expert Placement
Sparsely-activated Mixture-of-Experts (MoE) architecture has increasingly been adopted to further scale large language models (LLMs) due to its sub-linear scaling for computation costs. However, frequent failures still pose significant challenges as training scales. The cost of even a single failure is significant, as all GPUs need to wait idle until the failure is resolved, potentially losing considerable training progress as training has to restart from checkpoints. Existing solutions for efficient fault-tolerant training either lack elasticity or rely on building resiliency into pipeline parallelism, which cannot be applied to MoE models due to the expert parallelism strategy adopted by the MoE architecture. We present Lazarus, a system for resilient and elastic training of MoE models. Lazarus adaptively allocates expert replicas to address the inherent imbalance in expert workload and speeds-up training, while a provably optimal expert placement algorithm is developed to maximize the probability of recovery upon failures. Through adaptive expert placement and a flexible token dispatcher, Lazarus can also fully utilize all available nodes after failures, leaving no GPU idle. Our evaluation shows that Lazarus outperforms existing MoE training systems by up to 5.7x under frequent node failures and 3.4x on a real spot instance trace.
☆ An autoencoder for compressing angle-resolved photoemission spectroscopy data
Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique to determine the electronic structure of solids. Advances in light sources for ARPES experiments are currently leading to a vast increase of data acquisition rates and data quantity. On the other hand, access time to the most advanced ARPES instruments remains strictly limited, calling for fast, effective, and on-the-fly data analysis tools to exploit this time. In response to this need, we introduce ARPESNet, a versatile autoencoder network that efficiently summmarises and compresses ARPES datasets. We train ARPESNet on a large and varied dataset of 2-dimensional ARPES data extracted by cutting standard 3-dimensional ARPES datasets along random directions in $\mathbf{k}$. To test the data representation capacity of ARPESNet, we compare $k$-means clustering quality between data compressed by ARPESNet, data compressed by discrete cosine transform, and raw data, at different noise levels. ARPESNet data excels in clustering quality despite its high compression ratio.
☆ On scalable oversight with weak LLMs judging strong LLMs
Scalable oversight protocols aim to enable humans to accurately supervise superhuman AI. In this paper we study debate, where two AI's compete to convince a judge; consultancy, where a single AI tries to convince a judge that asks questions; and compare to a baseline of direct question-answering, where the judge just answers outright without the AI. We use large language models (LLMs) as both AI agents and as stand-ins for human judges, taking the judge models to be weaker than agent models. We benchmark on a diverse range of asymmetries between judges and agents, extending previous work on a single extractive QA task with information asymmetry, to also include mathematics, coding, logic and multimodal reasoning asymmetries. We find that debate outperforms consultancy across all tasks when the consultant is randomly assigned to argue for the correct/incorrect answer. Comparing debate to direct question answering, the results depend on the type of task: in extractive QA tasks with information asymmetry debate outperforms direct question answering, but in other tasks without information asymmetry the results are mixed. Previous work assigned debaters/consultants an answer to argue for. When we allow them to instead choose which answer to argue for, we find judges are less frequently convinced by the wrong answer in debate than in consultancy. Further, we find that stronger debater models increase judge accuracy, though more modestly than in previous studies.
comment: 15 pages (53 including appendices)
☆ Learning to (Learn at Test Time): RNNs with Expressive Hidden States
Self-attention performs well in long context but has quadratic complexity. Existing RNN layers have linear complexity, but their performance in long context is limited by the expressive power of their hidden state. We propose a new class of sequence modeling layers with linear complexity and an expressive hidden state. The key idea is to make the hidden state a machine learning model itself, and the update rule a step of self-supervised learning. Since the hidden state is updated by training even on test sequences, our layers are called Test-Time Training (TTT) layers. We consider two instantiations: TTT-Linear and TTT-MLP, whose hidden state is a linear model and a two-layer MLP respectively. We evaluate our instantiations at the scale of 125M to 1.3B parameters, comparing with a strong Transformer and Mamba, a modern RNN. Both TTT-Linear and TTT-MLP match or exceed the baselines. Similar to Transformer, they can keep reducing perplexity by conditioning on more tokens, while Mamba cannot after 16k context. With preliminary systems optimization, TTT-Linear is already faster than Transformer at 8k context and matches Mamba in wall-clock time. TTT-MLP still faces challenges in memory I/O, but shows larger potential in long context, pointing to a promising direction for future research.
☆ Randomized Physics-Informed Neural Networks for Bayesian Data Assimilation
We propose a randomized physics-informed neural network (PINN) or rPINN method for uncertainty quantification in inverse partial differential equation (PDE) problems with noisy data. This method is used to quantify uncertainty in the inverse PDE PINN solutions. Recently, the Bayesian PINN (BPINN) method was proposed, where the posterior distribution of the PINN parameters was formulated using the Bayes' theorem and sampled using approximate inference methods such as the Hamiltonian Monte Carlo (HMC) and variational inference (VI) methods. In this work, we demonstrate that HMC fails to converge for non-linear inverse PDE problems. As an alternative to HMC, we sample the distribution by solving the stochastic optimization problem obtained by randomizing the PINN loss function. The effectiveness of the rPINN method is tested for linear and non-linear Poisson equations, and the diffusion equation with a high-dimensional space-dependent diffusion coefficient. The rPINN method provides informative distributions for all considered problems. For the linear Poisson equation, HMC and rPINN produce similar distributions, but rPINN is on average 27 times faster than HMC. For the non-linear Poison and diffusion equations, the HMC method fails to converge because a single HMC chain cannot sample multiple modes of the posterior distribution of the PINN parameters in a reasonable amount of time.
comment: 38 pages, 8 figures
☆ Isomorphic Pruning for Vision Models
Structured pruning reduces the computational overhead of deep neural networks by removing redundant sub-structures. However, assessing the relative importance of different sub-structures remains a significant challenge, particularly in advanced vision models featuring novel mechanisms and architectures like self-attention, depth-wise convolutions, or residual connections. These heterogeneous substructures usually exhibit diverged parameter scales, weight distributions, and computational topology, introducing considerable difficulty to importance comparison. To overcome this, we present Isomorphic Pruning, a simple approach that demonstrates effectiveness across a range of network architectures such as Vision Transformers and CNNs, and delivers competitive performance across different model sizes. Isomorphic Pruning originates from an observation that, when evaluated under a pre-defined importance criterion, heterogeneous sub-structures demonstrate significant divergence in their importance distribution, as opposed to isomorphic structures that present similar importance patterns. This inspires us to perform isolated ranking and comparison on different types of sub-structures for more reliable pruning. Our empirical results on ImageNet-1K demonstrate that Isomorphic Pruning surpasses several pruning baselines dedicatedly designed for Transformers or CNNs. For instance, we improve the accuracy of DeiT-Tiny from 74.52% to 77.50% by pruning an off-the-shelf DeiT-Base model. And for ConvNext-Tiny, we enhanced performance from 82.06% to 82.18%, while reducing the number of parameters and memory usage. Code is available at \url{https://github.com/VainF/Isomorphic-Pruning}.
☆ Linear causal disentanglement via higher-order cumulants
Linear causal disentanglement is a recent method in causal representation learning to describe a collection of observed variables via latent variables with causal dependencies between them. It can be viewed as a generalization of both independent component analysis and linear structural equation models. We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts, each given by an intervention on a latent variable. We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions, generalizing previous work to allow more latent than observed variables. We give a constructive proof that computes parameters via a coupled tensor decomposition. For soft interventions, we find the equivalence class of latent graphs and parameters that are consistent with observed data, via the study of a system of polynomial equations. Our results hold assuming the existence of non-zero higher-order cumulants, which implies non-Gaussianity of variables.
☆ Understanding the Gains from Repeated Self-Distillation
Self-Distillation is a special type of knowledge distillation where the student model has the same architecture as the teacher model. Despite using the same architecture and the same training data, self-distillation has been empirically observed to improve performance, especially when applied repeatedly. For such a process, there is a fundamental question of interest: How much gain is possible by applying multiple steps of self-distillation? To investigate this relative gain, we propose studying the simple but canonical task of linear regression. Our analysis shows that the excess risk achieved by multi-step self-distillation can significantly improve upon a single step of self-distillation, reducing the excess risk by a factor as large as $d$, where $d$ is the input dimension. Empirical results on regression tasks from the UCI repository show a reduction in the learnt model's risk (MSE) by up to 47%.
comment: 31 pages, 10 figures
☆ Proximal Point Method for Online Saddle Point Problem
This paper focuses on the online saddle point problem, which involves a sequence of two-player time-varying convex-concave games. Considering the nonstationarity of the environment, we adopt the duality gap and the dynamic Nash equilibrium regret as performance metrics for algorithm design. We present three variants of the proximal point method: the Online Proximal Point Method~(OPPM), the Optimistic OPPM~(OptOPPM), and the OptOPPM with multiple predictors. Each algorithm guarantees upper bounds for both the duality gap and dynamic Nash equilibrium regret, achieving near-optimality when measured against the duality gap. Specifically, in certain benign environments, such as sequences of stationary payoff functions, these algorithms maintain a nearly constant metric bound. Experimental results further validate the effectiveness of these algorithms. Lastly, this paper discusses potential reliability concerns associated with using dynamic Nash equilibrium regret as a performance metric.
☆ Remembering Everything Makes You Vulnerable: A Limelight on Machine Unlearning for Personalized Healthcare Sector
As the prevalence of data-driven technologies in healthcare continues to rise, concerns regarding data privacy and security become increasingly paramount. This thesis aims to address the vulnerability of personalized healthcare models, particularly in the context of ECG monitoring, to adversarial attacks that compromise patient privacy. We propose an approach termed "Machine Unlearning" to mitigate the impact of exposed data points on machine learning models, thereby enhancing model robustness against adversarial attacks while preserving individual privacy. Specifically, we investigate the efficacy of Machine Unlearning in the context of personalized ECG monitoring, utilizing a dataset of clinical ECG recordings. Our methodology involves training a deep neural classifier on ECG data and fine-tuning the model for individual patients. We demonstrate the susceptibility of fine-tuned models to adversarial attacks, such as the Fast Gradient Sign Method (FGSM), which can exploit additional data points in personalized models. To address this vulnerability, we propose a Machine Unlearning algorithm that selectively removes sensitive data points from fine-tuned models, effectively enhancing model resilience against adversarial manipulation. Experimental results demonstrate the effectiveness of our approach in mitigating the impact of adversarial attacks while maintaining the pre-trained model accuracy.
comment: 15 Pages, Exploring unlearning techniques on ECG Classifier
☆ Multimodal Classification via Modal-Aware Interactive Enhancement
Due to the notorious modality imbalance problem, multimodal learning (MML) leads to the phenomenon of optimization imbalance, thus struggling to achieve satisfactory performance. Recently, some representative methods have been proposed to boost the performance, mainly focusing on adaptive adjusting the optimization of each modality to rebalance the learning speed of dominant and non-dominant modalities. To better facilitate the interaction of model information in multimodal learning, in this paper, we propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE). Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase. Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase. Therefore, we can improve the generalization ability and alleviate the modality forgetting phenomenon simultaneously for multimodal learning. Extensive experiments on widely used datasets demonstrate that our proposed method can outperform various state-of-the-art baselines to achieve the best performance.
☆ Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies to ensure seamless connectivity across different altitudes and platforms. This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs, leveraging advanced Artificial Intelligence (AI) and Machine Learning (ML) capabilities to enhance these networks. We outline the current architecture of ISATNs and highlight the significant role LLMs can play in optimizing data flow, signal processing, and network management to advance 5G/6G communication technologies through advanced predictive algorithms and real-time decision-making. A comprehensive analysis of ISATN components is conducted, assessing how LLMs can effectively address traditional data transmission and processing bottlenecks. The paper delves into the network management challenges within ISATNs, emphasizing the necessity for sophisticated resource allocation strategies, traffic routing, and security management to ensure seamless connectivity and optimal performance under varying conditions. Furthermore, we examine the technical challenges and limitations associated with integrating LLMs into ISATNs, such as data integration for LLM processing, scalability issues, latency in decision-making processes, and the design of robust, fault-tolerant systems. The study also identifies key future research directions for fully harnessing LLM capabilities in ISATNs, which is crucial for enhancing network reliability, optimizing performance, and achieving a truly interconnected and intelligent global network system.
☆ GOALPlace: Begin with the End in Mind
Co-optimizing placement with congestion is integral to achieving high-quality designs. This paper presents GOALPlace, a new learning-based general approach to improving placement congestion by controlling cell density. Our method efficiently learns from an EDA tool's post-route optimized results and uses an empirical Bayes technique to adapt this goal/target to a specific placer's solutions, effectively beginning with the end in mind. It enhances correlation with the long-running heuristics of the tool's router and timing-opt engine -- while solving placement globally without expensive incremental congestion estimation and mitigation methods. A statistical analysis with a new hierarchical netlist clustering establishes the importance of density and the potential for an adequate cell density target across placements. Our experiments show that our method, integrated as a demonstration inside an academic GPU-accelerated global placer, consistently produces macro and standard cell placements of superior or comparable quality to commercial tools. Our empirical Bayes methodology also allows a substantial quality improvement over state-of-the-art academic mixed-size placers, achieving up to 10x fewer design rule check (DRC) violations, a 5% decrease in wirelength, and a 30% and 60% reduction in worst and total negative slack (WNS/TNS).
comment: 10 pages, 7 figures, preprint
☆ Not (yet) the whole story: Evaluating Visual Storytelling Requires More than Measuring Coherence, Grounding, and Repetition
Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition.
☆ Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates
Billions of organic molecules are known, but only a tiny fraction of the functional inorganic materials have been discovered, a particularly relevant problem to the community searching for new quantum materials. Recent advancements in machine-learning-based generative models, particularly diffusion models, show great promise for generating new, stable materials. However, integrating geometric patterns into materials generation remains a challenge. Here, we introduce Structural Constraint Integration in the GENerative model (SCIGEN). Our approach can modify any trained generative diffusion model by strategic masking of the denoised structure with a diffused constrained structure prior to each diffusion step to steer the generation toward constrained outputs. Furthermore, we mathematically prove that SCIGEN effectively performs conditional sampling from the original distribution, which is crucial for generating stable constrained materials. We generate eight million compounds using Archimedean lattices as prototype constraints, with over 10% surviving a multi-staged stability pre-screening. High-throughput density functional theory (DFT) on 26,000 survived compounds shows that over 50% passed structural optimization at the DFT level. Since the properties of quantum materials are closely related to geometric patterns, our results indicate that SCIGEN provides a general framework for generating quantum materials candidates.
comment: 512 pages total, 4 main figures + 218 supplementary figures
☆ An AI Architecture with the Capability to Classify and Explain Hardware Trojans
Hardware trojan detection methods, based on machine learning (ML) techniques, mainly identify suspected circuits but lack the ability to explain how the decision was arrived at. An explainable methodology and architecture is introduced based on the existing hardware trojan detection features. Results are provided for explaining digital hardware trojans within a netlist using trust-hub trojan benchmarks.
☆ Real-time Timbre Remapping with Differentiable DSP
Timbre is a primary mode of expression in diverse musical contexts. However, prevalent audio-driven synthesis methods predominantly rely on pitch and loudness envelopes, effectively flattening timbral expression from the input. Our approach draws on the concept of timbre analogies and investigates how timbral expression from an input signal can be mapped onto controls for a synthesizer. Leveraging differentiable digital signal processing, our method facilitates direct optimization of synthesizer parameters through a novel feature difference loss. This loss function, designed to learn relative timbral differences between musical events, prioritizes the subtleties of graded timbre modulations within phrases, allowing for meaningful translations in a timbre space. Using snare drum performances as a case study, where timbral expression is central, we demonstrate real-time timbre remapping from acoustic snare drums to a differentiable synthesizer modeled after the Roland TR-808.
comment: Accepted for publication at the 24th International Conference on New Interfaces for Musical Expression in Utrecht, Netherlands
☆ Rethinking Image Compression on the Web with Generative AI
The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.
☆ PoPreRo: A New Dataset for Popularity Prediction of Romanian Reddit Posts ICPR 2024
We introduce PoPreRo, the first dataset for Popularity Prediction of Romanian posts collected from Reddit. The PoPreRo dataset includes a varied compilation of post samples from five distinct subreddits of Romania, totaling 28,107 data samples. Along with our novel dataset, we introduce a set of competitive models to be used as baselines for future research. Interestingly, the top-scoring model achieves an accuracy of 61.35% and a macro F1 score of 60.60% on the test set, indicating that the popularity prediction task on PoPreRo is very challenging. Further investigations based on few-shot prompting the Falcon-7B Large Language Model also point in the same direction. We thus believe that PoPreRo is a valuable resource that can be used to evaluate models on predicting the popularity of social media posts in Romanian. We release our dataset at https://github.com/ana-rogoz/PoPreRo.
comment: Accepted at ICPR 2024
☆ Improved algorithms for learning quantum Hamiltonians, via flat polynomials
We give an improved algorithm for learning a quantum Hamiltonian given copies of its Gibbs state, that can succeed at any temperature. Specifically, we improve over the work of Bakshi, Liu, Moitra, and Tang [BLMT24], by reducing the sample complexity and runtime dependence to singly exponential in the inverse-temperature parameter, as opposed to doubly exponential. Our main technical contribution is a new flat polynomial approximation to the exponential function, with significantly lower degree than the flat polynomial approximation used in [BLMT24].
comment: 26 pages
☆ PDiscoFormer: Relaxing Part Discovery Constraints with Vision Transformers ECCV
Computer vision methods that explicitly detect object parts and reason on them are a step towards inherently interpretable models. Existing approaches that perform part discovery driven by a fine-grained classification task make very restrictive assumptions on the geometric properties of the discovered parts; they should be small and compact. Although this prior is useful in some cases, in this paper we show that pre-trained transformer-based vision models, such as self-supervised DINOv2 ViT, enable the relaxation of these constraints. In particular, we find that a total variation (TV) prior, which allows for multiple connected components of any size, substantially outperforms previous work. We test our approach on three fine-grained classification benchmarks: CUB, PartImageNet and Oxford Flowers, and compare our results to previously published methods as well as a re-implementation of the state-of-the-art method PDiscoNet with a transformer-based backbone. We consistently obtain substantial improvements across the board, both on part discovery metrics and the downstream classification task, showing that the strong inductive biases in self-supervised ViT models require to rethink the geometric priors that can be used for unsupervised part discovery.
comment: Accepted as a main conference paper at the European Conference of Computer Vision (ECCV) 2024
☆ Introducing 'Inside' Out of Distribution
Detecting and understanding out-of-distribution (OOD) samples is crucial in machine learning (ML) to ensure reliable model performance. Current OOD studies, in general, and in the context of ML, in particular, primarily focus on extrapolatory OOD (outside), neglecting potential cases of interpolatory OOD (inside). This study introduces a novel perspective on OOD by suggesting OOD can be divided into inside and outside cases. In addition, following this framework, we examine the inside-outside OOD profiles of datasets and their impact on ML model performance. Our analysis shows that different inside-outside OOD profiles lead to nuanced declines in ML model performance, highlighting the importance of distinguishing between these two cases for developing effective counter-OOD methods.
☆ GPT vs RETRO: Exploring the Intersection of Retrieval and Parameter-Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) and Retrieval-Augmented Generation (RAG) have become popular methods for adapting large language models while minimizing compute requirements. In this paper, we apply PEFT methods (P-tuning, Adapters, and LoRA) to a modified Retrieval-Enhanced Transformer (RETRO) and a baseline GPT model across several sizes, ranging from 823 million to 48 billion parameters. We show that RETRO models outperform GPT models in zero-shot settings due to their unique pre-training process but GPT models have higher performance potential with PEFT. Additionally, our study indicates that 8B parameter models strike an optimal balance between cost and performance and P-tuning lags behind other PEFT techniques. We further provide a comparative analysis of between applying PEFT to an Instruction-tuned RETRO model and base RETRO model. This work presents the first comprehensive comparison of various PEFT methods integrated with RAG, applied to both GPT and RETRO models, highlighting their relative performance.
☆ Enhancing learning in artificial neural networks through cellular heterogeneity and neuromodulatory signaling
Recent progress in artificial intelligence (AI) has been driven by insights from neuroscience, particularly with the development of artificial neural networks (ANNs). This has significantly enhanced the replication of complex cognitive tasks such as vision and natural language processing. Despite these advances, ANNs struggle with continual learning, adaptable knowledge transfer, robustness, and resource efficiency - capabilities that biological systems handle seamlessly. Specifically, ANNs often overlook the functional and morphological diversity of the brain, hindering their computational capabilities. Furthermore, incorporating cell-type specific neuromodulatory effects into ANNs with neuronal heterogeneity could enable learning at two spatial scales: spiking behavior at the neuronal level, and synaptic plasticity at the circuit level, thereby potentially enhancing their learning abilities. In this article, we summarize recent bio-inspired models, learning rules and architectures and propose a biologically-informed framework for enhancing ANNs. Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors and dendritic compartments to simulate morphological and functional diversity of neuronal computations. Finally, we outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, balances bioinspiration and complexity, and provides scalable solutions for pressing AI challenges, such as continual learning, adaptability, robustness, and resource-efficiency.
comment: 34 pages, 4 figures, 3 boxes
Graph Reinforcement Learning in Power Grids: A Survey
The challenges posed by renewable energy and distributed electricity generation motivate the development of deep learning approaches to overcome the lack of flexibility of traditional methods in power grids use cases. The application of GNNs is particularly promising due to their ability to learn from graph-structured data present in power grids. Combined with RL, they can serve as control approaches to determine remedial grid actions. This review analyses the ability of GRL to capture the inherent graph structure of power grids to improve representation learning and decision making in different power grid use cases. It distinguishes between common problems in transmission and distribution grids and explores the synergy between RL and GNNs. In transmission grids, GRL typically addresses automated grid management and topology control, whereas on the distribution side, GRL concentrates more on voltage regulation. We analyzed the selected papers based on their graph structure and GNN model, the applied RL algorithm, and their overall contributions. Although GRL demonstrate adaptability in the face of unpredictable events and noisy or incomplete data, it primarily serves as a proof of concept at this stage. There are multiple open challenges and limitations that need to be addressed when considering the application of RL to real power grid operation.
☆ Unified continuous-time q-learning for mean-field game and mean-field control problems
This paper studies the continuous-time q-learning in the mean-field jump-diffusion models from the representative agent's perspective. To overcome the challenge when the population distribution may not be directly observable, we introduce the integrated q-function in decoupled form (decoupled Iq-function) and establish its martingale characterization together with the value function, which provides a unified policy evaluation rule for both mean-field game (MFG) and mean-field control (MFC) problems. Moreover, depending on the task to solve the MFG or MFC problem, we can employ the decoupled Iq-function by different means to learn the mean-field equilibrium policy or the mean-field optimal policy respectively. As a result, we devise a unified q-learning algorithm for both MFG and MFC problems by utilizing all test policies stemming from the mean-field interactions. For several examples in the jump-diffusion setting, within and beyond the LQ framework, we can obtain the exact parameterization of the decoupled Iq-functions and the value functions, and illustrate our algorithm from the representative agent's perspective with satisfactory performance.
☆ G-Adaptive mesh refinement -- leveraging graph neural networks and differentiable finite element solvers
We present a novel, and effective, approach to the long-standing problem of mesh adaptivity in finite element methods (FEM). FE solvers are powerful tools for solving partial differential equations (PDEs), but their cost and accuracy are critically dependent on the choice of mesh points. To keep computational costs low, mesh relocation (r-adaptivity) seeks to optimise the position of a fixed number of mesh points to obtain the best FE solution accuracy. Classical approaches to this problem require the solution of a separate nonlinear "meshing" PDE to find the mesh point locations. This incurs significant cost at remeshing and relies on certain a-priori assumptions and guiding heuristics for optimal mesh point location. Recent machine learning approaches to r-adaptivity have mainly focused on the construction of fast surrogates for such classical methods. Our new approach combines a graph neural network (GNN) powered architecture, with training based on direct minimisation of the FE solution error with respect to the mesh point locations. The GNN employs graph neural diffusion (GRAND), closely aligning the mesh solution space to that of classical meshing methodologies, thus replacing heuristics with a learnable strategy, and providing a strong inductive bias. This allows for rapid and robust training and results in an extremely efficient and effective GNN approach to online r-adaptivity. This method outperforms classical and prior ML approaches to r-adaptive meshing on the test problems we consider, in particular achieving lower FE solution error, whilst retaining the significant speed-up over classical methods observed in prior ML work.
☆ LayerShuffle: Enhancing Robustness in Vision Transformers by Randomizing Layer Execution Order
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
☆ Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors
The lack of large annotated datasets in medical imaging is an intrinsic burden for supervised Deep Learning (DL) segmentation models. Few-shot learning approaches are cost-effective solutions to transfer pre-trained models using only limited annotated data. However, such methods can be prone to overfitting due to limited data diversity especially when segmenting complex, diverse, and sparse tubular structures like airways. Furthermore, crafting informative image representations has played a crucial role in medical imaging, enabling discriminative enhancement of anatomical details. In this paper, we initially train a data-driven sparsification module to enhance airways efficiently in lung CT scans. We then incorporate these sparse representations in a standard supervised segmentation pipeline as a pretraining step to enhance the performance of the DL models. Results presented on the ATM public challenge cohort show the effectiveness of using sparse priors in pre-training, leading to segmentation Dice score increase by 1% to 10% in full-scale and few-shot learning scenarios, respectively.
comment: Accepted at 21st IEEE International Symposium on Biomedical Imaging (ISBI)
☆ Speed-accuracy trade-off for the diffusion models: Wisdom from nonequlibrium thermodynamics and optimal transport
We discuss a connection between a generative model, called the diffusion model, and nonequilibrium thermodynamics for the Fokker-Planck equation, called stochastic thermodynamics. Based on the techniques of stochastic thermodynamics, we derive the speed-accuracy trade-off for the diffusion models, which is a trade-off relationship between the speed and accuracy of data generation in diffusion models. Our result implies that the entropy production rate in the forward process affects the errors in data generation. From a stochastic thermodynamic perspective, our results provide quantitative insight into how best to generate data in diffusion models. The optimal learning protocol is introduced by the conservative force in stochastic thermodynamics and the geodesic of space by the 2-Wasserstein distance in optimal transport theory. We numerically illustrate the validity of the speed-accuracy trade-off for the diffusion models with different noise schedules such as the cosine schedule, the conditional optimal transport, and the optimal transport.
comment: 26 pages, 5 figures
☆ PROUD: PaRetO-gUided Diffusion Model for Multi-objective Generation
Recent advancements in the realm of deep generative models focus on generating samples that satisfy multiple desired properties. However, prevalent approaches optimize these property functions independently, thus omitting the trade-offs among them. In addition, the property optimization is often improperly integrated into the generative models, resulting in an unnecessary compromise on generation quality (i.e., the quality of generated samples). To address these issues, we formulate a constrained optimization problem. It seeks to optimize generation quality while ensuring that generated samples reside at the Pareto front of multiple property objectives. Such a formulation enables the generation of samples that cannot be further improved simultaneously on the conflicting property functions and preserves good quality of generated samples. Building upon this formulation, we introduce the PaRetO-gUided Diffusion model (PROUD), wherein the gradients in the denoising process are dynamically adjusted to enhance generation quality while the generated samples adhere to Pareto optimality. Experimental evaluations on image generation and protein generation tasks demonstrate that our PROUD consistently maintains superior generation quality while approaching Pareto optimality across multiple property functions compared to various baselines.
☆ Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
For classification and regression on tabular data, the dominance of gradient-boosted decision trees (GBDTs) has recently been challenged by often much slower deep learning methods with extensive hyperparameter tuning. We address this discrepancy by introducing (a) RealMLP, an improved multilayer perceptron (MLP), and (b) improved default parameters for GBDTs and RealMLP. We tune RealMLP and the default parameters on a meta-train benchmark with 71 classification and 47 regression datasets and compare them to hyperparameter-optimized versions on a disjoint meta-test benchmark with 48 classification and 42 regression datasets, as well as the GBDT-friendly benchmark by Grinsztajn et al. (2022). Our benchmark results show that RealMLP offers a better time-accuracy tradeoff than other neural nets and is competitive with GBDTs. Moreover, a combination of RealMLP and GBDTs with improved default parameters can achieve excellent results on medium-sized tabular datasets (1K--500K samples) without hyperparameter tuning.
comment: 10 pages + 44 pages appendix. Code is available at github.com/dholzmueller/pytabkit and github.com/LeoGrin/tabular-benchmark/tree/better_by_default
☆ Leveraging Graph Structures to Detect Hallucinations in Large Language Models
Large language models are extensively applied across a wide range of tasks, such as customer support, content creation, educational tutoring, and providing financial guidance. However, a well-known drawback is their predisposition to generate hallucinations. This damages the trustworthiness of the information these models provide, impacting decision-making and user confidence. We propose a method to detect hallucinations by looking at the structure of the latent space and finding associations within hallucinated and non-hallucinated generations. We create a graph structure that connects generations that lie closely in the embedding space. Moreover, we employ a Graph Attention Network which utilizes message passing to aggregate information from neighboring nodes and assigns varying degrees of importance to each neighbor based on their relevance. Our findings show that 1) there exists a structure in the latent space that differentiates between hallucinated and non-hallucinated generations, 2) Graph Attention Networks can learn this structure and generalize it to unseen generations, and 3) the robustness of our method is enhanced when incorporating contrastive learning. When evaluated against evidence-based benchmarks, our model performs similarly without access to search-based methods.
☆ Using Petri Nets as an Integrated Constraint Mechanism for Reinforcement Learning Tasks
The lack of trust in algorithms is usually an issue when using Reinforcement Learning (RL) agents for control in real-world domains such as production plants, autonomous vehicles, or traffic-related infrastructure, partly due to the lack of verifiability of the model itself. In such scenarios, Petri nets (PNs) are often available for flowcharts or process steps, as they are versatile and standardized. In order to facilitate integration of RL models and as a step towards increasing AI trustworthiness, we propose an approach that uses PNs with three main advantages over typical RL approaches: Firstly, the agent can now easily be modeled with a combined state including both external environmental observations and agent-specific state information from a given PN. Secondly, we can enforce constraints for state-dependent actions through the inherent PN model. And lastly, we can increase trustworthiness by verifying PN properties through techniques such as model checking. We test our approach on a typical four-way intersection traffic light control setting and present our results, beating cycle-based baselines.
☆ LoCo: Low-Bit Communication Adaptor for Large-scale Model Training
To efficiently train large-scale models, low-bit gradient communication compresses full-precision gradients on local GPU nodes into low-precision ones for higher gradient synchronization efficiency among GPU nodes. However, it often degrades training quality due to compression information loss. To address this, we propose the Low-bit Communication Adaptor (LoCo), which compensates gradients on local GPU nodes before compression, ensuring efficient synchronization without compromising training quality. Specifically, LoCo designs a moving average of historical compensation errors to stably estimate concurrent compression error and then adopts it to compensate for the concurrent gradient compression, yielding a less lossless compression. This mechanism allows it to be compatible with general optimizers like Adam and sharding strategies like FSDP. Theoretical analysis shows that integrating LoCo into full-precision optimizers like Adam and SGD does not impair their convergence speed on nonconvex problems. Experimental results show that across large-scale model training frameworks like Megatron-LM and PyTorch's FSDP, LoCo significantly improves communication efficiency, e.g., improving Adam's training speed by 14% to 40% without performance degradation on large language models like LLAMAs and MoE.
☆ Rethinking Data Input for Point Cloud Upsampling
In recent years, point cloud upsampling has been widely applied in fields such as 3D reconstruction and surface generation. However, existing point cloud upsampling inputs are all patch based, and there is no research discussing the differences and principles between point cloud model full input and patch based input. In order to compare with patch based point cloud input, this article proposes a new data input method, which divides the full point cloud model to ensure shape integrity while training PU-GCN. This article was validated on the PU1K and ABC datasets, but the results showed that Patch based performance is better than model based full input i.e. Average Segment input. Therefore, this article explores the data input factors and model modules that affect the upsampling results of point clouds.
comment: 16 pages, 6 figures
☆ EventChat: Implementation and user-centric evaluation of a large language model-driven conversational recommender system for exploring leisure events in an SME context
Large language models (LLMs) present an enormous evolution in the strategic potential of conversational recommender systems (CRS). Yet to date, research has predominantly focused upon technical frameworks to implement LLM-driven CRS, rather than end-user evaluations or strategic implications for firms, particularly from the perspective of a small to medium enterprises (SME) that makeup the bedrock of the global economy. In the current paper, we detail the design of an LLM-driven CRS in an SME setting, and its subsequent performance in the field using both objective system metrics and subjective user evaluations. While doing so, we additionally outline a short-form revised ResQue model for evaluating LLM-driven CRS, enabling replicability in a rapidly evolving field. Our results reveal good system performance from a user experience perspective (85.5% recommendation accuracy) but underscore latency, cost, and quality issues challenging business viability. Notably, with a median cost of $0.04 per interaction and a latency of 5.7s, cost-effectiveness and response time emerge as crucial areas for achieving a more user-friendly and economically viable LLM-driven CRS for SME settings. One major driver of these costs is the use of an advanced LLM as a ranker within the retrieval-augmented generation (RAG) technique. Our results additionally indicate that relying solely on approaches such as Prompt-based learning with ChatGPT as the underlying LLM makes it challenging to achieve satisfying quality in a production environment. Strategic considerations for SMEs deploying an LLM-driven CRS are outlined, particularly considering trade-offs in the current technical landscape.
comment: 27 pages, 3 tables, 5 figures, pre-print manuscript
☆ Smart Sampling: Helping from Friendly Neighbors for Decentralized Federated Learning
Federated Learning (FL) is gaining widespread interest for its ability to share knowledge while preserving privacy and reducing communication costs. Unlike Centralized FL, Decentralized FL (DFL) employs a network architecture that eliminates the need for a central server, allowing direct communication among clients and leading to significant communication resource savings. However, due to data heterogeneity, not all neighboring nodes contribute to enhancing the local client's model performance. In this work, we introduce \textbf{\emph{AFIND+}}, a simple yet efficient algorithm for sampling and aggregating neighbors in DFL, with the aim of leveraging collaboration to improve clients' model performance. AFIND+ identifies helpful neighbors, adaptively adjusts the number of selected neighbors, and strategically aggregates the sampled neighbors' models based on their contributions. Numerical results on real-world datasets with diverse data partitions demonstrate that AFIND+ outperforms other sampling algorithms in DFL and is compatible with most existing DFL optimization algorithms.
☆ Hindsight Preference Learning for Offline Preference-based Reinforcement Learning
Offline preference-based reinforcement learning (RL), which focuses on optimizing policies using human preferences between pairs of trajectory segments selected from an offline dataset, has emerged as a practical avenue for RL applications. Existing works rely on extracting step-wise reward signals from trajectory-wise preference annotations, assuming that preferences correlate with the cumulative Markovian rewards. However, such methods fail to capture the holistic perspective of data annotation: Humans often assess the desirability of a sequence of actions by considering the overall outcome rather than the immediate rewards. To address this challenge, we propose to model human preferences using rewards conditioned on future outcomes of the trajectory segments, i.e. the hindsight information. For downstream RL optimization, the reward of each step is calculated by marginalizing over possible future outcomes, the distribution of which is approximated by a variational auto-encoder trained using the offline dataset. Our proposed method, Hindsight Preference Learning (HPL), can facilitate credit assignment by taking full advantage of vast trajectory data available in massive unlabeled datasets. Comprehensive empirical studies demonstrate the benefits of HPL in delivering robust and advantageous rewards across various domains. Our code is publicly released at https://github.com/typoverflow/WiseRL.
☆ Multi-modal Masked Siamese Network Improves Chest X-Ray Representation Learning
Self-supervised learning methods for medical images primarily rely on the imaging modality during pretraining. While such approaches deliver promising results, they do not leverage associated patient or scan information collected within Electronic Health Records (EHR). Here, we propose to incorporate EHR data during self-supervised pretraining with a Masked Siamese Network (MSN) to enhance the quality of chest X-ray representations. We investigate three types of EHR data, including demographic, scan metadata, and inpatient stay information. We evaluate our approach on three publicly available chest X-ray datasets, MIMIC-CXR, CheXpert, and NIH-14, using two vision transformer (ViT) backbones, specifically ViT-Tiny and ViT-Small. In assessing the quality of the representations via linear evaluation, our proposed method demonstrates significant improvement compared to vanilla MSN and state-of-the-art self-supervised learning baselines. Our work highlights the potential of EHR-enhanced self-supervised pre-training for medical imaging. The code is publicly available at: https://github.com/nyuad-cai/CXR-EHR-MSN
comment: Under review
☆ Wavelet-based Temporal Attention Improves Traffic Forecasting
Spatio-temporal forecasting of traffic flow data represents a typical problem in the field of machine learning, impacting urban traffic management systems. Traditional statistical and machine learning methods cannot adequately handle both the temporal and spatial dependencies in these complex traffic flow datasets. A prevalent approach in the field is to combine graph convolutional networks and multi-head attention mechanisms for spatio-temporal processing. This paper proposes a wavelet-based temporal attention model, namely a wavelet-based dynamic spatio-temporal aware graph neural network (W-DSTAGNN), for tackling the traffic forecasting problem. Benchmark experiments using several statistical metrics confirm that our proposal efficiently captures spatio-temporal correlations and outperforms ten state-of-the-art models on three different real-world traffic datasets. Our proposed ensemble data-driven method can handle dynamic temporal and spatial dependencies and make long-term forecasts in an efficient manner.
☆ Enabling On-Device LLMs Personalization with Smartphone Sensing
This demo presents a novel end-to-end framework that combines on-device large language models (LLMs) with smartphone sensing technologies to achieve context-aware and personalized services. The framework addresses critical limitations of current personalization solutions via cloud-based LLMs, such as privacy concerns, latency and cost, and limited personal sensor data. To achieve this, we innovatively proposed deploying LLMs on smartphones with multimodal sensor data and customized prompt engineering, ensuring privacy and enhancing personalization performance through context-aware sensing. A case study involving a university student demonstrated the proposed framework's capability to provide tailored recommendations. In addition, we show that the proposed framework achieves the best trade-off in privacy, performance, latency, cost, battery and energy consumption between on-device and cloud LLMs. Future work aims to integrate more diverse sensor data and conduct large-scale user studies to further refine the personalization. We envision the proposed framework could significantly improve user experiences in various domains such as healthcare, productivity, and entertainment by providing secure, context-aware, and efficient interactions directly on users' devices.
comment: 5 pages, 3 figures, conference demo paper
☆ Trustworthy Classification through Rank-Based Conformal Prediction Sets
Machine learning classification tasks often benefit from predicting a set of possible labels with confidence scores to capture uncertainty. However, existing methods struggle with the high-dimensional nature of the data and the lack of well-calibrated probabilities from modern classification models. We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models that predict the order of labels correctly, even if not well-calibrated. Our approach constructs prediction sets that achieve the desired coverage rate while managing their size. We provide a theoretical analysis of the expected size of the conformal prediction sets based on the rank distribution of the underlying classifier. Through extensive experiments, we demonstrate that our method outperforms existing techniques on various datasets, providing reliable uncertainty quantification. Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation. This work advances the practical deployment of machine learning systems by enabling reliable uncertainty quantification.
☆ On Quantum Channel Learning
The problem of an optimal mapping between Hilbert spaces $IN$ and $OUT$, based on a series of density matrix mapping measurements $\rho^{(l)} \to \varrho^{(l)}$, $l=1\dots M$, is formulated as an optimization problem maximizing the total fidelity $\mathcal{F}=\sum_{l=1}^{M} \omega^{(l)} F\left(\varrho^{(l)},\sum_s B_s \rho^{(l)} B^{\dagger}_s\right)$ subject to probability preservation constraints on Kraus operators $B_s$. For $F(\varrho,\sigma)$ in the form that total fidelity can be represented as a quadratic form with superoperator $\mathcal{F}=\sum_s\left\langle B_s\middle|S\middle| B_s \right\rangle$ (either exactly or as an approximation) an iterative algorithm is developed to find the global maximum. The result comprises in $N_s$ operators $B_s$ that collectively form an $IN$ to $OUT$ quantum channel $A^{OUT}=\sum_s B_s A^{IN} B_s^{\dagger}$. The work introduces two important generalizations of unitary learning: 1. $IN$/$OUT$ states are represented as density matrices. 2. The mapping itself is formulated as a general quantum channel. This marks a crucial advancement from the commonly studied unitary mapping of pure states $\phi_l=\mathcal{U} \psi_l$ to a general quantum channel, what allows us to distinguish probabilistic mixture of states and their superposition. An application of the approach is demonstrated on unitary learning of density matrix mapping $\varrho^{(l)}=\mathcal{U} \rho^{(l)} \mathcal{U}^{\dagger}$, in this case a quadratic on $\mathcal{U}$ fidelity can be constructed by considering $\sqrt{\rho^{(l)}} \to \sqrt{\varrho^{(l)}}$ mapping, and on a general quantum channel of Kraus rank $N_s$, where quadratic on $B_s$ fidelity is an approximation -- a quantum channel is then built as a hierarchy of unitary mappings. The approach can be applied to study decoherence effects, spontaneous coherence, synchronizing, etc.
comment: The unitary learning from arXiv:2405.10263 is generalized to density matrices and quantum channels
☆ Discovering symbolic expressions with parallelized tree search
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 80 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
☆ Hard-Attention Gates with Gradient Routing for Endoscopic Image Computing
To address overfitting and enhance model generalization in gastroenterological polyp size assessment, our study introduces Feature-Selection Gates (FSG) or Hard-Attention Gates (HAG) alongside Gradient Routing (GR) for dynamic feature selection. This technique aims to boost Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) by promoting sparse connectivity, thereby reducing overfitting and enhancing generalization. HAG achieves this through sparsification with learnable weights, serving as a regularization strategy. GR further refines this process by optimizing HAG parameters via dual forward passes, independently from the main model, to improve feature re-weighting. Our evaluation spanned multiple datasets, including CIFAR-100 for a broad impact assessment and specialized endoscopic datasets (REAL-Colon, Misawa, and SUN) focusing on polyp size estimation, covering over 200 polyps in more than 370,000 frames. The findings indicate that our HAG-enhanced networks substantially enhance performance in both binary and triclass classification tasks related to polyp sizing. Specifically, CNNs experienced an F1 Score improvement to 87.8% in binary classification, while in triclass classification, the ViT-T model reached an F1 Score of 76.5%, outperforming traditional CNNs and ViT-T models. To facilitate further research, we are releasing our codebase, which includes implementations for CNNs, multistream CNNs, ViT, and HAG-augmented variants. This resource aims to standardize the use of endoscopic datasets, providing public training-validation-testing splits for reliable and comparable research in gastroenterological polyp size estimation. The codebase is available at github.com/cosmoimd/feature-selection-gates.
comment: Attention Gates, Hard-Attention Gates, Gradient Routing, Feature Selection Gates, Endoscopy, Medical Image Processing, Computer Vision
☆ Function Smoothing Regularization for Precision Factorization Machine Annealing in Continuous Variable Optimization Problems
Solving continuous variable optimization problems by factorization machine quantum annealing (FMQA) demonstrates the potential of Ising machines to be extended as a solver for integer and real optimization problems. However, the details of the Hamiltonian function surface obtained by factorization machine (FM) have been overlooked. This study shows that in the widely common case where real numbers are represented by a combination of binary variables, the function surface of the Hamiltonian obtained by FM can be very noisy. This noise interferes with the inherent capabilities of quantum annealing and is likely to be a substantial cause of problems previously considered unsolvable due to the limitations of FMQA performance. The origin of the noise is identified and a simple, general method is proposed to prevent its occurrence. The generalization performance of the proposed method and its ability to solve practical problems is demonstrated.
comment: 9 pages, 7 figures
☆ Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density
Trustworthy machine learning necessitates meticulous regulation of model reliance on non-robust features. We propose a framework to delineate and regulate such features by attributing model predictions to the input. Within our approach, robust feature attributions exhibit a certain consistency, while non-robust feature attributions are susceptible to fluctuations. This behavior allows identification of correlation between model reliance on non-robust features and smoothness of marginal density of the input samples. Hence, we uniquely regularize the gradients of the marginal density w.r.t. the input features for robustness. We also devise an efficient implementation of our regularization to address the potential numerical instability of the underlying optimization process. Moreover, we analytically reveal that, as opposed to our marginal density smoothing, the prevalent input gradient regularization smoothens conditional or joint density of the input, which can cause limited robustness. Our experiments validate the effectiveness of the proposed method, providing clear evidence of its capability to address the feature leakage problem and mitigate spurious correlations. Extensive results further establish that our technique enables the model to exhibit robustness against perturbations in pixel values, input gradients, and density.
☆ An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
We consider the problem of minimizing the average of a large number of smooth but possibly non-convex functions. In the context of most machine learning applications, each loss function is non-negative and thus can be expressed as the composition of a square and its real-valued square root. This reformulation allows us to apply the Gauss-Newton method, or the Levenberg-Marquardt method when adding a quadratic regularization. The resulting algorithm, while being computationally as efficient as the vanilla stochastic gradient method, is highly adaptive and can automatically warmup and decay the effective stepsize while tracking the non-negative loss landscape. We provide a tight convergence analysis, leveraging new techniques, in the stochastic convex and non-convex settings. In particular, in the convex case, the method does not require access to the gradient Lipshitz constant for convergence, and is guaranteed to never diverge. The convergence rates and empirical evaluations compare favorably to the classical (stochastic) gradient method as well as to several other adaptive methods.
☆ UpStory: the Uppsala Storytelling dataset
Friendship and rapport play an important role in the formation of constructive social interactions, and have been widely studied in educational settings due to their impact on student outcomes. Given the growing interest in automating the analysis of such phenomena through Machine Learning (ML), access to annotated interaction datasets is highly valuable. However, no dataset on dyadic child-child interactions explicitly capturing rapport currently exists. Moreover, despite advances in the automatic analysis of human behaviour, no previous work has addressed the prediction of rapport in child-child dyadic interactions in educational settings. We present UpStory -- the Uppsala Storytelling dataset: a novel dataset of naturalistic dyadic interactions between primary school aged children, with an experimental manipulation of rapport. Pairs of children aged 8-10 participate in a task-oriented activity: designing a story together, while being allowed free movement within the play area. We promote balanced collection of different levels of rapport by using a within-subjects design: self-reported friendships are used to pair each child twice, either minimizing or maximizing pair separation in the friendship network. The dataset contains data for 35 pairs, totalling 3h 40m of audio and video recordings. It includes two video sources covering the play area, as well as separate voice recordings for each child. An anonymized version of the dataset is made publicly available, containing per-frame head pose, body pose, and face features; as well as per-pair information, including the level of rapport. Finally, we provide ML baselines for the prediction of rapport.
☆ Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
Navigating unsignalized intersections in urban environments poses a complex challenge for self-driving vehicles, where issues such as view obstructions, unpredictable pedestrian crossings, and diverse traffic participants demand a great focus on crash prevention. In this paper, we propose a novel state representation for Reinforcement Learning (RL) agents centered around the information perceivable by an autonomous agent, enabling the safe navigation of previously uncharted road maps. Our approach surpasses several baseline models by a sig nificant margin in terms of safety and energy consumption metrics. These improvements are achieved while maintaining a competitive average travel speed. Our findings pave the way for more robust and reliable autonomous navigation strategies, promising safer and more efficient urban traffic environments.
☆ Geometrically Inspired Kernel Machines for Collaborative Learning Beyond Gradient Descent
This paper develops a novel mathematical framework for collaborative learning by means of geometrically inspired kernel machines which includes statements on the bounds of generalisation and approximation errors, and sample complexity. For classification problems, this approach allows us to learn bounded geometric structures around given data points and hence solve the global model learning problem in an efficient way by exploiting convexity properties of the related optimisation problem in a Reproducing Kernel Hilbert Space (RKHS). In this way, we can reduce classification problems to determining the closest bounded geometric structure from a given data point. Further advantages that come with our solution is that our approach does not require clients to perform multiple epochs of local optimisation using stochastic gradient descent, nor require rounds of communication between client/server for optimising the global model. We highlight that numerous experiments have shown that the proposed method is a competitive alternative to the state-of-the-art.
☆ Learning Geometric Invariant Features for Classification of Vector Polygons with Graph Message-passing Neural Network
Geometric shape classification of vector polygons remains a non-trivial learning task in spatial analysis. Previous studies mainly focus on devising deep learning approaches for representation learning of rasterized vector polygons, whereas the study of discrete representations of polygons and subsequent deep learning approaches have not been fully investigated. In this study, we investigate a graph representation of vector polygons and propose a novel graph message-passing neural network (PolyMP) to learn the geometric-invariant features for shape classification of polygons. Through extensive experiments, we show that the graph representation of polygons combined with a permutation-invariant graph message-passing neural network achieves highly robust performances on benchmark datasets (i.e., synthetic glyph and real-world building footprint datasets) as compared to baseline methods. We demonstrate that the proposed graph-based PolyMP network enables the learning of expressive geometric features invariant to geometric transformations of polygons (i.e., translation, rotation, scaling and shearing) and is robust to trivial vertex removals of polygons. We further show the strong generalizability of PolyMP, which enables generalizing the learned geometric features from the synthetic glyph polygons to the real-world building footprints.
☆ EAGERx: Graph-Based Framework for Sim2real Robot Learning
Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics due to its potential to efficiently handle complex tasks. The sim2real approach faces challenges due to mismatches between simulation and reality. These discrepancies arise from inaccuracies in modeling physical phenomena and asynchronous control, among other factors. To this end, we introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning. It can support various simulators and aids in integrating state, action and time-scale abstractions to facilitate learning. EAGERx's integrated delay simulation, domain randomization features, and proposed synchronization algorithm contribute to narrowing the sim2real gap. We demonstrate (in the context of robot learning and beyond) the efficacy of EAGERx in accommodating diverse robotic systems and maintaining consistent simulation behavior. EAGERx is open source and its code is available at https://eagerx.readthedocs.io.
comment: For an introductory video, see http://www.youtube.com/watch?v=D0CQNnTT010 . The documentation, tutorials, and our open-source code can be found at http://eagerx.readthedocs.io
☆ Understanding the Role of Invariance in Transfer Learning
Transfer learning is a powerful technique for knowledge-sharing between different tasks. Recent work has found that the representations of models with certain invariances, such as to adversarial input perturbations, achieve higher performance on downstream tasks. These findings suggest that invariance may be an important property in the context of transfer learning. However, the relationship of invariance with transfer performance is not fully understood yet and a number of questions remain. For instance, how important is invariance compared to other factors of the pretraining task? How transferable is learned invariance? In this work, we systematically investigate the importance of representational invariance for transfer learning, as well as how it interacts with other parameters during pretraining. To do so, we introduce a family of synthetic datasets that allow us to precisely control factors of variation both in training and test data. Using these datasets, we a) show that for learning representations with high transfer performance, invariance to the right transformations is as, or often more, important than most other factors such as the number of training samples, the model architecture and the identity of the pretraining classes, b) show conditions under which invariance can harm the ability to transfer representations and c) explore how transferable invariance is between tasks. The code is available at \url{https://github.com/tillspeicher/representation-invariance-transfer}.
comment: Published at TMLR 2024
☆ SSP-GNN: Learning to Track via Bilevel Optimization
We propose a graph-based tracking formulation for multi-object tracking (MOT) where target detections contain kinematic information and re-identification features (attributes). Our method applies a successive shortest paths (SSP) algorithm to a tracking graph defined over a batch of frames. The edge costs in this tracking graph are computed via a message-passing network, a graph neural network (GNN) variant. The parameters of the GNN, and hence, the tracker, are learned end-to-end on a training set of example ground-truth tracks and detections. Specifically, learning takes the form of bilevel optimization guided by our novel loss function. We evaluate our algorithm on simulated scenarios to understand its sensitivity to scenario aspects and model hyperparameters. Across varied scenario complexities, our method compares favorably to a strong baseline.
☆ Crafting Large Language Models for Enhanced Interpretability ICML 2024
We introduce the Concept Bottleneck Large Language Model (CB-LLM), a pioneering approach to creating inherently interpretable Large Language Models (LLMs). Unlike traditional black-box LLMs that rely on post-hoc interpretation methods with limited neuron function insights, CB-LLM sets a new standard with its built-in interpretability, scalability, and ability to provide clear, accurate explanations. This innovation not only advances transparency in language models but also enhances their effectiveness. Our unique Automatic Concept Correction (ACC) strategy successfully narrows the performance gap with conventional black-box LLMs, positioning CB-LLM as a model that combines the high accuracy of traditional LLMs with the added benefit of clear interpretability -- a feature markedly absent in existing LLMs.
comment: Present at ICML 2024 Mechanistic Interpretability (MI) Workshop
☆ Fair Federated Data Clustering through Personalization: Bridging the Gap between Diverse Data Distributions
The rapid growth of data from edge devices has catalyzed the performance of machine learning algorithms. However, the data generated resides at client devices thus there are majorly two challenge faced by traditional machine learning paradigms - centralization of data for training and secondly for most the generated data the class labels are missing and there is very poor incentives to clients to manually label their data owing to high cost and lack of expertise. To overcome these issues, there have been initial attempts to handle unlabelled data in a privacy preserving distributed manner using unsupervised federated data clustering. The goal is partition the data available on clients into $k$ partitions (called clusters) without actual exchange of data. Most of the existing algorithms are highly dependent on data distribution patterns across clients or are computationally expensive. Furthermore, due to presence of skewed nature of data across clients in most of practical scenarios existing models might result in clients suffering high clustering cost making them reluctant to participate in federated process. To this, we are first to introduce the idea of personalization in federated clustering. The goal is achieve balance between achieving lower clustering cost and at same time achieving uniform cost across clients. We propose p-FClus that addresses these goal in a single round of communication between server and clients. We validate the efficacy of p-FClus against variety of federated datasets showcasing it's data independence nature, applicability to any finite $\ell$-norm, while simultaneously achieving lower cost and variance.
☆ Jailbreak Attacks and Defenses Against Large Language Models: A Survey
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks, including question answering, translation, code completion, etc. However, the over-assistance of LLMs has raised the challenge of "jailbreaking", which induces the model to generate malicious responses against the usage policy and society by designing adversarial prompts. With the emergence of jailbreak attack methods exploiting different vulnerabilities in LLMs, the corresponding safety alignment measures are also evolving. In this paper, we propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods. For instance, the attack methods are divided into black-box and white-box attacks based on the transparency of the target model. Meanwhile, we classify defense methods into prompt-level and model-level defenses. Additionally, we further subdivide these attack and defense methods into distinct sub-classes and present a coherent diagram illustrating their relationships. We also conduct an investigation into the current evaluation methods and compare them from different perspectives. Our findings aim to inspire future research and practical implementations in safeguarding LLMs against adversarial attacks. Above all, although jailbreak remains a significant concern within the community, we believe that our work enhances the understanding of this domain and provides a foundation for developing more secure LLMs.
☆ We Need Variations in Speech Synthesis: Sub-center Modelling for Speaker Embeddings
In speech synthesis, modeling of rich emotions and prosodic variations present in human voice are crucial to synthesize natural speech. Although speaker embeddings have been widely used in personalized speech synthesis as conditioning inputs, they are designed to lose variation to optimize speaker recognition accuracy. Thus, they are suboptimal for speech synthesis in terms of modeling the rich variations at the output speech distribution. In this work, we propose a novel speaker embedding network which utilizes multiple class centers in the speaker classification training rather than a single class center as traditional embeddings. The proposed approach introduces variations in the speaker embedding while retaining the speaker recognition performance since model does not have to map all of the utterances of a speaker into a single class center. We apply our proposed embedding in voice conversion task and show that our method provides better naturalness and prosody in synthesized speech.
comment: Submitted to IEEE Signal Processing Letters
☆ Robust Decision Transformer: Tackling Data Corruption in Offline RL via Sequence Modeling
Learning policies from offline datasets through offline reinforcement learning (RL) holds promise for scaling data-driven decision-making and avoiding unsafe and costly online interactions. However, real-world data collected from sensors or humans often contains noise and errors, posing a significant challenge for existing offline RL methods. Our study indicates that traditional offline RL methods based on temporal difference learning tend to underperform Decision Transformer (DT) under data corruption, especially when the amount of data is limited. This suggests the potential of sequential modeling for tackling data corruption in offline RL. To further unleash the potential of sequence modeling methods, we propose Robust Decision Transformer (RDT) by incorporating several robust techniques. Specifically, we introduce Gaussian weighted learning and iterative data correction to reduce the effect of corrupted data. Additionally, we leverage embedding dropout to enhance the model's resistance to erroneous inputs. Extensive experiments on MoJoCo, KitChen, and Adroit tasks demonstrate RDT's superior performance under diverse data corruption compared to previous methods. Moreover, RDT exhibits remarkable robustness in a challenging setting that combines training-time data corruption with testing-time observation perturbations. These results highlight the potential of robust sequence modeling for learning from noisy or corrupted offline datasets, thereby promoting the reliable application of offline RL in real-world tasks.
☆ BiosERC: Integrating Biography Speakers Supported by LLMs for ERC Tasks ICANN 2024
In the Emotion Recognition in Conversation task, recent investigations have utilized attention mechanisms exploring relationships among utterances from intra- and inter-speakers for modeling emotional interaction between them. However, attributes such as speaker personality traits remain unexplored and present challenges in terms of their applicability to other tasks or compatibility with diverse model architectures. Therefore, this work introduces a novel framework named BiosERC, which investigates speaker characteristics in a conversation. By employing Large Language Models (LLMs), we extract the "biographical information" of the speaker within a conversation as supplementary knowledge injected into the model to classify emotional labels for each utterance. Our proposed method achieved state-of-the-art (SOTA) results on three famous benchmark datasets: IEMOCAP, MELD, and EmoryNLP, demonstrating the effectiveness and generalization of our model and showcasing its potential for adaptation to various conversation analysis tasks. Our source code is available at https://github.com/yingjie7/BiosERC.
comment: Accepted in the 33rd International Conference on Artificial Neural Networks (ICANN 2024)
☆ Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression SC '24
DLRM is a state-of-the-art recommendation system model that has gained widespread adoption across various industry applications. The large size of DLRM models, however, necessitates the use of multiple devices/GPUs for efficient training. A significant bottleneck in this process is the time-consuming all-to-all communication required to collect embedding data from all devices. To mitigate this, we introduce a method that employs error-bounded lossy compression to reduce the communication data size and accelerate DLRM training. We develop a novel error-bounded lossy compression algorithm, informed by an in-depth analysis of embedding data features, to achieve high compression ratios. Moreover, we introduce a dual-level adaptive strategy for error-bound adjustment, spanning both table-wise and iteration-wise aspects, to balance the compression benefits with the potential impacts on accuracy. We further optimize our compressor for PyTorch tensors on GPUs, minimizing compression overhead. Evaluation shows that our method achieves a 1.38$\times$ training speedup with a minimal accuracy impact.
comment: accepted by SC '24
☆ Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts ICML2024
Group Equivariant CNNs (G-CNNs) have shown promising efficacy in various tasks, owing to their ability to capture hierarchical features in an equivariant manner. However, their equivariance is fixed to the symmetry of the whole group, limiting adaptability to diverse partial symmetries in real-world datasets, such as limited rotation symmetry of handwritten digit images and limited color-shift symmetry of flower images. Recent efforts address this limitation, one example being Partial G-CNN which restricts the output group space of convolution layers to break full equivariance. However, such an approach still fails to adjust equivariance levels across data. In this paper, we propose a novel approach, Variational Partial G-CNN (VP G-CNN), to capture varying levels of partial equivariance specific to each data instance. VP G-CNN redesigns the distribution of the output group elements to be conditioned on input data, leveraging variational inference to avoid overfitting. This enables the model to adjust its equivariance levels according to the needs of individual data points. Additionally, we address training instability inherent in discrete group equivariance models by redesigning the reparametrizable distribution. We demonstrate the effectiveness of VP G-CNN on both toy and real-world datasets, including MNIST67-180, CIFAR10, ColorMNIST, and Flowers102. Our results show robust performance, even in uncertainty metrics.
comment: ICML2024
☆ NeuFair: Neural Network Fairness Repair with Dropout ISSTA 2024
This paper investigates the neural dropout method as a post-processing bias mitigation for deep neural networks (DNNs). Neural-driven software solutions are increasingly applied in socially critical domains with significant fairness implications. While neural networks are exceptionally good at finding statistical patterns from data, they are notorious for overfitting to the training datasets that may encode and amplify existing biases from the historical data. Existing bias mitigation algorithms often require either modifying the input dataset or modifying the learning algorithms. We posit that the prevalent dropout methods that prevent over-fitting during training by randomly dropping neurons may be an effective and less intrusive approach to improve fairness of pre-trained DNNs. However, finding the ideal set of neurons to drop is a combinatorial problem. We propose NeuFair, a family of post-processing randomized algorithms that mitigate unfairness in pre-trained DNNs. Our randomized search is guided by an objective to minimize discrimination while maintaining the model utility. We show that our design of randomized algorithms provides statistical guarantees on finding optimal solutions, and we empirically evaluate the efficacy and efficiency of NeuFair in improving fairness, with minimal or no performance degradation. Our results show that NeuFair improves fairness by up to 69% and outperforms state-of-the-art post-processing bias techniques.
comment: Paper accepted at ACM ISSTA 2024
☆ Langevin Dynamics: A Unified Perspective on Optimization via Lyapunov Potentials
We study the problem of non-convex optimization using Stochastic Gradient Langevin Dynamics (SGLD). SGLD is a natural and popular variation of stochastic gradient descent where at each step, appropriately scaled Gaussian noise is added. To our knowledge, the only strategy for showing global convergence of SGLD on the loss function is to show that SGLD can sample from a stationary distribution which assigns larger mass when the function is small (the Gibbs measure), and then to convert these guarantees to optimization results. We employ a new strategy to analyze the convergence of SGLD to global minima, based on Lyapunov potentials and optimization. We convert the same mild conditions from previous works on SGLD into geometric properties based on Lyapunov potentials. This adapts well to the case with a stochastic gradient oracle, which is natural for machine learning applications where one wants to minimize population loss but only has access to stochastic gradients via minibatch training samples. Here we provide 1) improved rates in the setting of previous works studying SGLD for optimization, 2) the first finite gradient complexity guarantee for SGLD where the function is Lipschitz and the Gibbs measure defined by the function satisfies a Poincar\'e Inequality, and 3) prove if continuous-time Langevin Dynamics succeeds for optimization, then discrete-time SGLD succeeds under mild regularity assumptions.
☆ Robust Q-Learning for finite ambiguity sets
In this paper we propose a novel $Q$-learning algorithm allowing to solve distributionally robust Markov decision problems for which the ambiguity set of probability measures can be chosen arbitrarily as long as it comprises only a finite amount of measures. Therefore, our approach goes beyond the well-studied cases involving ambiguity sets of balls around some reference measure with the distance to reference measure being measured with respect to the Wasserstein distance or the Kullback--Leibler divergence. Hence, our approach allows the applicant to create ambiguity sets better tailored to her needs and to solve the associated robust Markov decision problem via a $Q$-learning algorithm whose convergence is guaranteed by our main result. Moreover, we showcase in several numerical experiments the tractability of our approach.
Unsupervised Video Summarization via Reinforcement Learning and a Trained Evaluator
This paper presents a novel approach for unsupervised video summarization using reinforcement learning. It aims to address the existing limitations of current unsupervised methods, including unstable training of adversarial generator-discriminator architectures and reliance on hand-crafted reward functions for quality evaluation. The proposed method is based on the concept that a concise and informative summary should result in a reconstructed video that closely resembles the original. The summarizer model assigns an importance score to each frame and generates a video summary. In the proposed scheme, reinforcement learning, coupled with a unique reward generation pipeline, is employed to train the summarizer model. The reward generation pipeline trains the summarizer to create summaries that lead to improved reconstructions. It comprises a generator model capable of reconstructing masked frames from a partially masked video, along with a reward mechanism that compares the reconstructed video from the summary against the original. The video generator is trained in a self-supervised manner to reconstruct randomly masked frames, enhancing its ability to generate accurate summaries. This training pipeline results in a summarizer model that better mimics human-generated video summaries compared to methods relying on hand-crafted rewards. The training process consists of two stable and isolated training steps, unlike adversarial architectures. Experimental results demonstrate promising performance, with F-scores of 62.3 and 54.5 on TVSum and SumMe datasets, respectively. Additionally, the inference stage is 300 times faster than our previously reported state-of-the-art method.
☆ Unified Interpretation of Smoothing Methods for Negative Sampling Loss Functions in Knowledge Graph Embedding RepL4NLP
Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.
comment: 9 pages, 4 figures, 2 tables; accepted to workshop RepL4NLP held in conjunction with ACL 2024
☆ Machine Learning for Complex Systems with Abnormal Pattern by Exception Maximization Outlier Detection Method
This paper proposes a novel fast online methodology for outlier detection called the exception maximization outlier detection method(EMODM), which employs probabilistic models and statistical algorithms to detect abnormal patterns from the outputs of complex systems. The EMODM is based on a two-state Gaussian mixture model and demonstrates strong performance in probability anomaly detection working on real-time raw data rather than using special prior distribution information. We confirm this using the synthetic data from two numerical cases. For the real-world data, we have detected the short circuit pattern of the circuit system using EMODM by the current and voltage output of a three-phase inverter. The EMODM also found an abnormal period due to COVID-19 in the insured unemployment data of 53 regions in the United States from 2000 to 2024. The application of EMODM to these two real-life datasets demonstrated the effectiveness and accuracy of our algorithm.
☆ A Two-Step Minimax Q-learning Algorithm for Two-Player Zero-Sum Markov Games
An interesting iterative procedure is proposed to solve a two-player zero-sum Markov games. First this problem is expressed as a min-max Markov game. Next, a two-step Q-learning algorithm for solving Markov decision problem (MDP) is suitably modified to solve this Markov game. Under a suitable assumption, the boundedness of the proposed iterates is obtained theoretically. Using results from stochastic approximation, the almost sure convergence of the proposed two-step minimax Q-learning is obtained theoretically. More specifically, the proposed algorithm converges to the game theoretic optimal value with probability one, when the model information is not known. Numerical simulation authenticate that the proposed algorithm is effective and easy to implement.
Graph Pooling via Ricci Flow
Graph Machine Learning often involves the clustering of nodes based on similarity structure encoded in the graph's topology and the nodes' attributes. On homophilous graphs, the integration of pooling layers has been shown to enhance the performance of Graph Neural Networks by accounting for inherent multi-scale structure. Here, similar nodes are grouped together to coarsen the graph and reduce the input size in subsequent layers in deeper architectures. In both settings, the underlying clustering approach can be implemented via graph pooling operators, which often rely on classical tools from Graph Theory. In this work, we introduce a graph pooling operator (ORC-Pool), which utilizes a characterization of the graph's geometry via Ollivier's discrete Ricci curvature and an associated geometric flow. Previous Ricci flow based clustering approaches have shown great promise across several domains, but are by construction unable to account for similarity structure encoded in the node attributes. However, in many ML applications, such information is vital for downstream tasks. ORC-Pool extends such clustering approaches to attributed graphs, allowing for the integration of geometric coarsening into Graph Neural Networks as a pooling layer.
comment: 32 pages, 7 figures
☆ TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation
Time series generation is a crucial research topic in the area of deep learning, which can be used for data augmentation, imputing missing values, and forecasting. Currently, latent diffusion models are ascending to the forefront of generative modeling for many important data representations. Being the most pivotal in the computer vision domain, latent diffusion models have also recently attracted interest in other communities, including NLP, Speech, and Geometric Space. In this work, we propose TimeLDM, a novel latent diffusion model for high-quality time series generation. TimeLDM is composed of a variational autoencoder that encodes time series into an informative and smoothed latent content and a latent diffusion model operating in the latent space to generate latent information. We evaluate the ability of our method to generate synthetic time series with simulated and realistic datasets, benchmark the performance against existing state-of-the-art methods. Qualitatively and quantitatively, we find that the proposed TimeLDM persistently delivers high-quality generated time series. Sores from Context-FID and Discriminative indicate that TimeLDM consistently and significantly outperforms current state-of-the-art benchmarks with an average improvement of 3.4$\times$ and 3.8$\times$, respectively. Further studies demonstrate that our method presents better performance on different lengths of time series data generation. To the best of our knowledge, this is the first study to explore the potential of the latent diffusion model for unconditional time series generation and establish a new baseline for synthetic time series.
♻ ☆ Generative Camera Dolly: Extreme Monocular Dynamic Novel View Synthesis ECCV 2024
Accurate reconstruction of complex dynamic scenes from just a single viewpoint continues to be a challenging task in computer vision. Current dynamic novel view synthesis methods typically require videos from many different camera viewpoints, necessitating careful recording setups, and significantly restricting their utility in the wild as well as in terms of embodied AI applications. In this paper, we propose $\textbf{GCD}$, a controllable monocular dynamic view synthesis pipeline that leverages large-scale diffusion priors to, given a video of any scene, generate a synchronous video from any other chosen perspective, conditioned on a set of relative camera pose parameters. Our model does not require depth as input, and does not explicitly model 3D scene geometry, instead performing end-to-end video-to-video translation in order to achieve its goal efficiently. Despite being trained on synthetic multi-view video data only, zero-shot real-world generalization experiments show promising results in multiple domains, including robotics, object permanence, and driving environments. We believe our framework can potentially unlock powerful applications in rich dynamic scene understanding, perception for robotics, and interactive 3D video viewing experiences for virtual reality.
comment: Accepted to ECCV 2024. Project webpage is available at: https://gcd.cs.columbia.edu/
♻ ☆ Research on target detection method of distracted driving behavior based on improved YOLOv8
With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.
comment: Major revision on content, no replacement available soon
♻ ☆ Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes. GS represents a scene as a set of 3D Gaussians with varying opacities and employs a computationally efficient splatting operation along with analytical derivatives to compute the 3D Gaussian parameters given scene images captured from various viewpoints. Unfortunately, capturing surround view ($360^{\circ}$ viewpoint) images is impossible or impractical in many real-world imaging scenarios, including underwater imaging, rooms inside a building, and autonomous navigation. In these restricted baseline imaging scenarios, the GS algorithm suffers from a well-known 'missing cone' problem, which results in poor reconstruction along the depth axis. In this manuscript, we demonstrate that using transient data (from sonars) allows us to address the missing cone problem by sampling high-frequency data along the depth axis. We extend the Gaussian splatting algorithms for two commonly used sonars and propose fusion algorithms that simultaneously utilize RGB camera data and sonar data. Through simulations, emulations, and hardware experiments across various imaging scenarios, we show that the proposed fusion algorithms lead to significantly better novel view synthesis (5 dB improvement in PSNR) and 3D geometry reconstruction (60% lower Chamfer distance).
♻ ☆ OpenDebateEvidence: A Massive-Scale Argument Mining and Summarization Dataset ACL2024
We introduce OpenDebateEvidence, a comprehensive dataset for argument mining and summarization sourced from the American Competitive Debate community. This dataset includes over 3.5 million documents with rich metadata, making it one of the most extensive collections of debate evidence. OpenDebateEvidence captures the complexity of arguments in high school and college debates, providing valuable resources for training and evaluation. Our extensive experiments demonstrate the efficacy of fine-tuning state-of-the-art large language models for argumentative abstractive summarization across various methods, models, and datasets. By providing this comprehensive resource, we aim to advance computational argumentation and support practical applications for debaters, educators, and researchers. OpenDebateEvidence is publicly available to support further research and innovation in computational argumentation. Access it here: https://huggingface.co/datasets/Yusuf5/OpenCaselist
comment: Accepted for Publication to ARGMIN 2024 at ACL2024
♻ ☆ Improving Low-Resource Knowledge Tracing Tasks by Supervised Pre-training and Importance Mechanism Fine-tuning
Knowledge tracing (KT) aims to estimate student's knowledge mastery based on their historical interactions. Recently, the deep learning based KT (DLKT) approaches have achieved impressive performance in the KT task. These DLKT models heavily rely on the large number of available student interactions. However, due to various reasons such as budget constraints and privacy concerns, observed interactions are very limited in many real-world scenarios, a.k.a, low-resource KT datasets. Directly training a DLKT model on a low-resource KT dataset may lead to overfitting and it is difficult to choose the appropriate deep neural architecture. Therefore, in this paper, we propose a low-resource KT framework called LoReKT to address above challenges. Inspired by the prevalent "pre-training and fine-tuning" paradigm, we aim to learn transferable parameters and representations from rich-resource KT datasets during the pre-training stage and subsequently facilitate effective adaptation to low-resource KT datasets. Specifically, we simplify existing sophisticated DLKT model architectures with purely a stack of transformer decoders. We design an encoding mechanism to incorporate student interactions from multiple KT data sources and develop an importance mechanism to prioritize updating parameters with high importance while constraining less important ones during the fine-tuning stage. We evaluate LoReKT on six public KT datasets and experimental results demonstrate the superiority of our approach in terms of AUC and Accuracy. To encourage reproducible research, we make our data and code publicly available at https://anonymous.4open.science/r/LoReKT-C619.
comment: 29 pages, 4 figures
♻ ☆ Accelerated Parameter-Free Stochastic Optimization
We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
♻ ☆ A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models KDD
Knowledge tracing (KT) plays a crucial role in predicting students' future performance by analyzing their historical learning processes. Deep neural networks (DNNs) have shown great potential in solving the KT problem. However, there still exist some important challenges when applying deep learning techniques to model the KT process. The first challenge lies in taking the individual information of the question into modeling. This is crucial because, despite questions sharing the same knowledge component (KC), students' knowledge acquisition on homogeneous questions can vary significantly. The second challenge lies in interpreting the prediction results from existing deep learning-based KT models. In real-world applications, while it may not be necessary to have complete transparency and interpretability of the model parameters, it is crucial to present the model's prediction results in a manner that teachers find interpretable. This makes teachers accept the rationale behind the prediction results and utilize them to design teaching activities and tailored learning strategies for students. However, the inherent black-box nature of deep learning techniques often poses a hurdle for teachers to fully embrace the model's prediction results. To address these challenges, we propose a Question-centric Multi-experts Contrastive Learning framework for KT called Q-MCKT. We have provided all the datasets and code on our website at https://github.com/rattlesnakey/Q-MCKT.
comment: 25 pages, 9 figures, Accepted by TKDD
♻ ☆ Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation
We introduce Probabilistic Rank and Reward (PRR), a scalable probabilistic model for personalized slate recommendation. Our approach allows off-policy estimation of the reward in the scenario where the user interacts with at most one item from a slate of K items. We show that the probability of a slate being successful can be learned efficiently by combining the reward, whether the user successfully interacted with the slate, and the rank, the item that was selected within the slate. PRR outperforms existing off-policy reward optimizing methods and is far more scalable to large action spaces. Moreover, PRR allows fast delivery of recommendations powered by maximum inner product search (MIPS), making it suitable in low latency domains such as computational advertising.
♻ ☆ DexDiffuser: Generating Dexterous Grasps with Diffusion Models
We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). The experiment results demonstrate that DexDiffuser consistently outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 9.12% and 19.44% higher grasp success rate in simulation and real robot experiments, respectively. Supplementary materials are available at https://yulihn.github.io/DexDiffuser_page/
comment: 7 pages
♻ ☆ Deep-Learning-Based Channel Estimation for Distributed MIMO with 1-bit Radio-Over-Fiber Fronthaul
We consider the problem of pilot-aided, uplink channel estimation in a distributed massive multiple-input multiple-output (MIMO) architecture, in which the access points are connected to a central processing unit via fiber-optical fronthaul links, carrying a two-level-quantized version of the received analog radio-frequency signal. We adapt to this architecture the deep-learning-based channel-estimation algorithm recently proposed by Nguyen et al. (2023), and explore its robustness to the additional signal distortions (beyond 1-bit quantization) introduced in the considered architecture by the automatic gain controllers (AGCs) and by the comparators. These components are used at the access points to generate the two-level analog waveform from the received signal. Via simulation results, we illustrate that the proposed channel-estimation method outperforms significantly the Bussgang linear minimum mean-square error channel estimator, and it is robust against the additional impairments introduced by the AGCs and the comparators.
♻ ☆ FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer
In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training data sets. The protracted generation time of physics-based models, often employed to produce these data sets, limits their broad applicability. We introduce FakET, a method based on Neural Style Transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training data set according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750 times, uses 33 times less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket.
comment: 25 pages, 3 tables, 19 figures including supplement. Added Key findings section, CPU-profiling appendix, and Supplementary information
♻ ☆ Multimodal Variational Autoencoder for Low-cost Cardiac Hemodynamics Instability Detection
Recent advancements in non-invasive detection of cardiac hemodynamic instability (CHDI) primarily focus on applying machine learning techniques to a single data modality, e.g. cardiac magnetic resonance imaging (MRI). Despite their potential, these approaches often fall short especially when the size of labeled patient data is limited, a common challenge in the medical domain. Furthermore, only a few studies have explored multimodal methods to study CHDI, which mostly rely on costly modalities such as cardiac MRI and echocardiogram. In response to these limitations, we propose a novel multimodal variational autoencoder ($\text{CardioVAE}_\text{X,G}$) to integrate low-cost chest X-ray (CXR) and electrocardiogram (ECG) modalities with pre-training on a large unlabeled dataset. Specifically, $\text{CardioVAE}_\text{X,G}$ introduces a novel tri-stream pre-training strategy to learn both shared and modality-specific features, thus enabling fine-tuning with both unimodal and multimodal datasets. We pre-train $\text{CardioVAE}_\text{X,G}$ on a large, unlabeled dataset of $50,982$ subjects from a subset of MIMIC database and then fine-tune the pre-trained model on a labeled dataset of $795$ subjects from the ASPIRE registry. Comprehensive evaluations against existing methods show that $\text{CardioVAE}_\text{X,G}$ offers promising performance (AUROC $=0.79$ and Accuracy $=0.77$), representing a significant step forward in non-invasive prediction of CHDI. Our model also excels in producing fine interpretations of predictions directly associated with clinical features, thereby supporting clinical decision-making.
♻ ☆ From Representational Harms to Quality-of-Service Harms: A Case Study on Llama 2 Safety Safeguards ACL 2024
Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have also introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
comment: 9 pages, 4 figures. Accepted to Findings of the Association for Computational Linguistics: ACL 2024
♻ ☆ Planetary Causal Inference: Implications for the Geography of Poverty
Earth observation data such as satellite imagery can, when combined with machine learning, can have far-reaching impacts on our understanding of the geography of poverty through the prediction of living conditions, especially where government-derived economic indicators are either unavailable or potentially untrustworthy. Recent work has progressed in using Earth Observation (EO) data not only to predict spatial economic outcomes but also to explore cause and effect, an understanding which is critical for downstream policy analysis. In this review, we first document the growth of interest in using satellite images together with EO data in causal analysis. We then trace the relationship between spatial statistics and machine learning methods before discussing four ways in which EO data has been used in causal machine learning pipelines -- (1.) poverty outcome imputation for downstream causal analysis, (2.) EO image deconfounding, (3.) EO-based treatment effect heterogeneity, and (4.) EO-based transportability analysis. We conclude by providing a step-by-step workflow for how researchers can incorporate EO data in causal ML analysis going forward, outlining major choices of data, models, and evaluation metrics.
comment: For a full list of the papers found in the quantitative literature search, see https://github.com/AIandGlobalDevelopmentLab/eo-poverty-review
♻ ☆ Steering Llama 2 via Contrastive Activation Addition
We introduce Contrastive Activation Addition (CAA), an innovative method for steering language models by modifying their activations during forward passes. CAA computes "steering vectors" by averaging the difference in residual stream activations between pairs of positive and negative examples of a particular behavior, such as factual versus hallucinatory responses. During inference, these steering vectors are added at all token positions after the user's prompt with either a positive or negative coefficient, allowing precise control over the degree of the targeted behavior. We evaluate CAA's effectiveness on Llama 2 Chat using multiple-choice behavioral question datasets and open-ended generation tasks. We demonstrate that CAA significantly alters model behavior, is effective over and on top of traditional methods like finetuning and system prompt design, and minimally reduces capabilities. Moreover, we gain deeper insights into CAA's mechanisms by employing various activation space interpretation methods. CAA accurately steers model outputs and sheds light on how high-level concepts are represented in Large Language Models (LLMs).
♻ ☆ Certifiable Black-Box Attacks with Randomized Adversarial Examples: Breaking Defenses with Provable Confidence
Black-box adversarial attacks have shown strong potential to subvert machine learning models. Existing black-box attacks craft adversarial examples by iteratively querying the target model and/or leveraging the transferability of a local surrogate model. Recently, such attacks can be effectively mitigated by state-of-the-art (SOTA) defenses, e.g., detection via the pattern of sequential queries, or injecting noise into the model. To our best knowledge, we take the first step to study a new paradigm of black-box attacks with provable guarantees -- certifiable black-box attacks that can guarantee the attack success probability (ASP) of adversarial examples before querying over the target model. This new black-box attack unveils significant vulnerabilities of machine learning models, compared to traditional empirical black-box attacks, e.g., breaking strong SOTA defenses with provable confidence, constructing a space of (infinite) adversarial examples with high ASP, and the ASP of the generated adversarial examples is theoretically guaranteed without verification/queries over the target model. Specifically, we establish a novel theoretical foundation for ensuring the ASP of the black-box attack with randomized adversarial examples (AEs). Then, we propose several novel techniques to craft the randomized AEs while reducing the perturbation size for better imperceptibility. Finally, we have comprehensively evaluated the certifiable black-box attacks on the CIFAR10/100, ImageNet, and LibriSpeech datasets, while benchmarking with 16 SOTA empirical black-box attacks, against various SOTA defenses in the domains of computer vision and speech recognition. Both theoretical and experimental results have validated the significance of the proposed attack.
♻ ☆ Low-Resource Crop Classification from Multi-Spectral Time Series Using Lossless Compressors
Deep learning has significantly improved the accuracy of crop classification using multispectral temporal data. However, these models have complex structures with numerous parameters, requiring large amounts of data and costly training. In low-resource situations with fewer labeled samples, deep learning models perform poorly due to insufficient data. Conversely, compressors are data-type agnostic, and non-parametric methods do not bring underlying assumptions. Inspired by this insight, we propose a non-training alternative to deep learning models, aiming to address these situations. Specifically, the Symbolic Representation Module is proposed to convert the reflectivity into symbolic representations. The symbolic representations are then cross-transformed in both the channel and time dimensions to generate symbolic embeddings. Next, the Multi-scale Normalised Compression Distance (MNCD) is designed to measure the correlation between any two symbolic embeddings. Finally, based on the MNCDs, high quality crop classification can be achieved using only a k-nearest-neighbor classifier kNN. The entire framework is ready-to-use and lightweight. Without any training, it outperformed, on average, 7 advanced deep learning models trained at scale on three benchmark datasets. It also outperforms more than half of these models in the few-shot setting with sparse crop labels. Therefore, the high performance and robustness of our non-training framework makes it truly applicable to real-world crop mapping. Codes are available at: https://github.com/qinfengsama/Compressor-Based-Crop-Mapping.
comment: 8 pages, 10 figures
♻ ☆ Sampling from the Mean-Field Stationary Distribution
We study the complexity of sampling from the stationary distribution of a mean-field SDE, or equivalently, the complexity of minimizing a functional over the space of probability measures which includes an interaction term. Our main insight is to decouple the two key aspects of this problem: (1) approximation of the mean-field SDE via a finite-particle system, via uniform-in-time propagation of chaos, and (2) sampling from the finite-particle stationary distribution, via standard log-concave samplers. Our approach is conceptually simpler and its flexibility allows for incorporating the state-of-the-art for both algorithms and theory. This leads to improved guarantees in numerous settings, including better guarantees for optimizing certain two-layer neural networks in the mean-field regime. A key technical contribution is to establish a new uniform-in-$N$ log-Sobolev inequality for the stationary distribution of the mean-field Langevin dynamics.
♻ ☆ Artwork Protection Against Neural Style Transfer Using Locally Adaptive Adversarial Color Attack
Neural style transfer (NST) generates new images by combining the style of one image with the content of another. However, unauthorized NST can exploit artwork, raising concerns about artists' rights and motivating the development of proactive protection methods. We propose Locally Adaptive Adversarial Color Attack (LAACA), empowering artists to protect their artwork from unauthorized style transfer by processing before public release. By delving into the intricacies of human visual perception and the role of different frequency components, our method strategically introduces frequency-adaptive perturbations in the image. These perturbations significantly degrade the generation quality of NST while maintaining an acceptable level of visual change in the original image, ensuring that potential infringers are discouraged from using the protected artworks, because of its bad NST generation quality. Additionally, existing metrics often overlook the importance of color fidelity in evaluating color-mattered tasks, such as the quality of NST-generated images, which is crucial in the context of artistic works. To comprehensively assess the color-mattered tasks, we propose the Adversarial Color Distance Metric (ACDM), designed to quantify the color difference of images pre- and post-manipulations. Experimental results confirm that attacking NST using LAACA results in visually inferior style transfer, and the ACDM can efficiently measure color-mattered tasks. By providing artists with a tool to safeguard their intellectual property, our work relieves the socio-technical challenges posed by the misuse of NST in the art community.
comment: 9 pages, 5 figures, 4 tables
♻ ☆ Turbulence Scaling from Deep Learning Diffusion Generative Models
Complex spatial and temporal structures are inherent characteristics of turbulent fluid flows and comprehending them poses a major challenge. This comprehesion necessitates an understanding of the space of turbulent fluid flow configurations. We employ a diffusion-based generative model to learn the distribution of turbulent vorticity profiles and generate snapshots of turbulent solutions to the incompressible Navier-Stokes equations. We consider the inverse cascade in two spatial dimensions and generate diverse turbulent solutions that differ from those in the training dataset. We analyze the statistical scaling properties of the new turbulent profiles, calculate their structure functions, energy power spectrum, velocity probability distribution function and moments of local energy dissipation. All the learnt scaling exponents are consistent with the expected Kolmogorov scaling. This agreement with established turbulence characteristics provides strong evidence of the model's capability to capture essential features of real-world turbulence.
♻ ☆ Query-Policy Misalignment in Preference-Based Reinforcement Learning ICLR 2024
Preference-based reinforcement learning (PbRL) provides a natural way to align RL agents' behavior with human desired outcomes, but is often restrained by costly human feedback. To improve feedback efficiency, most existing PbRL methods focus on selecting queries to maximally improve the overall quality of the reward model, but counter-intuitively, we find that this may not necessarily lead to improved performance. To unravel this mystery, we identify a long-neglected issue in the query selection schemes of existing PbRL studies: Query-Policy Misalignment. We show that the seemingly informative queries selected to improve the overall quality of reward model actually may not align with RL agents' interests, thus offering little help on policy learning and eventually resulting in poor feedback efficiency. We show that this issue can be effectively addressed via near on-policy query and a specially designed hybrid experience replay, which together enforce the bidirectional query-policy alignment. Simple yet elegant, our method can be easily incorporated into existing approaches by changing only a few lines of code. We showcase in comprehensive experiments that our method achieves substantial gains in both human feedback and RL sample efficiency, demonstrating the importance of addressing query-policy misalignment in PbRL tasks.
comment: Accepted by ICLR 2024
♻ ☆ Distributed Black-box Attack: Do Not Overestimate Black-box Attacks
Black-box adversarial attacks can fool image classifiers into misclassifying images without requiring access to model structure and weights. Recent studies have reported attack success rates of over 95% with less than 1,000 queries. The question then arises of whether black-box attacks have become a real threat against IoT devices that rely on cloud APIs to achieve image classification. To shed some light on this, note that prior research has primarily focused on increasing the success rate and reducing the number of queries. However, another crucial factor for black-box attacks against cloud APIs is the time required to perform the attack. This paper applies black-box attacks directly to cloud APIs rather than to local models, thereby avoiding mistakes made in prior research that applied the perturbation before image encoding and pre-processing. Further, we exploit load balancing to enable distributed black-box attacks that can reduce the attack time by a factor of about five for both local search and gradient estimation methods.
comment: 8 pages, 10 figures
♻ ☆ Age Aware Scheduling for Differentially-Private Federated Learning
This paper explores differentially-private federated learning (FL) across time-varying databases, delving into a nuanced three-way tradeoff involving age, accuracy, and differential privacy (DP). Emphasizing the potential advantages of scheduling, we propose an optimization problem aimed at meeting DP requirements while minimizing the loss difference between the aggregated model and the model obtained without DP constraints. To harness the benefits of scheduling, we introduce an age-dependent upper bound on the loss, leading to the development of an age-aware scheduling design. Simulation results underscore the superior performance of our proposed scheme compared to FL with classic DP, which does not consider scheduling as a design factor. This research contributes insights into the interplay of age, accuracy, and DP in federated learning, with practical implications for scheduling strategies.
comment: Simulation parameters updated. Paper accepted for presentation at the 2024 IEEE International Symposium on Information Theory (ISIT 2024)
♻ ☆ Learning to Generate All Feasible Actions
Modern cyber-physical systems are becoming increasingly complex to model, thus motivating data-driven techniques such as reinforcement learning (RL) to find appropriate control agents. However, most systems are subject to hard constraints such as safety or operational bounds. Typically, to learn to satisfy these constraints, the agent must violate them systematically, which is computationally prohibitive in most systems. Recent efforts aim to utilize feasibility models that assess whether a proposed action is feasible to avoid applying the agent's infeasible action proposals to the system. However, these efforts focus on guaranteeing constraint satisfaction rather than the agent's learning efficiency. To improve the learning process, we introduce action mapping, a novel approach that divides the learning process into two steps: first learn feasibility and subsequently, the objective by mapping actions into the sets of feasible actions. This paper focuses on the feasibility part by learning to generate all feasible actions through self-supervised querying of the feasibility model. We train the agent by formulating the problem as a distribution matching problem and deriving gradient estimators for different divergences. Through an illustrative example, a robotic path planning scenario, and a robotic grasping simulation, we demonstrate the agent's proficiency in generating actions across disconnected feasible action sets. By addressing the feasibility step, this paper makes it possible to focus future work on the objective part of action mapping, paving the way for an RL framework that is both safe and efficient.
♻ ☆ Which algorithm to select in sports timetabling?
Any sports competition needs a timetable, specifying when and where teams meet each other. The recent International Timetabling Competition (ITC2021) on sports timetabling showed that, although it is possible to develop general algorithms, the performance of each algorithm varies considerably over the problem instances. This paper provides an instance space analysis for sports timetabling, resulting in powerful insights into the strengths and weaknesses of eight state-of-the-art algorithms. Based on machine learning techniques, we propose an algorithm selection system that predicts which algorithm is likely to perform best when given the characteristics of a sports timetabling problem instance. Furthermore, we identify which characteristics are important in making that prediction, providing insights in the performance of the algorithms, and suggestions to further improve them. Finally, we assess the empirical hardness of the instances. Our results are based on large computational experiments involving about 50 years of CPU time on more than 500 newly generated problem instances.
comment: This is the peer-reviewed author-version of https://doi.org/10.1016/j.ejor.2024.06.005, published in the European Journal of Operational Research. Copyright 2024. This manuscript version is made available under the LCC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
♻ ☆ Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach
Recommender systems are essential for content-sharing platforms by curating personalized content. To evaluate updates to recommender systems targeting content creators, platforms frequently rely on creator-side randomized experiments. The treatment effect measures the change in outcomes when a new algorithm is implemented compared to the status quo. We show that the standard difference-in-means estimator can lead to biased estimates due to recommender interference that arises when treated and control creators compete for exposure. We propose a "recommender choice model" that describes which item gets exposed from a pool containing both treated and control items. By combining a structural choice model with neural networks, this framework directly models the interference pathway while accounting for rich viewer-content heterogeneity. We construct a debiased estimator of the treatment effect and prove it is $\sqrt n$-consistent and asymptotically normal with potentially correlated samples. We validate our estimator's empirical performance with a field experiment on Weixin short-video platform. In addition to the standard creator-side experiment, we conduct a costly double-sided randomization design to obtain a benchmark estimate free from interference bias. We show that the proposed estimator yields results comparable to the benchmark, whereas the standard difference-in-means estimator can exhibit significant bias and even produce reversed signs.
♻ ☆ The False Dawn: Reevaluating Google's Reinforcement Learning for Chip Macro Placement
Reinforcement learning (RL) for physical design of silicon chips in a Google 2021 Nature paper stirred controversy due to poorly documented claims that raised eyebrows and drew critical media coverage. The paper withheld critical methodology steps and most inputs needed to reproduce results. Our meta-analysis shows how two separate evaluations filled in the gaps and demonstrated that Google RL lags behind (i) human designers, (ii) a well-known algorithm (Simulated Annealing), and (iii) generally-available commercial software, while being slower; and in a 2023 open research contest, RL methods weren't in top 5. Crosschecked data indicate that the integrity of the Nature paper is substantially undermined owing to errors in conduct, analysis and reporting. Before publishing, Google rebuffed internal allegations of fraud, which still stand. We note policy implications and conclusions for chip design.
comment: 15 pages, 1 figure, 4 tables, 83 references
♻ ☆ Mixed Noise and Posterior Estimation with Conditional DeepGEM
Motivated by indirect measurements and applications from nanometrology with a mixed noise model, we develop a novel algorithm for jointly estimating the posterior and the noise parameters in Bayesian inverse problems. We propose to solve the problem by an expectation maximization (EM) algorithm. Based on the current noise parameters, we learn in the E-step a conditional normalizing flow that approximates the posterior. In the M-step, we propose to find the noise parameter updates again by an EM algorithm, which has analytical formulas. We compare the training of the conditional normalizing flow with the forward and reverse KL, and show that our model is able to incorporate information from many measurements, unlike previous approaches.
comment: Published in Machine Learning: Science and Technology
♻ ☆ Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
Breast cancer poses a profound threat to lives globally, claiming numerous lives each year. Therefore, timely detection is crucial for early intervention and improved chances of survival. Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine, demanding cutting-edge solutions for improved treatment strategies. This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images. A spatial channel attention mechanism is proposed for segmenting tumors from ultrasound images, utilizing a novel LinkNet DL framework with an InceptionResNet backbone. Following this, the paper proposes a deep convolutional neural network with an integrated multi-attention framework (DCNNIMAF) to classify the segmented tumor as benign, malignant, or normal. From experimental results, it is observed that the segmentation model has recorded an accuracy of 98.1%, with a minimal loss of 0.6%. It has also achieved high Intersection over Union (IoU) and Dice Coefficient scores of 96.9% and 97.2%, respectively. Similarly, the classification model has attained an accuracy of 99.2%, with a low loss of 0.31%. Furthermore, the classification framework has achieved outstanding F1-Score, precision, and recall values of 99.1%, 99.3%, and 99.1%, respectively. By offering a robust framework for early detection and accurate classification of breast cancer, this proposed work significantly advances the field of medical image analysis, potentially improving diagnostic precision and patient outcomes.
comment: 29 pages, 15 figures, 6 tables
♻ ☆ The impact of data set similarity and diversity on transfer learning success in time series forecasting
Pre-trained models have become pivotal in enhancing the efficiency and accuracy of time series forecasting on target data sets by leveraging transfer learning. While benchmarks validate the performance of model generalization on various target data sets, there is no structured research providing similarity and diversity measures to explain which characteristics of source and target data lead to transfer learning success. Our study pioneers in systematically evaluating the impact of source-target similarity and source diversity on zero-shot and fine-tuned forecasting outcomes in terms of accuracy, bias, and uncertainty estimation. We investigate these dynamics using pre-trained neural networks across five public source datasets, applied to forecasting five target data sets, including real-world wholesales data. We identify two feature-based similarity and diversity measures, finding that source-target similarity reduces forecasting bias, while source diversity improves forecasting accuracy and uncertainty estimation, but increases the bias.
♻ ☆ Extended Flow Matching: a Method of Conditional Generation with Generalized Continuity Equation
The task of conditional generation is one of the most important applications of generative models, and numerous methods have been developed to date based on the celebrated flow-based models. However, many flow-based models in use today are not built to allow one to introduce an explicit inductive bias to how the conditional distribution to be generated changes with respect to conditions. This can result in unexpected behavior in the task of style transfer, for example. In this research, we introduce extended flow matching (EFM), a direct extension of flow matching that learns a "matrix field" corresponding to the continuous map from the space of conditions to the space of distributions. We show that we can introduce inductive bias to the conditional generation through the matrix field and demonstrate this fact with MMOT-EFM, a version of EFM that aims to minimize the Dirichlet energy or the sensitivity of the distribution with respect to conditions. We will present our theory along with experimental results that support the competitiveness of EFM in conditional generation.
comment: 27 pages, 10 figures, We have corrected an error in our experiment on COT-FM
♻ ☆ Autoencoders for Real-Time SUEP Detection
Confining dark sectors with pseudo-conformal dynamics can produce Soft Unclustered Energy Patterns (SUEP), at the Large Hadron Collider: the production of dark quarks in proton-proton collisions leading to a dark shower and the high-multiplicity production of dark hadrons. The final experimental signature is spherically-symmetric energy deposits by an anomalously large number of soft Standard Model particles with a transverse energy of O(100) MeV. Assuming Yukawa-like couplings of the scalar portal state, the dominant production mode is gluon fusion, and the dominant background comes from multi-jet QCD events. We have developed a deep learning-based Anomaly Detection technique to reject QCD jets and identify any anomalous signature, including SUEP, in real-time in the High-Level Trigger system of the Compact Muon Solenoid experiment at the Large Hadron Collider. A deep convolutional neural autoencoder network has been trained using QCD events by taking transverse energy deposits in the inner tracker, electromagnetic calorimeter, and hadron calorimeter sub-detectors as 3-channel image data. Due to the sparse nature of the data, only ~0.5% of the total ~300 k image pixels have non-zero values. To tackle this challenge, a non-standard loss function, the inverse of the so-called Dice Loss, is exploited. The trained autoencoder with learned spatial features of QCD jets can detect 40% of the SUEP events, with a QCD event mistagging rate as low as 2%. The model inference time has been measured using the Intel CoreTM i5-9600KF processor and found to be ~20 ms, which perfectly satisfies the High-Level Trigger system's latency of O(100) ms. Given the virtue of the unsupervised learning of the autoencoders, the trained model can be applied to any new physics model that predicts an experimental signature anomalous to QCD jets.
comment: 9 pages, 9 figures, 1 table, 1 equation
♻ ☆ Remember This Event That Year? Assessing Temporal Information and Reasoning in Large Language Models
Large Language Models (LLMs) are increasingly ubiquitous, yet their ability to retain and reason about temporal information remains limited, hindering their application in real-world scenarios where understanding the sequential nature of events is crucial. Our study experiments with 12 state-of-the-art models (ranging from 2B to 70B+ parameters) on a novel numerical-temporal dataset, \textbf{TempUN}, spanning from 10,000 BCE to 2100 CE, to uncover significant temporal retention and comprehension limitations. We propose six metrics to assess three learning paradigms to enhance temporal knowledge acquisition. Our findings reveal that open-source models exhibit knowledge gaps more frequently, suggesting a trade-off between limited knowledge and incorrect responses. Additionally, various fine-tuning approaches significantly improved performance, reducing incorrect outputs and impacting the identification of 'information not available' in the generations. The associated dataset and code are available at (https://github.com/lingoiitgn/TempUN).
♻ ☆ Mixture-of-Subspaces in Low-Rank Adaptation
In this paper, we introduce a subspace-inspired Low-Rank Adaptation (LoRA) method, which is computationally efficient, easy to implement, and readily applicable to large language, multimodal, and diffusion models. Initially, we equivalently decompose the weights of LoRA into two subspaces, and find that simply mixing them can enhance performance. To study such a phenomenon, we revisit it through a fine-grained subspace lens, showing that such modification is equivalent to employing a fixed mixer to fuse the subspaces. To be more flexible, we jointly learn the mixer with the original LoRA weights, and term the method Mixture-of-Subspaces LoRA (MoSLoRA). MoSLoRA consistently outperforms LoRA on tasks in different modalities, including commonsense reasoning, visual instruction tuning, and subject-driven text-to-image generation, demonstrating its effectiveness and robustness. Codes are available at https://github.com/wutaiqiang/MoSLoRA.
comment: working in progress
♻ ☆ Semantically Rich Local Dataset Generation for Explainable AI in Genomics
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms. Therefore, interpreting these models may provide novel insights into the underlying biology, supporting downstream biomedical applications. Due to their complexity, interpretable surrogate models can only be built for local explanations (e.g., a single instance). However, accomplishing this requires generating a dataset in the neighborhood of the input, which must maintain syntactic similarity to the original data while introducing semantic variability in the model's predictions. This task is challenging due to the complex sequence-to-function relationship of DNA. We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity. Our custom, domain-guided individual representation effectively constrains syntactic similarity, and we provide two alternative fitness functions that promote diversity with no computational effort. Applied to the RNA splicing domain, our approach quickly achieves good diversity and significantly outperforms a random baseline in exploring the search space, as shown by our proof-of-concept, short RNA sequence. Furthermore, we assess its generalizability and demonstrate scalability to larger sequences, resulting in a ~30% improvement over the baseline.
♻ ☆ Beyond RMSE and MAE: Introducing EAUC to unmask hidden bias and unfairness in dyadic regression models
Dyadic regression models, which predict real-valued outcomes for pairs of entities, are fundamental in many domains (e.g. predicting the rating of a user to a product in Recommender Systems) and promising and under exploration in many others (e.g. approximating the adequate dosage of a drug for a patient in personalized pharmacology). In this work, we demonstrate that non-uniformity in the observed value distributions of individual entities leads to severely biased predictions in state-of-the-art models, skewing predictions towards the average of observed past values for the entity and providing worse-than-random predictive power in eccentric yet equally important cases. We show that the usage of global error metrics like Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) is insufficient to capture this phenomenon, which we name eccentricity bias, and we introduce Eccentricity-Area Under the Curve (EAUC) as a new complementary metric that can quantify it in all studied models and datasets. We also prove the adequateness of EAUC by using naive de-biasing corrections to demonstrate that a lower model bias correlates with a lower EAUC and vice-versa. This work contributes a bias-aware evaluation of dyadic regression models to avoid potential unfairness and risks in critical real-world applications of such systems.
♻ ☆ Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning ICML 2024
Causal effect estimation under networked interference is an important but challenging problem. Available parametric methods are limited in their model space, while previous semiparametric methods, e.g., leveraging neural networks to fit only one single nuisance function, may still encounter misspecification problems under networked interference without appropriate assumptions on the data generation process. To mitigate bias stemming from misspecification, we propose a novel doubly robust causal effect estimator under networked interference, by adapting the targeted learning technique to the training of neural networks. Specifically, we generalize the targeted learning technique into the networked interference setting and establish the condition under which an estimator achieves double robustness. Based on the condition, we devise an end-to-end causal effect estimator by transforming the identified theoretical condition into a targeted loss. Moreover, we provide a theoretical analysis of our designed estimator, revealing a faster convergence rate compared to a single nuisance model. Extensive experimental results on two real-world networks with semisynthetic data demonstrate the effectiveness of our proposed estimators.
comment: Accepted by ICML 2024
♻ ☆ Adaptive proximal gradient methods are universal without approximation
We show that adaptive proximal gradient methods for convex problems are not restricted to traditional Lipschitzian assumptions. Our analysis reveals that a class of linesearch-free methods is still convergent under mere local H\"older gradient continuity, covering in particular continuously differentiable semi-algebraic functions. To mitigate the lack of local Lipschitz continuity, popular approaches revolve around $\varepsilon$-oracles and/or linesearch procedures. In contrast, we exploit plain H\"older inequalities not entailing any approximation, all while retaining the linesearch-free nature of adaptive schemes. Furthermore, we prove full sequence convergence without prior knowledge of local H\"older constants nor of the order of H\"older continuity. Numerical experiments make comparisons with baseline methods on diverse tasks from machine learning covering both the locally and the globally H\"older setting.
♻ ☆ Towards Audio Codec-based Speech Separation
Recent improvements in neural audio codec (NAC) models have generated interest in adopting pre-trained codecs for a variety of speech processing applications to take advantage of the efficiencies gained from high compression, but these have yet been applied to the speech separation (SS) task. SS can benefit from high compression because the compute required for traditional SS models makes them impractical for many edge computing use cases. However, SS is a waveform-masking task where compression tends to introduce distortions that severely impact performance. Here we propose a novel task of Audio Codec-based SS, where SS is performed within the embedding space of a NAC, and propose a new model, Codecformer, to address this task. At inference, Codecformer achieves a 52x reduction in MAC while producing separation performance comparable to a cloud deployment of Sepformer. This method charts a new direction for performing efficient SS in practical scenarios.
comment: This paper was accepted by Interspeech 2024
♻ ☆ Read Between the Layers: Leveraging Multi-Layer Representations for Rehearsal-Free Continual Learning with Pre-Trained Models
We address the Continual Learning (CL) problem, wherein a model must learn a sequence of tasks from non-stationary distributions while preserving prior knowledge upon encountering new experiences. With the advancement of foundation models, CL research has pivoted from the initial learning-from-scratch paradigm towards utilizing generic features from large-scale pre-training. However, existing approaches to CL with pre-trained models primarily focus on separating class-specific features from the final representation layer and neglect the potential of intermediate representations to capture low- and mid-level features, which are more invariant to domain shifts. In this work, we propose LayUP, a new prototype-based approach to CL that leverages second-order feature statistics from multiple intermediate layers of a pre-trained network. Our method is conceptually simple, does not require access to prior data, and works out of the box with any foundation model. LayUP surpasses the state of the art in four of the seven class-incremental learning benchmarks, all three domain-incremental learning benchmarks and in six of the seven online continual learning benchmarks, while significantly reducing memory and computational requirements compared to existing baselines. Our results demonstrate that fully exhausting the representational capacities of pre-trained models in CL goes well beyond their final embeddings.
comment: Accepted for publication in Transactions of Machine Learning Research (TMLR) journal
♻ ☆ When Representations Align: Universality in Representation Learning Dynamics
Deep neural networks come in many sizes and architectures. The choice of architecture, in conjunction with the dataset and learning algorithm, is commonly understood to affect the learned neural representations. Yet, recent results have shown that different architectures learn representations with striking qualitative similarities. Here we derive an effective theory of representation learning under the assumption that the encoding map from input to hidden representation and the decoding map from representation to output are arbitrary smooth functions. This theory schematizes representation learning dynamics in the regime of complex, large architectures, where hidden representations are not strongly constrained by the parametrization. We show through experiments that the effective theory describes aspects of representation learning dynamics across a range of deep networks with different activation functions and architectures, and exhibits phenomena similar to the "rich" and "lazy" regime. While many network behaviors depend quantitatively on architecture, our findings point to certain behaviors that are widely conserved once models are sufficiently flexible.
comment: 22 pages, 16 figures
♻ ☆ Blockchain-empowered Federated Learning: Benefits, Challenges, and Solutions
Federated learning (FL) is a distributed machine learning approach that protects user data privacy by training models locally on clients and aggregating them on a parameter server. While effective at preserving privacy, FL systems face limitations such as single points of failure, lack of incentives, and inadequate security. To address these challenges, blockchain technology is integrated into FL systems to provide stronger security, fairness, and scalability. However, blockchain-empowered FL (BC-FL) systems introduce additional demands on network, computing, and storage resources. This survey provides a comprehensive review of recent research on BC-FL systems, analyzing the benefits and challenges associated with blockchain integration. We explore why blockchain is applicable to FL, how it can be implemented, and the challenges and existing solutions for its integration. Additionally, we offer insights on future research directions for the BC-FL system.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ BenchMARL: Benchmarking Multi-Agent Reinforcement Learning
The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: https://github.com/facebookresearch/BenchMARL
♻ ☆ Learning Rate Curriculum
Most curriculum learning methods require an approach to sort the data samples by difficulty, which is often cumbersome to perform. In this work, we propose a novel curriculum learning approach termed Learning Rate Curriculum (LeRaC), which leverages the use of a different learning rate for each layer of a neural network to create a data-agnostic curriculum during the initial training epochs. More specifically, LeRaC assigns higher learning rates to neural layers closer to the input, gradually decreasing the learning rates as the layers are placed farther away from the input. The learning rates increase at various paces during the first training iterations, until they all reach the same value. From this point on, the neural model is trained as usual. This creates a model-level curriculum learning strategy that does not require sorting the examples by difficulty and is compatible with any neural network, generating higher performance levels regardless of the architecture. We conduct comprehensive experiments on 12 data sets from the computer vision (CIFAR-10, CIFAR-100, Tiny ImageNet, ImageNet-200, Food-101, UTKFace, PASCAL VOC), language (BoolQ, QNLI, RTE) and audio (ESC-50, CREMA-D) domains, considering various convolutional (ResNet-18, Wide-ResNet-50, DenseNet-121, YOLOv5), recurrent (LSTM) and transformer (CvT, BERT, SepTr) architectures. We compare our approach with the conventional training regime, as well as with Curriculum by Smoothing (CBS), a state-of-the-art data-agnostic curriculum learning approach. Unlike CBS, our performance improvements over the standard training regime are consistent across all data sets and models. Furthermore, we significantly surpass CBS in terms of training time (there is no additional cost over the standard training regime for LeRaC). Our code is freely available at: https://github.com/CroitoruAlin/LeRaC.
comment: Accepted at the International Journal of Computer Vision
♻ ☆ Deep Learning-Based Spatiotemporal Multi-Event Reconstruction for Delay Line Detectors
Accurate observation of two or more particles within a very narrow time window has always been a challenge in modern physics. It creates the possibility of correlation experiments, such as the ground-breaking Hanbury Brown-Twiss experiment, leading to new physical insights. For low-energy electrons, one possibility is to use a microchannel plate with subsequent delay lines for the readout of the incident particle hits, a setup called a Delay Line Detector. The spatial and temporal coordinates of more than one particle can be fully reconstructed outside a region called the dead radius. For interesting events, where two electrons are close in space and time, the determination of the individual positions of the electrons requires elaborate peak finding algorithms. While classical methods work well with single particle hits, they fail to identify and reconstruct events caused by multiple nearby particles. To address this challenge, we present a new spatiotemporal machine learning model to identify and reconstruct the position and time of such multi-hit particle signals. This model achieves a much better resolution for nearby particle hits compared to the classical approach, removing some of the artifacts and reducing the dead radius by half. We show that machine learning models can be effective in improving the spatiotemporal performance of delay line detectors.
♻ ☆ FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare
Despite major advances in artificial intelligence (AI) for medicine and healthcare, the deployment and adoption of AI technologies remain limited in real-world clinical practice. In recent years, concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI. To increase real world adoption, it is essential that medical AI tools are trusted and accepted by patients, clinicians, health organisations and authorities. This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare. The FUTURE-AI consortium was founded in 2021 and currently comprises 118 inter-disciplinary experts from 51 countries representing all continents, including AI scientists, clinicians, ethicists, and social scientists. Over a two-year period, the consortium defined guiding principles and best practices for trustworthy AI through an iterative process comprising an in-depth literature review, a modified Delphi survey, and online consensus meetings. The FUTURE-AI framework was established based on 6 guiding principles for trustworthy AI in healthcare, i.e. Fairness, Universality, Traceability, Usability, Robustness and Explainability. Through consensus, a set of 28 best practices were defined, addressing technical, clinical, legal and socio-ethical dimensions. The recommendations cover the entire lifecycle of medical AI, from design, development and validation to regulation, deployment, and monitoring. FUTURE-AI is a risk-informed, assumption-free guideline which provides a structured approach for constructing medical AI tools that will be trusted, deployed and adopted in real-world practice. Researchers are encouraged to take the recommendations into account in proof-of-concept stages to facilitate future translation towards clinical practice of medical AI.
♻ ☆ FuXi-S2S: A machine learning model that outperforms conventional global subseasonal forecast models
Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of FuXi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, FuXi-S2S not only captures realistic teleconnections associated with the MJO, but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.
♻ ☆ Representation Surgery: Theory and Practice of Affine Steering ICML 2024
Language models often exhibit undesirable behavior, e.g., generating toxic or gender-biased text. In the case of neural language models, an encoding of the undesirable behavior is often present in the model's representations. Thus, one natural (and common) approach to prevent the model from exhibiting undesirable behavior is to steer the model's representations in a manner that reduces the probability of it generating undesirable text. This paper investigates the formal and empirical properties of steering functions, i.e., transformation of the neural language model's representations that alter its behavior. First, we derive two optimal, in the least-squares sense, affine steering functions under different constraints. Our theory provides justification for existing approaches and offers a novel, improved steering approach. Second, we offer a series of experiments that demonstrate the empirical effectiveness of the methods in mitigating bias and reducing toxic generation.
comment: Accepted in ICML 2024
♻ ☆ Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems
In Industry 4.0, Cyber-Physical Systems (CPS) generate vast data sets that can be leveraged by Artificial Intelligence (AI) for applications including predictive maintenance and production planning. However, despite the demonstrated potential of AI, its widespread adoption in sectors like manufacturing remains limited. Our comprehensive review of recent literature, including standards and reports, pinpoints key challenges: system integration, data-related issues, managing workforce-related concerns and ensuring trustworthy AI. A quantitative analysis highlights particular challenges and topics that are important for practitioners but still need to be sufficiently investigated by academics. The paper briefly discusses existing solutions to these challenges and proposes avenues for future research. We hope that this survey serves as a resource for practitioners evaluating the cost-benefit implications of AI in CPS and for researchers aiming to address these urgent challenges.
comment: 17 pages, 4 figures, 1 table, accepted for the 22nd IEEE International Conference on Industrial Informatics (INDIN)
♻ ☆ Second Maximum of a Gaussian Random Field and Exact (t-)Spacing test
In this article, we introduce the novel concept of the second maximum of a Gaussian random field on a Riemannian submanifold. This second maximum serves as a powerful tool for characterizing the distribution of the maximum. By utilizing an ad-hoc Kac Rice formula, we derive the explicit form of the maximum's distribution, conditioned on the second maximum and some regressed component of the Riemannian Hessian. This approach results in an exact test, based on the evaluation of spacing between these maxima, which we refer to as the spacing test. We investigate the applicability of this test in detecting sparse alternatives within Gaussian symmetric tensors, continuous sparse deconvolution, and two-layered neural networks with smooth rectifiers. Our theoretical results are supported by numerical experiments, which illustrate the calibration and power of the proposed tests. More generally, this test can be applied to any Gaussian random field on a Riemannian manifold, and we provide a general framework for the application of the spacing test in continuous sparse kernel regression. Furthermore, when the variance-covariance function of the Gaussian random field is known up to a scaling factor, we derive an exact Studentized version of our test, coined the $t$-spacing test. This test is perfectly calibrated under the null hypothesis and has high power for detecting sparse alternatives.
comment: 5 figures, 22 pages main document, 2 pages supplements
♻ ☆ Implicit regularization of deep residual networks towards neural ODEs ICLR 2024
Residual neural networks are state-of-the-art deep learning models. Their continuous-depth analog, neural ordinary differential equations (ODEs), are also widely used. Despite their success, the link between the discrete and continuous models still lacks a solid mathematical foundation. In this article, we take a step in this direction by establishing an implicit regularization of deep residual networks towards neural ODEs, for nonlinear networks trained with gradient flow. We prove that if the network is initialized as a discretization of a neural ODE, then such a discretization holds throughout training. Our results are valid for a finite training time, and also as the training time tends to infinity provided that the network satisfies a Polyak-Lojasiewicz condition. Importantly, this condition holds for a family of residual networks where the residuals are two-layer perceptrons with an overparameterization in width that is only linear, and implies the convergence of gradient flow to a global minimum. Numerical experiments illustrate our results.
comment: ICLR 2024 (spotlight). 40 pages, 3 figures
♻ ☆ MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model
Implicit visual knowledge in a large latent diffusion model (LLDM) pre-trained on natural images is rich and hypothetically universal to natural and medical images. To test this hypothesis from a practical perspective, we propose a novel framework for undersampled MRI Reconstruction by Prompting a large latent Diffusion model (MRPD). While the existing methods trained on MRI datasets are typically of limited generalizability toward diverse data acquisition scenarios, MRPD supports unsupervised and universally adaptive MRI reconstruction. For unsupervised reconstruction, MRSampler guides LLDM with a random-phase-modulated hard-to-soft control. With any single- or multiple-source MRI dataset, MRPD's performance is boosted universally by a lightweight MRAdapter that only finetunes the LLDM's autoencoder. Experiments on FastMRI and IXI show that MRPD is the only model that supports both MRI database-free and database-available scenarios and attains the best generalizability towards out-of-domain (OOD) samplings, contrasts, and organs among compared unsupervised, supervised, and MRI diffusion methods. To our knowledge, MRPD is the first method that empirically shows the universal prowess of an LLDM pre-trained on vast natural images for MRI. Our official implementation is at https://github.com/Z7Gao/MRPD.
comment: 10 pages, 5 figures, 7 tables, 1 pseudocode
♻ ☆ Semiring Activation in Neural Networks
We introduce a class of trainable nonlinear operators based on semirings that are suitable for use in neural networks. These operators generalize the traditional alternation of linear operators with activation functions in neural networks. Semirings are algebraic structures that describe a generalised notation of linearity, greatly expanding the range of trainable operators that can be included in neural networks. In fact, max- or min-pooling operations are convolutions in the tropical semiring with a fixed kernel. We perform experiments where we replace the activation functions for trainable semiring-based operators to show that these are viable operations to include in fully connected as well as convolutional neural networks (ConvNeXt). We discuss some of the challenges of replacing traditional activation functions with trainable semiring activations and the trade-offs of doing so.
♻ ☆ Graph Neural Networks as an Enabler of Terahertz-based Flow-guided Nanoscale Localization over Highly Erroneous Raw Data
Contemporary research advances in nanotechnology and material science are rooted in the emergence of nanodevices as a versatile tool that harmonizes sensing, computing, wireless communication, data storage, and energy harvesting. These devices offer novel pathways for disease diagnostics, treatment, and monitoring within the bloodstreams. Ensuring precise localization of events of diagnostic interest, which underpins the concept of flow-guided in-body nanoscale localization, would provide an added diagnostic value to the detected events. Raw data generated by the nanodevices is pivotal for this localization and consist of an event detection indicator and the time elapsed since the last passage of a nanodevice through the heart. The energy constraints of the nanodevices lead to intermittent operation and unreliable communication, intrinsically affecting this data. This posits a need for comprehensively modelling the features of this data. These imperfections also have profound implications for the viability of existing flow-guided localization approaches, which are ill-prepared to address the intricacies of the environment. Our first contribution lies in an analytical model of raw data for flow-guided localization, dissecting how communication and energy capabilities influence the nanodevices' data output. This model acts as a vital bridge, reconciling idealized assumptions with practical challenges of flow-guided localization. Toward addressing these practical challenges, we also present an integration of Graph Neural Networks (GNNs) into the flow-guided localization paradigm. GNNs excel in capturing complex dynamic interactions inherent to the localization of events sensed by the nanodevices. Our results highlight the potential of GNNs not only to enhance localization accuracy but also extend coverage to encompass the entire bloodstream.
comment: 16 pages, 16 figures, 6 tables, 45 references
♻ ☆ Temporal Knowledge Graph Question Answering: A Survey
Knowledge Base Question Answering (KBQA) has been a long-standing field to answer questions based on knowledge bases. Recently, the evolving dynamics of knowledge have attracted a growing interest in Temporal Knowledge Graph Question Answering (TKGQA), an emerging task to answer temporal questions. However, this field grapples with ambiguities in defining temporal questions and lacks a systematic categorization of existing methods for TKGQA. In response, this paper provides a thorough survey from two perspectives: the taxonomy of temporal questions and the methodological categorization for TKGQA. Specifically, we first establish a detailed taxonomy of temporal questions engaged in prior studies. Subsequently, we provide a comprehensive review of TKGQA techniques of two categories: semantic parsing-based and TKG embedding-based. Building on this review, the paper outlines potential research directions aimed at advancing the field of TKGQA. This work aims to serve as a comprehensive reference for TKGQA and to stimulate further research.
comment: 8 pages, 3 figures
♻ ☆ MT-HCCAR: Multi-Task Deep Learning with Hierarchical Classification and Attention-based Regression for Cloud Property Retrieval ECML
In the realm of Earth science, effective cloud property retrieval, encompassing cloud masking, cloud phase classification, and cloud optical thickness (COT) prediction, remains pivotal. Traditional methodologies necessitate distinct models for each sensor instrument due to their unique spectral characteristics. Recent strides in Earth Science research have embraced machine learning and deep learning techniques to extract features from satellite datasets' spectral observations. However, prevailing approaches lack novel architectures accounting for hierarchical relationships among retrieval tasks. Moreover, considering the spectral diversity among existing sensors, the development of models with robust generalization capabilities over different sensor datasets is imperative. Surprisingly, there is a dearth of methodologies addressing the selection of an optimal model for diverse datasets. In response, this paper introduces MT-HCCAR, an end-to-end deep learning model employing multi-task learning to simultaneously tackle cloud masking, cloud phase retrieval (classification tasks), and COT prediction (a regression task). The MT-HCCAR integrates a hierarchical classification network (HC) and a classification-assisted attention-based regression network (CAR), enhancing precision and robustness in cloud labeling and COT prediction. Additionally, a comprehensive model selection method rooted in K-fold cross-validation, one standard error rule, and two introduced performance scores is proposed to select the optimal model over three simulated satellite datasets OCI, VIIRS, and ABI. The experiments comparing MT-HCCAR with baseline methods, the ablation studies, and the model selection affirm the superiority and the generalization capabilities of MT-HCCAR.
comment: 14 pages, 3 figures, accepted by ECML PKDD 2024
♻ ☆ Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling
Predicting multivariate time series is crucial, demanding precise modeling of intricate patterns, including inter-series dependencies and intra-series variations. Distinctive trend characteristics in each time series pose challenges, and existing methods, relying on basic moving average kernels, may struggle with the non-linear structure and complex trends in real-world data. Given that, we introduce a learnable decomposition strategy to capture dynamic trend information more reasonably. Additionally, we propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously for better time series forecasting, which is implemented by channel-wise self-attention and autoregressive self-attention. To evaluate the effectiveness of our method, we conducted experiments across eight open-source datasets and compared it with the state-of-the-art methods. Through the comparison results, our Leddam (LEarnable Decomposition and Dual Attention Module) not only demonstrates significant advancements in predictive performance, but also the proposed decomposition strategy can be plugged into other methods with a large performance-boosting, from 11.87% to 48.56% MSE error degradation.
♻ ☆ FuXi-ENS: A machine learning model for medium-range ensemble weather forecasting
Ensemble forecasting is crucial for improving weather predictions, especially for forecasts of extreme events. Constructing an ensemble prediction system (EPS) based on conventional NWP models is highly computationally expensive. ML models have emerged as valuable tools for deterministic weather forecasts, providing forecasts with significantly reduced computational requirements and even surpassing the forecast performance of traditional NWP models. However, challenges arise when applying ML models to ensemble forecasting. Recent ML models, such as GenCast and SEEDS model, rely on the ERA5 EDA or operational NWP ensemble members for forecast generation. Their spatial resolution is also considered too coarse for many applications. To overcome these limitations, we introduce FuXi-ENS, an advanced ML model designed to deliver 6-hourly global ensemble weather forecasts up to 15 days. This model runs at a significantly increased spatial resolution of 0.25\textdegree, incorporating 5 atmospheric variables at 13 pressure levels, along with 13 surface variables. By leveraging the inherent probabilistic nature of Variational AutoEncoder (VAE), FuXi-ENS optimizes a loss function that combines the CRPS and the KL divergence between the predicted and target distribution, facilitating the incorporation of flow-dependent perturbations in both initial conditions and forecast. This innovative approach makes FuXi-ENS an advancement over the traditional ones that use L1 loss combined with the KL loss in standard VAE models for ensemble weather forecasting. Results demonstrate that FuXi-ENS outperforms ensemble forecasts from the ECMWF, a world leading NWP model, in the CRPS of 98.1% of 360 variable and forecast lead time combinations. This achievement underscores the potential of the FuXi-ENS model to enhance ensemble weather forecasts, offering a promising direction for further development in this field.
♻ ☆ Causality for Tabular Data Synthesis: A High-Order Structure Causal Benchmark Framework
Tabular synthesis models remain ineffective at capturing complex dependencies, and the quality of synthetic data is still insufficient for comprehensive downstream tasks, such as prediction under distribution shifts, automated decision-making, and cross-table understanding. A major challenge is the lack of prior knowledge about underlying structures and high-order relationships in tabular data. We argue that a systematic evaluation on high-order structural information for tabular data synthesis is the first step towards solving the problem. In this paper, we introduce high-order structural causal information as natural prior knowledge and provide a benchmark framework for the evaluation of tabular synthesis models. The framework allows us to generate benchmark datasets with a flexible range of data generation processes and to train tabular synthesis models using these datasets for further evaluation. We propose multiple benchmark tasks, high-order metrics, and causal inference tasks as downstream tasks for evaluating the quality of synthetic data generated by the trained models. Our experiments demonstrate to leverage the benchmark framework for evaluating the model capability of capturing high-order structural causal information. Furthermore, our benchmarking results provide an initial assessment of state-of-the-art tabular synthesis models. They have clearly revealed significant gaps between ideal and actual performance and how baseline methods differ. Our benchmark framework is available at URL https://github.com/TURuibo/CauTabBench.
♻ ☆ Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs
Post-training quantization (PTQ) is a powerful technique for model compression, reducing the numerical precision in neural networks without additional training overhead. Recent works have investigated adopting 8-bit floating-point formats(FP8) in the context of PTQ for model inference. However, floating-point formats smaller than 8 bits and their relative comparison in terms of accuracy-hardware cost with integers remains unexplored on FPGAs. In this work, we present minifloats, which are reduced-precision floating-point formats capable of further reducing the memory footprint, latency, and energy cost of a model while approaching full-precision model accuracy. We implement a custom FPGA-based multiply-accumulate operator library and explore the vast design space, comparing minifloat and integer representations across 3 to 8 bits for both weights and activations. We also examine the applicability of various integerbased quantization techniques to minifloats. Our experiments show that minifloats offer a promising alternative for emerging workloads such as vision transformers.
comment: Accepted in FPL (International Conference on Field-Programmable Logic and Applications) 2024 conference. Revised with updated results
♻ ☆ Deep Reinforcement Learning with Dynamic Graphs for Adaptive Informative Path Planning
Autonomous robots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life. Adaptive online path planning in 3D environments is challenging due to the large set of valid actions and the presence of unknown occlusions. To address these issues, we propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments. A key aspect of our approach is a dynamically constructed graph that restricts planning actions local to the robot, allowing us to react to newly discovered static obstacles and targets of interest. For replanning, we propose a new reward function that balances between exploring the unknown environment and exploiting online-discovered targets of interest. Our experiments show that our method enables more efficient target discovery compared to state-of-the-art learning and non-learning baselines. We also showcase our approach for orchard monitoring using an unmanned aerial vehicle in a photorealistic simulator. We open-source our code and model at: https://github.com/dmar-bonn/ipp-rl-3d.
comment: 8 pages, 6 figures
♻ ☆ Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Reinforcement learning from human feedback (RLHF) has demonstrated great promise in aligning large language models (LLMs) with human preference. Depending on the availability of preference data, both online and offline RLHF are active areas of investigation. A key bottleneck is understanding how to incorporate uncertainty estimation in the reward function learned from the preference data for RLHF, regardless of how the preference data is collected. While the principles of optimism or pessimism under uncertainty are well-established in standard reinforcement learning (RL), a practically-implementable and theoretically-grounded form amenable to large language models is not yet available, as standard techniques for constructing confidence intervals become intractable under arbitrary policy parameterizations. In this paper, we introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO) -- which regularizes the maximum-likelihood estimate of the reward function with the corresponding value function, modulated by a $\textit{sign}$ to indicate whether the optimism or pessimism is chosen. VPO also directly optimizes the policy with implicit reward modeling, and therefore shares a simpler RLHF pipeline similar to direct preference optimization. Theoretical guarantees of VPO are provided for both online and offline settings, matching the rates of their standard RL counterparts. Moreover, experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
♻ ☆ Engression: Extrapolation through the Lens of Distributional Regression
Distributional regression aims to estimate the full conditional distribution of a target variable, given covariates. Popular methods include linear and tree-ensemble based quantile regression. We propose a neural network-based distributional regression methodology called `engression'. An engression model is generative in the sense that we can sample from the fitted conditional distribution and is also suitable for high-dimensional outcomes. Furthermore, we find that modelling the conditional distribution on training data can constrain the fitted function outside of the training support, which offers a new perspective to the challenging extrapolation problem in nonlinear regression. In particular, for `pre-additive noise' models, where noise is added to the covariates before applying a nonlinear transformation, we show that engression can successfully perform extrapolation under some assumptions such as monotonicity, whereas traditional regression approaches such as least-squares or quantile regression fall short under the same assumptions. Our empirical results, from both simulated and real data, validate the effectiveness of the engression method and indicate that the pre-additive noise model is typically suitable for many real-world scenarios. The software implementations of engression are available in both R and Python.
♻ ☆ Gotta match 'em all: Solution diversification in graph matching matched filters
We present a novel approach for finding multiple noisily embedded template graphs in a very large background graph. Our method builds upon the graph-matching-matched-filter technique proposed in Sussman et al., with the discovery of multiple diverse matchings being achieved by iteratively penalizing a suitable node-pair similarity matrix in the matched filter algorithm. In addition, we propose algorithmic speed-ups that greatly enhance the scalability of our matched-filter approach. We present theoretical justification of our methodology in the setting of correlated Erdos-Renyi graphs, showing its ability to sequentially discover multiple templates under mild model conditions. We additionally demonstrate our method's utility via extensive experiments both using simulated models and real-world dataset, include human brain connectomes and a large transactional knowledge base.
comment: 27 pages, 12 figures, 3 tables
♻ ☆ Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models
Parameter-efficient fine-tuning (PEFT) is crucial for customizing Large Language Models (LLMs) with constrained resources. Although there have been various PEFT methods for dense-architecture LLMs, PEFT for sparse-architecture LLMs is still underexplored. In this work, we study the PEFT method for LLMs with the Mixture-of-Experts (MoE) architecture and the contents of this work are mainly threefold: (1) We investigate the dispersion degree of the activated experts in customized tasks, and found that the routing distribution for a specific task tends to be highly concentrated, while the distribution of activated experts varies significantly across different tasks. (2) We propose Expert-Specialized Fine-Tuning, or ESFT, which tunes the experts most relevant to downstream tasks while freezing the other experts and modules; experimental results demonstrate that our method not only improves the tuning efficiency, but also matches or even surpasses the performance of full-parameter fine-tuning. (3) We further analyze the impact of the MoE architecture on expert-specialized fine-tuning. We find that MoE models with finer-grained experts are more advantageous in selecting the combination of experts that are most relevant to downstream tasks, thereby enhancing both the training efficiency and effectiveness. Our code is available at https://github.com/deepseek-ai/ESFT.
♻ ☆ Identification of Novel Modes in Generative Models via Fourier-based Differential Clustering
An interpretable comparison of generative models requires the identification of sample types produced more frequently by each of the involved models. While several quantitative scores have been proposed in the literature to rank different generative models, such score-based evaluations do not reveal the nuanced differences between the generative models in capturing various sample types. In this work, we attempt to solve a differential clustering problem to detect sample types expressed differently by two generative models. To solve the differential clustering problem, we propose a method called Fourier-based Identification of Novel Clusters (FINC) to identify modes produced by a generative model with a higher frequency in comparison to a reference distribution. FINC provides a scalable stochastic algorithm based on random Fourier features to estimate the eigenspace of kernel covariance matrices of two generative models and utilize the principal eigendirections to detect the sample types present more dominantly in each model. We demonstrate the application of the FINC method to large-scale computer vision datasets and generative model frameworks. Our numerical results suggest the scalability of the developed Fourier-based method in highlighting the sample types produced with different frequencies by widely-used generative models. Code is available at \url{https://github.com/buyeah1109/FINC}
♻ ☆ Predicting the duration of traffic incidents for Sydney greater metropolitan area using machine learning methods
This research presents a comprehensive approach to predicting the duration of traffic incidents and classifying them as short-term or long-term across the Sydney Metropolitan Area. Leveraging a dataset that encompasses detailed records of traffic incidents, road network characteristics, and socio-economic indicators, we train and evaluate a variety of advanced machine learning models including Gradient Boosted Decision Trees (GBDT), Random Forest, LightGBM, and XGBoost. The models are assessed using Root Mean Square Error (RMSE) for regression tasks and F1 score for classification tasks. Our experimental results demonstrate that XGBoost and LightGBM outperform conventional models with XGBoost achieving the lowest RMSE of 33.7 for predicting incident duration and highest classification F1 score of 0.62 for a 30-minute duration threshold. For classification, the 30-minute threshold balances performance with 70.84% short-term duration classification accuracy and 62.72% long-term duration classification accuracy. Feature importance analysis, employing both tree split counts and SHAP values, identifies the number of affected lanes, traffic volume, and types of primary and secondary vehicles as the most influential features. The proposed methodology not only achieves high predictive accuracy but also provides stakeholders with vital insights into factors contributing to incident durations. These insights enable more informed decision-making for traffic management and response strategies. The code is available by the link: https://github.com/Future-Mobility-Lab/SydneyIncidents
♻ ☆ Language-Guided World Models: A Model-Based Approach to AI Control ACL 2024
This paper introduces the concept of Language-Guided World Models (LWMs) -- probabilistic models that can simulate environments by reading texts. Agents equipped with these models provide humans with more extensive and efficient control, allowing them to simultaneously alter agent behaviors in multiple tasks via natural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our experiments reveal the lack of generalizability of the state-of-the-art Transformer model, as it offers marginal improvements in simulation quality over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the performance of a model with an oracle semantic parsing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to revise plans based on their language feedback.
comment: SpLU-RoboNLP workshop at ACL 2024
♻ ☆ HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution will be openly available on \href{GitHub}{https://github.com/jiamiya/HOPE}.
comment: 10 pages, 6 tables, 5 figures, 4 page appendix
♻ ☆ What can we learn from quantum convolutional neural networks?
We can learn from analyzing quantum convolutional neural networks (QCNNs) that: 1) working with quantum data can be perceived as embedding physical system parameters through a hidden feature map; 2) their high performance for quantum phase recognition can be attributed to generation of a very suitable basis set during the ground state embedding, where quantum criticality of spin models leads to basis functions with rapidly changing features; 3) pooling layers of QCNNs are responsible for picking those basis functions that can contribute to forming a high-performing decision boundary, and the learning process corresponds to adapting the measurement such that few-qubit operators are mapped to full-register observables; 4) generalization of QCNN models strongly depends on the embedding type, and that rotation-based feature maps with the Fourier basis require careful feature engineering; 5) accuracy and generalization of QCNNs with readout based on a limited number of shots favor the ground state embeddings and associated physics-informed models. We demonstrate these points in simulation, where our results shed light on classification for physical processes, relevant for applications in sensing. Finally, we show that QCNNs with properly chosen ground state embeddings can be used for fluid dynamics problems, expressing shock wave solutions with good generalization and proven trainability.
comment: 13 pages, 7 figures
♻ ☆ Deep Copula-Based Survival Analysis for Dependent Censoring with Identifiability Guarantees AAAI 2024
Censoring is the central problem in survival analysis where either the time-to-event (for instance, death), or the time-tocensoring (such as loss of follow-up) is observed for each sample. The majority of existing machine learning-based survival analysis methods assume that survival is conditionally independent of censoring given a set of covariates; an assumption that cannot be verified since only marginal distributions is available from the data. The existence of dependent censoring, along with the inherent bias in current estimators has been demonstrated in a variety of applications, accentuating the need for a more nuanced approach. However, existing methods that adjust for dependent censoring require practitioners to specify the ground truth copula. This requirement poses a significant challenge for practical applications, as model misspecification can lead to substantial bias. In this work, we propose a flexible deep learning-based survival analysis method that simultaneously accommodate for dependent censoring and eliminates the requirement for specifying the ground truth copula. We theoretically prove the identifiability of our model under a broad family of copulas and survival distributions. Experiments results from a wide range of datasets demonstrate that our approach successfully discerns the underlying dependency structure and significantly reduces survival estimation bias when compared to existing methods.
comment: To appear in AAAI 2024
System/Control 13
☆ Suitability of Common Ingestible Antennas for Multiplexed Gastrointestinal Biosensing
Ingestible sensor devices, which are increasingly used for internal health monitoring, rely on antennas to perform sensing functions and simultaneously to communicate with external devices. Despite the development of various ingestible antennas, there has been no comprehensive comparison of their performance as biosensors. This paper addresses this gap by examining and comparing the suitability of three common types of ingestible antennas -- dipole, patch, and loop -- as biosensors for distinguishing gastrointestinal tissues (stomach, small intestine, and large intestine) based on their electromagnetic properties. The antennas studied in this work conform to the inner surface of biocompatible polylactic acid capsules with varying shell thicknesses and operate in the 433 MHz Industrial, Scientific, and Medical band. The comparison is performed in gastrointestinal tissues using several antenna parameters: 1) Sensing Capability: Changes in the phase of the reflection coefficient in the tissues are selected as the sensing parameter. 2) Robustness: The frequency interval (f_i) in which the antennas are matched (|S11| < -10 dB) in all the tissues and the maximum change in the center frequency (f_c) in different tissues are examined. 3) Radiation Performance: The gain and radiation efficiency of the antennas are examined. The effect of shell thickness on gain and radiation efficiency at 434 MHz is presented. Additionally, the radiation efficiency at various frequencies allocated for medical communications is compared with the theoretical maximum achievable efficiencies. These comprehensive data provide valuable information for making engineering decisions when designing multiplexed biosensor antennas for ingestible applications.
☆ Arbitrary Waveform Generated Metasurface: A New Paradigm for Direct Modulation and Beamforming Decoupling
Passive arbitrary waveform generation (AWG) are especially important in a variety of fields like radar detection, wireless communications and integrated sensing and communications. Typically, backscatter devices are used to achieve passive signal reflection modulation to facilitate information transmission or to interfere with radar echoes. Reconfigurable Intelligent Surface (RIS) or Metasurface is a promising technology that combines the advantages of backscatter devices and reflective array antennas. Previous studies demonstrate diverse approaches to achieve reflection modulation by utilizing the superposition of the quantified reflective coefficient (RC) of each unit but suffer from the computing complexity of codebook sequence, the safety of communication, and the flexibility of modulation. To overcome the difficulties, we propose new paradigm of metasurface, i.e. AWG-RIS, that can independently generate arbitrary baseband waveforms and beam patterns based on a magnitude-phase decoupled unit design without altering the beam pattern. We proposed an analysis framework and introduce waveform factor and beamforming factor into the new model which provide the theoretical support for the flow from the control signal to the outgoing electromagnetic wave. Furthermore, we introduce the world's first prototype that demonstrates passive arbitrary waveform generation without altering the beam pattern. The experiments validate the generation of arbitrary waveforms and spectrograms, both for a single input and through the superposition of multiple inputs.
☆ Balancing Operator's Risk Averseness in Model Predictive Control of a Reservoir System
Model Predictive Control (MPC) is an optimal control strategy suited for flood control of water resources infrastructure. Despite many studies on reservoir flood control and their theoretical contribution, optimisation methodologies have not been widely applied in real-time operation due to disparities between research assumptions and practical requirements. First, tacit objectives such as minimising the magnitude and frequency of changes in the existing outflow schedule are considered important in practice, but these are nonlinear and challenging to formulate to suit all conditions. Incorporating these objectives transforms the problem into a multi-objective nonlinear optimisation problem that is difficult to solve online. Second, it is reasonable to assume that the weights and parameters are not stationary because the preference varies depending on the state of the system. To overcome these limitations, we propose a framework that converts the original intractable problem into parameterized linear MPC problems with dynamic optimisation of weights and parameters. This is done by introducing a model-based learning concept under the assumption of the dynamic nature of the operator's preference. We refer to this framework as Parameterised Dynamic MPC (PD-MPC). The effectiveness of this framework is demonstrated through a numerical experiment for the Daecheong multipurpose reservoir in South Korea. We find that PD-MPC outperforms `standard' MPC-based designs without a dynamic optimisation process under the same uncertain inflows.
☆ LFT modelling and $μ$-based robust performance analysis of hybrid multi-rate control systems
This paper focuses on robust stability and $H_\infty$ performance analyses of hybrid continuous/discrete time linear multi-rate control systems in the presence of parametric uncertainties. These affect the continuous-time plant in a rational way which is then modeled as a Linear Fractional Transformation (LFT). Based on a zero-order-hold (ZOH) LFT discretization process at the cost of bounded quantifiable approximations, and then using LFT-preserving down-sampling operations, a single-rate discrete-time closed-loop LFT model is derived. Interestingly, for any step inputs, and any admissible values of the uncertain parameters, the outputs of this model cover those of the initial hybrid multi-rate closed-loop system at every sampling time of the slowest control loop. Such an LFT model, which also captures the discretization errors, can then be used to evaluate both robust stability and guaranteed $H_\infty$ performance with a $\mu$-based approach. The proposed methodology is illustrated on a realistic and easily reproducible example inspired by the validation of multi-rate attitude control systems.
comment: 7 pages, 8 figures
☆ Nash epidemics
Faced with a dangerous epidemic humans will spontaneously social distance to reduce their risk of infection at a socio-economic cost. Compartmentalised epidemic models have been extended to include this endogenous decision making: Individuals choose their behaviour to optimise a utility function, self-consistently giving rise to population behaviour. Here we study the properties of the resulting Nash equilibria, in which no member of the population can gain an advantage by unilaterally adopting different behaviour. We leverage a new analytic solution to obtain, (1) a simple relationship between rational social distancing behaviour and the current number of infections; (2) new scaling results for how the infection peak and number of total cases depend on the cost of contracting the disease; (3) characteristic infection costs that divide regimes of strong and weak behavioural response and depend only on the basic reproduction number of the disease; (4) a closed form expression for the value of the utility. We discuss how these analytic results provide a deep and intuitive understanding into the disease dynamics, useful for both individuals and policymakers. In particular the relationship between social distancing and infections represents a heuristic that could be communicated to the population to encourage, or "bootstrap", rational behaviour.
☆ EAGERx: Graph-Based Framework for Sim2real Robot Learning
Sim2real, that is, the transfer of learned control policies from simulation to real world, is an area of growing interest in robotics due to its potential to efficiently handle complex tasks. The sim2real approach faces challenges due to mismatches between simulation and reality. These discrepancies arise from inaccuracies in modeling physical phenomena and asynchronous control, among other factors. To this end, we introduce EAGERx, a framework with a unified software pipeline for both real and simulated robot learning. It can support various simulators and aids in integrating state, action and time-scale abstractions to facilitate learning. EAGERx's integrated delay simulation, domain randomization features, and proposed synchronization algorithm contribute to narrowing the sim2real gap. We demonstrate (in the context of robot learning and beyond) the efficacy of EAGERx in accommodating diverse robotic systems and maintaining consistent simulation behavior. EAGERx is open source and its code is available at https://eagerx.readthedocs.io.
comment: For an introductory video, see http://www.youtube.com/watch?v=D0CQNnTT010 . The documentation, tutorials, and our open-source code can be found at http://eagerx.readthedocs.io
☆ A Complex-Coefficient Voltage Control for Virtual Synchronous Generators for Dynamic Enhancement and Power-Voltage Decoupling
As electric power systems evolve towards decarbonization, the transition to inverter-based resources (IBRs) presents challenges to grid stability, necessitating innovative control solutions. Virtual synchronous generator (VSG) emerges as a prominent solution. However, conventional VSGs are prone to instability in strong grids, slow voltage regulation, and coupled power-voltage response. To address these issues, this paper introduces an advanced VSG control strategy. A novel analysis of the VSG control dynamics is presented through a second-order closed-loop complex single-input single-output system, employing a vectorized geometrical pole analysis technique for enhanced voltage stability and dynamics. The proposed comprehensive controller design mitigates issues related to control interacted subsynchronous resonance and $dq \leftrightarrow 3\phi$ transformation-induced voltage-coupled power transients, achieving improved system robustness and simplified control tuning. Key contributions include a two-fold design: optimized voltage transition characteristics through direct pole placement and transient power overshoot correction via a compensator. Validated by simulation and experiments, the findings offer a pragmatic solution for integrating VSG technology into decarbonizing power systems, ensuring reliability and efficiency.
comment: 13 pages, 26 figures. Preparing for journal submission
☆ Enabling Multicast Transmission for Spatio-Temporally Asynchronous User Requests in Wireless Environments
The surge in wireless devices and data traffic volume necessitates more efficient transmission methods. Multicasting has garnered consistent attention as a means to fulfill the increasing demand for more efficient data transmission methods. Nevertheless, leveraging multicast wireless networks for spatio-temporally asynchronous data requests poses challenges. In this context, this paper introduces a new multicast mechanism called \emph{set-up based merged multicast (SMMC)} to minimize the delivery time of the requested file in wireless networks by considering the uncertainties inherent in wireless channels. The proposed mechanism comprises two phases. The first phase involves gathering asynchronous requests for a file from users experiencing diverse channel conditions. During this phase, packets of the requested file are transmitted individually in unicast mode within a specified set-up time. Following this, the second phase initiates multicast transmission, which sequentially handles the remaining packets of the file in multicast mode. In the proposed mechanism, we optimize the set-up time and transmission rates of both unicast and multicast modes to minimize the expected file delivery time by jointly taking into account the statistical characteristics of wireless channels, users' locations, and file popularity. Additionally, we also delve into a \emph{fine-tuned SMMC} by utilizing posterior information on the multicast group size and further improve the performance. Our performance evaluations reveal that the proposed SMMC outperforms conventional unicast methods, especially with high-demand data.
♻ ☆ A Stiffness-Oriented Model Order Reduction Method for Low-Inertia Power Systems SC
This paper presents a novel model order reduction technique tailored for power systems with a large share of inverter-based energy resources. Such systems exhibit an increased level of dynamic stiffness compared to traditional power systems, posing challenges for time-domain simulations and control design. Our approach involves rotation of the coordinate system of a linearized system using a transformation matrix derived from the real Jordan canonical form, leading to mode decoupling. The fast modes are then truncated in the rotated coordinate system to obtain a lower-order model with reduced stiffness. Applying the same transformation to the original nonlinear system results in an approximate separation of slow and fast states, which can be truncated to reduce the stiffness. The resulting reduced-order model demonstrates an accurate time-domain performance, the slow eigenvalues of the linearized system are correctly preserved, and a reduction in the model stiffness is achieved, allowing for accurate integration with increased step size. Our methodology is assessed in detail for a 3-bus system with generation units involving grid-forming/following converters and synchronous machines, where it allows for a computational speed-up of up to 100x compared to the original system. Several standard larger test systems are also considered.
comment: 8 pages, 5 figures, presented at PSCC 2024
♻ ☆ Joint Mechanical and Electrical Adjustment of IRS-aided LEO Satellite MIMO Communications
In this correspondence, we propose a joint mechanical and electrical adjustment of intelligent reflecting surface (IRS) for the performance improvements of low-earth orbit (LEO) satellite multiple-input multiple-output (MIMO) communications. In particular, we construct a three-dimensional (3D) MIMO channel model for the mechanically-tilted IRS in general deployment, and consider two types of scenarios with and without the direct path of LEO-ground user link due to the orbital flight. With the aim of maximizing the end-to-end performance, we jointly optimize tilting angle and phase shift of IRS along with the transceiver beamforming, whose performance superiority is verified via simulations with the Orbcomm LEO satellite using a real orbit data.
comment: 5 pages, 6 figures
♻ ☆ Roadmap to Neuromorphic Computing with Emerging Technologies
The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
comment: 90 pages, 22 figures, roadmap, neuromorphic
♻ ☆ A Closed-Form Control for Safety Under Input Constraints Using a Composition of Control Barrier Functions
We present a closed-form optimal control that satisfies both safety constraints (i.e., state constraints) and input constraints (e.g., actuator limits) using a composition of multiple control barrier functions (CBFs). This main contribution is obtained through the combination of several ideas. First, we present a method for constructing a single relaxed control barrier function (R-CBF) from multiple CBFs, which can have different relative degrees. The construction relies on a log-sum-exponential soft-minimum function and yields an R-CBF whose zero-superlevel set is a subset of the intersection of the zero-superlevel sets of all CBFs used in the composition. Next, we use the soft-minimum R-CBF to construct a closed-form control that is optimal with respect to a quadratic cost subject to the safety constraints. Finally, we use the soft-minimum R-CBF to develop a closed-form optimal control that not only guarantees safety but also respects input constraints. The key elements in developing this novel control include: the introduction of the control dynamics, which allow the input constraints to be transformed into controller-state constraints; the use of the soft-minimum R-CBF to compose multiple safety and input CBFs, which have different relative degrees; and the development of a desired surrogate control (i.e., a desired input to the control dynamics). We demonstrate these new control approaches in simulation on a nonholonomic ground robot.
comment: Preprint submitted to IEEE Open Journal of Control Systems (OJCSYS)
♻ ☆ Exact Instability Radius of Discrete-Time LTI Systems
The robust instability of an unstable plant subject to stable perturbations is of significant importance and arises in the study of sustained oscillatory phenomena in nonlinear systems. This paper analyzes the robust instability of linear discrete-time systems against stable perturbations via the notion of robust instability radius (RIR) as a measure of instability. We determine the exact RIR for certain unstable systems using small-gain type conditions by formulating the problem in terms of a phase change rate maximization subject to appropriate constraints at unique peak-gain frequencies, for which stable first-order all-pass functions are shown to be optimal. Two real-world applications -- minimum-effort sampled-data control of magnetic levitation systems and neural spike generations in the FitzHugh--Nagumo model subject to perturbations -- are provided to illustrate the utility of our results.
Robotics 35
☆ VoxAct-B: Voxel-Based Acting and Stabilizing Policy for Bimanual Manipulation
Bimanual manipulation is critical to many robotics applications. In contrast to single-arm manipulation, bimanual manipulation tasks are challenging due to higher-dimensional action spaces. Prior works leverage large amounts of data and primitive actions to address this problem, but may suffer from sample inefficiency and limited generalization across various tasks. To this end, we propose VoxAct-B, a language-conditioned, voxel-based method that leverages Vision Language Models (VLMs) to prioritize key regions within the scene and reconstruct a voxel grid. We provide this voxel grid to our bimanual manipulation policy to learn acting and stabilizing actions. This approach enables more efficient policy learning from voxels and is generalizable to different tasks. In simulation, we show that VoxAct-B outperforms strong baselines on fine-grained bimanual manipulation tasks. Furthermore, we demonstrate VoxAct-B on real-world $\texttt{Open Drawer}$ and $\texttt{Open Jar}$ tasks using two UR5s. Code, data, and videos will be available at https://voxact-b.github.io.
☆ Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: 18 pages, 13 figures
☆ LiDAR-based Real-Time Object Detection and Tracking in Dynamic Environments
In dynamic environments, the ability to detect and track moving objects in real-time is crucial for autonomous robots to navigate safely and effectively. Traditional methods for dynamic object detection rely on high accuracy odometry and maps to detect and track moving objects. However, these methods are not suitable for long-term operation in dynamic environments where the surrounding environment is constantly changing. In order to solve this problem, we propose a novel system for detecting and tracking dynamic objects in real-time using only LiDAR data. By emphasizing the extraction of low-frequency components from LiDAR data as feature points for foreground objects, our method significantly reduces the time required for object clustering and movement analysis. Additionally, we have developed a tracking approach that employs intensity-based ego-motion estimation along with a sliding window technique to assess object movements. This enables the precise identification of moving objects and enhances the system's resilience to odometry drift. Our experiments show that this system can detect and track dynamic objects in real-time with an average detection accuracy of 88.7\% and a recall rate of 89.1\%. Furthermore, our system demonstrates resilience against the prolonged drift typically associated with front-end only LiDAR odometry. All of the source code, labeled dataset, and the annotation tool are available at: https://github.com/MISTLab/lidar_dynamic_objects_detection.git
☆ Collision Avoidance for Multiple UAVs in Unknown Scenarios with Causal Representation Disentanglement
Deep reinforcement learning (DRL) has achieved remarkable progress in online path planning tasks for multi-UAV systems. However, existing DRL-based methods often suffer from performance degradation when tackling unseen scenarios, since the non-causal factors in visual representations adversely affect policy learning. To address this issue, we propose a novel representation learning approach, \ie, causal representation disentanglement, which can identify the causal and non-causal factors in representations. After that, we only pass causal factors for subsequent policy learning and thus explicitly eliminate the influence of non-causal factors, which effectively improves the generalization ability of DRL models. Experimental results show that our proposed method can achieve robust navigation performance and effective collision avoidance especially in unseen scenarios, which significantly outperforms existing SOTA algorithms.
☆ Robust Policy Learning for Multi-UAV Collision Avoidance with Causal Feature Selection
In unseen and complex outdoor environments, collision avoidance navigation for unmanned aerial vehicle (UAV) swarms presents a challenging problem. It requires UAVs to navigate through various obstacles and complex backgrounds. Existing collision avoidance navigation methods based on deep reinforcement learning show promising performance but suffer from poor generalization abilities, resulting in performance degradation in unseen environments. To address this issue, we investigate the cause of weak generalization ability in DRL and propose a novel causal feature selection module. This module can be integrated into the policy network and effectively filters out non-causal factors in representations, thereby reducing the influence of spurious correlations between non-causal factors and action predictions. Experimental results demonstrate that our proposed method can achieve robust navigation performance and effective collision avoidance especially in scenarios with unseen backgrounds and obstacles, which significantly outperforms existing state-of-the-art algorithms.
☆ Occupancy as Set of Points ECCV 2024
In this paper, we explore a novel point representation for 3D occupancy prediction from multi-view images, which is named Occupancy as Set of Points. Existing camera-based methods tend to exploit dense volume-based representation to predict the occupancy of the whole scene, making it hard to focus on the special areas or areas out of the perception range. In comparison, we present the Points of Interest (PoIs) to represent the scene and propose OSP, a novel framework for point-based 3D occupancy prediction. Owing to the inherent flexibility of the point-based representation, OSP achieves strong performance compared with existing methods and excels in terms of training and inference adaptability. It extends beyond traditional perception boundaries and can be seamlessly integrated with volume-based methods to significantly enhance their effectiveness. Experiments on the Occ3D nuScenes occupancy benchmark show that OSP has strong performance and flexibility. Code and models are available at \url{https://github.com/hustvl/osp}.
comment: Accepted by ECCV 2024. Code and models: https://github.com/hustvl/osp
☆ ROER: Regularized Optimal Experience Replay
Experience replay serves as a key component in the success of online reinforcement learning (RL). Prioritized experience replay (PER) reweights experiences by the temporal difference (TD) error empirically enhancing the performance. However, few works have explored the motivation of using TD error. In this work, we provide an alternative perspective on TD-error-based reweighting. We show the connections between the experience prioritization and occupancy optimization. By using a regularized RL objective with $f-$divergence regularizer and employing its dual form, we show that an optimal solution to the objective is obtained by shifting the distribution of off-policy data in the replay buffer towards the on-policy optimal distribution using TD-error-based occupancy ratios. Our derivation results in a new pipeline of TD error prioritization. We specifically explore the KL divergence as the regularizer and obtain a new form of prioritization scheme, the regularized optimal experience replay (ROER). We evaluate the proposed prioritization scheme with the Soft Actor-Critic (SAC) algorithm in continuous control MuJoCo and DM Control benchmark tasks where our proposed scheme outperforms baselines in 6 out of 11 tasks while the results of the rest match with or do not deviate far from the baselines. Further, using pretraining, ROER achieves noticeable improvement on difficult Antmaze environment where baselines fail, showing applicability to offline-to-online fine-tuning. Code is available at \url{https://github.com/XavierChanglingLi/Regularized-Optimal-Experience-Replay}.
☆ Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks
Evaluating the generalisation capabilities of multimodal models based solely on their performance on out-of-distribution data fails to capture their true robustness. This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models, considering architectural design, input perturbations across language and vision modalities, and increased task complexity. The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes, raising concerns about overfitting to spurious correlations. By employing this evaluation framework on current Transformer-based multimodal models for robotic manipulation tasks, we uncover limitations and suggest future advancements should focus on architectural and training innovations that better integrate multimodal inputs, enhancing a model's generalisation prowess by prioritising sensitivity to input content over incidental correlations.
☆ Addressing Relative Pose Impact on UWB Localization: Dataset Introduction and Analysis
UWB has recently gained new attention as an auxiliary sensor in the field of robot localization due to its compactness and ease of distance measurement. Consequently, various UWB-related localization and dataset research have increased. Despite this broad interest, there is a lack of UWB datasets that thoroughly analyze the performance of UWB ranging measurement. To address this issue, our paper introduces a UWB dataset that examines UWB relative pose factors affecting ranging measurement. To the best of our knowledge, our dataset is the first to analyze these factors while rigorously providing precise ground-truth UWB poses. The dataset is accessible at https://github.com/cjhhalla/RCV_uwb_dataset .
comment: 4 pages
☆ StreamLTS: Query-based Temporal-Spatial LiDAR Fusion for Cooperative Object Detection
Cooperative perception via communication among intelligent traffic agents has great potential to improve the safety of autonomous driving. However, limited communication bandwidth, localization errors and asynchronized capturing time of sensor data, all introduce difficulties to the data fusion of different agents. To some extend, previous works have attempted to reduce the shared data size, mitigate the spatial feature misalignment caused by localization errors and communication delay. However, none of them have considered the asynchronized sensor ticking times, which can lead to dynamic object misplacement of more than one meter during data fusion. In this work, we propose Time-Aligned COoperative Object Detection (TA-COOD), for which we adapt widely used dataset OPV2V and DairV2X with considering asynchronous LiDAR sensor ticking times and build an efficient fully sparse framework with modeling the temporal information of individual objects with query-based techniques. The experiment results confirmed the superior efficiency of our fully sparse framework compared to the state-of-the-art dense models. More importantly, they show that the point-wise observation timestamps of the dynamic objects are crucial for accurate modeling the object temporal context and the predictability of their time-related locations.
☆ Design and Central Pattern Generator Control of a New Transformable Wheel-Legged Robot ICRA 2024
This paper introduces a new wheel-legged robot and develops motion controllers based on central pattern generators (CPGs) for the robot to navigate over a range of terrains. A transformable leg-wheel design is considered and characterized in terms of key locomotion characteristics as a function of the design. Kinematic analysis is conducted based on a generalized four-bar mechanism driven by a coaxial hub arrangement. The analysis is used to inform the design of a central pattern generator to control the robot by mapping oscillator states to wheel-leg trajectories and implementing differential steering within the oscillator network. Three oscillator models are used as the basis of the CPGs, and their performance is compared over a range of inputs. The CPG-based controller is used to drive the developed robot prototype on level ground and over obstacles. Additional simulated tests are performed for uneven terrain negotiation and obstacle climbing. Results demonstrate the effectiveness of CPG control in transformable wheel-legged robots.
comment: ICRA 2024 in print
☆ Design of a Health Monitoring System for a Planetary Exploration Rover SP
It is generally considered that a trustworthy autonomous planetary exploration rover must be able to operate safely and effectively within its environment. Central to trustworthy operation is the ability for the rover to recognise and diagnose abnormal behaviours during its operation. Failure to diagnose faulty behaviour could lead to degraded performance or an unplanned halt in operation. This work investigates a health monitoring method that can be used to improve the capabilities of a fault detection system for a planetary exploration rover. A suite of four metrics, named 'rover vitals', are evaluated as indicators of degradation in the rover's performance. These vitals are combined to give an overall estimate of the rover's 'health'. By comparing the behaviour of a faulty real system with a non-faulty observer, residuals are generated in terms of two high-level metrics: heading and velocity. Adaptive thresholds are applied to the residuals to enable the detection of faulty behaviour, where the adaptive thresholds are informed by the rover's perceived health. Simulation experiments carried out in MATLAB showed that the proposed health monitoring and fault detection methodology can detect high-risk faults in both the sensors and actuators of the rover.
comment: Presented at IEEE International Conference on Space Robotics (ISPARO) 2024
☆ Flight Structure Optimization of Modular Reconfigurable UAVs
This paper presents a Genetic Algorithm (GA) designed to reconfigure a large group of modular Unmanned Aerial Vehicles (UAVs), each with different weights and inertia parameters, into an over-actuated flight structure with improved dynamic properties. Previous research efforts either utilized expert knowledge to design flight structures for a specific task or relied on enumeration-based algorithms that required extensive computation to find an optimal one. However, both approaches encounter challenges in accommodating the heterogeneity among modules. Our GA addresses these challenges by incorporating the complexities of over-actuation and dynamic properties into its formulation. Additionally, we employ a tree representation and a vector representation to describe flight structures, facilitating efficient crossover operations and fitness evaluations within the GA framework, respectively. Using cubic modular quadcopters capable of functioning as omni-directional thrust generators, we validate that the proposed approach can (i) adeptly identify suboptimal configurations ensuring over-actuation while ensuring trajectory tracking accuracy and (ii) significantly reduce computational costs compared to traditional enumeration-based methods.
☆ Energy-based Contact Planning under Uncertainty for Robot Air Hockey
Planning robot contact often requires reasoning over a horizon to anticipate outcomes, making such planning problems computationally expensive. In this letter, we propose a learning framework for efficient contact planning in real-time subject to uncertain contact dynamics. We implement our approach for the example task of robot air hockey. Based on a learned stochastic model of puck dynamics, we formulate contact planning for shooting actions as a stochastic optimal control problem with a chance constraint on hitting the goal. To achieve online re-planning capabilities, we propose to train an energy-based model to generate optimal shooting plans in real time. The performance of the trained policy is validated %in experiments both in simulation and on a real-robot setup. Furthermore, our approach was tested in a competitive setting as part of the NeurIPS 2023 Robot Air Hockey Challenge.
comment: This work has been submitted to the IEEE Robotics & Automation Letters for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ ConPR: Ongoing Construction Site Dataset for Place Recognition IROS 2023
Place recognition, an essential challenge in computer vision and robotics, involves identifying previously visited locations. Despite algorithmic progress, challenges related to appearance change persist, with existing datasets often focusing on seasonal and weather variations but overlooking terrain changes. Understanding terrain alterations becomes critical for effective place recognition, given the aging infrastructure and ongoing city repairs. For real-world applicability, the comprehensive evaluation of algorithms must consider spatial dynamics. To address existing limitations, we present a novel multi-session place recognition dataset acquired from an active construction site. Our dataset captures ongoing construction progress through multiple data collections, facilitating evaluation in dynamic environments. It includes camera images, LiDAR point cloud data, and IMU data, enabling visual and LiDAR-based place recognition techniques, and supporting sensor fusion. Additionally, we provide ground truth information for range-based place recognition evaluation. Our dataset aims to advance place recognition algorithms in challenging and dynamic settings. Our dataset is available at https://github.com/dongjae0107/ConPR.
comment: 3 pages, 2 figures, IROS 2023 Workshop on Closing the Loop on Localization: What Are We Localizing For, and How Does That Shape Everything We Should Do?
☆ A Fast Dynamic Point Detection Method for LiDAR-Inertial Odometry in Driving Scenarios
Existing 3D point-based dynamic point detection and removal methods have a significant time overhead, making them difficult to adapt to LiDAR-inertial odometry systems. This paper proposes a label consistency based dynamic point detection and removal method for handling moving vehicles and pedestrians in autonomous driving scenarios, and embeds the proposed dynamic point detection and removal method into a self-designed LiDAR-inertial odometry system. Experimental results on three public datasets demonstrate that our method can accomplish the dynamic point detection and removal with extremely low computational overhead (i.e., 1$\sim$9ms) in LIO systems, meanwhile achieve comparable preservation rate and rejection rate to state-of-the-art methods and significantly enhance the accuracy of pose estimation. We have released the source code of this work for the development of the community.
comment: 8 pages, submitted to RA-L
☆ Safety-Critical Control with Uncertainty Quantification using Adaptive Conformal Prediction
Safety assurance is critical in the planning and control of robotic systems. For robots operating in the real world, the safety-critical design often needs to explicitly address uncertainties and the pre-computed guarantees often rely on the assumption of the particular distribution of the uncertainty. However, it is difficult to characterize the actual uncertainty distribution beforehand and thus the established safety guarantee may be violated due to possible distribution mismatch. In this paper, we propose a novel safe control framework that provides a high-probability safety guarantee for stochastic dynamical systems following unknown distributions of motion noise. Specifically, this framework adopts adaptive conformal prediction to dynamically quantify the prediction uncertainty from online observations and combines that with the probabilistic extension of the control barrier functions (CBFs) to characterize the uncertainty-aware control constraints. By integrating the constraints in the model predictive control scheme, it allows robots to adaptively capture the true prediction uncertainty online in a distribution-free setting and enjoys formally provable high-probability safety assurance. Simulation results on multi-robot systems with stochastic single-integrator dynamics and unicycle dynamics are provided to demonstrate the effectiveness of our framework.
comment: 6+1 pages, accepted to appear in ACC 2024
♻ ☆ DiffTune-MPC: Closed-Loop Learning for Model Predictive Control
Model predictive control (MPC) has been applied to many platforms in robotics and autonomous systems for its capability to predict a system's future behavior while incorporating constraints that a system may have. To enhance the performance of a system with an MPC controller, one can manually tune the MPC's cost function. However, it can be challenging due to the possibly high dimension of the parameter space as well as the potential difference between the open-loop cost function in MPC and the overall closed-loop performance metric function. This paper presents DiffTune-MPC, a novel learning method, to learn the cost function of an MPC in a closed-loop manner. The proposed framework is compatible with the scenario where the time interval for performance evaluation and MPC's planning horizon have different lengths. We show the auxiliary problem whose solution admits the analytical gradients of MPC and discuss its variations in different MPC settings, including nonlinear MPCs that are solved using sequential quadratic programming. Simulation results demonstrate the learning capability of DiffTune-MPC and the generalization capability of the learned MPC parameters.
comment: The first two authors contributed equally to this work
♻ ☆ Language-Guided Object-Centric Diffusion Policy for Collision-Aware Robotic Manipulation
Learning from demonstrations faces challenges in generalizing beyond the training data and is fragile even to slight visual variations. To tackle this problem, we introduce Lan-o3dp, a language guided object centric diffusion policy that takes 3d representation of task relevant objects as conditional input and can be guided by cost function for safety constraints at inference time. Lan-o3dp enables strong generalization in various aspects, such as background changes, visual ambiguity and can avoid novel obstacles that are unseen during the demonstration process. Specifically, We first train a diffusion policy conditioned on point clouds of target objects and then harness a large language model to decompose the user instruction into task related units consisting of target objects and obstacles, which can be used as visual observation for the policy network or converted to a cost function, guiding the generation of trajectory towards collision free region at test time. Our proposed method shows training efficiency and higher success rates compared with the baselines in simulation experiments. In real world experiments, our method exhibits strong generalization performance towards unseen instances, cluttered scenes, scenes of multiple similar objects and demonstrates training free capability of obstacle avoidance.
comment: 11 pages, 8 figures
♻ ☆ BonnBot-I Plus: A Bio-diversity Aware Precise Weed Management Robotic Platform
In this article, we focus on the critical tasks of plant protection in arable farms, addressing a modern challenge in agriculture: integrating ecological considerations into the operational strategy of precision weeding robots like \bbot. This article presents the recent advancements in weed management algorithms and the real-world performance of \bbot\ at the University of Bonn's Klein-Altendorf campus. We present a novel Rolling-view observation model for the BonnBot-Is weed monitoring section which leads to an average absolute weeding performance enhancement of $3.4\%$. Furthermore, for the first time, we show how precision weeding robots could consider bio-diversity-aware concerns in challenging weeding scenarios. We carried out comprehensive weeding experiments in sugar-beet fields, covering both weed-only and mixed crop-weed situations, and introduced a new dataset compatible with precision weeding. Our real-field experiments revealed that our weeding approach is capable of handling diverse weed distributions, with a minimal loss of only $11.66\%$ attributable to intervention planning and $14.7\%$ to vision system limitations highlighting required improvements of the vision system.
♻ ☆ Robust Pivoting Manipulation using Contact Implicit Bilevel Optimization
Generalizable manipulation requires that robots be able to interact with novel objects and environment. This requirement makes manipulation extremely challenging as a robot has to reason about complex frictional interactions with uncertainty in physical properties of the object and the environment. In this paper, we study robust optimization for planning of pivoting manipulation in the presence of uncertainties. We present insights about how friction can be exploited to compensate for inaccuracies in the estimates of the physical properties during manipulation. Under certain assumptions, we derive analytical expressions for stability margin provided by friction during pivoting manipulation. This margin is then used in a Contact Implicit Bilevel Optimization (CIBO) framework to optimize a trajectory that maximizes this stability margin to provide robustness against uncertainty in several physical parameters of the object. We present analysis of the stability margin with respect to several parameters involved in the underlying bilevel optimization problem. We demonstrate our proposed method using a 6 DoF manipulator for manipulating several different objects. We also design and validate an MPC controller using the proposed algorithm which can track and regulate the position of the object during manipulation.
comment: Accepted for IEEE Transactions on Robotics. arXiv admin note: text overlap with arXiv:2203.11412
♻ ☆ PhotoBot: Reference-Guided Interactive Photography via Natural Language IROS'24
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance and a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user's language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pre-trained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute suggested pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS'24), Abu Dhabi, UAE, Oct 14-18, 2024
UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application ICRA
As quadrotors take on an increasingly diverse range of roles, researchers often need to develop new hardware platforms tailored for specific tasks, introducing significant engineering overhead. In this article, we introduce the UniQuad series, a unified and versatile quadrotor platform series that offers high flexibility to adapt to a wide range of common tasks, excellent customizability for advanced demands, and easy maintenance in case of crashes. This project is fully open-source at https://hkust-aerial-robotics.github.io/UniQuad.
comment: Submitted to 40th Anniversary of the IEEE Conference on Robotics and Automation (ICRA-X40)
♻ ☆ Human-Aware Vision-and-Language Navigation: Bridging Simulation to Reality with Dynamic Human Interactions
Vision-and-Language Navigation (VLN) aims to develop embodied agents that navigate based on human instructions. However, current VLN frameworks often rely on static environments and optimal expert supervision, limiting their real-world applicability. To address this, we introduce Human-Aware Vision-and-Language Navigation (HA-VLN), extending traditional VLN by incorporating dynamic human activities and relaxing key assumptions. We propose the Human-Aware 3D (HA3D) simulator, which combines dynamic human activities with the Matterport3D dataset, and the Human-Aware Room-to-Room (HA-R2R) dataset, extending R2R with human activity descriptions. To tackle HA-VLN challenges, we present the Expert-Supervised Cross-Modal (VLN-CM) and Non-Expert-Supervised Decision Transformer (VLN-DT) agents, utilizing cross-modal fusion and diverse training strategies for effective navigation in dynamic human environments. A comprehensive evaluation, including metrics considering human activities, and systematic analysis of HA-VLN's unique challenges, underscores the need for further research to enhance HA-VLN agents' real-world robustness and adaptability. Ultimately, this work provides benchmarks and insights for future research on embodied AI and Sim2Real transfer, paving the way for more realistic and applicable VLN systems in human-populated environments.
comment: 30 pages, 18 figures, Project Page: https://lpercc.github.io/HA3D_simulator/
♻ ☆ Behavior Forests: Real-Time Discovery of Dynamic Behavior for Data Selection
Automated Driving Systems (ADS) development relies on utilizing real-world vehicle data. The volume of data generated by modern vehicles presents transmission, storage, and computational challenges. Focusing on Dynamic Behavior (DB) offers a promising approach to distinguish relevant from irrelevant information for ADS functionalities, thereby reducing data. Time series pattern recognition is beneficial for this task as it can analyze the temporal context of vehicle driving behavior. However, existing state-of-the-art methods often lack the adaptability to identify variable-length patterns or provide analytical descriptions of discovered patterns. This contribution proposes a Behavior Forest framework for real-time data selection by constructing a Behavior Graph during vehicle operation, facilitating analytical descriptions without pre-training. The method demonstrates its performance using a synthetically generated and electrocardiogram data set. An automotive time series data set is used to evaluate the data reduction capabilities, in which this method discarded 96.01% of the incoming data stream, while relevant DB remain included.
♻ ☆ PreAfford: Universal Affordance-Based Pre-Grasping for Diverse Objects and Environments
Robotic manipulation with two-finger grippers is challenged by objects lacking distinct graspable features. Traditional pre-grasping methods, which typically involve repositioning objects or utilizing external aids like table edges, are limited in their adaptability across different object categories and environments. To overcome these limitations, we introduce PreAfford, a novel pre-grasping planning framework that incorporates a point-level affordance representation and a relay training approach. Our method significantly improves adaptability, allowing effective manipulation across a wide range of environments and object types. When evaluated on the ShapeNet-v2 dataset, PreAfford not only enhances grasping success rates by 69% but also demonstrates its practicality through successful real-world experiments. These improvements highlight PreAfford's potential to redefine standards for robotic handling of complex manipulation tasks in diverse settings.
comment: Project Page: https://air-discover.github.io/PreAfford/
♻ ☆ Overview Analysis of Recent Developments on Self-Driving Electric Vehicles
This paper provides a comprehensive overview of recent advancements in autonomous electric vehicles (AEVs) within the specified region. It elaborates on the progress and comparative analysis of diverse subsystems, including energy storage, cell balancing for battery systems, vehicle charger layouts, electric vehicle motor mechanisms, and braking systems. Furthermore, this paper showcases several prototype autonomous electric vehicles as conclusive study findings.
♻ ☆ The path towards contact-based physical human-robot interaction
With the advancements in human-robot interaction (HRI), robots are now capable of operating in close proximity and engaging in physical interactions with humans (pHRI). Likewise, contact-based pHRI is becoming increasingly common as robots are equipped with a range of sensors to perceive human motions. Despite the presence of surveys exploring various aspects of HRI and pHRI, there is presently a gap in comprehensive studies that collect, organize and relate developments across all aspects of contact-based pHRI. It has become challenging to gain a comprehensive understanding of the current state of the field, thoroughly analyze the aspects that have been covered, and identify areas needing further attention. Hence, the present survey. While it includes key developments in pHRI, a particular focus is placed on contact-based interaction, which has numerous applications in industrial, rehabilitation and medical robotics. Across the literature, a common denominator is the importance to establish a safe, compliant and human intention-oriented interaction. This endeavour encompasses aspects of perception, planning and control, and how they work together to enhance safety and reliability. Notably, the survey highlights the application of data-driven techniques: backed by a growing body of literature demonstrating their effectiveness, approaches like reinforcement learning and learning from demonstration have become key to improving robot perception and decision-making within complex and uncertain pHRI scenarios. As the field is yet in its early stage, these observations may help guide future developments and steer research towards the responsible integration of physically interactive robots into workplaces, public spaces, and elements of private life.
♻ ☆ Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. Project website: https://boyuan.space/diffusion-forcing
comment: Project website: https://boyuan.space/diffusion-forcing Code: https://github.com/buoyancy99/diffusion-forcing
♻ ☆ DexCap: Scalable and Portable Mocap Data Collection System for Dexterous Manipulation
Imitation learning from human hand motion data presents a promising avenue for imbuing robots with human-like dexterity in real-world manipulation tasks. Despite this potential, substantial challenges persist, particularly with the portability of existing hand motion capture (mocap) systems and the complexity of translating mocap data into effective robotic policies. To tackle these issues, we introduce DexCap, a portable hand motion capture system, alongside DexIL, a novel imitation algorithm for training dexterous robot skills directly from human hand mocap data. DexCap offers precise, occlusion-resistant tracking of wrist and finger motions based on SLAM and electromagnetic field together with 3D observations of the environment. Utilizing this rich dataset, DexIL employs inverse kinematics and point cloud-based imitation learning to seamlessly replicate human actions with robot hands. Beyond direct learning from human motion, DexCap also offers an optional human-in-the-loop correction mechanism during policy rollouts to refine and further improve task performance. Through extensive evaluation across six challenging dexterous manipulation tasks, our approach not only demonstrates superior performance but also showcases the system's capability to effectively learn from in-the-wild mocap data, paving the way for future data collection methods in the pursuit of human-level robot dexterity. More details can be found at https://dex-cap.github.io
♻ ☆ Autonomous Control of a Novel Closed Chain Five Bar Active Suspension via Deep Reinforcement Learning
Planetary exploration requires traversal in environments with rugged terrains. In addition, Mars rovers and other planetary exploration robots often carry sensitive scientific experiments and components onboard, which must be protected from mechanical harm. This paper deals with an active suspension system focused on chassis stabilisation and an efficient traversal method while encountering unavoidable obstacles. Soft Actor-Critic (SAC) was applied along with Proportional Integral Derivative (PID) control to stabilise the chassis and traverse large obstacles at low speeds. The model uses the rover's distance from surrounding obstacles, the height of the obstacle, and the chassis' orientation to actuate the control links of the suspension accurately. Simulations carried out in the Gazebo environment are used to validate the proposed active system.
comment: 15 pages, 11 figures
♻ ☆ DextrAH-G: Pixels-to-Action Dexterous Arm-Hand Grasping with Geometric Fabrics
A pivotal challenge in robotics is achieving fast, safe, and robust dexterous grasping across a diverse range of objects, an important goal within industrial applications. However, existing methods often have very limited speed, dexterity, and generality, along with limited or no hardware safety guarantees. In this work, we introduce DextrAH-G, a depth-based dexterous grasping policy trained entirely in simulation that combines reinforcement learning, geometric fabrics, and teacher-student distillation. We address key challenges in joint arm-hand policy learning, such as high-dimensional observation and action spaces, the sim2real gap, collision avoidance, and hardware constraints. DextrAH-G enables a 23 motor arm-hand robot to safely and continuously grasp and transport a large variety of objects at high speed using multi-modal inputs including depth images, allowing generalization across object geometry. Videos at https://sites.google.com/view/dextrah-g.
♻ ☆ Semi-Elastic LiDAR-Inertial Odometry
Existing LiDAR-inertial state estimation assumes that the state at the beginning of current sweep is identical to the state at the end of last sweep. However, if the state at the end of last sweep is not accurate, the current state cannot satisfy the constraints from LiDAR and IMU consistently, ultimately resulting in local inconsistency of solved state (e.g., zigzag trajectory or high-frequency oscillating velocity). This paper proposes a semi-elastic optimization-based LiDAR-inertial state estimation method, which imparts sufficient elasticity to the state to allow it be optimized to the correct value. This approach can preferably ensure the accuracy, consistency, and robustness of state estimation. We incorporate the proposed LiDAR-inertial state estimation method into an optimization-based LiDAR-inertial odometry (LIO) framework. Experimental results on four public datasets demonstrate that: 1) our method outperforms existing state-of-the-art LiDAR-inertial odometry systems in terms of accuracy; 2) semi-elastic optimization-based LiDAR-inertial state estimation can better ensure consistency and robustness than traditional and elastic optimization-based LiDAR-inertial state estimation. We have released the source code of this work for the development of the community.
comment: 8 pages, planning to submit to RA-L. arXiv admin note: substantial text overlap with arXiv:2210.10424. text overlap with arXiv:2302.14298
♻ ☆ TieBot: Learning to Knot a Tie from Visual Demonstration through a Real-to-Sim-to-Real Approach
The tie-knotting task is highly challenging due to the tie's high deformation and long-horizon manipulation actions. This work presents TieBot, a Real-to-Sim-to-Real learning from visual demonstration system for the robots to learn to knot a tie. We introduce the Hierarchical Feature Matching approach to estimate a sequence of tie's meshes from the demonstration video. With these estimated meshes used as subgoals, we first learn a teacher policy using privileged information. Then, we learn a student policy with point cloud observation by imitating teacher policy. Lastly, our pipeline learns a residual policy when the learned policy is applied to real-world execution, mitigating the Sim2Real gap. We demonstrate the effectiveness of TieBot in simulation and the real world. In the real-world experiment, a dual-arm robot successfully knots a tie, achieving 50% success rate among 10 trials. Videos can be found https://tiebots.github.io/.
comment: fix few typos
♻ ☆ Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and solving mathematical problems, leading to advancements in various fields. We propose an LLM-embodied path planning framework for mobile agents, focusing on solving high-level coverage path planning issues and low-level control. Our proposed multi-layer architecture uses prompted LLMs in the path planning phase and integrates them with the mobile agents' low-level actuators. To evaluate the performance of various LLMs, we propose a coverage-weighted path planning metric to assess the performance of the embodied models. Our experiments show that the proposed framework improves LLMs' spatial inference abilities. We demonstrate that the proposed multi-layer framework significantly enhances the efficiency and accuracy of these tasks by leveraging the natural language understanding and generative capabilities of LLMs. Our experiments show that this framework can improve LLMs' 2D plane reasoning abilities and complete coverage path planning tasks. We also tested three LLM kernels: gpt-4o, gemini-1.5-flash, and claude-3.5-sonnet. The experimental results show that claude-3.5 can complete the coverage planning task in different scenarios, and its indicators are better than those of the other models.
comment: 7 pages, 2 figures, conference
Vision 27
☆ QueryMamba: A Mamba-Based Encoder-Decoder Architecture with a Statistical Verb-Noun Interaction Module for Video Action Forecasting @ Ego4D Long-Term Action Anticipation Challenge 2024
This report presents a novel Mamba-based encoder-decoder architecture, QueryMamba, featuring an integrated verb-noun interaction module that utilizes a statistical verb-noun co-occurrence matrix to enhance video action forecasting. This architecture not only predicts verbs and nouns likely to occur based on historical data but also considers their joint occurrence to improve forecast accuracy. The efficacy of this approach is substantiated by experimental results, with the method achieving second place in the Ego4D LTA challenge and ranking first in noun prediction accuracy.
☆ Slice-100K: A Multimodal Dataset for Extrusion-based 3D Printing
G-code (Geometric code) or RS-274 is the most widely used computer numerical control (CNC) and 3D printing programming language. G-code provides machine instructions for the movement of the 3D printer, especially for the nozzle, stage, and extrusion of material for extrusion-based additive manufacturing. Currently there does not exist a large repository of curated CAD models along with their corresponding G-code files for additive manufacturing. To address this issue, we present SLICE-100K, a first-of-its-kind dataset of over 100,000 G-code files, along with their tessellated CAD model, LVIS (Large Vocabulary Instance Segmentation) categories, geometric properties, and renderings. We build our dataset from triangulated meshes derived from Objaverse-XL and Thingi10K datasets. We demonstrate the utility of this dataset by finetuning GPT-2 on a subset of the dataset for G-code translation from a legacy G-code format (Sailfish) to a more modern, widely used format (Marlin). SLICE-100K will be the first step in developing a multimodal foundation model for digital manufacturing.
☆ Attention Normalization Impacts Cardinality Generalization in Slot Attention
Object-centric scene decompositions are important representations for downstream tasks in fields such as computer vision and robotics. The recently proposed Slot Attention module, already leveraged by several derivative works for image segmentation and object tracking in videos, is a deep learning component which performs unsupervised object-centric scene decomposition on input images. It is based on an attention architecture, in which latent slot vectors, which hold compressed information on objects, attend to localized perceptual features from the input image. In this paper, we show that design decisions on normalizing the aggregated values in the attention architecture have considerable impact on the capabilities of Slot Attention to generalize to a higher number of slots and objects as seen during training. We argue that the original Slot Attention normalization scheme discards information on the prior assignment probability of pixels to slots, which impairs its generalization capabilities. Based on these findings, we propose and investigate alternative normalization approaches which increase the generalization capabilities of Slot Attention to varying slot and object counts, resulting in performance gains on the task of unsupervised image segmentation.
comment: 24 pages, 10 figures, 5 tables
☆ Solutions to Deepfakes: Can Camera Hardware, Cryptography, and Deep Learning Verify Real Images?
The exponential progress in generative AI poses serious implications for the credibility of all real images and videos. There will exist a point in the future where 1) digital content produced by generative AI will be indistinguishable from those created by cameras, 2) high-quality generative algorithms will be accessible to anyone, and 3) the ratio of all synthetic to real images will be large. It is imperative to establish methods that can separate real data from synthetic data with high confidence. We define real images as those that were produced by the camera hardware, capturing a real-world scene. Any synthetic generation of an image or alteration of a real image through generative AI or computer graphics techniques is labeled as a synthetic image. To this end, this document aims to: present known strategies in detection and cryptography that can be employed to verify which images are real, weight the strengths and weaknesses of these strategies, and suggest additional improvements to alleviate shortcomings.
☆ SineKAN: Kolmogorov-Arnold Networks Using Sinusoidal Activation Functions
Recent work has established an alternative to traditional multi-layer perceptron neural networks in the form of Kolmogorov-Arnold Networks (KAN). The general KAN framework uses learnable activation functions on the edges of the computational graph followed by summation on nodes. The learnable edge activation functions in the original implementation are basis spline functions (B-Spline). Here, we present a model in which learnable grids of B-Spline activation functions can be replaced by grids of re-weighted sine functions. We show that this leads to better or comparable numerical performance to B-Spline KAN models on the MNIST benchmark, while also providing a substantial speed increase on the order of 4-9 times.
comment: 9 pages, 8 figures
☆ Biometric Authentication Based on Enhanced Remote Photoplethysmography Signal Morphology
Remote photoplethysmography (rPPG) is a non-contact method for measuring cardiac signals from facial videos, offering a convenient alternative to contact photoplethysmography (cPPG) obtained from contact sensors. Recent studies have shown that each individual possesses a unique cPPG signal morphology that can be utilized as a biometric identifier, which has inspired us to utilize the morphology of rPPG signals extracted from facial videos for person authentication. Since the facial appearance and rPPG are mixed in the facial videos, we first de-identify facial videos to remove facial appearance while preserving the rPPG information, which protects facial privacy and guarantees that only rPPG is used for authentication. The de-identified videos are fed into an rPPG model to get the rPPG signal morphology for authentication. In the first training stage, unsupervised rPPG training is performed to get coarse rPPG signals. In the second training stage, an rPPG-cPPG hybrid training is performed by incorporating external cPPG datasets to achieve rPPG biometric authentication and enhance rPPG signal morphology. Our approach needs only de-identified facial videos with subject IDs to train rPPG authentication models. The experimental results demonstrate that rPPG signal morphology hidden in facial videos can be used for biometric authentication. The code is available at https://github.com/zhaodongsun/rppg_biometrics.
comment: accepted by IJCB 2024
☆ An Autoencoder Architecture for L-band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework is presented for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network. This framework defines the landscape FT-cycle retrieval as a time series anomaly detection problem considering the frozen states as normal and thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is evaluated over Alaska, against in situ ground-based observations, showing reduced uncertainties compared to the traditional methods that use thresholding of the normalized polarization ratio.
☆ MiniGPT-Med: Large Language Model as a General Interface for Radiology Diagnosis
Recent advancements in artificial intelligence (AI) have precipitated significant breakthroughs in healthcare, particularly in refining diagnostic procedures. However, previous studies have often been constrained to limited functionalities. This study introduces MiniGPT-Med, a vision-language model derived from large-scale language models and tailored for medical applications. MiniGPT-Med demonstrates remarkable versatility across various imaging modalities, including X-rays, CT scans, and MRIs, enhancing its utility. The model is capable of performing tasks such as medical report generation, visual question answering (VQA), and disease identification within medical imagery. Its integrated processing of both image and textual clinical data markedly improves diagnostic accuracy. Our empirical assessments confirm MiniGPT-Med's superior performance in disease grounding, medical report generation, and VQA benchmarks, representing a significant step towards reducing the gap in assisting radiology practice. Furthermore, it achieves state-of-the-art performance on medical report generation, higher than the previous best model by 19\% accuracy. MiniGPT-Med promises to become a general interface for radiology diagnoses, enhancing diagnostic efficiency across a wide range of medical imaging applications.
☆ Advances in Diffusion Models for Image Data Augmentation: A Review of Methods, Models, Evaluation Metrics and Future Research Directions
Image data augmentation constitutes a critical methodology in modern computer vision tasks, since it can facilitate towards enhancing the diversity and quality of training datasets; thereby, improving the performance and robustness of machine learning models in downstream tasks. In parallel, augmentation approaches can also be used for editing/modifying a given image in a context- and semantics-aware way. Diffusion Models (DMs), which comprise one of the most recent and highly promising classes of methods in the field of generative Artificial Intelligence (AI), have emerged as a powerful tool for image data augmentation, capable of generating realistic and diverse images by learning the underlying data distribution. The current study realizes a systematic, comprehensive and in-depth review of DM-based approaches for image augmentation, covering a wide range of strategies, tasks and applications. In particular, a comprehensive analysis of the fundamental principles, model architectures and training strategies of DMs is initially performed. Subsequently, a taxonomy of the relevant image augmentation methods is introduced, focusing on techniques regarding semantic manipulation, personalization and adaptation, and application-specific augmentation tasks. Then, performance assessment methodologies and respective evaluation metrics are analyzed. Finally, current challenges and future research directions in the field are discussed.
comment: 53 pages, 15 figures
☆ C$^3$DG: Conditional Domain Generalization for Hyperspectral Imagery Classification with Convergence and Constrained-risk Theories
Hyperspectral imagery (HSI) classification may suffer the challenge of hyperspectral-monospectra, where different classes present similar spectra. Joint spatial-spectral feature extraction is a popular solution for the problem, but this strategy tends to inflate accuracy since test pixels may exist in training patches. Domain generalization methods show promising potential, but they still fail to distinguish similar spectra across varying domains, in addition, the theoretical support is usually ignored. In this paper, we only rely on spectral information to solve the hyperspectral-monospectra problem, and propose a Convergence and Error-Constrained Conditional Domain Generalization method for Hyperspectral Imagery Classification (C$^3$DG). The major contributions of this paper include two aspects: the Conditional Revising Inference Block (CRIB), and the corresponding theories for model convergence and generalization errors. CRIB is the kernel structure of the proposed method, which employs a shared encoder and multi-branch decoders to fully leverage the conditional distribution during training, achieving a decoupling that aligns with the generation mechanisms of HSI. Moreover, to ensure model convergence and maintain controllable error, we propose the optimization convergence theorem and risk upper bound theorem. In the optimization convergence theorem, we ensure the model convergence by demonstrating that the gradients of the loss terms are not contradictory. In the risk upper bound theorem, our theoretical analysis explores the relationship between test-time training and recent related work to establish a concrete bound for error. Experimental results on three benchmark datasets indicate the superiority of C$^3$DG.
☆ Looking for Tiny Defects via Forward-Backward Feature Transfer
Motivated by efficiency requirements, most anomaly detection and segmentation (AD&S) methods focus on processing low-resolution images, e.g., $224\times 224$ pixels, obtained by downsampling the original input images. In this setting, downsampling is typically applied also to the provided ground-truth defect masks. Yet, as numerous industrial applications demand identification of both large and tiny defects, the above-described protocol may fall short in providing a realistic picture of the actual performance attainable by current methods. Hence, in this work, we introduce a novel benchmark that evaluates methods on the original, high-resolution image and ground-truth masks, focusing on segmentation performance as a function of the size of anomalies. Our benchmark includes a metric that captures robustness with respect to defect size, i.e., the ability of a method to preserve good localization from large anomalies to tiny ones. Furthermore, we introduce an AD&S approach based on a novel Teacher-Student paradigm which relies on two shallow MLPs (the Students) that learn to transfer patch features across the layers of a frozen vision transformer (the Teacher). By means of our benchmark, we evaluate our proposal and other recent AD&S methods on high-resolution inputs containing large and tiny defects. Our proposal features the highest robustness to defect size, runs at the fastest speed, yields state-of-the-art performance on the MVTec AD dataset and state-of-the-art segmentation performance on the VisA dataset.
☆ Certifiably Robust Image Watermark ECCV 2024
Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns. Watermarking AI-generated content is a key technology to address these concerns and has been widely deployed in industry. However, watermarking is vulnerable to removal attacks and forgery attacks. In this work, we propose the first image watermarks with certified robustness guarantees against removal and forgery attacks. Our method leverages randomized smoothing, a popular technique to build certifiably robust classifiers and regression models. Our major technical contributions include extending randomized smoothing to watermarking by considering its unique characteristics, deriving the certified robustness guarantees, and designing algorithms to estimate them. Moreover, we extensively evaluate our image watermarks in terms of both certified and empirical robustness. Our code is available at \url{https://github.com/zhengyuan-jiang/Watermark-Library}.
comment: Accepted by ECCV 2024
☆ FIPGNet:Pyramid grafting network with feature interaction strategies
Salient object detection is designed to identify the objects in an image that attract the most visual attention.Currently, the most advanced method of significance object detection adopts pyramid grafting network architecture.However, pyramid-graft network architecture still has the problem of failing to accurately locate significant targets.We observe that this is mainly due to the fact that current salient object detection methods simply aggregate different scale features, ignoring the correlation between different scale features.To overcome these problems, we propose a new salience object detection framework(FIPGNet),which is a pyramid graft network with feature interaction strategies.Specifically, we propose an attention-mechanism based feature interaction strategy (FIA) that innovatively introduces spatial agent Cross Attention (SACA) to achieve multi-level feature interaction, highlighting important spatial regions from a spatial perspective, thereby enhancing salient regions.And the channel proxy Cross Attention Module (CCM), which is used to effectively connect the features extracted by the backbone network and the features processed using the spatial proxy cross attention module, eliminating inconsistencies.Finally, under the action of these two modules, the prominent target location problem in the current pyramid grafting network model is solved.Experimental results on six challenging datasets show that the proposed method outperforms the current 12 salient object detection methods on four indicators.
comment: arXiv admin note: text overlap with arXiv:2309.08365 by other authors
☆ CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting MICCAI 2024
Diabetic retinopathy (DR) is a complication of diabetes and usually takes decades to reach sight-threatening levels. Accurate and robust detection of DR severity is critical for the timely management and treatment of diabetes. However, most current DR grading methods suffer from insufficient robustness to data variability (\textit{e.g.} colour fundus images), posing a significant difficulty for accurate and robust grading. In this work, we propose a novel DR grading framework CLIP-DR based on three observations: 1) Recent pre-trained visual language models, such as CLIP, showcase a notable capacity for generalisation across various downstream tasks, serving as effective baseline models. 2) The grading of image-text pairs for DR often adheres to a discernible natural sequence, yet most existing DR grading methods have primarily overlooked this aspect. 3) A long-tailed distribution among DR severity levels complicates the grading process. This work proposes a novel ranking-aware prompting strategy to help the CLIP model exploit the ordinal information. Specifically, we sequentially design learnable prompts between neighbouring text-image pairs in two different ranking directions. Additionally, we introduce a Similarity Matrix Smooth module into the structure of CLIP to balance the class distribution. Finally, we perform extensive comparisons with several state-of-the-art methods on the GDRBench benchmark, demonstrating our CLIP-DR's robustness and superior performance. The implementation code is available \footnote{\url{https://github.com/Qinkaiyu/CLIP-DR}
comment: Accepted by MICCAI 2024
☆ EMPL: A novel Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation
Few-shot unsupervised domain adaptation (FS-UDA) utilizes few-shot labeled source domain data to realize effective classification in unlabeled target domain. However, current FS-UDA methods are still suffer from two issues: 1) the data from different domains can not be effectively aligned by few-shot labeled data due to the large domain gaps, 2) it is unstable and time-consuming to generalize to new FS-UDA tasks.To address this issue, we put forward a novel Efficient Meta Prompt Learning Framework for FS-UDA. Within this framework, we use pre-trained CLIP model as the feature learning base model. First, we design domain-shared prompt learning vectors composed of virtual tokens, which mainly learns the meta knowledge from a large number of meta tasks to mitigate domain gaps. Secondly, we also design a task-shared prompt learning network to adaptively learn specific prompt vectors for each task, which aims to realize fast adaptation and task generalization. Thirdly, we learn a task-specific cross-domain alignment projection and a task-specific classifier with closed-form solutions for each meta task, which can efficiently adapt the model to new tasks in one step. The whole learning process is formulated as a bilevel optimization problem, and a good initialization of model parameters is learned through meta-learning. Extensive experimental study demonstrates the promising performance of our framework on benchmark datasets. Our method has the large improvement of at least 15.4% on 5-way 1-shot and 8.7% on 5-way 5-shot, compared with the state-of-the-art methods. Also, the performance of our method on all the test tasks is more stable than the other methods.
Detect Closer Surfaces that can be Seen: New Modeling and Evaluation in Cross-domain 3D Object Detection ECAI 2024
The performance of domain adaptation technologies has not yet reached an ideal level in the current 3D object detection field for autonomous driving, which is mainly due to significant differences in the size of vehicles, as well as the environments they operate in when applied across domains. These factors together hinder the effective transfer and application of knowledge learned from specific datasets. Since the existing evaluation metrics are initially designed for evaluation on a single domain by calculating the 2D or 3D overlap between the prediction and ground-truth bounding boxes, they often suffer from the overfitting problem caused by the size differences among datasets. This raises a fundamental question related to the evaluation of the 3D object detection models' cross-domain performance: Do we really need models to maintain excellent performance in their original 3D bounding boxes after being applied across domains? From a practical application perspective, one of our main focuses is actually on preventing collisions between vehicles and other obstacles, especially in cross-domain scenarios where correctly predicting the size of vehicles is much more difficult. In other words, as long as a model can accurately identify the closest surfaces to the ego vehicle, it is sufficient to effectively avoid obstacles. In this paper, we propose two metrics to measure 3D object detection models' ability of detecting the closer surfaces to the sensor on the ego vehicle, which can be used to evaluate their cross-domain performance more comprehensively and reasonably. Furthermore, we propose a refinement head, named EdgeHead, to guide models to focus more on the learnable closer surfaces, which can greatly improve the cross-domain performance of existing models not only under our new metrics, but even also under the original BEV/3D metrics.
comment: Accepted by the 27th European Conference on Artificial Intelligence (ECAI 2024)
☆ Occupancy as Set of Points ECCV 2024
In this paper, we explore a novel point representation for 3D occupancy prediction from multi-view images, which is named Occupancy as Set of Points. Existing camera-based methods tend to exploit dense volume-based representation to predict the occupancy of the whole scene, making it hard to focus on the special areas or areas out of the perception range. In comparison, we present the Points of Interest (PoIs) to represent the scene and propose OSP, a novel framework for point-based 3D occupancy prediction. Owing to the inherent flexibility of the point-based representation, OSP achieves strong performance compared with existing methods and excels in terms of training and inference adaptability. It extends beyond traditional perception boundaries and can be seamlessly integrated with volume-based methods to significantly enhance their effectiveness. Experiments on the Occ3D nuScenes occupancy benchmark show that OSP has strong performance and flexibility. Code and models are available at \url{https://github.com/hustvl/osp}.
comment: Accepted by ECCV 2024. Code and models: https://github.com/hustvl/osp
☆ Towards Cross-View-Consistent Self-Supervised Surround Depth Estimation
Depth estimation is a cornerstone for autonomous driving, yet acquiring per-pixel depth ground truth for supervised learning is challenging. Self-Supervised Surround Depth Estimation (SSSDE) from consecutive images offers an economical alternative. While previous SSSDE methods have proposed different mechanisms to fuse information across images, few of them explicitly consider the cross-view constraints, leading to inferior performance, particularly in overlapping regions. This paper proposes an efficient and consistent pose estimation design and two loss functions to enhance cross-view consistency for SSSDE. For pose estimation, we propose to use only front-view images to reduce training memory and sustain pose estimation consistency. The first loss function is the dense depth consistency loss, which penalizes the difference between predicted depths in overlapping regions. The second one is the multi-view reconstruction consistency loss, which aims to maintain consistency between reconstruction from spatial and spatial-temporal contexts. Additionally, we introduce a novel flipping augmentation to improve the performance further. Our techniques enable a simple neural model to achieve state-of-the-art performance on the DDAD and nuScenes datasets. Last but not least, our proposed techniques can be easily applied to other methods. The code will be made public.
☆ Beyond Pixels: Semi-Supervised Semantic Segmentation with a Multi-scale Patch-based Multi-Label Classifier ECCV24
Incorporating pixel contextual information is critical for accurate segmentation. In this paper, we show that an effective way to incorporate contextual information is through a patch-based classifier. This patch classifier is trained to identify classes present within an image region, which facilitates the elimination of distractors and enhances the classification of small object segments. Specifically, we introduce Multi-scale Patch-based Multi-label Classifier (MPMC), a novel plug-in module designed for existing semi-supervised segmentation (SSS) frameworks. MPMC offers patch-level supervision, enabling the discrimination of pixel regions of different classes within a patch. Furthermore, MPMC learns an adaptive pseudo-label weight, using patch-level classification to alleviate the impact of the teacher's noisy pseudo-label supervision the student. This lightweight module can be integrated into any SSS framework, significantly enhancing their performance. We demonstrate the efficacy of our proposed MPMC by integrating it into four SSS methodologies and improving them across two natural image and one medical segmentation dataset, notably improving the segmentation results of the baselines across all the three datasets.
comment: to be published in ECCV24
☆ Adaptive Step-size Perception Unfolding Network with Non-local Hybrid Attention for Hyperspectral Image Reconstruction
Deep unfolding methods and transformer architecture have recently shown promising results in hyperspectral image (HSI) reconstruction. However, there still exist two issues: (1) in the data subproblem, most methods represents the stepsize utilizing a learnable parameter. Nevertheless, for different spectral channel, error between features and ground truth is unequal. (2) Transformer struggles to balance receptive field size with pixel-wise detail information. To overcome the aforementioned drawbacks, We proposed an adaptive step-size perception unfolding network (ASPUN), a deep unfolding network based on FISTA algorithm, which uses an adaptive step-size perception module to estimate the update step-size of each spectral channel. In addition, we design a Non-local Hybrid Attention Transformer(NHAT) module for fully leveraging the receptive field advantage of transformer. By plugging the NLHA into the Non-local Information Aggregation (NLIA) module, the unfolding network can achieve better reconstruction results. Experimental results show that our ASPUN is superior to the existing SOTA algorithms and achieves the best performance.
♻ ☆ CNG-SFDA: Clean-and-Noisy Region Guided Online-Offline Source-Free Domain Adaptation
Domain shift occurs when training (source) and test (target) data diverge in their distribution. Source-Free Domain Adaptation (SFDA) addresses this domain shift problem, aiming to adopt a trained model on the source domain to the target domain in a scenario where only a well-trained source model and unlabeled target data are available. In this scenario, handling false labels in the target domain is crucial because they negatively impact the model performance. To deal with this problem, we propose to update cluster prototypes (i.e., centroid of each sample cluster) and their structure in the target domain formulated by the source model in online manners. In the feature space, samples in different regions have different pseudo-label distribution characteristics affected by the cluster prototypes, and we adopt distinct training strategies for these samples by defining clean and noisy regions: we selectively train the target with clean pseudo-labels in the clean region, whereas we introduce mix-up inputs representing intermediate features between clean and noisy regions to increase the compactness of the cluster. We conducted extensive experiments on multiple datasets in online/offline SFDA settings, whose results demonstrate that our method, CNG-SFDA, achieves state-of-the-art for most cases.
comment: 15 pages, 5 figures
♻ ☆ ALOHA: from Attention to Likes -- a unified mOdel for understanding HumAn responses to diverse visual content
Progress in human behavior modeling involves understanding both implicit, early-stage perceptual behavior such as human attention and explicit, later-stage behavior such as subjective preferences/likes. Yet, most prior research has focused on modeling implicit and explicit human behavior in isolation; and often limited to a specific type of visual content. Can we build a unified model of human attention and preference behavior that works reliably across diverse types of visual content? Such a model would enable predicting subjective feedback such as satisfaction or aesthetic quality, along with the underlying human attention or interaction heatmaps and viewing order, enabling designers and content-creation models to optimize their creation for human-centric improvements. In this paper, we propose ALOHA -- a unified model for understanding human responses from attention to likes, across diverse visual content. ALOHA leverages a multimodal transformer % featuring distinct prediction heads for each facet, and predicts different human responses such as attention heatmaps, scanpath or viewing order, as well as subjective rating/preference. We train ALOHA on diverse public datasets spanning natural images, webpages and graphic designs, and achieve SOTA performance on multiple benchmarks across different image domains and various behavior modeling tasks. Potential applications include providing instant feedback on the effectiveness of UIs/designs/images, and serving as a reward model to further optimize visual-content creation.
♻ ☆ Do Pre-trained Models Benefit Equally in Continual Learning? WACV 2023
Existing work on continual learning (CL) is primarily devoted to developing algorithms for models trained from scratch. Despite their encouraging performance on contrived benchmarks, these algorithms show dramatic performance drops in real-world scenarios. Therefore, this paper advocates the systematic introduction of pre-training to CL, which is a general recipe for transferring knowledge to downstream tasks but is substantially missing in the CL community. Our investigation reveals the multifaceted complexity of exploiting pre-trained models for CL, along three different axes, pre-trained models, CL algorithms, and CL scenarios. Perhaps most intriguingly, improvements in CL algorithms from pre-training are very inconsistent an underperforming algorithm could become competitive and even state-of-the-art when all algorithms start from a pre-trained model. This indicates that the current paradigm, where all CL methods are compared in from-scratch training, is not well reflective of the true CL objective and desired progress. In addition, we make several other important observations, including that CL algorithms that exert less regularization benefit more from a pre-trained model; and that a stronger pre-trained model such as CLIP does not guarantee a better improvement. Based on these findings, we introduce a simple yet effective baseline that employs minimum regularization and leverages the more beneficial pre-trained model, coupled with a two-stage training pipeline. We recommend including this strong baseline in the future development of CL algorithms, due to its demonstrated state-of-the-art performance.
comment: Accepted to WACV 2023. Project page: https://kylee5.web.illinois.edu/publication/WACV23/
♻ ☆ SegGen: Supercharging Segmentation Models with Text2Mask and Mask2Img Synthesis
We propose SegGen, a highly-effective training data generation method for image segmentation, which pushes the performance limits of state-of-the-art segmentation models to a significant extent. SegGen designs and integrates two data generation strategies: MaskSyn and ImgSyn. (i) MaskSyn synthesizes new mask-image pairs via our proposed text-to-mask generation model and mask-to-image generation model, greatly improving the diversity in segmentation masks for model supervision; (ii) ImgSyn synthesizes new images based on existing masks using the mask-to-image generation model, strongly improving image diversity for model inputs. On the highly competitive ADE20K and COCO benchmarks, our data generation method markedly improves the performance of state-of-the-art segmentation models in semantic segmentation, panoptic segmentation, and instance segmentation. Notably, in terms of the ADE20K mIoU, Mask2Former R50 is largely boosted from 47.2 to 49.9 (+2.7); Mask2Former Swin-L is also significantly increased from 56.1 to 57.4 (+1.3). These promising results strongly suggest the effectiveness of our SegGen even when abundant human-annotated training data is utilized. Moreover, training with our synthetic data makes the segmentation models more robust towards unseen domains. Project website: https://seggenerator.github.io
♻ ☆ Improving Efficiency of Diffusion Models via Multi-Stage Framework and Tailored Multi-Decoder Architectures CVPR
Diffusion models, emerging as powerful deep generative tools, excel in various applications. They operate through a two-steps process: introducing noise into training samples and then employing a model to convert random noise into new samples (e.g., images). However, their remarkable generative performance is hindered by slow training and sampling. This is due to the necessity of tracking extensive forward and reverse diffusion trajectories, and employing a large model with numerous parameters across multiple timesteps (i.e., noise levels). To tackle these challenges, we present a multi-stage framework inspired by our empirical findings. These observations indicate the advantages of employing distinct parameters tailored to each timestep while retaining universal parameters shared across all time steps. Our approach involves segmenting the time interval into multiple stages where we employ custom multi-decoder U-net architecture that blends time-dependent models with a universally shared encoder. Our framework enables the efficient distribution of computational resources and mitigates inter-stage interference, which substantially improves training efficiency. Extensive numerical experiments affirm the effectiveness of our framework, showcasing significant training and sampling efficiency enhancements on three state-of-the-art diffusion models, including large-scale latent diffusion models. Furthermore, our ablation studies illustrate the impact of two important components in our framework: (i) a novel timestep clustering algorithm for stage division, and (ii) an innovative multi-decoder U-net architecture, seamlessly integrating universal and customized hyperparameters.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
♻ ☆ LEGO: Learning and Graph-Optimized Modular Tracker for Online Multi-Object Tracking with Point Clouds
Online multi-object tracking (MOT) plays a pivotal role in autonomous systems. The state-of-the-art approaches usually employ a tracking-by-detection method, and data association plays a critical role. This paper proposes a learning and graph-optimized (LEGO) modular tracker to improve data association performance in the existing literature. The proposed LEGO tracker integrates graph optimization and self-attention mechanisms, which efficiently formulate the association score map, facilitating the accurate and efficient matching of objects across time frames. To further enhance the state update process, the Kalman filter is added to ensure consistent tracking by incorporating temporal coherence in the object states. Our proposed method utilizing LiDAR alone has shown exceptional performance compared to other online tracking approaches, including LiDAR-based and LiDAR-camera fusion-based methods. LEGO ranked 1st at the time of submitting results to KITTI object tracking evaluation ranking board and remains 2nd at the time of submitting this paper, among all online trackers in the KITTI MOT benchmark for cars1
♻ ☆ PhotoBot: Reference-Guided Interactive Photography via Natural Language IROS'24
We introduce PhotoBot, a framework for fully automated photo acquisition based on an interplay between high-level human language guidance and a robot photographer. We propose to communicate photography suggestions to the user via reference images that are selected from a curated gallery. We leverage a visual language model (VLM) and an object detector to characterize the reference images via textual descriptions and then use a large language model (LLM) to retrieve relevant reference images based on a user's language query through text-based reasoning. To correspond the reference image and the observed scene, we exploit pre-trained features from a vision transformer capable of capturing semantic similarity across marked appearance variations. Using these features, we compute suggested pose adjustments for an RGB-D camera by solving a perspective-n-point (PnP) problem. We demonstrate our approach using a manipulator equipped with a wrist camera. Our user studies show that photos taken by PhotoBot are often more aesthetically pleasing than those taken by users themselves, as measured by human feedback. We also show that PhotoBot can generalize to other reference sources such as paintings.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS'24), Abu Dhabi, UAE, Oct 14-18, 2024
System/Control 22
☆ Simultaneous System Identification and Model Predictive Control with No Dynamic Regret
We provide an algorithm for the simultaneous system identification and model predictive control of nonlinear systems. The algorithm has finite-time near-optimality guarantees and asymptotically converges to the optimal (non-causal) controller. Particularly, the algorithm enjoys sublinear dynamic regret, defined herein as the suboptimality against an optimal clairvoyant controller that knows how the unknown disturbances and system dynamics will adapt to its actions. The algorithm is self-supervised and applies to control-affine systems with unknown dynamics and disturbances that can be expressed in reproducing kernel Hilbert spaces. Such spaces can model external disturbances and modeling errors that can even be adaptive to the system's state and control input. For example, they can model wind and wave disturbances to aerial and marine vehicles, or inaccurate model parameters such as inertia of mechanical systems. The algorithm first generates random Fourier features that are used to approximate the unknown dynamics or disturbances. Then, it employs model predictive control based on the current learned model of the unknown dynamics (or disturbances). The model of the unknown dynamics is updated online using least squares based on the data collected while controlling the system. We validate our algorithm in both hardware experiments and physics-based simulations. The simulations include (i) a cart-pole aiming to maintain the pole upright despite inaccurate model parameters, and (ii) a quadrotor aiming to track reference trajectories despite unmodeled aerodynamic drag effects. The hardware experiments include a quadrotor aiming to track a circular trajectory despite unmodeled aerodynamic drag effects, ground effects, and wind disturbances.
comment: 18 pages, 13 figures
☆ Forward Reachability for Discrete-Time Nonlinear Stochastic Systems via Mixed-Monotonicity and Stochastic Order
We present a method to overapproximate forward stochastic reach sets of discrete-time, stochastic nonlinear systems with interval geometry. This is made possible by extending the theory of mixed-monotone systems to incorporate stochastic orders, and a concentration inequality result that lower-bounds the probability the state resides within an interval through a monotone mapping. Then, we present an algorithm to compute the overapproximations of forward reachable set and the probability the state resides within it. We present our approach on two aerospace examples to show its efficacy.
comment: 8 pages, 3 figures, submitted to the 63rd IEEE Conference on Decision and Control
☆ Configuring Transmission Thresholds in IIoT Alarm Scenarios for Energy-Efficient Event Reporting
Industrial Internet of Things (IIoT) applications involve real-time monitoring, detection, and data analysis. This is challenged by the intermittent activity of IIoT devices (IIoTDs) and their limited battery capacity. Indeed, the former issue makes resource scheduling and random access difficult, while the latter constrains IIoTDs' lifetime and efficient operation. In this paper, we address interconnected aspects of these issues. Specifically, we focus on extending the battery life of IIoTDs sensing events/alarms by minimizing the number of unnecessary transmissions. Note that when multiple devices access the channel simultaneously, there are collisions, potentially leading to retransmissions, thus reducing energy efficiency. We propose a threshold-based transmission-decision policy based on the sensing quality and the network spatial deployment. We optimize the transmission thresholds using several approaches such as successive convex approximation, block coordinate descent methods, Voronoi diagrams, explainable machine learning, and algorithms based on natural selection and social behavior. Besides, we propose a new approach that reformulates the optimization problem as a $Q$-learning solution to promote adaptability to system dynamics. Through numerical evaluation, we demonstrate significant performance enhancements in complex IIoT environments, thus validating the practicality and effectiveness of the proposed solutions. We show that Q-learning performs the best, while the block coordinate descending method incurs the worst performance. Additionally, we compare the proposed methods with a benchmark assigning the same threshold to all the devices for transmission decision. Compared to the benchmark, up to 94\% and 60\% reduction in power consumption are achieved in low-density and high-density scenarios, respectively.
☆ TwinLab: a framework for data-efficient training of non-intrusive reduced-order models for digital twins
Purpose: Simulation-based digital twins represent an effort to provide high-accuracy real-time insights into operational physical processes. However, the computation time of many multi-physical simulation models is far from real-time. It might even exceed sensible time frames to produce sufficient data for training data-driven reduced-order models. This study presents TwinLab, a framework for data-efficient, yet accurate training of neural-ODE type reduced-order models with only two data sets. Design/methodology/approach: Correlations between test errors of reduced-order models and distinct features of corresponding training data are investigated. Having found the single best data sets for training, a second data set is sought with the help of similarity and error measures to enrich the training process effectively. Findings: Adding a suitable second training data set in the training process reduces the test error by up to 49% compared to the best base reduced-order model trained only with one data set. Such a second training data set should at least yield a good reduced-order model on its own and exhibit higher levels of dissimilarity to the base training data set regarding the respective excitation signal. Moreover, the base reduced-order model should have elevated test errors on the second data set. The relative error of the time series ranges from 0.18% to 0.49%. Prediction speed-ups of up to a factor of 36,000 are observed. Originality: The proposed computational framework facilitates the automated, data-efficient extraction of non-intrusive reduced-order models for digital twins from existing simulation models, independent of the simulation software.
comment: Accepted version of the revised manuscript published in Engineering Computations
☆ Robust Affine Formation Control of Multiagent Systems
Affine formation control is a subset of formation control methods, which has gained increasing popularity for its flexibility and maneuverability in diverse applications. Affine formation control is inherently distributed in nature, where the local controllers onboard each agent are linearly dependent on the relative position measurements of the neighboring agents. The unavailability of these measurements in practice, due to node failure or missing links, leads to a change in the underlying graph topology, and subsequently causes instability and sub-optimal performance. In this paper, we propose an estimation framework to enhance the robustness of distributed affine formation control systems against these topology changes. Our estimation framework features an adaptive fusion of both temporal information from the dynamics of agents and spatial information which is derived from the geometry of the affine formations. We propose a suite of algorithms under this framework to tackle various practical scenarios, and numerically verify our proposed estimator on stability, convergence rate, and optimality criterion. Simulations show the performance of our proposed algorithms as compared to the state-of-the-art methods, and we summarize them with future research directions.
☆ Specification-guided temporal logic control for stochastic systems: a multi-layered approach
Designing controllers to satisfy temporal requirements has proven to be challenging for dynamical systems that are affected by uncertainty. This is mainly due to the states evolving in a continuous uncountable space, the stochastic evolution of the states, and infinite-horizon temporal requirements on the system evolution, all of which makes closed-form solutions generally inaccessible. A promising approach for designing provably correct controllers on such systems is to utilize the concept of abstraction, which is based on building simplified abstract models that can be used to approximate optimal controllers with provable closeness guarantees. The available abstraction-based methods are further divided into discretization-based approaches that build a finite abstract model by discretizing the continuous space of the system, and discretization-free approaches that work directly on the continuous state space without the need for building a finite space. To reduce the conservatism in the sub-optimality of the designed controller originating from the abstraction step, this paper develops an approach that naturally has the flexibility to combine different abstraction techniques from the aforementioned classes and to combine the same abstraction technique with different parameters. First, we develop a multi-layered discretization-based approach with variable precision by combining abstraction layers with different precision parameters. Then, we exploit the advantages of both classes of abstraction-based methods by extending this multi-layered approach guided by the specification to combinations of layers with respectively discretization-based and discretization-free abstractions. We achieve an efficient implementation that is less conservative and improves the computation time and memory usage. We illustrate the benefits of the proposed multi-layered approach on several case studies.
☆ Automated C/C++ Program Repair for High-Level Synthesis via Large Language Models
In High-Level Synthesis (HLS), converting a regular C/C++ program into its HLS-compatible counterpart (HLS-C) still requires tremendous manual effort. Various program scripts have been introduced to automate this process. But the resulting codes usually contain many issues that should be manually repaired by developers. Since Large Language Models (LLMs) have the ability to automate code generation, they can also be used for automated program repair in HLS. However, due to the limited training of LLMs considering hardware and software simultaneously, hallucinations may occur during program repair using LLMs, leading to compilation failures. Besides, using LLMs for iterative repair also incurs a high cost. To address these challenges, we propose an LLM-driven program repair framework that takes regular C/C++ code as input and automatically generates its corresponding HLS-C code for synthesis while minimizing human repair effort. To mitigate the hallucinations in LLMs and enhance the prompt quality, a Retrieval-Augmented Generation (RAG) paradigm is introduced to guide the LLMs toward correct repair. In addition, we use LLMs to create a static bit width optimization program to identify the optimized bit widths for variables. Moreover, LLM-driven HLS optimization strategies are introduced to add/tune pragmas in HLS-C programs for circuit optimization. Experimental results demonstrate that the proposed LLM-driven automated framework can achieve much higher repair pass rates in 24 real-world applications compared with the traditional scripts and the direct application of LLMs for program repair.
☆ Coupling Optimization using Design Structure Matrices and Genetic Algorithm
This article seeks to contribute to a nuanced understanding of the integration of Design Structure Matrix (DSM) and genetic algorithms in the context of Complex Systems modelling described within Model-Based System Engineering approach. By examining coupling minimization as a critical aspect of advanced systems engineering practices, we aim to provide a scholarly exploration, blending theoretical insights with practical applications. The objective is to equip systems architects with analytical tools integrated within their Model Based Systems Engineering (MBSE) environment for exploring the design space of component interactions, facilitating the identification of optimal system architectures.
comment: ERTS2024, SEE; 3AF, Jun 2024, Toulouse, France
☆ BasisN: Reprogramming-Free RRAM-Based In-Memory-Computing by Basis Combination for Deep Neural Networks
Deep neural networks (DNNs) have made breakthroughs in various fields including image recognition and language processing. DNNs execute hundreds of millions of multiply-and-accumulate (MAC) operations. To efficiently accelerate such computations, analog in-memory-computing platforms have emerged leveraging emerging devices such as resistive RAM (RRAM). However, such accelerators face the hurdle of being required to have sufficient on-chip crossbars to hold all the weights of a DNN. Otherwise, RRAM cells in the crossbars need to be reprogramed to process further layers, which causes huge time/energy overhead due to the extremely slow writing and verification of the RRAM cells. As a result, it is still not possible to deploy such accelerators to process large-scale DNNs in industry. To address this problem, we propose the BasisN framework to accelerate DNNs on any number of available crossbars without reprogramming. BasisN introduces a novel representation of the kernels in DNN layers as combinations of global basis vectors shared between all layers with quantized coefficients. These basis vectors are written to crossbars only once and used for the computations of all layers with marginal hardware modification. BasisN also provides a novel training approach to enhance computation parallelization with the global basis vectors and optimize the coefficients to construct the kernels. Experimental results demonstrate that cycles per inference and energy-delay product were reduced to below 1% compared with applying reprogramming on crossbars in processing large-scale DNNs such as DenseNet and ResNet on ImageNet and CIFAR100 datasets, while the training and hardware costs are negligible.
comment: accepted by ICCAD2024
☆ Prediction-Free Coordinated Dispatch of Microgrid: A Data-Driven Online Optimization Approach
The integration of renewable energy sources (RES) into microgrids poses challenges to reliable and economic operation due to the inherent uncertainty and volatility of RES. Contrary to the previous dispatch methods that require precise predictions of RES, this paper proposes a novel prediction-free and data-driven coordinated dispatch framework for reliable microgrid operations. In the offline stage, ex-post optimal dispatch sequences are generated based on historical dispatch from "God' s-eye view". The sequences offer a global reference and are sequentially updated based on the newly observed data. Subsequently, we propose an adaptive virtual-queue-based online convex optimization (OCO) method to generate the real-time control policy of microgrid, which aim to minimize the instant operation cost while tracking the offline reference. We provide theoretical proof that the proposed method outperforms the existing OCO methods and admits sublinear dynamic regret bound and sublinear hard cumulative constraint violation bound for OCO with time-varying constraints. Case study illustrates that the proposed method outperforms state-of-the-art methods in terms of economic optimality, computational efficiency, and security.
☆ Spatio-temporal cooperative control Method of Highway Ramp Merge Based on Vehicle-road Coordination
The merging area of highway ramps faces multiple challenges, including traffic congestion, collision risks, speed mismatches, driver behavior uncertainties, limited visibility, and bottleneck effects. However, autonomous vehicles engaging in depth coordination between vehicle and road in merging zones, by pre-planning and uploading travel trajectories, can significantly enhance the safety and efficiency of merging zones.In this paper,we mainly introduce mainline priority cooperation method to achieve the time and space cooperative control of highway merge.Vehicle-mounted intelligent units share real-time vehicle status and driving intentions with Road Section Management Units, which pre-plan the spatiotemporal trajectories of vehicle travel. After receiving these trajectories, Vehicle Intelligent Units strictly adhere to them. Through this deep collaboration between vehicles and roads, conflicts in time and space during vehicle travel are eliminated in advance.
☆ Reliable Projection Based Unsupervised Learning for Semi-Definite QCQP with Application of Beamforming Optimization
In this paper, we investigate a special class of quadratic-constrained quadratic programming (QCQP) with semi-definite constraints. Traditionally, since such a problem is non-convex and N-hard, the neural network (NN) is regarded as a promising method to obtain a high-performing solution. However, due to the inherent prediction error, it is challenging to ensure all solution output by the NN is feasible. Although some existing methods propose some naive methods, they only focus on reducing the constraint violation probability, where not all solutions are feasibly guaranteed. To deal with the above challenge, in this paper a computing efficient and reliable projection is proposed, where all solution output by the NN are ensured to be feasible. Moreover, unsupervised learning is used, so the NN can be trained effectively and efficiently without labels. Theoretically, the solution of the NN after projection is proven to be feasible, and we also prove the projection method can enhance the convergence performance and speed of the NN. To evaluate our proposed method, the quality of service (QoS)-contained beamforming scenario is studied, where the simulation results show the proposed method can achieve high-performance which is competitive with the lower bound.
♻ ☆ Augmented Labeled Random Finite Sets and Its Application to Group Target Tracking
This paper addresses the problem of group target tracking (GTT), wherein multiple closely spaced targets within a group pose a coordinated motion. To improve the tracking performance, the labeled random finite sets (LRFSs) theory is adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs, which introduces group information into the definition of LRFSs. Specifically, for each element in an LRFS, the kinetic states, track label, and the corresponding group information of its represented target are incorporated. Furthermore, by means of the labeled multi-Bernoulli (LMB) filter with the proposed augmented LRFSs, the group structure is iteratively propagated and updated during the tracking process, which achieves the simultaneously estimation of the kinetic states, track label, and the corresponding group information of multiple group targets, and further improves the GTT tracking performance. Finally, simulation experiments are provided, which well demonstrates the effectiveness of the labeled multi-Bernoulli filter with the proposed augmented LRFSs for GTT tracking.
♻ ☆ DiffTune-MPC: Closed-Loop Learning for Model Predictive Control
Model predictive control (MPC) has been applied to many platforms in robotics and autonomous systems for its capability to predict a system's future behavior while incorporating constraints that a system may have. To enhance the performance of a system with an MPC controller, one can manually tune the MPC's cost function. However, it can be challenging due to the possibly high dimension of the parameter space as well as the potential difference between the open-loop cost function in MPC and the overall closed-loop performance metric function. This paper presents DiffTune-MPC, a novel learning method, to learn the cost function of an MPC in a closed-loop manner. The proposed framework is compatible with the scenario where the time interval for performance evaluation and MPC's planning horizon have different lengths. We show the auxiliary problem whose solution admits the analytical gradients of MPC and discuss its variations in different MPC settings, including nonlinear MPCs that are solved using sequential quadratic programming. Simulation results demonstrate the learning capability of DiffTune-MPC and the generalization capability of the learned MPC parameters.
comment: The first two authors contributed equally to this work
♻ ☆ Minimax problems for ensembles of affine-control systems
In this paper, we consider ensembles of affine-control systems in $\mathbb{R}^d$, and we study simultaneous optimal control problems related to the worst-case minimization. After proving that such problems admit solutions, denoting with $(\Theta^N)_N$ a sequence of compact sets that parametrize the ensembles of systems, we first show that the corresponding minimax optimal control problems are $\Gamma$-convergent whenever $(\Theta^N)_N$ has a limit with respect to the Hausdorff distance. Besides its independent interest, the previous result is crucial role for establishing the Pontryagin Maximum Principle (PMP) when the ensemble is parametrized by a set $\Theta$ consisting of infinitely many points. Namely, we first approximate $\Theta$ by finite and increasing-in-size sets $(\Theta^N)_N$ for which the PMP is known, and then we derive the PMP for the $\Gamma$-limiting problem. The same strategy can be pursued in applications, where we can reduce infinite ensembles to finite ones to compute the minimizers numerically. We bring as a numerical example the Schr\"odinger equation for a qubit with uncertain resonance frequency.
comment: 21 pages, 1 Figure. Correction of typos and new section with a numerical example
♻ ☆ Robust Pivoting Manipulation using Contact Implicit Bilevel Optimization
Generalizable manipulation requires that robots be able to interact with novel objects and environment. This requirement makes manipulation extremely challenging as a robot has to reason about complex frictional interactions with uncertainty in physical properties of the object and the environment. In this paper, we study robust optimization for planning of pivoting manipulation in the presence of uncertainties. We present insights about how friction can be exploited to compensate for inaccuracies in the estimates of the physical properties during manipulation. Under certain assumptions, we derive analytical expressions for stability margin provided by friction during pivoting manipulation. This margin is then used in a Contact Implicit Bilevel Optimization (CIBO) framework to optimize a trajectory that maximizes this stability margin to provide robustness against uncertainty in several physical parameters of the object. We present analysis of the stability margin with respect to several parameters involved in the underlying bilevel optimization problem. We demonstrate our proposed method using a 6 DoF manipulator for manipulating several different objects. We also design and validate an MPC controller using the proposed algorithm which can track and regulate the position of the object during manipulation.
comment: Accepted for IEEE Transactions on Robotics. arXiv admin note: text overlap with arXiv:2203.11412
♻ ☆ Design Tasks and Their Complexity for the European Train Control System with Hybrid Train Detection
Railway networks have become increasingly important in recent times, especially to move freight and public transportation from road traffic and planes to more environmentally friendly trains. Since expanding the global railway network is time and resource-consuming, maximizing the rail capacity on the existing infrastructure is desirable. However, simply running more trains is infeasible as certain constraints enforced by the train control system must be satisfied. The capacity of a network depends (amongst others) on the distance between trains allowed by this safety system. While most signaling systems rely on fixed blocks defined by costly hardware, new specifications provided by Level 2 with Hybrid Train Detection of the European Train Control System (ETCS L2 HTD), formerly known as ETCS Hybrid Level 3, allow the usage of virtual subsections. This additional degree of freedom allows for shorter train following times and, thus, more trains on existing railway tracks. On the other hand, new design tasks arise on which automated methods might be helpful for designers of modern railway networks. However, although first approaches exist that solve design problems arising within ETCS L2 HTD, neither formal descriptions nor results on the computational complexity of the corresponding design tasks exist. In this paper, we fill this gap by providing a formal description of design tasks for ETCS L2 HTD and proof that these tasks are NP-complete or NP-hard, respectively. By that, we are providing a solid basis for the future development of methods to solve those tasks, which will be integrated into the Munich Train Control Toolkit available open-source on GitHub at https://github.com/cda-tum/mtct.
comment: various changing to improve understandability and clarity, change in title to align with the union of ETCS L2 and L3 in up-to-date specifications
♻ ☆ PINNSim: A Simulator for Power System Dynamics based on Physics-Informed Neural Networks SC
The dynamic behaviour of a power system can be described by a system of differential-algebraic equations. Time-domain simulations are used to simulate the evolution of these dynamics. They often require the use of small time step sizes and therefore become computationally expensive. To accelerate these simulations, we propose a simulator - PINNSim - that allows to take significantly larger time steps. It is based on Physics-Informed Neural Networks (PINNs) for the solution of the dynamics of single components in the power system. To resolve their interaction we employ a scalable root-finding algorithm. We demonstrate PINNSim on a 9-bus system and show the increased time step size compared to a trapezoidal integration rule. We discuss key characteristics of PINNSim and important steps for developing PINNSim into a fully fledged simulator. As such, it could offer the opportunity for significantly increasing time step sizes and thereby accelerating time-domain simulations.
comment: presented at the 23rd Power Systems Computation Conference (PSCC 2024) and published in Electric Power Systems Research
♻ ☆ Learning flow functions of spiking systems
We propose a framework for surrogate modelling of spiking systems. These systems are often described by stiff differential equations with high-amplitude oscillations and multi-timescale dynamics, making surrogate models an attractive tool for system design and simulation. We parameterise the flow function of a spiking system using a recurrent neural network architecture, allowing for a direct continuous-time representation of the state trajectories. The spiking nature of the signals makes for a data-heavy and computationally hard training process; thus, we describe two methods to mitigate these difficulties. We demonstrate our framework on two conductance-based models of biological neurons, showing that we are able to train surrogate models which accurately replicate the spiking behaviour.
comment: Accepted to the 6th Annual Learning for Dynamics & Control Conference
♻ ☆ Overview Analysis of Recent Developments on Self-Driving Electric Vehicles
This paper provides a comprehensive overview of recent advancements in autonomous electric vehicles (AEVs) within the specified region. It elaborates on the progress and comparative analysis of diverse subsystems, including energy storage, cell balancing for battery systems, vehicle charger layouts, electric vehicle motor mechanisms, and braking systems. Furthermore, this paper showcases several prototype autonomous electric vehicles as conclusive study findings.
♻ ☆ Learning Decentralized Linear Quadratic Regulators with $\sqrt{T}$ Regret
We propose an online learning algorithm that adaptively designs a decentralized linear quadratic regulator when the system model is unknown a priori and new data samples from a single system trajectory become progressively available. The algorithm uses a disturbance-feedback representation of state-feedback controllers coupled with online convex optimization with memory and delayed feedback. Under the assumption that the system is stable or given a known stabilizing controller, we show that our controller enjoys an expected regret that scales as $\sqrt{T}$ with the time horizon $T$ for the case of partially nested information pattern. For more general information patterns, the optimal controller is unknown even if the system model is known. In this case, the regret of our controller is shown with respect to a linear sub-optimal controller. We validate our theoretical findings using numerical experiments.
comment: 50 pages, 3 figures
♻ ☆ TieBot: Learning to Knot a Tie from Visual Demonstration through a Real-to-Sim-to-Real Approach
The tie-knotting task is highly challenging due to the tie's high deformation and long-horizon manipulation actions. This work presents TieBot, a Real-to-Sim-to-Real learning from visual demonstration system for the robots to learn to knot a tie. We introduce the Hierarchical Feature Matching approach to estimate a sequence of tie's meshes from the demonstration video. With these estimated meshes used as subgoals, we first learn a teacher policy using privileged information. Then, we learn a student policy with point cloud observation by imitating teacher policy. Lastly, our pipeline learns a residual policy when the learned policy is applied to real-world execution, mitigating the Sim2Real gap. We demonstrate the effectiveness of TieBot in simulation and the real world. In the real-world experiment, a dual-arm robot successfully knots a tie, achieving 50% success rate among 10 trials. Videos can be found https://tiebots.github.io/.
comment: fix few typos
Robotics 39
☆ Value-Penalized Auxiliary Control from Examples for Learning without Rewards or Demonstrations
Learning from examples of success is an appealing approach to reinforcement learning that eliminates many of the disadvantages of using hand-crafted reward functions or full expert-demonstration trajectories, both of which can be difficult to acquire, biased, or suboptimal. However, learning from examples alone dramatically increases the exploration challenge, especially for complex tasks. This work introduces value-penalized auxiliary control from examples (VPACE); we significantly improve exploration in example-based control by adding scheduled auxiliary control and examples of auxiliary tasks. Furthermore, we identify a value-calibration problem, where policy value estimates can exceed their theoretical limits based on successful data. We resolve this problem, which is exacerbated by learning auxiliary tasks, through the addition of an above-success-level value penalty. Across three simulated and one real robotic manipulation environment, and 21 different main tasks, we show that our approach substantially improves learning efficiency. Videos, code, and datasets are available at https://papers.starslab.ca/vpace.
comment: Submitted to the Conference on Robot Learning (CoRL'24), Munich, Germany, Nov. 6-9, 2024
☆ Magnetic Hysteresis Modeling with Neural Operators
Hysteresis modeling is crucial to comprehend the behavior of magnetic devices, facilitating optimal designs. Hitherto, deep learning-based methods employed to model hysteresis, face challenges in generalizing to novel input magnetic fields. This paper addresses the generalization challenge by proposing neural operators for modeling constitutive laws that exhibit magnetic hysteresis by learning a mapping between magnetic fields. In particular, two prominent neural operators -- deep operator network and Fourier neural operator -- are employed to predict novel first-order reversal curves and minor loops, where novel means they are not used to train the model. In addition, a rate-independent Fourier neural operator is proposed to predict material responses at sampling rates different from those used during training to incorporate the rate-independent characteristics of magnetic hysteresis. The presented numerical experiments demonstrate that neural operators efficiently model magnetic hysteresis, outperforming the traditional neural recurrent methods on various metrics and generalizing to novel magnetic fields. The findings emphasize the advantages of using neural operators for modeling hysteresis under varying magnetic conditions, underscoring their importance in characterizing magnetic material based devices.
comment: 8 pages, 5 figures
☆ TieBot: Learning to Knot a Tie from Visual Demonstration through a Real-to-Sim-to-Real Approach
The tie-knotting task is highly challenging due to the tie's high deformation and long-horizon manipulation actions. This work presents TieBot, a Real-to-Sim-to-Real learning from visual demonstration system for the robots to learn to knot a tie. We introduce the Hierarchical Feature Matching approach to estimate a sequence of tie's meshes from the demonstration video. With these estimated meshes used as subgoals, we first learn a teacher policy using privileged information. Then, we learn a student policy with point cloud observation by imitating teacher policy. Lastly, our pipeline learns a residual policy when the learned policy is applied to real-world execution, mitigating the Sim2Real gap. We demonstrate the effectiveness of TieBot in simulation and the real world. In the real-world experiment, a dual-arm robot successfully knots a tie, achieving 50% success rate among 10 trials. Videos can be found on our $\href{https://tiebots.github.io/}{\text{website}}$.
comment: initial commit
☆ Terrain Classification Enhanced with Uncertainty for Space Exploration Robots from Proprioceptive Data ICML 2023
Terrain Classification is an essential task in space exploration, where unpredictable environments are difficult to observe using only exteroceptive sensors such as vision. Implementing Neural Network classifiers can have high performance but can be deemed untrustworthy as they lack transparency, which makes them unreliable for taking high-stakes decisions during mission planning. We address this by proposing Neural Networks with Uncertainty Quantification in Terrain Classification. We enable our Neural Networks with Monte Carlo Dropout, DropConnect, and Flipout in time series-capable architectures using only proprioceptive data as input. We use Bayesian Optimization with Hyperband for efficient hyperparameter optimization to find optimal models for trustworthy terrain classification.
comment: 6 pages, 4 figures. LatinX in AI Workshop @ ICML 2023 Camera Ready
☆ PPO-based Dynamic Control of Uncertain Floating Platforms in the Zero-G Environment ICRA
In the field of space exploration, floating platforms play a crucial role in scientific investigations and technological advancements. However, controlling these platforms in zero-gravity environments presents unique challenges, including uncertainties and disturbances. This paper introduces an innovative approach that combines Proximal Policy Optimization (PPO) with Model Predictive Control (MPC) in the zero-gravity laboratory (Zero-G Lab) at the University of Luxembourg. This approach leverages PPO's reinforcement learning power and MPC's precision to navigate the complex control dynamics of floating platforms. Unlike traditional control methods, this PPO-MPC approach learns from MPC predictions, adapting to unmodeled dynamics and disturbances, resulting in a resilient control framework tailored to the zero-gravity environment. Simulations and experiments in the Zero-G Lab validate this approach, showcasing the adaptability of the PPO agent. This research opens new possibilities for controlling floating platforms in zero-gravity settings, promising advancements in space exploration.
comment: Pre-print version submitted to 2024 International Conference on Robotics and Automation (ICRA)
Localization in Dynamic Planar Environments Using Few Distance Measurements
We present a method for determining the unknown location of a sensor placed in a known 2D environment in the presence of unknown dynamic obstacles, using only few distance measurements. We present guarantees on the quality of the localization, which are robust under mild assumptions on the density of the unknown/dynamic obstacles in the known environment. We demonstrate the effectiveness of our method in simulated experiments for different environments and varying dynamic-obstacle density. Our open source software is available at https://github.com/TAU-CGL/vb-fdml2-public.
☆ Bunny-VisionPro: Real-Time Bimanual Dexterous Teleoperation for Imitation Learning
Teleoperation is a crucial tool for collecting human demonstrations, but controlling robots with bimanual dexterous hands remains a challenge. Existing teleoperation systems struggle to handle the complexity of coordinating two hands for intricate manipulations. We introduce Bunny-VisionPro, a real-time bimanual dexterous teleoperation system that leverages a VR headset. Unlike previous vision-based teleoperation systems, we design novel low-cost devices to provide haptic feedback to the operator, enhancing immersion. Our system prioritizes safety by incorporating collision and singularity avoidance while maintaining real-time performance through innovative designs. Bunny-VisionPro outperforms prior systems on a standard task suite, achieving higher success rates and reduced task completion times. Moreover, the high-quality teleoperation demonstrations improve downstream imitation learning performance, leading to better generalizability. Notably, Bunny-VisionPro enables imitation learning with challenging multi-stage, long-horizon dexterous manipulation tasks, which have rarely been addressed in previous work. Our system's ability to handle bimanual manipulations while prioritizing safety and real-time performance makes it a powerful tool for advancing dexterous manipulation and imitation learning.
comment: project page: https://dingry.github.io/projects/bunny_visionpro.html
☆ Ultra-Lightweight Collaborative Mapping for Robot Swarms
A key requirement in robotics is the ability to simultaneously self-localize and map a previously unknown environment, relying primarily on onboard sensing and computation. Achieving fully onboard accurate simultaneous localization and mapping (SLAM) is feasible for high-end robotic platforms, whereas small and inexpensive robots face challenges due to constrained hardware, therefore frequently resorting to external infrastructure for sensing and computation. The challenge is further exacerbated in swarms of robots, where coordination, scalability, and latency are crucial concerns. This work introduces a decentralized and lightweight collaborative SLAM approach that enables mapping on virtually any robot, even those equipped with low-cost hardware, including miniaturized insect-size devices. Moreover, the proposed solution supports large swarm formations with the capability to coordinate hundreds of agents. To substantiate our claims, we have successfully implemented collaborative SLAM on centimeter-size drones weighing only 46 grams. Remarkably, we achieve results comparable to high-end state-of-the-art solutions while reducing the cost, memory, and computation requirements by two orders of magnitude. Our approach is innovative in three main aspects. First, it enables onboard infrastructure-less collaborative mapping with a lightweight and cost-effective solution in terms of sensing and computation. Second, we optimize the data traffic within the swarm to support hundreds of cooperative agents using standard wireless protocols such as ultra-wideband (UWB), Bluetooth, or WiFi. Last, we implement a distributed swarm coordination policy to decrease mapping latency and enhance accuracy.
comment: 20 pages, 7 figures
☆ IntentionNet: Map-Lite Visual Navigation at the Kilometre Scale
This work explores the challenges of creating a scalable and robust robot navigation system that can traverse both indoor and outdoor environments to reach distant goals. We propose a navigation system architecture called IntentionNet that employs a monolithic neural network as the low-level planner/controller, and uses a general interface that we call intentions to steer the controller. The paper proposes two types of intentions, Local Path and Environment (LPE) and Discretised Local Move (DLM), and shows that DLM is robust to significant metric positioning and mapping errors. The paper also presents Kilo-IntentionNet, an instance of the IntentionNet system using the DLM intention that is deployed on a Boston Dynamics Spot robot, and which successfully navigates through complex indoor and outdoor environments over distances of up to a kilometre with only noisy odometry.
☆ Performance Comparison of ROS2 Middlewares for Multi-robot Mesh Networks in Planetary Exploration
Recent advancements in Multi-Robot Systems (MRS) and mesh network technologies pave the way for innovative approaches to explore extreme environments. The Artemis Accords, a series of international agreements, have further catalyzed this progress by fostering cooperation in space exploration, emphasizing the use of cutting-edge technologies. In parallel, the widespread adoption of the Robot Operating System 2 (ROS 2) by companies across various sectors underscores its robustness and versatility. This paper evaluates the performances of available ROS 2 MiddleWare (RMW), such as FastRTPS, CycloneDDS and Zenoh, over a mesh network with a dynamic topology. The final choice of RMW is determined by the one that would fit the most the scenario: an exploration of the extreme extra-terrestrial environment using a MRS. The conducted study in a real environment highlights Zenoh as a potential solution for future applications, showing a reduced delay, reachability, and CPU usage while being competitive on data overhead and RAM usage over a dynamic mesh topology
comment: PrePrint
☆ Applying Extended Object Tracking for Self-Localization of Roadside Radar Sensors
Intelligent Transportation Systems (ITS) can benefit from roadside 4D mmWave radar sensors for large-scale traffic monitoring due to their weatherproof functionality, long sensing range and low manufacturing cost. However, the localization method using external measurement devices has limitations in urban environments. Furthermore, if the sensor mount exhibits changes due to environmental influences, they cannot be corrected when the measurement is performed only during the installation. In this paper, we propose self-localization of roadside radar data using Extended Object Tracking (EOT). The method analyses both the tracked trajectories of the vehicles observed by the sensor and the aerial laser scan of city streets, assigns labels of driving behaviors such as "straight ahead", "left turn", "right turn" to trajectory sections and road segments, and performs Semantic Iterative Closest Points (SICP) algorithm to register the point cloud. The method exploits the result from a down stream task -- object tracking -- for localization. We demonstrate high accuracy in the sub-meter range along with very low orientation error. The method also shows good data efficiency. The evaluation is done in both simulation and real-world tests.
☆ Position and Altitude of the Nao Camera Head from Two Points on the Soccer Field plus the Gravitational Direction
To be able to play soccer, a robot needs a good estimate of its current position on the field. Ideally, multiple features are visible that have known locations. By applying trigonometry we can estimate the viewpoint from where this observation was actually made. Given that the Nao robots of the Standard Platform League have quite a limited field of view, a given camera frame typically only allows for one or two points to be recognized. In this paper we propose a method for determining the (x, y) coordinates on the field and the height h of the camera from the geometry of a simplified tetrahedron. This configuration is formed by two observed points on the ground plane plus the gravitational direction. When the distance between the two points is known, and the directions to the points plus the gravitational direction are measured, all dimensions of the tetrahedron can be determined. By performing these calculations with rational trigonometry instead of classical trigonometry, the computations turn out to be 28.7% faster, with equal numerical accuracy. The position of the head of the Nao can also be externally measured with the OptiTrack system. The difference between externally measured and internally predicted position from sensor data gives us mean absolute errors in the 3-6 centimeters range, when we estimated the gravitational direction from the vanishing point of the outer edges of the goal posts.
comment: to be published in the Proceedings of the RoboCup 2024 symposium - 12 pages
☆ NLP Sampling: Combining MCMC and NLP Methods for Diverse Constrained Sampling
Generating diverse samples under hard constraints is a core challenge in many areas. With this work we aim to provide an integrative view and framework to combine methods from the fields of MCMC, constrained optimization, as well as robotics, and gain insights in their strengths from empirical evaluations. We propose NLP Sampling as a general problem formulation, propose a family of restarting two-phase methods as a framework to integrated methods from across the fields, and evaluate them on analytical and robotic manipulation planning problems. Complementary to this, we provide several conceptual discussions, e.g. on the role of Lagrange parameters, global sampling, and the idea of a Diffused NLP and a corresponding model-based denoising sampler.
☆ Development of a semi-autonomous framework for NDT inspection with a tilting aerial platform
This letter investigates the problem of controlling an aerial manipulator, composed of an omnidirectional tilting drone equipped with a five-degrees-of-freedom robotic arm. The robot has to interact with the environment to inspect structures and perform non-destructive measurements. A parallel force-impedance control technique is developed to establish contact with the designed surface with a desired force profile. During the interaction, a pushing phase is required to create a vacuum between the surface and the echometer sensor mounted at the end-effector, to measure the thickness of the interaction surface. Repetitive measures are performed to show the repeatability of the algorithm.
comment: In proceedings of 18th International Symposium on Experimental Robotics (ISER 2023)
☆ Past, Present, and Future: A Survey of The Evolution of Affective Robotics For Well-being
Recent research in affective robots has recognized their potential in supporting human well-being. Due to rapidly developing affective and artificial intelligence technologies, this field of research has undergone explosive expansion and advancement in recent years. In order to develop a deeper understanding of recent advancements, we present a systematic review of the past 10 years of research in affective robotics for wellbeing. In this review, we identify the domains of well-being that have been studied, the methods used to investigate affective robots for well-being, and how these have evolved over time. We also examine the evolution of the multifaceted research topic from three lenses: technical, design, and ethical. Finally, we discuss future opportunities for research based on the gaps we have identified in our review -- proposing pathways to take affective robotics from the past and present to the future. The results of our review are of interest to human-robot interaction and affective computing researchers, as well as clinicians and well-being professionals who may wish to examine and incorporate affective robotics in their practices.
☆ Online Time-Informed Kinodynamic Motion Planning of Nonlinear Systems
Sampling-based kinodynamic motion planners (SKMPs) are powerful in finding collision-free trajectories for high-dimensional systems under differential constraints. Time-informed set (TIS) can provide the heuristic search domain to accelerate their convergence to the time-optimal solution. However, existing TIS approximation methods suffer from the curse of dimensionality, computational burden, and limited system applicable scope, e.g., linear and polynomial nonlinear systems. To overcome these problems, we propose a method by leveraging deep learning technology, Koopman operator theory, and random set theory. Specifically, we propose a Deep Invertible Koopman operator with control U model named DIKU to predict states forward and backward over a long horizon by modifying the auxiliary network with an invertible neural network. A sampling-based approach, ASKU, performing reachability analysis for the DIKU is developed to approximate the TIS of nonlinear control systems online. Furthermore, we design an online time-informed SKMP using a direct sampling technique to draw uniform random samples in the TIS. Simulation experiment results demonstrate that our method outperforms other existing works, approximating TIS in near real-time and achieving superior planning performance in several time-optimal kinodynamic motion planning problems.
☆ The Shortcomings of Force-from-Motion in Robot Learning
Robotic manipulation requires accurate motion and physical interaction control. However, current robot learning approaches focus on motion-centric action spaces that do not explicitly give the policy control over the interaction. In this paper, we discuss the repercussions of this choice and argue for more interaction-explicit action spaces in robot learning.
☆ Efficient Fusion and Task Guided Embedding for End-to-end Autonomous Driving
To address the challenges of sensor fusion and safety risk prediction, contemporary closed-loop autonomous driving neural networks leveraging imitation learning typically require a substantial volume of parameters and computational resources to run neural networks. Given the constrained computational capacities of onboard vehicular computers, we introduce a compact yet potent solution named EfficientFuser. This approach employs EfficientViT for visual information extraction and integrates feature maps via cross attention. Subsequently, it utilizes a decoder-only transformer for the amalgamation of multiple features. For prediction purposes, learnable vectors are embedded as tokens to probe the association between the task and sensor features through attention. Evaluated on the CARLA simulation platform, EfficientFuser demonstrates remarkable efficiency, utilizing merely 37.6% of the parameters and 8.7% of the computations compared to the state-of-the-art lightweight method with only 0.4% lower driving score, and the safety score neared that of the leading safety-enhanced method, showcasing its efficacy and potential for practical deployment in autonomous driving systems.
comment: Best Paper Award of the IEEE 13th Data-Driven Control and Learning Systems Conference
☆ Prävention und Beseitigung von Fehlerursachen im Kontext von unbemannten Fahrzeugen
Mobile robots, becoming increasingly autonomous, are capable of operating in diverse and unknown environments. This flexibility allows them to fulfill goals independently and adapting their actions dynamically without rigidly predefined control codes. However, their autonomous behavior complicates guaranteeing safety and reliability due to the limited influence of a human operator to accurately supervise and verify each robot's actions. To ensure autonomous mobile robot's safety and reliability, which are aspects of dependability, methods are needed both in the planning and execution of missions for autonomous mobile robots. In this article, a twofold approach is presented that ensures fault removal in the context of mission planning and fault prevention during mission execution for autonomous mobile robots. First, the approach consists of a concept based on formal verification applied during the planning phase of missions. Second, the approach consists of a rule-based concept applied during mission execution. A use case applying the approach is presented, discussing how the two concepts complement each other and what contribution they make to certain aspects of dependability. Unbemannte Fahrzeuge sind durch zunehmende Autonomie in der Lage in unterschiedlichen unbekannten Umgebungen zu operieren. Diese Flexibilit\"at erm\"oglicht es ihnen Ziele eigenst\"andig zu erf\"ullen und ihre Handlungen dynamisch anzupassen ohne starr vorgegebenen Steuerungscode. Allerdings erschwert ihr autonomes Verhalten die Gew\"ahrleistung von Sicherheit und Zuverl\"assigkeit, bzw. der Verl\"asslichkeit, da der Einfluss eines menschlichen Bedieners zur genauen \"Uberwachung und Verifizierung der Aktionen jedes Roboters begrenzt ist. Daher werden Methoden sowohl in der Planung als auch in der Ausf\"uhrung von Missionen f\"ur unbemannte Fahrzeuge ben\"otigt, um die Sicherheit und Zuverl\"assigkeit dieser Fahrzeuge zu gew\"ahrleisten. In diesem Artikel wird ein zweistufiger Ansatz vorgestellt, der eine Fehlerbeseitigung w\"ahrend der Missionsplanung und eine Fehlerpr\"avention w\"ahrend der Missionsausf\"uhrung f\"ur unbemannte Fahrzeuge sicherstellt. Die Fehlerbeseitigung basiert auf formaler Verifikation, die w\"ahrend der Planungsphase der Missionen angewendet wird. Die Fehlerpr\"avention basiert auf einem regelbasierten Konzept, das w\"ahrend der Missionsausf\"uhrung angewendet wird. Der Ansatz wird an einem Beispiel angewendet und es wird diskutiert, wie die beiden Konzepte sich erg\"anzen und welchen Beitrag sie zu verschiedenen Aspekten der Verl\"asslichkeit leisten.
comment: Language: German. Dieser Beitrag wird eingereicht in: "dtec.bw-Beitr\"age der Helmut-Schmidt-Universit\"at/Universit\"at der Bundeswehr Hamburg: Forschungsaktivit\"aten im Zentrum f\"ur Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw"
☆ Robot Shape and Location Retention in Video Generation Using Diffusion Models
Diffusion models have marked a significant milestone in the enhancement of image and video generation technologies. However, generating videos that precisely retain the shape and location of moving objects such as robots remains a challenge. This paper presents diffusion models specifically tailored to generate videos that accurately maintain the shape and location of mobile robots. This development offers substantial benefits to those working on detecting dangerous interactions between humans and robots by facilitating the creation of training data for collision detection models, circumventing the need for collecting data from the real world, which often involves legal and ethical issues. Our models incorporate techniques such as embedding accessible robot pose information and applying semantic mask regulation within the ConvNext backbone network. These techniques are designed to refine intermediate outputs, therefore improving the retention performance of shape and location. Through extensive experimentation, our models have demonstrated notable improvements in maintaining the shape and location of different robots, as well as enhancing overall video generation quality, compared to the benchmark diffusion model. Codes will be opensourced at \href{https://github.com/PengPaulWang/diffusion-robots}{Github}.
comment: 8 pages, 10 figures
☆ Fast maneuver recovery from aerial observation: trajectory clustering and outliers rejection
The implementation of road user models that realistically reproduce a credible behavior in a multi-agentsimulation is still an open problem. A data-driven approach consists on to deduce behaviors that may exist in real situation to obtain different types of trajectories from a large set of observations. The data, and its classification, could then be used to train models capable to extrapolate such behavior. Cars and two different types of Vulnerable Road Users (VRU) will be considered by the trajectory clustering methods proposed: pedestrians and cyclists. The results reported here evaluate methods to extract well-defined trajectory classes from raw data without the use of map information while also separating ''eccentric'' or incomplete trajectories from the ones that are complete and representative in any scenario. Two environments will serve as test for the methods develop, three different intersections and one roundabout. The resulting clusters of trajectories can then be used for prediction or learning tasks or discarded if it is composed by outliers.
☆ A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series SP
In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.
comment: SPAICE: AI in and for Space, 2024
☆ Solving Motion Planning Tasks with a Scalable Generative Model ECCV2024
As autonomous driving systems being deployed to millions of vehicles, there is a pressing need of improving the system's scalability, safety and reducing the engineering cost. A realistic, scalable, and practical simulator of the driving world is highly desired. In this paper, we present an efficient solution based on generative models which learns the dynamics of the driving scenes. With this model, we can not only simulate the diverse futures of a given driving scenario but also generate a variety of driving scenarios conditioned on various prompts. Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes, significantly improving inference and training speed without sacrificing generative capability. This efficiency makes it ideal for being used as an online reactive environment for reinforcement learning, an evaluator for planning policies, and a high-fidelity simulator for testing. We evaluated our model against two real-world datasets: the Waymo motion dataset and the nuPlan dataset. On the simulation realism and scene generation benchmark, our model achieves the state-of-the-art performance. And in the planning benchmarks, our planner outperforms the prior arts. We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks, including data generation, simulation, planning, and online training. Source code is public at https://github.com/HorizonRobotics/GUMP/
comment: ECCV2024
☆ LiDAR-Inertial Odometry Based on Extended Kalman Filter
LiDAR-Inertial Odometry (LIO) is typically implemented using an optimization-based approach, with the factor graph often being employed due to its capability to seamlessly integrate residuals from both LiDAR and IMU measurements. Conversely, a recent study has demonstrated that accurate LIO can also be achieved using a loosely-coupled method. Inspired by this advancements, we present a novel LIO method that leverages the recursive Bayes filter, solved via the Extended Kalman Filter (EKF) - herein referred to as LIO-EKF. Within LIO-EKF, prior and likelihood distributions are computed using IMU preintegration and scan matching between LiDAR and local map point clouds, and the pose, velocity, and IMU biases are updated through the EKF process. Through experiments with the Newer College dataset, we demonstrate that LIO-EKF achieves precise trajectory tracking and mapping. Its accuracy is comparable to that of the state-of-the-art methods in both tightly- and loosely-coupled methods.
☆ Hierarchical Large Scale Multirobot Path (Re)Planning IROS2024
We consider a large-scale multi-robot path planning problem in a cluttered environment. Our approach achieves real-time replanning by dividing the workspace into cells and utilizing a hierarchical planner. Specifically, multi-commodity flow-based high-level planners route robots through the cells to reduce congestion, while an anytime low-level planner computes collision-free paths for robots within each cell in parallel. Despite resulting in longer paths compared to the baseline multi-agent pathfinding algorithm, our method produces a solution with significant improvement in computation time. Specifically, we show empirical results of a 500-times speedup in computation time compared to the baseline multi-agent pathfinding approach on the environments we study. We account for the robot's embodiment and support non-stop execution when replanning continuously. We demonstrate the real-time performance of our algorithm with up to 142 robots in simulation, and a representative 32 physical Crazyflie nano-quadrotor experiment.
comment: 8 pages, 7 figures, 1 table. Accepted by IROS2024
☆ Motion Comparator: Visual Comparison of Robot Motions
Roboticists compare robot motions for tasks such as parameter tuning, troubleshooting, and deciding between possible motions. However, most existing visualization tools are designed for individual motions and lack the features necessary to facilitate robot motion comparison. In this paper, we utilize a rigorous design framework to develop Motion Comparator, a web-based tool that facilitates the comprehension, comparison, and communication of robot motions. Our design process identified roboticists' needs, articulated design challenges, and provided corresponding strategies. Motion Comparator includes several key features such as multi-view coordination, quaternion visualization, time warping, and comparative designs. To demonstrate the applications of Motion Comparator, we discuss four case studies in which our tool is used for motion selection, troubleshooting, parameter tuning, and motion review.
comment: Accepted by IEEE Robotics and Automation Letters (RAL)
☆ PWTO: A Heuristic Approach for Trajectory Optimization in Complex Terrains
This paper considers a trajectory planning problem for a robot navigating complex terrains, which arises in applications ranging from autonomous mining vehicles to planetary rovers. The problem seeks to find a low-cost dynamically feasible trajectory for the robot. The problem is challenging as it requires solving a non-linear optimization problem that often has many local minima due to the complex terrain. To address the challenge, we propose a method called Pareto-optimal Warm-started Trajectory Optimization (PWTO) that attempts to combine the benefits of graph search and trajectory optimization, two very different approaches to planning. PWTO first creates a state lattice using simplified dynamics of the robot and leverages a multi-objective graph search method to obtain a set of paths. Each of the paths is then used to warm-start a local trajectory optimization process, so that different local minima are explored to find a globally low-cost solution. In our tests, the solution cost computed by PWTO is often less than half of the costs computed by the baselines. In addition, we verify the trajectories generated by PWTO in Gazebo simulation in complex terrains with both wheeled and quadruped robots. The code of this paper is open sourced and can be found at https://github.com/rap-lab-org/public_pwto.
☆ OrbitGrasp: $SE(3)$-Equivariant Grasp Learning
While grasp detection is an important part of any robotic manipulation pipeline, reliable and accurate grasp detection in $SE(3)$ remains a research challenge. Many robotics applications in unstructured environments such as the home or warehouse would benefit a lot from better grasp performance. This paper proposes a novel framework for detecting $SE(3)$ grasp poses based on point cloud input. Our main contribution is to propose an $SE(3)$-equivariant model that maps each point in the cloud to a continuous grasp quality function over the 2-sphere $S^2$ using a spherical harmonic basis. Compared with reasoning about a finite set of samples, this formulation improves the accuracy and efficiency of our model when a large number of samples would otherwise be needed. In order to accomplish this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style backbone to enlarge the number of points the model can handle. Our resulting method, which we name $\textit{OrbitGrasp}$, significantly outperforms baselines in both simulation and physical experiments.
☆ Learning deformable linear object dynamics from a single trajectory
The manipulation of deformable linear objects (DLOs) via model-based control requires an accurate and computationally efficient dynamics model. Yet, data-driven DLO dynamics models require large training data sets while their predictions often do not generalize, whereas physics-based models rely on good approximations of physical phenomena and often lack accuracy. To address these challenges, we propose a physics-informed neural ODE capable of predicting agile movements with significantly less data and hyper-parameter tuning. In particular, we model DLOs as serial chains of rigid bodies interconnected by passive elastic joints in which interaction forces are predicted by neural networks. The proposed model accurately predicts the motion of an robotically-actuated aluminium rod and an elastic foam cylinder after being trained on only thirty seconds of data. The project code and data are available at: \url{https://tinyurl.com/neuralprba}
☆ Lift, Splat, Map: Lifting Foundation Masks for Label-Free Semantic Scene Completion
Autonomous mobile robots deployed in urban environments must be context-aware, i.e., able to distinguish between different semantic entities, and robust to occlusions. Current approaches like semantic scene completion (SSC) require pre-enumerating the set of classes and costly human annotations, while representation learning methods relax these assumptions but are not robust to occlusions and learn representations tailored towards auxiliary tasks. To address these limitations, we propose LSMap, a method that lifts masks from visual foundation models to predict a continuous, open-set semantic and elevation-aware representation in bird's eye view (BEV) for the entire scene, including regions underneath dynamic entities and in occluded areas. Our model only requires a single RGBD image, does not require human labels, and operates in real time. We quantitatively demonstrate our approach outperforms existing models trained from scratch on semantic and elevation scene completion tasks with finetuning. Furthermore, we show that our pre-trained representation outperforms existing visual foundation models at unsupervised semantic scene completion. We evaluate our approach using CODa, a large-scale, real-world urban robot dataset. Supplementary visualizations, code, data, and pre-trained models, will be publicly available soon.
comment: 17 pages, 6 figures, 2 Tables
♻ ☆ PWM: Policy Learning with Large World Models
Reinforcement Learning (RL) has achieved impressive results on complex tasks but struggles in multi-task settings with different embodiments. World models offer scalability by learning a simulation of the environment, yet they often rely on inefficient gradient-free optimization methods. We introduce Policy learning with large World Models (PWM), a novel model-based RL algorithm that learns continuous control policies from large multi-task world models. By pre-training the world model on offline data and using it for first-order gradient policy learning, PWM effectively solves tasks with up to 152 action dimensions and outperforms methods using ground-truth dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27% higher rewards than existing baselines without the need for expensive online planning. Visualizations and code available at https://www.imgeorgiev.com/pwm
comment: Visualizations and code available at https://www.imgeorgiev.com/pwm
♻ ☆ Using Buckingham's $π$ Theorem for Multi-System Learning Transfer: a Case-study with 3 Vehicles Sharing a Database
Many advanced driver assistance schemes or autonomous vehicle controllers are based on a motion model of the vehicle behavior, i.e., a function predicting how the vehicle will react to a given control input. Data-driven models, based on experimental or simulated data, are very useful, especially for vehicles difficult to model analytically, for instance, ground vehicles for which the ground-tire interaction is hard to model from first principles. However, learning schemes are limited by the difficulty of collecting large amounts of experimental data or having to rely on high-fidelity simulations. This paper explores the potential of an approach that uses dimensionless numbers based on Buckingham's $\pi$ theorem to improve the efficiency of data for learning models, with the goal of facilitating knowledge sharing between similar systems. A case study using car-like vehicles compares traditional and dimensionless models on simulated and experimental data to validate the benefits of the new dimensionless learning approach. Prediction accuracy improvements with the dimensionless scheme when using a shared database, that is, predicting the motion of a vehicle based on data from various different vehicles was found to be 480\% more accurate for predicting a simple no-slip maneuver based on simulated data and 11\% more accurate to predict a highly dynamic braking maneuver based on experimental data. A modified physics-informed learning scheme with hand-crafted dimensionless features was also shown to increase the improvement to precision gains of 917\% and 28\% respectively. A comparative study also shows that using Buckingham's $\pi$ theorem is a much more effective preprocessing step for this task than principal component analysis (PCA) or simply normalizing the data.
♻ ☆ Labeling Sentences with Symbolic and Deictic Gestures via Semantic Similarity
Co-speech gesture generation on artificial agents has gained attention recently, mainly when it is based on data-driven models. However, end-to-end methods often fail to generate co-speech gestures related to semantics with specific forms, i.e., Symbolic and Deictic gestures. In this work, we identify which words in a sentence are contextually related to Symbolic and Deictic gestures. Firstly, we appropriately chose 12 gestures recognized by people from the Italian culture, which different humanoid robots can reproduce. Then, we implemented two rule-based algorithms to label sentences with Symbolic and Deictic gestures. The rules depend on the semantic similarity scores computed with the RoBerta model between sentences that heuristically represent gestures and sub-sentences inside an objective sentence that artificial agents have to pronounce. We also implemented a baseline algorithm that assigns gestures without computing similarity scores. Finally, to validate the results, we asked 30 persons to label a set of sentences with Deictic and Symbolic gestures through a Graphical User Interface (GUI), and we compared the labels with the ones produced by our algorithms. For this scope, we computed Average Precision (AP) and Intersection Over Union (IOU) scores, and we evaluated the Average Computational Time (ACT). Our results show that semantic similarity scores are useful for finding Symbolic and Deictic gestures in utterances.
comment: 8 pages, 7 figures, 2 tables. To be published in IEEE ROMAN 2024
♻ ☆ Residual-MPPI: Online Policy Customization for Continuous Control
Policies learned through Reinforcement Learning (RL) and Imitation Learning (IL) have demonstrated significant potential in achieving advanced performance in continuous control tasks. However, in real-world environments, it is often necessary to further customize a trained policy when there are additional requirements that were unforeseen during the original training phase. It is possible to fine-tune the policy to meet the new requirements, but this often requires collecting new data with the added requirements and access to the original training metric and policy parameters. In contrast, an online planning algorithm, if capable of meeting the additional requirements, can eliminate the necessity for extensive training phases and customize the policy without knowledge of the original training scheme or task. In this work, we propose a generic online planning algorithm for customizing continuous-control policies at the execution time which we call Residual-MPPI. It is able to customize a given prior policy on new performance metrics in few-shot and even zero-shot online settings. Also, Residual-MPPI only requires access to the action distribution produced by the prior policy, without additional knowledge regarding the original task. Through our experiments, we demonstrate that the proposed Residual-MPPI algorithm can accomplish the few-shot/zero-shot online policy customization task effectively, including customizing the champion-level racing agent, Gran Turismo Sophy (GT Sophy) 1.0, in the challenging car racing scenario, Gran Turismo Sport (GTS) environment. Demo videos are available on our website: https://sites.google.com/view/residual-mppi
♻ ☆ Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
Autonomous Vehicles (AVs) have attracted significant attention in recent years and Reinforcement Learning (RL) has shown remarkable performance in improving the autonomy of vehicles. In that regard, the widely adopted Model-Free RL (MFRL) promises to solve decision-making tasks in connected AVs (CAVs), contingent on the readiness of a significant amount of data samples for training. Nevertheless, it might be infeasible in practice and possibly lead to learning instability. In contrast, Model-Based RL (MBRL) manifests itself in sample-efficient learning, but the asymptotic performance of MBRL might lag behind the state-of-the-art MFRL algorithms. Furthermore, most studies for CAVs are limited to the decision-making of a single AV only, thus underscoring the performance due to the absence of communications. In this study, we try to address the decision-making problem of multiple CAVs with limited communications and propose a decentralized Multi-Agent Probabilistic Ensembles with Trajectory Sampling algorithm MA-PETS. In particular, in order to better capture the uncertainty of the unknown environment, MA-PETS leverages Probabilistic Ensemble (PE) neural networks to learn from communicated samples among neighboring CAVs. Afterwards, MA-PETS capably develops Trajectory Sampling (TS)-based model-predictive control for decision-making. On this basis, we derive the multi-agent group regret bound affected by the number of agents within the communication range and mathematically validate that incorporating effective information exchange among agents into the multi-agent learning scheme contributes to reducing the group regret bound in the worst case. Finally, we empirically demonstrate the superiority of MA-PETS in terms of the sample efficiency comparable to MFBL.
♻ ☆ Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, inscrutable AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
♻ ☆ CATNIPS: Collision Avoidance Through Neural Implicit Probabilistic Scenes
We introduce a transformation of a Neural Radiance Field (NeRF) to an equivalent Poisson Point Process (PPP). This PPP transformation allows for rigorous quantification of uncertainty in NeRFs, in particular, for computing collision probabilities for a robot navigating through a NeRF environment. The PPP is a generalization of a probabilistic occupancy grid to the continuous volume and is fundamental to the volumetric ray-tracing model underlying radiance fields. Building upon this PPP representation, we present a chance-constrained trajectory optimization method for safe robot navigation in NeRFs. Our method relies on a voxel representation called the Probabilistic Unsafe Robot Region (PURR) that spatially fuses the chance constraint with the NeRF model to facilitate fast trajectory optimization. We then combine a graph-based search with a spline-based trajectory optimization to yield robot trajectories through the NeRF that are guaranteed to satisfy a user-specific collision probability. We validate our chance constrained planning method through simulations and hardware experiments, showing superior performance compared to prior works on trajectory planning in NeRF environments. Our codebase can be found at https://github.com/chengine/catnips, and videos can be found on our project page (https://chengine.github.io/catnips).
comment: Published in IEEE Transactions on Robotics
♻ ☆ Reinforcement Learning with Elastic Time Steps
Traditional Reinforcement Learning (RL) policies are typically implemented with fixed control rates, often disregarding the impact of control rate selection. This can lead to inefficiencies as the optimal control rate varies with task requirements. We propose the Multi-Objective Soft Elastic Actor-Critic (MOSEAC), an off-policy actor-critic algorithm that uses elastic time steps to dynamically adjust the control frequency. This approach minimizes computational resources by selecting the lowest viable frequency. We show that MOSEAC converges and produces stable policies at the theoretical level, and validate our findings in a real-time 3D racing game. MOSEAC significantly outperformed other variable time step approaches in terms of energy efficiency and task effectiveness. Additionally, MOSEAC demonstrated faster and more stable training, showcasing its potential for real-world RL applications in robotics.
♻ ☆ Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints
In recent advancements in Multi-agent Reinforcement Learning (MARL), its application has extended to various safety-critical scenarios. However, most methods focus on online learning, which presents substantial risks when deployed in real-world settings. Addressing this challenge, we introduce an innovative framework integrating diffusion models within the MARL paradigm. This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action. Our framework is grounded in the Centralized Training with Decentralized Execution (CTDE) architecture, augmented by a Diffusion Model for prediction trajectory generation. Additionally, we incorporate a specialized algorithm to further ensure operational safety. We evaluate our model against baselines on the DSRL benchmark. Experiment results demonstrate that our model not only adheres to stringent safety constraints but also achieves superior performance compared to existing methodologies. This underscores the potential of our approach in advancing the safety and efficacy of MARL in real-world applications.
Vision 150
☆ InternLM-XComposer-2.5: A Versatile Large Vision Language Model Supporting Long-Contextual Input and Output
We present InternLM-XComposer-2.5 (IXC-2.5), a versatile large-vision language model that supports long-contextual input and output. IXC-2.5 excels in various text-image comprehension and composition applications, achieving GPT-4V level capabilities with merely 7B LLM backend. Trained with 24K interleaved image-text contexts, it can seamlessly extend to 96K long contexts via RoPE extrapolation. This long-context capability allows IXC-2.5 to excel in tasks requiring extensive input and output contexts. Compared to its previous 2.0 version, InternLM-XComposer-2.5 features three major upgrades in vision-language comprehension: (1) Ultra-High Resolution Understanding, (2) Fine-Grained Video Understanding, and (3) Multi-Turn Multi-Image Dialogue. In addition to comprehension, IXC-2.5 extends to two compelling applications using extra LoRA parameters for text-image composition: (1) Crafting Webpages and (2) Composing High-Quality Text-Image Articles. IXC-2.5 has been evaluated on 28 benchmarks, outperforming existing open-source state-of-the-art models on 16 benchmarks. It also surpasses or competes closely with GPT-4V and Gemini Pro on 16 key tasks. The InternLM-XComposer-2.5 is publicly available at https://github.com/InternLM/InternLM-XComposer.
comment: Technical Report. https://github.com/InternLM/InternLM-XComposer
☆ BACON: Supercharge Your VLM with Bag-of-Concept Graph to Mitigate Hallucinations
This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
☆ HoloHisto: End-to-end Gigapixel WSI Segmentation with 4K Resolution Sequential Tokenization
In digital pathology, the traditional method for deep learning-based image segmentation typically involves a two-stage process: initially segmenting high-resolution whole slide images (WSI) into smaller patches (e.g., 256x256, 512x512, 1024x1024) and subsequently reconstructing them to their original scale. This method often struggles to capture the complex details and vast scope of WSIs. In this paper, we propose the holistic histopathology (HoloHisto) segmentation method to achieve end-to-end segmentation on gigapixel WSIs, whose maximum resolution is above 80,000$\times$70,000 pixels. HoloHisto fundamentally shifts the paradigm of WSI segmentation to an end-to-end learning fashion with 1) a large (4K) resolution base patch for elevated visual information inclusion and efficient processing, and 2) a novel sequential tokenization mechanism to properly model the contextual relationships and efficiently model the rich information from the 4K input. To our best knowledge, HoloHisto presents the first holistic approach for gigapixel resolution WSI segmentation, supporting direct I/O of complete WSI and their corresponding gigapixel masks. Under the HoloHisto platform, we unveil a random 4K sampler that transcends ultra-high resolution, delivering 31 and 10 times more pixels than standard 2D and 3D patches, respectively, for advancing computational capabilities. To facilitate efficient 4K resolution dense prediction, we leverage sequential tokenization, utilizing a pre-trained image tokenizer to group image features into a discrete token grid. To assess the performance, our team curated a new kidney pathology image segmentation (KPIs) dataset with WSI-level glomeruli segmentation from whole mouse kidneys. From the results, HoloHisto-4K delivers remarkable performance gains over previous state-of-the-art models.
☆ Smart City Surveillance Unveiling Indian Person Attributes in Real Time
This project focuses on creating a smart surveillance system for Indian cities that can identify and analyze people's attributes in real time. Using advanced technologies like artificial intelligence and machine learning, the system can recognize attributes such as upper body color, what the person is wearing, accessories they are wearing, headgear, etc., and analyze behavior through cameras installed around the city.
comment: 6 pages , 8 figure
☆ DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Diffusion models (DMs) have revolutionized generative learning. They utilize a diffusion process to encode data into a simple Gaussian distribution. However, encoding a complex, potentially multimodal data distribution into a single continuous Gaussian distribution arguably represents an unnecessarily challenging learning problem. We propose Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary discrete latent variables. We augment DMs with learnable discrete latents, inferred with an encoder, and train DM and encoder end-to-end. DisCo-Diff does not rely on pre-trained networks, making the framework universally applicable. The discrete latents significantly simplify learning the DM's complex noise-to-data mapping by reducing the curvature of the DM's generative ODE. An additional autoregressive transformer models the distribution of the discrete latents, a simple step because DisCo-Diff requires only few discrete variables with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as well as molecular docking, and find that introducing discrete latents consistently improves model performance. For example, DisCo-Diff achieves state-of-the-art FID scores on class-conditioned ImageNet-64/128 datasets with ODE sampler.
comment: project page: https://research.nvidia.com/labs/lpr/disco-diff
☆ Improved Noise Schedule for Diffusion Training
Diffusion models have emerged as the de facto choice for generating visual signals. However, training a single model to predict noise across various levels poses significant challenges, necessitating numerous iterations and incurring significant computational costs. Various approaches, such as loss weighting strategy design and architectural refinements, have been introduced to expedite convergence. In this study, we propose a novel approach to design the noise schedule for enhancing the training of diffusion models. Our key insight is that the importance sampling of the logarithm of the Signal-to-Noise ratio (logSNR), theoretically equivalent to a modified noise schedule, is particularly beneficial for training efficiency when increasing the sample frequency around $\log \text{SNR}=0$. We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule. Furthermore, we highlight the advantages of our noise schedule design on the ImageNet benchmark, showing that the designed schedule consistently benefits different prediction targets.
☆ Biomechanics-informed Non-rigid Medical Image Registration and its Inverse Material Property Estimation with Linear and Nonlinear Elasticity
This paper investigates both biomechanical-constrained non-rigid medical image registrations and accurate identifications of material properties for soft tissues, using physics-informed neural networks (PINNs). The complex nonlinear elasticity theory is leveraged to formally establish the partial differential equations (PDEs) representing physics laws of biomechanical constraints that need to be satisfied, with which registration and identification tasks are treated as forward (i.e., data-driven solutions of PDEs) and inverse (i.e., parameter estimation) problems under PINNs respectively. Two net configurations (i.e., Cfg1 and Cfg2) have also been compared for both linear and nonlinear physics model. Two sets of experiments have been conducted, using pairs of undeformed and deformed MR images from clinical cases of prostate cancer biopsy. Our contributions are summarised as follows. 1) We developed a learning-based biomechanical-constrained non-rigid registration algorithm using PINNs, where linear elasticity is generalised to the nonlinear version. 2) We demonstrated extensively that nonlinear elasticity shows no statistical significance against linear models in computing point-wise displacement vectors but their respective benefits may depend on specific patients, with finite-element (FE) computed ground-truth. 3) We formulated and solved the inverse parameter estimation problem, under the joint optimisation scheme of registration and parameter identification using PINNs, whose solutions can be accurately found by locating saddle points.
☆ VCHAR:Variance-Driven Complex Human Activity Recognition framework with Generative Representation
Complex human activity recognition (CHAR) remains a pivotal challenge within ubiquitous computing, especially in the context of smart environments. Existing studies typically require meticulous labeling of both atomic and complex activities, a task that is labor-intensive and prone to errors due to the scarcity and inaccuracies of available datasets. Most prior research has focused on datasets that either precisely label atomic activities or, at minimum, their sequence approaches that are often impractical in real world settings.In response, we introduce VCHAR (Variance-Driven Complex Human Activity Recognition), a novel framework that treats the outputs of atomic activities as a distribution over specified intervals. Leveraging generative methodologies, VCHAR elucidates the reasoning behind complex activity classifications through video-based explanations, accessible to users without prior machine learning expertise. Our evaluation across three publicly available datasets demonstrates that VCHAR enhances the accuracy of complex activity recognition without necessitating precise temporal or sequential labeling of atomic activities. Furthermore, user studies confirm that VCHAR's explanations are more intelligible compared to existing methods, facilitating a broader understanding of complex activity recognition among non-experts.
☆ For a semiotic AI: Bridging computer vision and visual semiotics for computational observation of large scale facial image archives
Social networks are creating a digital world in which the cognitive, emotional, and pragmatic value of the imagery of human faces and bodies is arguably changing. However, researchers in the digital humanities are often ill-equipped to study these phenomena at scale. This work presents FRESCO (Face Representation in E-Societies through Computational Observation), a framework designed to explore the socio-cultural implications of images on social media platforms at scale. FRESCO deconstructs images into numerical and categorical variables using state-of-the-art computer vision techniques, aligning with the principles of visual semiotics. The framework analyzes images across three levels: the plastic level, encompassing fundamental visual features like lines and colors; the figurative level, representing specific entities or concepts; and the enunciation level, which focuses particularly on constructing the point of view of the spectator and observer. These levels are analyzed to discern deeper narrative layers within the imagery. Experimental validation confirms the reliability and utility of FRESCO, and we assess its consistency and precision across two public datasets. Subsequently, we introduce the FRESCO score, a metric derived from the framework's output that serves as a reliable measure of similarity in image content.
☆ A Unified Framework for 3D Scene Understanding
We propose UniSeg3D, a unified 3D segmentation framework that achieves panoptic, semantic, instance, interactive, referring, and open-vocabulary semantic segmentation tasks within a single model. Most previous 3D segmentation approaches are specialized for a specific task, thereby limiting their understanding of 3D scenes to a task-specific perspective. In contrast, the proposed method unifies six tasks into unified representations processed by the same Transformer. It facilitates inter-task knowledge sharing and, therefore, promotes comprehensive 3D scene understanding. To take advantage of multi-task unification, we enhance the performance by leveraging task connections. Specifically, we design a knowledge distillation method and a contrastive learning method to transfer task-specific knowledge across different tasks. Benefiting from extensive inter-task knowledge sharing, our UniSeg3D becomes more powerful. Experiments on three benchmarks, including the ScanNet20, ScanRefer, and ScanNet200, demonstrate that the UniSeg3D consistently outperforms current SOTA methods, even those specialized for individual tasks. We hope UniSeg3D can serve as a solid unified baseline and inspire future work. The code will be available at https://dk-liang.github.io/UniSeg3D/.
comment: The code will be available at https://dk-liang.github.io/UniSeg3D/
☆ ACTRESS: Active Retraining for Semi-supervised Visual Grounding
Semi-Supervised Visual Grounding (SSVG) is a new challenge for its sparse labeled data with the need for multimodel understanding. A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision. However, this approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline. These pipelines directly regress results without region proposals or foreground binary classification, rendering them unsuitable for fitting in RefTeacher due to the absence of confidence scores. Furthermore, the geometric difference in teacher and student inputs, stemming from different data augmentations, induces natural misalignment in attention-based constraints. To establish a compatible SSVG framework, our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS. Initially, the model is enhanced by incorporating an additional quantized detection head to expose its detection confidence. Building upon this, ACTRESS consists of an active sampling strategy and a selective retraining strategy. The active sampling strategy iteratively selects high-quality pseudo labels by evaluating three crucial aspects: Faithfulness, Robustness, and Confidence, optimizing the utilization of unlabeled data. The selective retraining strategy retrains the model with periodic re-initialization of specific parameters, facilitating the model's escape from local minima. Extensive experiments demonstrates our superior performance on widely-used benchmark datasets.
☆ Visual Grounding with Attention-Driven Constraint Balancing
Unlike Object Detection, Visual Grounding task necessitates the detection of an object described by complex free-form language. To simultaneously model such complex semantic and visual representations, recent state-of-the-art studies adopt transformer-based models to fuse features from both modalities, further introducing various modules that modulate visual features to align with the language expressions and eliminate the irrelevant redundant information. However, their loss function, still adopting common Object Detection losses, solely governs the bounding box regression output, failing to fully optimize for the above objectives. To tackle this problem, in this paper, we first analyze the attention mechanisms of transformer-based models. Building upon this, we further propose a novel framework named Attention-Driven Constraint Balancing (AttBalance) to optimize the behavior of visual features within language-relevant regions. Extensive experimental results show that our method brings impressive improvements. Specifically, we achieve constant improvements over five different models evaluated on four different benchmarks. Moreover, we attain a new state-of-the-art performance by integrating our method into QRNet.
☆ Cyclic Refiner: Object-Aware Temporal Representation Learning for Multi-View 3D Detection and Tracking
We propose a unified object-aware temporal learning framework for multi-view 3D detection and tracking tasks. Having observed that the efficacy of the temporal fusion strategy in recent multi-view perception methods may be weakened by distractors and background clutters in historical frames, we propose a cyclic learning mechanism to improve the robustness of multi-view representation learning. The essence is constructing a backward bridge to propagate information from model predictions (e.g., object locations and sizes) to image and BEV features, which forms a circle with regular inference. After backward refinement, the responses of target-irrelevant regions in historical frames would be suppressed, decreasing the risk of polluting future frames and improving the object awareness ability of temporal fusion. We further tailor an object-aware association strategy for tracking based on the cyclic learning model. The cyclic learning model not only provides refined features, but also delivers finer clues (e.g., scale level) for tracklet association. The proposed cycle learning method and association module together contribute a novel and unified multi-task framework. Experiments on nuScenes show that the proposed model achieves consistent performance gains over baselines of different designs (i.e., dense query-based BEVFormer, sparse query-based SparseBEV and LSS-based BEVDet4D) on both detection and tracking evaluation.
comment: Accepted by IJCV
☆ Solving the inverse problem of microscopy deconvolution with a residual Beylkin-Coifman-Rokhlin neural network
Optic deconvolution in light microscopy (LM) refers to recovering the object details from images, revealing the ground truth of samples. Traditional explicit methods in LM rely on the point spread function (PSF) during image acquisition. Yet, these approaches often fall short due to inaccurate PSF models and noise artifacts, hampering the overall restoration quality. In this paper, we approached the optic deconvolution as an inverse problem. Motivated by the nonstandard-form compression scheme introduced by Beylkin, Coifman, and Rokhlin (BCR), we proposed an innovative physics-informed neural network Multi-Stage Residual-BCR Net (m-rBCR) to approximate the optic deconvolution. We validated the m-rBCR model on four microscopy datasets - two simulated microscopy datasets from ImageNet and BioSR, real dSTORM microscopy images, and real widefield microscopy images. In contrast to the explicit deconvolution methods (e.g. Richardson-Lucy) and other state-of-the-art NN models (U-Net, DDPM, CARE, DnCNN, ESRGAN, RCAN, Noise2Noise, MPRNet, and MIMO-U-Net), the m-rBCR model demonstrates superior performance to other candidates by PSNR and SSIM in two real microscopy datasets and the simulated BioSR dataset. In the simulated ImageNet dataset, m-rBCR ranks the second-best place (right after MIMO-U-Net). With the backbone from the optical physics, m-rBCR exploits the trainable parameters with better performances (from ~30 times fewer than the benchmark MIMO-U-Net to ~210 times than ESRGAN). This enables m-rBCR to achieve a shorter runtime (from ~3 times faster than MIMO-U-Net to ~300 times faster than DDPM). To summarize, by leveraging physics constraints our model reduced potentially redundant parameters significantly in expertise-oriented NN candidates and achieved high efficiency with superior performance.
comment: 17 pages, 8 figures
☆ MHNet: Multi-view High-order Network for Diagnosing Neurodevelopmental Disorders Using Resting-state fMRI
Background: Deep learning models have shown promise in diagnosing neurodevelopmental disorders (NDD) like ASD and ADHD. However, many models either use graph neural networks (GNN) to construct single-level brain functional networks (BFNs) or employ spatial convolution filtering for local information extraction from rs-fMRI data, often neglecting high-order features crucial for NDD classification. Methods: We introduce a Multi-view High-order Network (MHNet) to capture hierarchical and high-order features from multi-view BFNs derived from rs-fMRI data for NDD prediction. MHNet has two branches: the Euclidean Space Features Extraction (ESFE) module and the Non-Euclidean Space Features Extraction (Non-ESFE) module, followed by a Feature Fusion-based Classification (FFC) module for NDD identification. ESFE includes a Functional Connectivity Generation (FCG) module and a High-order Convolutional Neural Network (HCNN) module to extract local and high-order features from BFNs in Euclidean space. Non-ESFE comprises a Generic Internet-like Brain Hierarchical Network Generation (G-IBHN-G) module and a High-order Graph Neural Network (HGNN) module to capture topological and high-order features in non-Euclidean space. Results: Experiments on three public datasets show that MHNet outperforms state-of-the-art methods using both AAL1 and Brainnetome Atlas templates. Extensive ablation studies confirm the superiority of MHNet and the effectiveness of using multi-view fMRI information and high-order features. Our study also offers atlas options for constructing more sophisticated hierarchical networks and explains the association between key brain regions and NDD. Conclusion: MHNet leverages multi-view feature learning from both Euclidean and non-Euclidean spaces, incorporating high-order information from BFNs to enhance NDD classification performance.
comment: 18 pages
☆ Learning Disentangled Representation in Object-Centric Models for Visual Dynamics Prediction via Transformers
Recent work has shown that object-centric representations can greatly help improve the accuracy of learning dynamics while also bringing interpretability. In this work, we take this idea one step further, ask the following question: "can learning disentangled representation further improve the accuracy of visual dynamics prediction in object-centric models?" While there has been some attempt to learn such disentangled representations for the case of static images \citep{nsb}, to the best of our knowledge, ours is the first work which tries to do this in a general setting for video, without making any specific assumptions about the kind of attributes that an object might have. The key building block of our architecture is the notion of a {\em block}, where several blocks together constitute an object. Each block is represented as a linear combination of a given number of learnable concept vectors, which is iteratively refined during the learning process. The blocks in our model are discovered in an unsupervised manner, by attending over object masks, in a style similar to discovery of slots \citep{slot_attention}, for learning a dense object-centric representation. We employ self-attention via transformers over the discovered blocks to predict the next state resulting in discovery of visual dynamics. We perform a series of experiments on several benchmark 2-D, and 3-D datasets demonstrating that our architecture (1) can discover semantically meaningful blocks (2) help improve accuracy of dynamics prediction compared to SOTA object-centric models (3) perform significantly better in OOD setting where the specific attribute combinations are not seen earlier during training. Our experiments highlight the importance discovery of disentangled representation for visual dynamics prediction.
☆ Category-Aware Dynamic Label Assignment with High-Quality Oriented Proposal
Objects in aerial images are typically embedded in complex backgrounds and exhibit arbitrary orientations. When employing oriented bounding boxes (OBB) to represent arbitrary oriented objects, the periodicity of angles could lead to discontinuities in label regression values at the boundaries, inducing abrupt fluctuations in the loss function. To address this problem, an OBB representation based on the complex plane is introduced in the oriented detection framework, and a trigonometric loss function is proposed. Moreover, leveraging prior knowledge of complex background environments and significant differences in large objects in aerial images, a conformer RPN head is constructed to predict angle information. The proposed loss function and conformer RPN head jointly generate high-quality oriented proposals. A category-aware dynamic label assignment based on predicted category feedback is proposed to address the limitations of solely relying on IoU for proposal label assignment. This method makes negative sample selection more representative, ensuring consistency between classification and regression features. Experiments were conducted on four realistic oriented detection datasets, and the results demonstrate superior performance in oriented object detection with minimal parameter tuning and time costs. Specifically, mean average precision (mAP) scores of 82.02%, 71.99%, 69.87%, and 98.77% were achieved on the DOTA-v1.0, DOTA-v1.5, DIOR-R, and HRSC2016 datasets, respectively.
☆ Expressive Gaussian Human Avatars from Monocular RGB Video
Nuanced expressiveness, particularly through fine-grained hand and facial expressions, is pivotal for enhancing the realism and vitality of digital human representations. In this work, we focus on investigating the expressiveness of human avatars when learned from monocular RGB video; a setting that introduces new challenges in capturing and animating fine-grained details. To this end, we introduce EVA, a drivable human model that meticulously sculpts fine details based on 3D Gaussians and SMPL-X, an expressive parametric human model. Focused on enhancing expressiveness, our work makes three key contributions. First, we highlight the critical importance of aligning the SMPL-X model with RGB frames for effective avatar learning. Recognizing the limitations of current SMPL-X prediction methods for in-the-wild videos, we introduce a plug-and-play module that significantly ameliorates misalignment issues. Second, we propose a context-aware adaptive density control strategy, which is adaptively adjusting the gradient thresholds to accommodate the varied granularity across body parts. Last but not least, we develop a feedback mechanism that predicts per-pixel confidence to better guide the learning of 3D Gaussians. Extensive experiments on two benchmarks demonstrate the superiority of our framework both quantitatively and qualitatively, especially on the fine-grained hand and facial details. See the project website at \url{https://evahuman.github.io}
☆ SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding ECCV 2024
Different from Object Detection, Visual Grounding deals with detecting a bounding box for each text-image pair. This one box for each text-image data provides sparse supervision signals. Although previous works achieve impressive results, their passive utilization of annotation, i.e. the sole use of the box annotation as regression ground truth, results in a suboptimal performance. In this paper, we present SegVG, a novel method transfers the box-level annotation as Segmentation signals to provide an additional pixel-level supervision for Visual Grounding. Specifically, we propose the Multi-layer Multi-task Encoder-Decoder as the target grounding stage, where we learn a regression query and multiple segmentation queries to ground the target by regression and segmentation of the box in each decoding layer, respectively. This approach allows us to iteratively exploit the annotation as signals for both box-level regression and pixel-level segmentation. Moreover, as the backbones are typically initialized by pretrained parameters learned from unimodal tasks and the queries for both regression and segmentation are static learnable embeddings, a domain discrepancy remains among these three types of features, which impairs subsequent target grounding. To mitigate this discrepancy, we introduce the Triple Alignment module, where the query, text, and vision tokens are triangularly updated to share the same space by triple attention mechanism. Extensive experiments on five widely used datasets validate our state-of-the-art (SOTA) performance.
comment: Accepted to ECCV 2024
☆ DyFADet: Dynamic Feature Aggregation for Temporal Action Detection ECCV 2024
Recent proposed neural network-based Temporal Action Detection (TAD) models are inherently limited to extracting the discriminative representations and modeling action instances with various lengths from complex scenes by shared-weights detection heads. Inspired by the successes in dynamic neural networks, in this paper, we build a novel dynamic feature aggregation (DFA) module that can simultaneously adapt kernel weights and receptive fields at different timestamps. Based on DFA, the proposed dynamic encoder layer aggregates the temporal features within the action time ranges and guarantees the discriminability of the extracted representations. Moreover, using DFA helps to develop a Dynamic TAD head (DyHead), which adaptively aggregates the multi-scale features with adjusted parameters and learned receptive fields better to detect the action instances with diverse ranges from videos. With the proposed encoder layer and DyHead, a new dynamic TAD model, DyFADet, achieves promising performance on a series of challenging TAD benchmarks, including HACS-Segment, THUMOS14, ActivityNet-1.3, Epic-Kitchen 100, Ego4D-Moment QueriesV1.0, and FineAction. Code is released to https://github.com/yangle15/DyFADet-pytorch.
comment: ECCV 2024
☆ Motion meets Attention: Video Motion Prompts
Videos contain rich spatio-temporal information. Traditional methods for extracting motion, used in tasks such as action recognition, often rely on visual contents rather than precise motion features. This phenomenon is referred to as 'blind motion extraction' behavior, which proves inefficient in capturing motions of interest due to a lack of motion-guided cues. Recently, attention mechanisms have enhanced many computer vision tasks by effectively highlighting salient visual areas. Inspired by this, we propose using a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to activate and modulate motion signals derived from frame differencing maps. This approach generates a sequence of attention maps that enhance the processing of motion-related video content. To ensure temporally continuity and smoothness of the attention maps, we apply pair-wise temporal attention variation regularization to remove unwanted motions (e.g., noise) while preserving important ones. We then perform Hadamard product between each pair of attention maps and the original video frames to highlight the evolving motions of interest over time. These highlighted motions, termed video motion prompts, are subsequently used as inputs to the model instead of the original video frames. We formalize this process as a motion prompt layer and incorporate the regularization term into the loss function to learn better motion prompts. This layer serves as an adapter between the model and the video data, bridging the gap between traditional 'blind motion extraction' and the extraction of relevant motions of interest.
comment: Research report
☆ Relating CNN-Transformer Fusion Network for Change Detection
While deep learning, particularly convolutional neural networks (CNNs), has revolutionized remote sensing (RS) change detection (CD), existing approaches often miss crucial features due to neglecting global context and incomplete change learning. Additionally, transformer networks struggle with low-level details. RCTNet addresses these limitations by introducing \textbf{(1)} an early fusion backbone to exploit both spatial and temporal features early on, \textbf{(2)} a Cross-Stage Aggregation (CSA) module for enhanced temporal representation, \textbf{(3)} a Multi-Scale Feature Fusion (MSF) module for enriched feature extraction in the decoder, and \textbf{(4)} an Efficient Self-deciphering Attention (ESA) module utilizing transformers to capture global information and fine-grained details for accurate change detection. Extensive experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods, showing significant improvement and an optimal balance between accuracy and computational cost.
comment: accepted by IEEE Conference on Multimedia Expo
☆ IMC 2024 Methods & Solutions Review
For the past three years, Kaggle has been hosting the Image Matching Challenge, which focuses on solving a 3D image reconstruction problem using a collection of 2D images. Each year, this competition fosters the development of innovative and effective methodologies by its participants. In this paper, we introduce an advanced ensemble technique that we developed, achieving a score of 0.153449 on the private leaderboard and securing the 160th position out of over 1,000 participants. Additionally, we conduct a comprehensive review of existing methods and techniques employed by top-performing teams in the competition. Our solution, alongside the insights gathered from other leading approaches, contributes to the ongoing advancement in the field of 3D image reconstruction. This research provides valuable knowledge for future participants and researchers aiming to excel in similar image matching and reconstruction challenges.
comment: 8 Pages, 9 figures
☆ LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control
Portrait Animation aims to synthesize a lifelike video from a single source image, using it as an appearance reference, with motion (i.e., facial expressions and head pose) derived from a driving video, audio, text, or generation. Instead of following mainstream diffusion-based methods, we explore and extend the potential of the implicit-keypoint-based framework, which effectively balances computational efficiency and controllability. Building upon this, we develop a video-driven portrait animation framework named LivePortrait with a focus on better generalization, controllability, and efficiency for practical usage. To enhance the generation quality and generalization ability, we scale up the training data to about 69 million high-quality frames, adopt a mixed image-video training strategy, upgrade the network architecture, and design better motion transformation and optimization objectives. Additionally, we discover that compact implicit keypoints can effectively represent a kind of blendshapes and meticulously propose a stitching and two retargeting modules, which utilize a small MLP with negligible computational overhead, to enhance the controllability. Experimental results demonstrate the efficacy of our framework even compared to diffusion-based methods. The generation speed remarkably reaches 12.8ms on an RTX 4090 GPU with PyTorch. The inference code and models are available at https://github.com/KwaiVGI/LivePortrait
☆ Consistent Point Orientation for Manifold Surfaces via Boundary Integration
This paper introduces a new approach for generating globally consistent normals for point clouds sampled from manifold surfaces. Given that the generalized winding number (GWN) field generated by a point cloud with globally consistent normals is a solution to a PDE with jump boundary conditions and possesses harmonic properties, and the Dirichlet energy of the GWN field can be defined as an integral over the boundary surface, we formulate a boundary energy derived from the Dirichlet energy of the GWN. Taking as input a point cloud with randomly oriented normals, we optimize this energy to restore the global harmonicity of the GWN field, thereby recovering the globally consistent normals. Experiments show that our method outperforms state-of-the-art approaches, exhibiting enhanced robustness to noise, outliers, complex topologies, and thin structures. Our code can be found at \url{https://github.com/liuweizhou319/BIM}.
comment: accepted in siggraph2024
Global Context Modeling in YOLOv8 for Pediatric Wrist Fracture Detection
Children often suffer wrist injuries in daily life, while fracture injuring radiologists usually need to analyze and interpret X-ray images before surgical treatment by surgeons. The development of deep learning has enabled neural network models to work as computer-assisted diagnosis (CAD) tools to help doctors and experts in diagnosis. Since the YOLOv8 models have obtained the satisfactory success in object detection tasks, it has been applied to fracture detection. The Global Context (GC) block effectively models the global context in a lightweight way, and incorporating it into YOLOv8 can greatly improve the model performance. This paper proposes the YOLOv8+GC model for fracture detection, which is an improved version of the YOLOv8 model with the GC block. Experimental results demonstrate that compared to the original YOLOv8 model, the proposed YOLOv8-GC model increases the mean average precision calculated at intersection over union threshold of 0.5 (mAP 50) from 63.58% to 66.32% on the GRAZPEDWRI-DX dataset, achieving the state-of-the-art (SOTA) level. The implementation code for this work is available on GitHub at https://github.com/RuiyangJu/YOLOv8_Global_Context_Fracture_Detection.
☆ Bunny-VisionPro: Real-Time Bimanual Dexterous Teleoperation for Imitation Learning
Teleoperation is a crucial tool for collecting human demonstrations, but controlling robots with bimanual dexterous hands remains a challenge. Existing teleoperation systems struggle to handle the complexity of coordinating two hands for intricate manipulations. We introduce Bunny-VisionPro, a real-time bimanual dexterous teleoperation system that leverages a VR headset. Unlike previous vision-based teleoperation systems, we design novel low-cost devices to provide haptic feedback to the operator, enhancing immersion. Our system prioritizes safety by incorporating collision and singularity avoidance while maintaining real-time performance through innovative designs. Bunny-VisionPro outperforms prior systems on a standard task suite, achieving higher success rates and reduced task completion times. Moreover, the high-quality teleoperation demonstrations improve downstream imitation learning performance, leading to better generalizability. Notably, Bunny-VisionPro enables imitation learning with challenging multi-stage, long-horizon dexterous manipulation tasks, which have rarely been addressed in previous work. Our system's ability to handle bimanual manipulations while prioritizing safety and real-time performance makes it a powerful tool for advancing dexterous manipulation and imitation learning.
comment: project page: https://dingry.github.io/projects/bunny_visionpro.html
☆ Stereo Risk: A Continuous Modeling Approach to Stereo Matching ICML 2024
We introduce Stereo Risk, a new deep-learning approach to solve the classical stereo-matching problem in computer vision. As it is well-known that stereo matching boils down to a per-pixel disparity estimation problem, the popular state-of-the-art stereo-matching approaches widely rely on regressing the scene disparity values, yet via discretization of scene disparity values. Such discretization often fails to capture the nuanced, continuous nature of scene depth. Stereo Risk departs from the conventional discretization approach by formulating the scene disparity as an optimal solution to a continuous risk minimization problem, hence the name "stereo risk". We demonstrate that $L^1$ minimization of the proposed continuous risk function enhances stereo-matching performance for deep networks, particularly for disparities with multi-modal probability distributions. Furthermore, to enable the end-to-end network training of the non-differentiable $L^1$ risk optimization, we exploited the implicit function theorem, ensuring a fully differentiable network. A comprehensive analysis demonstrates our method's theoretical soundness and superior performance over the state-of-the-art methods across various benchmark datasets, including KITTI 2012, KITTI 2015, ETH3D, SceneFlow, and Middlebury 2014.
comment: Accepted as an Oral Paper at ICML 2024. Draft info: 18 pages, 6 Figure, 16 Tables
☆ Venomancer: Towards Imperceptible and Target-on-Demand Backdoor Attacks in Federated Learning
Federated Learning (FL) is a distributed machine learning approach that maintains data privacy by training on decentralized data sources. Similar to centralized machine learning, FL is also susceptible to backdoor attacks. Most backdoor attacks in FL assume a predefined target class and require control over a large number of clients or knowledge of benign clients' information. Furthermore, they are not imperceptible and are easily detected by human inspection due to clear artifacts left on the poison data. To overcome these challenges, we propose Venomancer, an effective backdoor attack that is imperceptible and allows target-on-demand. Specifically, imperceptibility is achieved by using a visual loss function to make the poison data visually indistinguishable from the original data. Target-on-demand property allows the attacker to choose arbitrary target classes via conditional adversarial training. Additionally, experiments showed that the method is robust against state-of-the-art defenses such as Norm Clipping, Weak DP, Krum, and Multi-Krum. The source code is available at https://anonymous.4open.science/r/Venomancer-3426.
☆ Machine Learning Models for Improved Tracking from Range-Doppler Map Images
Statistical tracking filters depend on accurate target measurements and uncertainty estimates for good tracking performance. In this work, we propose novel machine learning models for target detection and uncertainty estimation in range-Doppler map (RDM) images for Ground Moving Target Indicator (GMTI) radars. We show that by using the outputs of these models, we can significantly improve the performance of a multiple hypothesis tracker for complex multi-target air-to-ground tracking scenarios.
☆ Towards Efficient Pixel Labeling for Industrial Anomaly Detection and Localization
In the realm of practical Anomaly Detection (AD) tasks, manual labeling of anomalous pixels proves to be a costly endeavor. Consequently, many AD methods are crafted as one-class classifiers, tailored for training sets completely devoid of anomalies, ensuring a more cost-effective approach. While some pioneering work has demonstrated heightened AD accuracy by incorporating real anomaly samples in training, this enhancement comes at the price of labor-intensive labeling processes. This paper strikes the balance between AD accuracy and labeling expenses by introducing ADClick, a novel Interactive Image Segmentation (IIS) algorithm. ADClick efficiently generates "ground-truth" anomaly masks for real defective images, leveraging innovative residual features and meticulously crafted language prompts. Notably, ADClick showcases a significantly elevated generalization capacity compared to existing state-of-the-art IIS approaches. Functioning as an anomaly labeling tool, ADClick generates high-quality anomaly labels (AP $= 94.1\%$ on MVTec AD) based on only $3$ to $5$ manual click annotations per training image. Furthermore, we extend the capabilities of ADClick into ADClick-Seg, an enhanced model designed for anomaly detection and localization. By fine-tuning the ADClick-Seg model using the weak labels inferred by ADClick, we establish the state-of-the-art performances in supervised AD tasks (AP $= 86.4\%$ on MVTec AD and AP $= 78.4\%$, PRO $= 98.6\%$ on KSDD2).
comment: 18 pages, 5 figures
☆ $L_p$-norm Distortion-Efficient Adversarial Attack
Adversarial examples have shown a powerful ability to make a well-trained model misclassified. Current mainstream adversarial attack methods only consider one of the distortions among $L_0$-norm, $L_2$-norm, and $L_\infty$-norm. $L_0$-norm based methods cause large modification on a single pixel, resulting in naked-eye visible detection, while $L_2$-norm and $L_\infty$-norm based methods suffer from weak robustness against adversarial defense since they always diffuse tiny perturbations to all pixels. A more realistic adversarial perturbation should be sparse and imperceptible. In this paper, we propose a novel $L_p$-norm distortion-efficient adversarial attack, which not only owns the least $L_2$-norm loss but also significantly reduces the $L_0$-norm distortion. To this aim, we design a new optimization scheme, which first optimizes an initial adversarial perturbation under $L_2$-norm constraint, and then constructs a dimension unimportance matrix for the initial perturbation. Such a dimension unimportance matrix can indicate the adversarial unimportance of each dimension of the initial perturbation. Furthermore, we introduce a new concept of adversarial threshold for the dimension unimportance matrix. The dimensions of the initial perturbation whose unimportance is higher than the threshold will be all set to zero, greatly decreasing the $L_0$-norm distortion. Experimental results on three benchmark datasets show that under the same query budget, the adversarial examples generated by our method have lower $L_0$-norm and $L_2$-norm distortion than the state-of-the-art. Especially for the MNIST dataset, our attack reduces 8.1$\%$ $L_2$-norm distortion meanwhile remaining 47$\%$ pixels unattacked. This demonstrates the superiority of the proposed method over its competitors in terms of adversarial robustness and visual imperceptibility.
☆ Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric
Deep metric learning (DML) aims to learn a discriminative high-dimensional embedding space for downstream tasks like classification, clustering, and retrieval. Prior literature predominantly focuses on pair-based and proxy-based methods to maximize inter-class discrepancy and minimize intra-class diversity. However, these methods tend to suffer from the collapse of the embedding space due to their over-reliance on label information. This leads to sub-optimal feature representation and inferior model performance. To maintain the structure of embedding space and avoid feature collapse, we propose a novel loss function called Anti-Collapse Loss. Specifically, our proposed loss primarily draws inspiration from the principle of Maximal Coding Rate Reduction. It promotes the sparseness of feature clusters in the embedding space to prevent collapse by maximizing the average coding rate of sample features or class proxies. Moreover, we integrate our proposed loss with pair-based and proxy-based methods, resulting in notable performance improvement. Comprehensive experiments on benchmark datasets demonstrate that our proposed method outperforms existing state-of-the-art methods. Extensive ablation studies verify the effectiveness of our method in preventing embedding space collapse and promoting generalization performance.
comment: accepted by IEEE Transactions on Multimedia
☆ KeyVideoLLM: Towards Large-scale Video Keyframe Selection
Recently, with the rise of web videos, managing and understanding large-scale video datasets has become increasingly important. Video Large Language Models (VideoLLMs) have emerged in recent years due to their strong video understanding capabilities. However, training and inference processes for VideoLLMs demand vast amounts of data, presenting significant challenges to data management, particularly regarding efficiency, robustness, and effectiveness. In this work, we present KeyVideoLLM, a text-video frame similarity-based keyframe selection method designed to manage VideoLLM data efficiently, robustly, and effectively. Specifically, KeyVideoLLM achieves a remarkable data compression rate of up to 60.9 times, substantially lowering disk space requirements, which proves its high efficiency. Additionally, it maintains a 100% selection success rate across all video formats and scales, enhances processing speed by up to 200 times compared to existing keyframe selection methods, and does not require hyperparameter tuning. Beyond its outstanding efficiency and robustness, KeyVideoLLM further improves model performance in video question-answering tasks during both training and inference stages. Notably, it consistently achieved the state-of-the-art (SoTA) experimental results on diverse datasets.
☆ Improving Zero-shot Generalization of Learned Prompts via Unsupervised Knowledge Distillation ECCV24
Vision-Language Models (VLMs) demonstrate remarkable zero-shot generalization to unseen tasks, but fall short of the performance of supervised methods in generalizing to downstream tasks with limited data. Prompt learning is emerging as a parameter-efficient method for adapting VLMs, but state-of-the-art approaches require annotated samples. In this paper we propose a novel approach to prompt learning based on unsupervised knowledge distillation from more powerful models. Our approach, which we call Knowledge Distillation Prompt Learning (KDPL), can be integrated into existing prompt learning techniques and eliminates the need for labeled examples during adaptation. Our experiments on more than ten standard benchmark datasets demonstrate that KDPL is very effective at improving generalization of learned prompts for zero-shot domain generalization, zero-shot cross-dataset generalization, and zero-shot base-to-novel class generalization problems. KDPL requires no ground-truth labels for adaptation, and moreover we show that even in the absence of any knowledge of training class names it can be used to effectively transfer knowledge. The code is publicly available at https://github.com/miccunifi/KDPL.
comment: Accepted for publication at ECCV24
☆ SlerpFace: Face Template Protection via Spherical Linear Interpolation
Contemporary face recognition systems use feature templates extracted from face images to identify persons. To enhance privacy, face template protection techniques are widely employed to conceal sensitive identity and appearance information stored in the template. This paper identifies an emerging privacy attack form utilizing diffusion models that could nullify prior protection, referred to as inversion attacks. The attack can synthesize high-quality, identity-preserving face images from templates, revealing persons' appearance. Based on studies of the diffusion model's generative capability, this paper proposes a defense to deteriorate the attack, by rotating templates to a noise-like distribution. This is achieved efficiently by spherically and linearly interpolating templates, or slerp, on their located hypersphere. This paper further proposes to group-wisely divide and drop out templates' feature dimensions, to enhance the irreversibility of rotated templates. The division of groups and dropouts within each group are learned in a recognition-favored way. The proposed techniques are concretized as a novel face template protection technique, SlerpFace. Extensive experiments show that SlerpFace provides satisfactory recognition accuracy and comprehensive privacy protection against inversion and other attack forms, superior to prior arts.
comment: face template protection
☆ Position and Altitude of the Nao Camera Head from Two Points on the Soccer Field plus the Gravitational Direction
To be able to play soccer, a robot needs a good estimate of its current position on the field. Ideally, multiple features are visible that have known locations. By applying trigonometry we can estimate the viewpoint from where this observation was actually made. Given that the Nao robots of the Standard Platform League have quite a limited field of view, a given camera frame typically only allows for one or two points to be recognized. In this paper we propose a method for determining the (x, y) coordinates on the field and the height h of the camera from the geometry of a simplified tetrahedron. This configuration is formed by two observed points on the ground plane plus the gravitational direction. When the distance between the two points is known, and the directions to the points plus the gravitational direction are measured, all dimensions of the tetrahedron can be determined. By performing these calculations with rational trigonometry instead of classical trigonometry, the computations turn out to be 28.7% faster, with equal numerical accuracy. The position of the head of the Nao can also be externally measured with the OptiTrack system. The difference between externally measured and internally predicted position from sensor data gives us mean absolute errors in the 3-6 centimeters range, when we estimated the gravitational direction from the vanishing point of the outer edges of the goal posts.
comment: to be published in the Proceedings of the RoboCup 2024 symposium - 12 pages
☆ SAFT: Towards Out-of-Distribution Generalization in Fine-Tuning
Handling distribution shifts from training data, known as out-of-distribution (OOD) generalization, poses a significant challenge in the field of machine learning. While a pre-trained vision-language model like CLIP has demonstrated remarkable zero-shot performance, further adaptation of the model to downstream tasks leads to undesirable degradation for OOD data. In this work, we introduce Sparse Adaptation for Fine-Tuning (SAFT), a method that prevents fine-tuning from forgetting the general knowledge in the pre-trained model. SAFT only updates a small subset of important parameters whose gradient magnitude is large, while keeping the other parameters frozen. SAFT is straightforward to implement and conceptually simple. Extensive experiments show that with only 0.1% of the model parameters, SAFT can significantly improve the performance of CLIP. It consistently outperforms baseline methods across several benchmarks. On the few-shot learning benchmark of ImageNet and its variants, SAFT gives a gain of 5.15% on average over the conventional fine-tuning method in OOD settings.
☆ ISWSST: Index-space-wave State Superposition Transformers for Multispectral Remotely Sensed Imagery Semantic Segmentation
Currently the semantic segmentation task of multispectral remotely sensed imagery (MSRSI) faces the following problems: 1) Usually, only single domain feature (i.e., space domain or frequency domain) is considered; 2) downsampling operation in encoder generally leads to the accuracy loss of edge extraction; 3) multichannel features of MSRSI are not fully considered; and 4) prior knowledge of remote sensing is not fully utilized. To solve the aforementioned issues, an index-space-wave state superposition Transformer (ISWSST) is the first to be proposed for MSRSI semantic segmentation by the inspiration from quantum mechanics, whose superiority is as follows: 1) index, space and wave states are superposed or fused to simulate quantum superposition by adaptively voting decision (i.e., ensemble learning idea) for being a stronger classifier and improving the segmentation accuracy; 2) a lossless wavelet pyramid encoder-decoder module is designed to losslessly reconstruct image and simulate quantum entanglement based on wavelet transform and inverse wavelet transform for avoiding the edge extraction loss; 3) combining multispectral features (i.e. remote sensing index and channel attention mechanism) is proposed to accurately extract ground objects from original resolution images; and 4) quantum mechanics are introduced to interpret the underlying superiority of ISWSST. Experiments show that ISWSST is validated and superior to the state-of-the-art architectures for the MSRSI segmentation task, which improves the segmentation and edge extraction accuracy effectively. Codes will be available publicly after our paper is accepted.
☆ An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis MICCAI 2024
Generative modeling seeks to approximate the statistical properties of real data, enabling synthesis of new data that closely resembles the original distribution. Generative Adversarial Networks (GANs) and Denoising Diffusion Probabilistic Models (DDPMs) represent significant advancements in generative modeling, drawing inspiration from game theory and thermodynamics, respectively. Nevertheless, the exploration of generative modeling through the lens of biological evolution remains largely untapped. In this paper, we introduce a novel family of models termed Generative Cellular Automata (GeCA), inspired by the evolution of an organism from a single cell. GeCAs are evaluated as an effective augmentation tool for retinal disease classification across two imaging modalities: Fundus and Optical Coherence Tomography (OCT). In the context of OCT imaging, where data is scarce and the distribution of classes is inherently skewed, GeCA significantly boosts the performance of 11 different ophthalmological conditions, achieving a 12% increase in the average F1 score compared to conventional baselines. GeCAs outperform both diffusion methods that incorporate UNet or state-of-the art variants with transformer-based denoising models, under similar parameter constraints. Code is available at: https://github.com/xmed-lab/GeCA.
comment: MICCAI 2024
☆ Context-Aware Video Instance Segmentation
In this paper, we introduce the Context-Aware Video Instance Segmentation (CAVIS), a novel framework designed to enhance instance association by integrating contextual information adjacent to each object. To efficiently extract and leverage this information, we propose the Context-Aware Instance Tracker (CAIT), which merges contextual data surrounding the instances with the core instance features to improve tracking accuracy. Additionally, we introduce the Prototypical Cross-frame Contrastive (PCC) loss, which ensures consistency in object-level features across frames, thereby significantly enhancing instance matching accuracy. CAVIS demonstrates superior performance over state-of-the-art methods on all benchmark datasets in video instance segmentation (VIS) and video panoptic segmentation (VPS). Notably, our method excels on the OVIS dataset, which is known for its particularly challenging videos.
comment: Project page: https://seung-hun-lee.github.io/projects/CAVIS/
☆ Model Guidance via Explanations Turns Image Classifiers into Segmentation Models
Heatmaps generated on inputs of image classification networks via explainable AI methods like Grad-CAM and LRP have been observed to resemble segmentations of input images in many cases. Consequently, heatmaps have also been leveraged for achieving weakly supervised segmentation with image-level supervision. On the other hand, losses can be imposed on differentiable heatmaps, which has been shown to serve for (1)~improving heatmaps to be more human-interpretable, (2)~regularization of networks towards better generalization, (3)~training diverse ensembles of networks, and (4)~for explicitly ignoring confounding input features. Due to the latter use case, the paradigm of imposing losses on heatmaps is often referred to as "Right for the right reasons". We unify these two lines of research by investigating semi-supervised segmentation as a novel use case for the Right for the Right Reasons paradigm. First, we show formal parallels between differentiable heatmap architectures and standard encoder-decoder architectures for image segmentation. Second, we show that such differentiable heatmap architectures yield competitive results when trained with standard segmentation losses. Third, we show that such architectures allow for training with weak supervision in the form of image-level labels and small numbers of pixel-level labels, outperforming comparable encoder-decoder models. Code is available at \url{https://github.com/Kainmueller-Lab/TW-autoencoder}.
☆ Align and Aggregate: Compositional Reasoning with Video Alignment and Answer Aggregation for Video Question-Answering CVPR
Despite the recent progress made in Video Question-Answering (VideoQA), these methods typically function as black-boxes, making it difficult to understand their reasoning processes and perform consistent compositional reasoning. To address these challenges, we propose a \textit{model-agnostic} Video Alignment and Answer Aggregation (VA$^{3}$) framework, which is capable of enhancing both compositional consistency and accuracy of existing VidQA methods by integrating video aligner and answer aggregator modules. The video aligner hierarchically selects the relevant video clips based on the question, while the answer aggregator deduces the answer to the question based on its sub-questions, with compositional consistency ensured by the information flow along question decomposition graph and the contrastive learning strategy. We evaluate our framework on three settings of the AGQA-Decomp dataset with three baseline methods, and propose new metrics to measure the compositional consistency of VidQA methods more comprehensively. Moreover, we propose a large language model (LLM) based automatic question decomposition pipeline to apply our framework to any VidQA dataset. We extend MSVD and NExT-QA datasets with it to evaluate our VA$^3$ framework on broader scenarios. Extensive experiments show that our framework improves both compositional consistency and accuracy of existing methods, leading to more interpretable real-world VidQA models.
comment: 10 pages,CVPR
☆ Frequency-Controlled Diffusion Model for Versatile Text-Guided Image-to-Image Translation AAAI
Recently, large-scale text-to-image (T2I) diffusion models have emerged as a powerful tool for image-to-image translation (I2I), allowing open-domain image translation via user-provided text prompts. This paper proposes frequency-controlled diffusion model (FCDiffusion), an end-to-end diffusion-based framework that contributes a novel solution to text-guided I2I from a frequency-domain perspective. At the heart of our framework is a feature-space frequency-domain filtering module based on Discrete Cosine Transform, which filters the latent features of the source image in the DCT domain, yielding filtered image features bearing different DCT spectral bands as different control signals to the pre-trained Latent Diffusion Model. We reveal that control signals of different DCT spectral bands bridge the source image and the T2I generated image in different correlations (e.g., style, structure, layout, contour, etc.), and thus enable versatile I2I applications emphasizing different I2I correlations, including style-guided content creation, image semantic manipulation, image scene translation, and image style translation. Different from related approaches, FCDiffusion establishes a unified text-guided I2I framework suitable for diverse image translation tasks simply by switching among different frequency control branches at inference time. The effectiveness and superiority of our method for text-guided I2I are demonstrated with extensive experiments both qualitatively and quantitatively. The code is publicly available at: https://github.com/XiangGao1102/FCDiffusion.
comment: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
☆ VIVA: A Benchmark for Vision-Grounded Decision-Making with Human Values
This paper introduces VIVA, a benchmark for VIsion-grounded decision-making driven by human VAlues. While most large vision-language models (VLMs) focus on physical-level skills, our work is the first to examine their multimodal capabilities in leveraging human values to make decisions under a vision-depicted situation. VIVA contains 1,062 images depicting diverse real-world situations and the manually annotated decisions grounded in them. Given an image there, the model should select the most appropriate action to address the situation and provide the relevant human values and reason underlying the decision. Extensive experiments based on VIVA show the limitation of VLMs in using human values to make multimodal decisions. Further analyses indicate the potential benefits of exploiting action consequences and predicted human values.
Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation
In recent years, 2D-to-3D pose uplifting in monocular 3D Human Pose Estimation (HPE) has attracted widespread research interest. GNN-based methods and Transformer-based methods have become mainstream architectures due to their advanced spatial and temporal feature learning capacities. However, existing approaches typically construct joint-wise and frame-wise attention alignments in spatial and temporal domains, resulting in dense connections that introduce considerable local redundancy and computational overhead. In this paper, we take a global approach to exploit spatio-temporal information and realise efficient 3D HPE with a concise Graph and Skipped Transformer architecture. Specifically, in Spatial Encoding stage, coarse-grained body parts are deployed to construct Spatial Graph Network with a fully data-driven adaptive topology, ensuring model flexibility and generalizability across various poses. In Temporal Encoding and Decoding stages, a simple yet effective Skipped Transformer is proposed to capture long-range temporal dependencies and implement hierarchical feature aggregation. A straightforward Data Rolling strategy is also developed to introduce dynamic information into 2D pose sequence. Extensive experiments are conducted on Human3.6M, MPI-INF-3DHP and Human-Eva benchmarks. G-SFormer series methods achieve superior performances compared with previous state-of-the-arts with only around ten percent of parameters and significantly reduced computational complexity. Additionally, G-SFormer also exhibits outstanding robustness to inaccuracies in detected 2D poses.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision
This paper presents a comprehensive review of the evolution of the YOLO (You Only Look Once) object detection algorithm, focusing on YOLOv5, YOLOv8, and YOLOv10. We analyze the architectural advancements, performance improvements, and suitability for edge deployment across these versions. YOLOv5 introduced significant innovations such as the CSPDarknet backbone and Mosaic Augmentation, balancing speed and accuracy. YOLOv8 built upon this foundation with enhanced feature extraction and anchor-free detection, improving versatility and performance. YOLOv10 represents a leap forward with NMS-free training, spatial-channel decoupled downsampling, and large-kernel convolutions, achieving state-of-the-art performance with reduced computational overhead. Our findings highlight the progressive enhancements in accuracy, efficiency, and real-time performance, particularly emphasizing their applicability in resource-constrained environments. This review provides insights into the trade-offs between model complexity and detection accuracy, offering guidance for selecting the most appropriate YOLO version for specific edge computing applications.
☆ IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations MICCAI 2024
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times and can compromise the clinical utility of acquired images. Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results. Deep Learning (DL) alleviated such pitfalls through generalization with the cost of vanishing structures and hallucinations, making it challenging to apply in the medical field where hallucinated structures can tremendously impact the diagnostic outcome. In this work, we present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs) to mitigate the impact of motion artifacts while retaining anatomical structure. Our method is evaluated using the NYU fastMRI dataset with different degrees of simulated motion severity. For the correction alone, we can improve over state-of-the-art image reconstruction methods by $+5\%$ SSIM, $+5\:db$ PSNR, and $+14\%$ HaarPSI. Clinical relevance is demonstrated by a subsequent experiment, where our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
comment: Submitted to MICCAI 2024 (Before peer review version)
☆ Unified Anomaly Detection methods on Edge Device using Knowledge Distillation and Quantization
With the rapid advances in deep learning and smart manufacturing in Industry 4.0, there is an imperative for high-throughput, high-performance, and fully integrated visual inspection systems. Most anomaly detection approaches using defect detection datasets, such as MVTec AD, employ one-class models that require fitting separate models for each class. On the contrary, unified models eliminate the need for fitting separate models for each class and significantly reduce cost and memory requirements. Thus, in this work, we experiment with considering a unified multi-class setup. Our experimental study shows that multi-class models perform at par with one-class models for the standard MVTec AD dataset. Hence, this indicates that there may not be a need to learn separate object/class-wise models when the object classes are significantly different from each other, as is the case of the dataset considered. Furthermore, we have deployed three different unified lightweight architectures on the CPU and an edge device (NVIDIA Jetson Xavier NX). We analyze the quantized multi-class anomaly detection models in terms of latency and memory requirements for deployment on the edge device while comparing quantization-aware training (QAT) and post-training quantization (PTQ) for performance at different precision widths. In addition, we explored two different methods of calibration required in post-training scenarios and show that one of them performs notably better, highlighting its importance for unsupervised tasks. Due to quantization, the performance drop in PTQ is further compensated by QAT, which yields at par performance with the original 32-bit Floating point in two of the models considered.
comment: 20 pages
☆ 3D Multimodal Image Registration for Plant Phenotyping
The use of multiple camera technologies in a combined multimodal monitoring system for plant phenotyping offers promising benefits. Compared to configurations that only utilize a single camera technology, cross-modal patterns can be recorded that allow a more comprehensive assessment of plant phenotypes. However, the effective utilization of cross-modal patterns is dependent on precise image registration to achieve pixel-accurate alignment, a challenge often complicated by parallax and occlusion effects inherent in plant canopy imaging. In this study, we propose a novel multimodal 3D image registration method that addresses these challenges by integrating depth information from a time-of-flight camera into the registration process. By leveraging depth data, our method mitigates parallax effects and thus facilitates more accurate pixel alignment across camera modalities. Additionally, we introduce an automated mechanism to identify and differentiate different types of occlusions, thereby minimizing the introduction of registration errors. To evaluate the efficacy of our approach, we conduct experiments on a diverse image dataset comprising six distinct plant species with varying leaf geometries. Our results demonstrate the robustness of the proposed registration algorithm, showcasing its ability to achieve accurate alignment across different plant types and camera compositions. Compared to previous methods it is not reliant on detecting plant specific image features and can thereby be utilized for a wide variety of applications in plant sciences. The registration approach principally scales to arbitrary numbers of cameras with different resolutions and wavelengths. Overall, our study contributes to advancing the field of plant phenotyping by offering a robust and reliable solution for multimodal image registration.
comment: 53 pages, 13 Figures, preprint submitted to Computers and Electronics in Agriculture
☆ VEGS: View Extrapolation of Urban Scenes in 3D Gaussian Splatting using Learned Priors
Neural rendering-based urban scene reconstruction methods commonly rely on images collected from driving vehicles with cameras facing and moving forward. Although these methods can successfully synthesize from views similar to training camera trajectory, directing the novel view outside the training camera distribution does not guarantee on-par performance. In this paper, we tackle the Extrapolated View Synthesis (EVS) problem by evaluating the reconstructions on views such as looking left, right or downwards with respect to training camera distributions. To improve rendering quality for EVS, we initialize our model by constructing dense LiDAR map, and propose to leverage prior scene knowledge such as surface normal estimator and large-scale diffusion model. Qualitative and quantitative comparisons demonstrate the effectiveness of our methods on EVS. To the best of our knowledge, we are the first to address the EVS problem in urban scene reconstruction. Link to our project page: https://vegs3d.github.io/.
☆ Recompression Based JPEG Tamper Detection and Localization Using Deep Neural Network Eliminating Compression Factor Dependency
In this work, we deal with the problem of re compression based image forgery detection, where some regions of an image are modified illegitimately, hence giving rise to presence of dual compression characteristics within a single image. There have been some significant researches in this direction, in the last decade. However, almost all existing techniques fail to detect this form of forgery, when the first compression factor is greater than the second. We address this problem in re compression based forgery detection, here Recently, Machine Learning techniques have started gaining a lot of importance in the domain of digital image forensics. In this work, we propose a Convolution Neural Network based deep learning architecture, which is capable of detecting the presence of re compression based forgery in JPEG images. The proposed architecture works equally efficiently, even in cases where the first compression ratio is greater than the second. In this work, we also aim to localize the regions of image manipulation based on re compression features, using the trained neural network. Our experimental results prove that the proposed method outperforms the state of the art, with respect to forgery detection and localization accuracy.
comment: 24 pages, conference
☆ PosMLP-Video: Spatial and Temporal Relative Position Encoding for Efficient Video Recognition
In recent years, vision Transformers and MLPs have demonstrated remarkable performance in image understanding tasks. However, their inherently dense computational operators, such as self-attention and token-mixing layers, pose significant challenges when applied to spatio-temporal video data. To address this gap, we propose PosMLP-Video, a lightweight yet powerful MLP-like backbone for video recognition. Instead of dense operators, we use efficient relative positional encoding (RPE) to build pairwise token relations, leveraging small-sized parameterized relative position biases to obtain each relation score. Specifically, to enable spatio-temporal modeling, we extend the image PosMLP's positional gating unit to temporal, spatial, and spatio-temporal variants, namely PoTGU, PoSGU, and PoSTGU, respectively. These gating units can be feasibly combined into three types of spatio-temporal factorized positional MLP blocks, which not only decrease model complexity but also maintain good performance. Additionally, we enrich relative positional relationships by using channel grouping. Experimental results on three video-related tasks demonstrate that PosMLP-Video achieves competitive speed-accuracy trade-offs compared to the previous state-of-the-art models. In particular, PosMLP-Video pre-trained on ImageNet1K achieves 59.0%/70.3% top-1 accuracy on Something-Something V1/V2 and 82.1% top-1 accuracy on Kinetics-400 while requiring much fewer parameters and FLOPs than other models. The code is released at https://github.com/zhouds1918/PosMLP_Video.
☆ Explainable vertebral fracture analysis with uncertainty estimation using differentiable rule-based classification MICCAI 2024
We present a novel method for explainable vertebral fracture assessment (XVFA) in low-dose radiographs using deep neural networks, incorporating vertebra detection and keypoint localization with uncertainty estimates. We incorporate Genant's semi-quantitative criteria as a differentiable rule-based means of classifying both vertebra fracture grade and morphology. Unlike previous work, XVFA provides explainable classifications relatable to current clinical methodology, as well as uncertainty estimations, while at the same time surpassing state-of-the art methods with a vertebra-level sensitivity of 93% and end-to-end AUC of 97% in a challenging setting. Moreover, we compare intra-reader agreement with model uncertainty estimates, with model reliability on par with human annotators.
comment: To be published in MICCAI 2024 conference proceedings
☆ EgoFlowNet: Non-Rigid Scene Flow from Point Clouds with Ego-Motion Support BMVC2023
Recent weakly-supervised methods for scene flow estimation from LiDAR point clouds are limited to explicit reasoning on object-level. These methods perform multiple iterative optimizations for each rigid object, which makes them vulnerable to clustering robustness. In this paper, we propose our EgoFlowNet - a point-level scene flow estimation network trained in a weakly-supervised manner and without object-based abstraction. Our approach predicts a binary segmentation mask that implicitly drives two parallel branches for ego-motion and scene flow. Unlike previous methods, we provide both branches with all input points and carefully integrate the binary mask into the feature extraction and losses. We also use a shared cost volume with local refinement that is updated at multiple scales without explicit clustering or rigidity assumptions. On realistic KITTI scenes, we show that our EgoFlowNet performs better than state-of-the-art methods in the presence of ground surface points.
comment: This paper is published in BMVC2023 (pp. 441-443)
☆ Free-SurGS: SfM-Free 3D Gaussian Splatting for Surgical Scene Reconstruction MICCAI 2024
Real-time 3D reconstruction of surgical scenes plays a vital role in computer-assisted surgery, holding a promise to enhance surgeons' visibility. Recent advancements in 3D Gaussian Splatting (3DGS) have shown great potential for real-time novel view synthesis of general scenes, which relies on accurate poses and point clouds generated by Structure-from-Motion (SfM) for initialization. However, 3DGS with SfM fails to recover accurate camera poses and geometry in surgical scenes due to the challenges of minimal textures and photometric inconsistencies. To tackle this problem, in this paper, we propose the first SfM-free 3DGS-based method for surgical scene reconstruction by jointly optimizing the camera poses and scene representation. Based on the video continuity, the key of our method is to exploit the immediate optical flow priors to guide the projection flow derived from 3D Gaussians. Unlike most previous methods relying on photometric loss only, we formulate the pose estimation problem as minimizing the flow loss between the projection flow and optical flow. A consistency check is further introduced to filter the flow outliers by detecting the rigid and reliable points that satisfy the epipolar geometry. During 3D Gaussian optimization, we randomly sample frames to optimize the scene representations to grow the 3D Gaussian progressively. Experiments on the SCARED dataset demonstrate our superior performance over existing methods in novel view synthesis and pose estimation with high efficiency. Code is available at https://github.com/wrld/Free-SurGS.
comment: Accepted to MICCAI 2024
☆ Non-Adversarial Learning: Vector-Quantized Common Latent Space for Multi-Sequence MRI
Adversarial learning helps generative models translate MRI from source to target sequence when lacking paired samples. However, implementing MRI synthesis with adversarial learning in clinical settings is challenging due to training instability and mode collapse. To address this issue, we leverage intermediate sequences to estimate the common latent space among multi-sequence MRI, enabling the reconstruction of distinct sequences from the common latent space. We propose a generative model that compresses discrete representations of each sequence to estimate the Gaussian distribution of vector-quantized common (VQC) latent space between multiple sequences. Moreover, we improve the latent space consistency with contrastive learning and increase model stability by domain augmentation. Experiments using BraTS2021 dataset show that our non-adversarial model outperforms other GAN-based methods, and VQC latent space aids our model to achieve (1) anti-interference ability, which can eliminate the effects of noise, bias fields, and artifacts, and (2) solid semantic representation ability, with the potential of one-shot segmentation. Our code is publicly available.
☆ Domain-independent detection of known anomalies CVPR 2024
One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.
comment: Accepted as extended abstract in CVPR 2024 workshop VAND 2.0
☆ Single Image Rolling Shutter Removal with Diffusion Models
We present RS-Diffusion, the first Diffusion Models-based method for single-frame Rolling Shutter (RS) correction. RS artifacts compromise visual quality of frames due to the row wise exposure of CMOS sensors. Most previous methods have focused on multi-frame approaches, using temporal information from consecutive frames for the motion rectification. However, few approaches address the more challenging but important single frame RS correction. In this work, we present an ``image-to-motion'' framework via diffusion techniques, with a designed patch-attention module. In addition, we present the RS-Real dataset, comprised of captured RS frames alongside their corresponding Global Shutter (GS) ground-truth pairs. The GS frames are corrected from the RS ones, guided by the corresponding Inertial Measurement Unit (IMU) gyroscope data acquired during capture. Experiments show that our RS-Diffusion surpasses previous single RS correction methods. Our method and proposed RS-Real dataset lay a solid foundation for advancing the field of RS correction.
Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization MICCAI 2024
Despite notable advancements, the integration of deep learning (DL) techniques into impactful clinical applications, particularly in the realm of digital histopathology, has been hindered by challenges associated with achieving robust generalization across diverse imaging domains and characteristics. Traditional mitigation strategies in this field such as data augmentation and stain color normalization have proven insufficient in addressing this limitation, necessitating the exploration of alternative methodologies. To this end, we propose a novel generative method for domain generalization in histopathology images. Our method employs a generative, self-supervised Vision Transformer to dynamically extract characteristics of image patches and seamlessly infuse them into the original images, thereby creating novel, synthetic images with diverse attributes. By enriching the dataset with such synthesized images, we aim to enhance its holistic nature, facilitating improved generalization of DL models to unseen domains. Extensive experiments conducted on two distinct histopathology datasets demonstrate the effectiveness of our proposed approach, outperforming the state of the art substantially, on the Camelyon17-wilds challenge dataset (+2%) and on a second epithelium-stroma dataset (+26%). Furthermore, we emphasize our method's ability to readily scale with increasingly available unlabeled data samples and more complex, higher parametric architectures. Source code is available at https://github.com/sdoerrich97/vits-are-generative-models .
comment: Accepted at MICCAI 2024. This is the submitted manuscript with added link to github repo and funding acknowledgements. No further post submission improvements or corrections were integrated. Final version not published yet
☆ An Uncertainty-guided Tiered Self-training Framework for Active Source-free Domain Adaptation in Prostate Segmentation MICCAI 2024
Deep learning models have exhibited remarkable efficacy in accurately delineating the prostate for diagnosis and treatment of prostate diseases, but challenges persist in achieving robust generalization across different medical centers. Source-free Domain Adaptation (SFDA) is a promising technique to adapt deep segmentation models to address privacy and security concerns while reducing domain shifts between source and target domains. However, recent literature indicates that the performance of SFDA remains far from satisfactory due to unpredictable domain gaps. Annotating a few target domain samples is acceptable, as it can lead to significant performance improvement with a low annotation cost. Nevertheless, due to extremely limited annotation budgets, careful consideration is needed in selecting samples for annotation. Inspired by this, our goal is to develop Active Source-free Domain Adaptation (ASFDA) for medical image segmentation. Specifically, we propose a novel Uncertainty-guided Tiered Self-training (UGTST) framework, consisting of efficient active sample selection via entropy-based primary local peak filtering to aggregate global uncertainty and diversity-aware redundancy filter, coupled with a tiered self-learning strategy, achieves stable domain adaptation. Experimental results on cross-center prostate MRI segmentation datasets revealed that our method yielded marked advancements, with a mere 5% annotation, exhibiting an average Dice score enhancement of 9.78% and 7.58% in two target domains compared with state-of-the-art methods, on par with fully supervised learning. Code is available at:https://github.com/HiLab-git/UGTST
comment: 11 pages, 3 figures, 2 tables, accept to MICCAI 2024
Explicitly Guided Information Interaction Network for Cross-modal Point Cloud Completion ECCV 2024
Corresponding author}In this paper, we explore a novel framework, EGIInet (Explicitly Guided Information Interaction Network), a model for View-guided Point cloud Completion (ViPC) task, which aims to restore a complete point cloud from a partial one with a single view image. In comparison with previous methods that relied on the global semantics of input images, EGIInet efficiently combines the information from two modalities by leveraging the geometric nature of the completion task. Specifically, we propose an explicitly guided information interaction strategy supported by modal alignment for point cloud completion. First, in contrast to previous methods which simply use 2D and 3D backbones to encode features respectively, we unified the encoding process to promote modal alignment. Second, we propose a novel explicitly guided information interaction strategy that could help the network identify critical information within images, thus achieving better guidance for completion. Extensive experiments demonstrate the effectiveness of our framework, and we achieved a new state-of-the-art (+16\% CD over XMFnet) in benchmark datasets despite using fewer parameters than the previous methods. The pre-trained model and code and are available at https://github.com/WHU-USI3DV/EGIInet.
comment: ECCV 2024
☆ ShiftAddAug: Augment Multiplication-Free Tiny Neural Network with Hybrid Computation CVPR
Operators devoid of multiplication, such as Shift and Add, have gained prominence for their compatibility with hardware. However, neural networks (NNs) employing these operators typically exhibit lower accuracy compared to conventional NNs with identical structures. ShiftAddAug uses costly multiplication to augment efficient but less powerful multiplication-free operators, improving performance without any inference overhead. It puts a ShiftAdd tiny NN into a large multiplicative model and encourages it to be trained as a sub-model to obtain additional supervision. In order to solve the weight discrepancy problem between hybrid operators, a new weight sharing method is proposed. Additionally, a novel two stage neural architecture search is used to obtain better augmentation effects for smaller but stronger multiplication-free tiny neural networks. The superiority of ShiftAddAug is validated through experiments in image classification and semantic segmentation, consistently delivering noteworthy enhancements. Remarkably, it secures up to a 4.95% increase in accuracy on the CIFAR100 compared to its directly trained counterparts, even surpassing the performance of multiplicative NNs.
comment: Accepted by 2024 CVPR Workshop : Efficient Deep Learning for Computer Vision
☆ Knowledge Composition using Task Vectors with Learned Anisotropic Scaling
Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate that its scalibility.
☆ LMBF-Net: A Lightweight Multipath Bidirectional Focal Attention Network for Multifeatures Segmentation
Retinal diseases can cause irreversible vision loss in both eyes if not diagnosed and treated early. Since retinal diseases are so complicated, retinal imaging is likely to show two or more abnormalities. Current deep learning techniques for segmenting retinal images with many labels and attributes have poor detection accuracy and generalisability. This paper presents a multipath convolutional neural network for multifeature segmentation. The proposed network is lightweight and spatially sensitive to information. A patch-based implementation is used to extract local image features, and focal modulation attention blocks are incorporated between the encoder and the decoder for improved segmentation. Filter optimisation is used to prevent filter overlaps and speed up model convergence. A combination of convolution operations and group convolution operations is used to reduce computational costs. This is the first robust and generalisable network capable of segmenting multiple features of fundus images (including retinal vessels, microaneurysms, optic discs, haemorrhages, hard exudates, and soft exudates). The results of our experimental evaluation on more than ten publicly available datasets with multiple features show that the proposed network outperforms recent networks despite having a small number of learnable parameters.
☆ Fast maneuver recovery from aerial observation: trajectory clustering and outliers rejection
The implementation of road user models that realistically reproduce a credible behavior in a multi-agentsimulation is still an open problem. A data-driven approach consists on to deduce behaviors that may exist in real situation to obtain different types of trajectories from a large set of observations. The data, and its classification, could then be used to train models capable to extrapolate such behavior. Cars and two different types of Vulnerable Road Users (VRU) will be considered by the trajectory clustering methods proposed: pedestrians and cyclists. The results reported here evaluate methods to extract well-defined trajectory classes from raw data without the use of map information while also separating ''eccentric'' or incomplete trajectories from the ones that are complete and representative in any scenario. Two environments will serve as test for the methods develop, three different intersections and one roundabout. The resulting clusters of trajectories can then be used for prediction or learning tasks or discarded if it is composed by outliers.
☆ Universal Gloss-level Representation for Gloss-free Sign Language Translation and Production
Sign language, essential for the deaf and hard-of-hearing, presents unique challenges in translation and production due to its multimodal nature and the inherent ambiguity in mapping sign language motion to spoken language words. Previous methods often rely on gloss annotations, requiring time-intensive labor and specialized expertise in sign language. Gloss-free methods have emerged to address these limitations, but they often depend on external sign language data or dictionaries, failing to completely eliminate the need for gloss annotations. There is a clear demand for a comprehensive approach that can supplant gloss annotations and be utilized for both Sign Language Translation (SLT) and Sign Language Production (SLP). We introduce Universal Gloss-level Representation (UniGloR), a unified and self-supervised solution for both SLT and SLP, trained on multiple datasets including PHOENIX14T, How2Sign, and NIASL2021. Our results demonstrate UniGloR's effectiveness in the translation and production tasks. We further report an encouraging result for the Sign Language Recognition (SLR) on previously unseen data. Our study suggests that self-supervised learning can be made in a unified manner, paving the way for innovative and practical applications in future research.
comment: 14 pages, 5 figures
☆ Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage
Artificial intelligence has significantly advanced the automation of diagnostic processes, benefiting various fields including agriculture. This study introduces an AI-based system for the automatic diagnosis of urban street plants using video footage obtained with accessible camera devices. The system aims to monitor plant health on a day-to-day basis, aiding in the control of disease spreading in urban areas. By combining two machine vision algorithms, YOLOv8 and DeepSORT, the system efficiently identifies and tracks individual leaves, extracting the optimal images for health analysis. YOLOv8, chosen for its speed and computational efficiency, locates leaves, while DeepSORT ensures robust tracking in complex environments. For detailed health assessment, DeepLabV3Plus, a convolutional neural network, is employed to segment and quantify leaf damage caused by bacteria, pests, and fungi. The hybrid system, named Plant Doctor, has been trained and validated using a diverse dataset including footage from Tokyo urban plants. The results demonstrate the robustness and accuracy of the system in diagnosing leaf damage, with potential applications in large scale urban flora illness monitoring. This approach provides a non-invasive, efficient, and scalable solution for urban tree health management, supporting sustainable urban ecosystems.
comment: 29 pages, 10 figures, 2 tables
☆ Multi-Task Domain Adaptation for Language Grounding with 3D Objects
The existing works on object-level language grounding with 3D objects mostly focus on improving performance by utilizing the off-the-shelf pre-trained models to capture features, such as viewpoint selection or geometric priors. However, they have failed to consider exploring the cross-modal representation of language-vision alignment in the cross-domain field. To answer this problem, we propose a novel method called Domain Adaptation for Language Grounding (DA4LG) with 3D objects. Specifically, the proposed DA4LG consists of a visual adapter module with multi-task learning to realize vision-language alignment by comprehensive multimodal feature representation. Experimental results demonstrate that DA4LG competitively performs across visual and non-visual language descriptions, independent of the completeness of observation. DA4LG achieves state-of-the-art performance in the single-view setting and multi-view setting with the accuracy of 83.8% and 86.8% respectively in the language grounding benchmark SNARE. The simulation experiments show the well-practical and generalized performance of DA4LG compared to the existing methods. Our project is available at https://sites.google.com/view/da4lg.
☆ Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
Breast cancer poses a profound threat to lives globally, claiming numerous lives each year. Therefore, timely detection is crucial for early intervention and improved chances of survival. Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine, demanding cutting-edge solutions for improved treatment strategies. This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images. A spatial channel attention mechanism is proposed for segmenting tumors from ultrasound images, utilizing a novel LinkNet DL framework with an InceptionResNet backbone. Following this, the paper proposes a deep convolutional neural network with an integrated multi-attention framework (DCNNIMAF) to classify the segmented tumor as benign, malignant, or normal. From experimental results, it is observed that the segmentation model has recorded an accuracy of 98.1%, with a minimal loss of 0.6%. It has also achieved high Intersection over Union (IoU) and Dice Coefficient scores of 96.9% and 97.2%, respectively. Similarly, the classification model has attained an accuracy of 99.2%, with a low loss of 0.31%. Furthermore, the classification framework has achieved outstanding F1-Score, precision, and recall values of 99.1%, 99.3%, and 99.1%, respectively. By offering a robust framework for early detection and accurate classification of breast cancer, this proposed work significantly advances the field of medical image analysis, potentially improving diagnostic precision and patient outcomes.
comment: 32 pages, 18 figures, 6 tables
☆ MindBench: A Comprehensive Benchmark for Mind Map Structure Recognition and Analysis
Multimodal Large Language Models (MLLM) have made significant progress in the field of document analysis. Despite this, existing benchmarks typically focus only on extracting text and simple layout information, neglecting the complex interactions between elements in structured documents such as mind maps and flowcharts. To address this issue, we introduce the new benchmark named MindBench, which not only includes meticulously constructed bilingual authentic or synthetic images, detailed annotations, evaluation metrics and baseline models, but also specifically designs five types of structured understanding and parsing tasks. These tasks include full parsing, partial parsing, position-related parsing, structured Visual Question Answering (VQA), and position-related VQA, covering key areas such as text recognition, spatial awareness, relationship discernment, and structured parsing. Extensive experimental results demonstrate the substantial potential and significant room for improvement in current models' ability to handle structured document information. We anticipate that the launch of MindBench will significantly advance research and application development in structured document analysis technology. MindBench is available at: https://miasanlei.github.io/MindBench.github.io/.
comment: technical report
A Pairwise DomMix Attentive Adversarial Network for Unsupervised Domain Adaptive Object Detection
Unsupervised Domain Adaptive Object Detection (DAOD) could adapt a model trained on a source domain to an unlabeled target domain for object detection. Existing unsupervised DAOD methods usually perform feature alignments from the target to the source. Unidirectional domain transfer would omit information about the target samples and result in suboptimal adaptation when there are large domain shifts. Therefore, we propose a pairwise attentive adversarial network with a Domain Mixup (DomMix) module to mitigate the aforementioned challenges. Specifically, a deep-level mixup is employed to construct an intermediate domain that allows features from both domains to share their differences. Then a pairwise attentive adversarial network is applied with attentive encoding on both image-level and instance-level features at different scales and optimizes domain alignment by adversarial learning. This allows the network to focus on regions with disparate contextual information and learn their similarities between different domains. Extensive experiments are conducted on several benchmark datasets, demonstrating the superiority of our proposed method.
comment: has published on IEEE Signal Processing Letters, 2023
☆ Style Alignment based Dynamic Observation Method for UAV-View Geo-localization
The task of UAV-view geo-localization is to estimate the localization of a query satellite/drone image by matching it against a reference dataset consisting of drone/satellite images. Though tremendous strides have been made in feature alignment between satellite and drone views, vast differences in both inter and intra-class due to changes in viewpoint, altitude, and lighting remain a huge challenge. In this paper, a style alignment based dynamic observation method for UAV-view geo-localization is proposed to meet the above challenges from two perspectives: visual style transformation and surrounding noise control. Specifically, we introduce a style alignment strategy to transfrom the diverse visual style of drone-view images into a unified satellite images visual style. Then a dynamic observation module is designed to evaluate the spatial distribution of images by mimicking human observation habits. It is featured by the hierarchical attention block (HAB) with a dual-square-ring stream structure, to reduce surrounding noise and geographical deformation. In addition, we propose a deconstruction loss to push away features of different geo-tags and squeeze knowledge from unmatched images by correlation calculation. The experimental results demonstrate the state-of-the-art performance of our model on benchmarked datasets. In particular, when compared to the prior art on University-1652, our results surpass the best of them (FSRA), while only requiring 2x fewer parameters. Code will be released at https://github.com/Xcco1/SA\_DOM
comment: has published on IEEE Transactions on Geoscience and Remote Sensing, 2023
☆ A Radiometric Correction based Optical Modeling Approach to Removing Reflection Noise in TLS Point Clouds of Urban Scenes
Point clouds are vital in computer vision tasks such as 3D reconstruction, autonomous driving, and robotics. However, TLS-acquired point clouds often contain virtual points from reflective surfaces, causing disruptions. This study presents a reflection noise elimination algorithm for TLS point clouds. Our innovative reflection plane detection algorithm, based on geometry-optical models and physical properties, identifies and categorizes reflection points per optical reflection theory. We've adapted the LSFH feature descriptor to retain reflection features, mitigating interference from symmetrical architectural structures. By incorporating the Hausdorff feature distance, the algorithm enhances resilience to ghosting and deformation, improving virtual point detection accuracy. Extensive experiments on the 3DRN benchmark dataset, featuring diverse urban environments with virtual TLS reflection noise, show our algorithm improves precision and recall rates for 3D points in reflective regions by 57.03\% and 31.80\%, respectively. Our method achieves a 9.17\% better outlier detection rate and 5.65\% higher accuracy than leading methods. Access the 3DRN dataset at (https://github.com/Tsuiky/3DRN).
☆ Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective
Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scores, often struggle to comprehensively understand bias from the perspective of model components. We propose a framework that incorporates causal mediation analysis to measure and map the pathways of bias generation and propagation within VLMs. This approach allows us to identify the direct effects of interventions on model bias and the indirect effects of interventions on bias mediated through different model components. Our results show that image features are the primary contributors to bias, with significantly higher impacts than text features, specifically accounting for 32.57% and 12.63% of the bias in the MSCOCO and PASCAL-SENTENCE datasets, respectively. Notably, the image encoder's contribution surpasses that of the text encoder and the deep fusion encoder. Further experimentation confirms that contributions from both language and vision modalities are aligned and non-conflicting. Consequently, focusing on blurring gender representations within the image encoder, which contributes most to the model bias, reduces bias efficiently by 22.03% and 9.04% in the MSCOCO and PASCAL-SENTENCE datasets, respectively, with minimal performance loss or increased computational demands.
☆ Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design ECCV2024
Deep neural networks (DNNs) are frequently employed in a variety of computer vision applications. Nowadays, an emerging trend in the current video distribution system is to take advantage of DNN's overfitting properties to perform video resolution upscaling. By splitting videos into chunks and applying a super-resolution (SR) model to overfit each chunk, this scheme of SR models plus video chunks is able to replace traditional video transmission to enhance video quality and transmission efficiency. However, many models and chunks are needed to guarantee high performance, which leads to tremendous overhead on model switching and memory footprints at the user end. To resolve such problems, we propose a Dynamic Deep neural network assisted by a Content-Aware data processing pipeline to reduce the model number down to one (Dy-DCA), which helps promote performance while conserving computational resources. Additionally, to achieve real acceleration on the user end, we designed a framework that optimizes dynamic features (e.g., dynamic shapes, sizes, and control flow) in Dy-DCA to enable a series of compilation optimizations, including fused code generation, static execution planning, etc. By employing such techniques, our method achieves better PSNR and real-time performance (33 FPS) on an off-the-shelf mobile phone. Meanwhile, assisted by our compilation optimization, we achieve a 1.7$\times$ speedup while saving up to 1.61$\times$ memory consumption. Code available in https://github.com/coulsonlee/Dy-DCA-ECCV2024.
comment: ECCV2024
☆ Solving Motion Planning Tasks with a Scalable Generative Model ECCV2024
As autonomous driving systems being deployed to millions of vehicles, there is a pressing need of improving the system's scalability, safety and reducing the engineering cost. A realistic, scalable, and practical simulator of the driving world is highly desired. In this paper, we present an efficient solution based on generative models which learns the dynamics of the driving scenes. With this model, we can not only simulate the diverse futures of a given driving scenario but also generate a variety of driving scenarios conditioned on various prompts. Our innovative design allows the model to operate in both full-Autoregressive and partial-Autoregressive modes, significantly improving inference and training speed without sacrificing generative capability. This efficiency makes it ideal for being used as an online reactive environment for reinforcement learning, an evaluator for planning policies, and a high-fidelity simulator for testing. We evaluated our model against two real-world datasets: the Waymo motion dataset and the nuPlan dataset. On the simulation realism and scene generation benchmark, our model achieves the state-of-the-art performance. And in the planning benchmarks, our planner outperforms the prior arts. We conclude that the proposed generative model may serve as a foundation for a variety of motion planning tasks, including data generation, simulation, planning, and online training. Source code is public at https://github.com/HorizonRobotics/GUMP/
comment: ECCV2024
☆ Euler's Elastica Based Cartoon-Smooth-Texture Image Decomposition
We propose a novel model for decomposing grayscale images into three distinct components: the structural part, representing sharp boundaries and regions with strong light-to-dark transitions; the smooth part, capturing soft shadows and shades; and the oscillatory part, characterizing textures and noise. To capture the homogeneous structures, we introduce a combination of $L^0$-gradient and curvature regularization on level lines. This new regularization term enforces strong sparsity on the image gradient while reducing the undesirable staircase effects as well as preserving the geometry of contours. For the smoothly varying component, we utilize the $L^2$-norm of the Laplacian that favors isotropic smoothness. To capture the oscillation, we use the inverse Sobolev seminorm. To solve the associated minimization problem, we design an efficient operator-splitting algorithm. Our algorithm effectively addresses the challenging non-convex non-smooth problem by separating it into sub-problems. Each sub-problem can be solved either directly using closed-form solutions or efficiently using the Fast Fourier Transform (FFT). We provide systematic experiments, including ablation and comparison studies, to analyze our model's behaviors and demonstrate its effectiveness as well as efficiency.
☆ Learning Positional Attention for Sequential Recommendation
Self-attention-based networks have achieved remarkable performance in sequential recommendation tasks. A crucial component of these models is positional encoding. In this study, we delve into the learned positional embedding, demonstrating that it often captures the distance between tokens. Building on this insight, we introduce novel attention models that directly learn positional relations. Extensive experiments reveal that our proposed models, \textbf{PARec} and \textbf{FPARec} outperform previous self-attention-based approaches.Our code is available at the link for anonymous review: https://anonymous.4open.science/ r/FPARec-2C55/
☆ Foster Adaptivity and Balance in Learning with Noisy Labels ECCV
Label noise is ubiquitous in real-world scenarios, posing a practical challenge to supervised models due to its effect in hurting the generalization performance of deep neural networks. Existing methods primarily employ the sample selection paradigm and usually rely on dataset-dependent prior knowledge (\eg, a pre-defined threshold) to cope with label noise, inevitably degrading the adaptivity. Moreover, existing methods tend to neglect the class balance in selecting samples, leading to biased model performance. To this end, we propose a simple yet effective approach named \textbf{SED} to deal with label noise in a \textbf{S}elf-adaptiv\textbf{E} and class-balance\textbf{D} manner. Specifically, we first design a novel sample selection strategy to empower self-adaptivity and class balance when identifying clean and noisy data. A mean-teacher model is then employed to correct labels of noisy samples. Subsequently, we propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples. Finally, we additionally employ consistency regularization on selected clean samples to improve model generalization performance. Extensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/SED.
comment: accepted by the European Conference on Computer Vision (ECCV), 2024
☆ Automatic gradient descent with generalized Newton's method
We propose the generalized Newton's method (GeN) -- a Hessian-informed approach that applies to any optimizer such as SGD and Adam, and covers the Newton-Raphson method as a sub-case. Our method automatically and dynamically selects the learning rate that accelerates the convergence, without the intensive tuning of the learning rate scheduler. In practice, out method is easily implementable, since it only requires additional forward passes with almost zero computational overhead (in terms of training time and memory cost), if the overhead is amortized over many iterations. We present extensive experiments on language and vision tasks (e.g. GPT and ResNet) to showcase that GeN optimizers match the state-of-the-art performance, which was achieved with carefully tuned learning rate schedulers. Code to be released at \url{https://github.com/ShiyunXu/AutoGeN}.
☆ Fine-Grained Scene Image Classification with Modality-Agnostic Adapter
When dealing with the task of fine-grained scene image classification, most previous works lay much emphasis on global visual features when doing multi-modal feature fusion. In other words, models are deliberately designed based on prior intuitions about the importance of different modalities. In this paper, we present a new multi-modal feature fusion approach named MAA (Modality-Agnostic Adapter), trying to make the model learn the importance of different modalities in different cases adaptively, without giving a prior setting in the model architecture. More specifically, we eliminate the modal differences in distribution and then use a modality-agnostic Transformer encoder for a semantic-level feature fusion. Our experiments demonstrate that MAA achieves state-of-the-art results on benchmarks by applying the same modalities with previous methods. Besides, it is worth mentioning that new modalities can be easily added when using MAA and further boost the performance. Code is available at https://github.com/quniLcs/MAA.
☆ Knowledge Transfer with Simulated Inter-Image Erasing for Weakly Supervised Semantic Segmentation ECCV
Though adversarial erasing has prevailed in weakly supervised semantic segmentation to help activate integral object regions, existing approaches still suffer from the dilemma of under-activation and over-expansion due to the difficulty in determining when to stop erasing. In this paper, we propose a \textbf{K}nowledge \textbf{T}ransfer with \textbf{S}imulated Inter-Image \textbf{E}rasing (KTSE) approach for weakly supervised semantic segmentation to alleviate the above problem. In contrast to existing erasing-based methods that remove the discriminative part for more object discovery, we propose a simulated inter-image erasing scenario to weaken the original activation by introducing extra object information. Then, object knowledge is transferred from the anchor image to the consequent less activated localization map to strengthen network localization ability. Considering the adopted bidirectional alignment will also weaken the anchor image activation if appropriate constraints are missing, we propose a self-supervised regularization module to maintain the reliable activation in discriminative regions and improve the inter-class object boundary recognition for complex images with multiple categories of objects. In addition, we resort to intra-image erasing and propose a multi-granularity alignment module to gently enlarge the object activation to boost the object knowledge transfer. Extensive experiments and ablation studies on PASCAL VOC 2012 and COCO datasets demonstrate the superiority of our proposed approach. Source codes and models are available at https://github.com/NUST-Machine-Intelligence-Laboratory/KTSE.
comment: accepted by the European Conference on Computer Vision (ECCV), 2024
☆ ADFQ-ViT: Activation-Distribution-Friendly Post-Training Quantization for Vision Transformers
Vision Transformers (ViTs) have exhibited exceptional performance across diverse computer vision tasks, while their substantial parameter size incurs significantly increased memory and computational demands, impeding effective inference on resource-constrained devices. Quantization has emerged as a promising solution to mitigate these challenges, yet existing methods still suffer from significant accuracy loss at low-bit. We attribute this issue to the distinctive distributions of post-LayerNorm and post-GELU activations within ViTs, rendering conventional hardware-friendly quantizers ineffective, particularly in low-bit scenarios. To address this issue, we propose a novel framework called Activation-Distribution-Friendly post-training Quantization for Vision Transformers, ADFQ-ViT. Concretely, we introduce the Per-Patch Outlier-aware Quantizer to tackle irregular outliers in post-LayerNorm activations. This quantizer refines the granularity of the uniform quantizer to a per-patch level while retaining a minimal subset of values exceeding a threshold at full-precision. To handle the non-uniform distributions of post-GELU activations between positive and negative regions, we design the Shift-Log2 Quantizer, which shifts all elements to the positive region and then applies log2 quantization. Moreover, we present the Attention-score enhanced Module-wise Optimization which adjusts the parameters of each quantizer by reconstructing errors to further mitigate quantization error. Extensive experiments demonstrate ADFQ-ViT provides significant improvements over various baselines in image classification, object detection, and instance segmentation tasks at 4-bit. Specifically, when quantizing the ViT-B model to 4-bit, we achieve a 10.23% improvement in Top-1 accuracy on the ImageNet dataset.
comment: 28 pages,9 figures
☆ Differential Encoding for Improved Representation Learning over Graphs
Combining the message-passing paradigm with the global attention mechanism has emerged as an effective framework for learning over graphs. The message-passing paradigm and the global attention mechanism fundamentally generate node embeddings based on information aggregated from a node's local neighborhood or from the whole graph. The most basic and commonly used aggregation approach is to take the sum of information from a node's local neighbourhood or from the whole graph. However, it is unknown if the dominant information is from a node itself or from the node's neighbours (or the rest of the graph nodes). Therefore, there exists information lost at each layer of embedding generation, and this information lost could be accumulated and become more serious when more layers are used in the model. In this paper, we present a differential encoding method to address the issue of information lost. The idea of our method is to encode the differential representation between the information from a node's neighbours (or the rest of the graph nodes) and that from the node itself. The obtained differential encoding is then combined with the original aggregated local or global representation to generate the updated node embedding. By integrating differential encodings, the representational ability of generated node embeddings is improved. The differential encoding method is empirically evaluated on different graph tasks on seven benchmark datasets. The results show that it is a general method that improves the message-passing update and the global attention update, advancing the state-of-the-art performance for graph representation learning on these datasets.
☆ Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models
Reconstructing high-fidelity magnetic resonance (MR) images from under-sampled k-space is a commonly used strategy to reduce scan time. The posterior sampling of diffusion models based on the real measurement data holds significant promise of improved reconstruction accuracy. However, traditional posterior sampling methods often lack effective data consistency guidance, leading to inaccurate and unstable reconstructions. Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems by modeling a signal's attributes as a continuous function of spatial coordinates. In this study, we present a novel posterior sampler for diffusion models using INR, named DiffINR. The INR-based component incorporates both the diffusion prior distribution and the MRI physical model to ensure high data fidelity. DiffINR demonstrates superior performance on experimental datasets with remarkable accuracy, even under high acceleration factors (up to R=12 in single-channel reconstruction). Notably, our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
☆ ZEAL: Surgical Skill Assessment with Zero-shot Tool Inference Using Unified Foundation Model
Surgical skill assessment is paramount for ensuring patient safety and enhancing surgical outcomes. This study addresses the need for efficient and objective evaluation methods by introducing ZEAL (surgical skill assessment with Zero-shot surgical tool segmentation with a unifiEd foundAtion modeL). ZEAL uses segmentation masks of surgical instruments obtained through a unified foundation model for proficiency assessment. Through zero-shot inference with text prompts, ZEAL predicts segmentation masks, capturing essential features of both instruments and surroundings. Utilizing sparse convolutional neural networks and segmentation masks, ZEAL extracts feature vectors for foreground (instruments) and background. Long Short-Term Memory (LSTM) networks encode temporal dynamics, modeling sequential data and dependencies in surgical videos. Combining LSTM-encoded vectors, ZEAL produces a surgical skill score, offering an objective measure of proficiency. Comparative analysis with conventional methods using open datasets demonstrates ZEAL's superiority, affirming its potential in advancing surgical training and evaluation. This innovative approach to surgical skill assessment addresses challenges in traditional supervised learning techniques, paving the way for enhanced surgical care quality and patient outcomes.
☆ MedVH: Towards Systematic Evaluation of Hallucination for Large Vision Language Models in the Medical Context
Large Vision Language Models (LVLMs) have recently achieved superior performance in various tasks on natural image and text data, which inspires a large amount of studies for LVLMs fine-tuning and training. Despite their advancements, there has been scant research on the robustness of these models against hallucination when fine-tuned on smaller datasets. In this study, we introduce a new benchmark dataset, the Medical Visual Hallucination Test (MedVH), to evaluate the hallucination of domain-specific LVLMs. MedVH comprises five tasks to evaluate hallucinations in LVLMs within the medical context, which includes tasks for comprehensive understanding of textual and visual input, as well as long textual response generation. Our extensive experiments with both general and medical LVLMs reveal that, although medical LVLMs demonstrate promising performance on standard medical tasks, they are particularly susceptible to hallucinations, often more so than the general models, raising significant concerns about the reliability of these domain-specific models. For medical LVLMs to be truly valuable in real-world applications, they must not only accurately integrate medical knowledge but also maintain robust reasoning abilities to prevent hallucination. Our work paves the way for future evaluations of these studies.
♻ ☆ Merlin:Empowering Multimodal LLMs with Foresight Minds ECCV2024
Humans possess the remarkable ability to foresee the future to a certain extent based on present observations, a skill we term as foresight minds. However, this capability remains largely under explored within existing Multimodal Large Language Models (MLLMs), hindering their capacity to learn the fundamental principles of how things operate and the intentions behind the observed subjects. To address this issue, we introduce the integration of future modeling into the existing learning frameworks of MLLMs. By utilizing the subject trajectory, a highly structured representation of a consecutive frame sequence, as a learning objective, we aim to bridge the gap between the past and the future. We propose two innovative methods to empower MLLMs with foresight minds, Foresight Pre-Training (FPT) and Foresight Instruction-Tuning (FIT), which are inspired by the modern learning paradigm of LLMs. Specifically, FPT jointly training various tasks centered on trajectories, enabling MLLMs to learn how to attend and predict entire trajectories from a given initial observation. Then, FIT requires MLLMs to first predict trajectories of related objects and then reason about potential future events based on them. Aided by FPT and FIT, we build a novel and unified MLLM named Merlin that supports multi-images input and analysis about potential actions of multiple objects for the future reasoning. Experimental results show Merlin powerful foresight minds with impressive performance on both future reasoning and visual comprehension tasks.
comment: Accepted by ECCV2024. Project page: https://ahnsun.github.io/merlin
♻ ☆ Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery ICPR 2024
Discovering novel concepts in unlabelled datasets and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where novel classes are learned by jointly accessing a related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-trained model (e.g., class-iNCD). In this work we challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly, without needing any related labelled set. In detail, we propose to exploit the richer priors from strong self-supervised pre-trained models (PTM). To this end, we propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines when compared with sophisticated state-of-the-art methods. The code is open source.
comment: Accepted as a conference paper to ICPR 2024
♻ ☆ DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception
The development of large language models (LLMs) has significantly advanced the emergence of large multimodal models (LMMs). While LMMs have achieved tremendous success by promoting the synergy between multimodal comprehension and creation, they often face challenges when confronted with out-of-distribution data. This is primarily due to their reliance on image encoders trained to encode images into task-relevant features, which may lead them to disregard irrelevant details. Delving into the modeling capabilities of diffusion models for images naturally prompts the question: Can diffusion models serve as the eyes of large language models for image perception? In this paper, we propose DEEM, a simple and effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder. This addresses the drawbacks of previous methods that solely relied on image encoders like ViT, thereby enhancing the model's resilience against out-of-distribution samples and reducing visual hallucinations. Importantly, this is achieved without requiring additional training modules and with fewer training parameters. We extensively evaluated DEEM on both our newly constructed RobustVQA benchmark and another well-known benchmark, POPE, for object hallucination. Compared to the state-of-the-art interleaved content generation models, DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data (10%), and a smaller base model size.
comment: 25 pages. arXiv admin note: text overlap with arXiv:2401.10208 by other authors
♻ ☆ A Simple Baseline for Spoken Language to Sign Language Translation with 3D Avatars ECCV 2024
The objective of this paper is to develop a functional system for translating spoken languages into sign languages, referred to as Spoken2Sign translation. The Spoken2Sign task is orthogonal and complementary to traditional sign language to spoken language (Sign2Spoken) translation. To enable Spoken2Sign translation, we present a simple baseline consisting of three steps: 1) creating a gloss-video dictionary using existing Sign2Spoken benchmarks; 2) estimating a 3D sign for each sign video in the dictionary; 3) training a Spoken2Sign model, which is composed of a Text2Gloss translator, a sign connector, and a rendering module, with the aid of the yielded gloss-3D sign dictionary. The translation results are then displayed through a sign avatar. As far as we know, we are the first to present the Spoken2Sign task in an output format of 3D signs. In addition to its capability of Spoken2Sign translation, we also demonstrate that two by-products of our approach-3D keypoint augmentation and multi-view understanding-can assist in keypoint-based sign language understanding. Code and models are available at https://github.com/FangyunWei/SLRT.
comment: Accepted by ECCV 2024
♻ ☆ FairMedFM: Fairness Benchmarking for Medical Imaging Foundation Models
The advent of foundation models (FMs) in healthcare offers unprecedented opportunities to enhance medical diagnostics through automated classification and segmentation tasks. However, these models also raise significant concerns about their fairness, especially when applied to diverse and underrepresented populations in healthcare applications. Currently, there is a lack of comprehensive benchmarks, standardized pipelines, and easily adaptable libraries to evaluate and understand the fairness performance of FMs in medical imaging, leading to considerable challenges in formulating and implementing solutions that ensure equitable outcomes across diverse patient populations. To fill this gap, we introduce FairMedFM, a fairness benchmark for FM research in medical imaging.FairMedFM integrates with 17 popular medical imaging datasets, encompassing different modalities, dimensionalities, and sensitive attributes. It explores 20 widely used FMs, with various usages such as zero-shot learning, linear probing, parameter-efficient fine-tuning, and prompting in various downstream tasks -- classification and segmentation. Our exhaustive analysis evaluates the fairness performance over different evaluation metrics from multiple perspectives, revealing the existence of bias, varied utility-fairness trade-offs on different FMs, consistent disparities on the same datasets regardless FMs, and limited effectiveness of existing unfairness mitigation methods. Checkout FairMedFM's project page and open-sourced codebase, which supports extendible functionalities and applications as well as inclusive for studies on FMs in medical imaging over the long term.
comment: 29 pages, 17 figures
♻ ☆ Implicit Concept Removal of Diffusion Models
Text-to-image (T2I) diffusion models often inadvertently generate unwanted concepts such as watermarks and unsafe images. These concepts, termed as the "implicit concepts", could be unintentionally learned during training and then be generated uncontrollably during inference. Existing removal methods still struggle to eliminate implicit concepts primarily due to their dependency on the model's ability to recognize concepts it actually can not discern. To address this, we utilize the intrinsic geometric characteristics of implicit concepts and present the Geom-Erasing, a novel concept removal method based on the geometric-driven control. Specifically, once an unwanted implicit concept is identified, we integrate the existence and geometric information of the concept into the text prompts with the help of an accessible classifier or detector model. Subsequently, the model is optimized to identify and disentangle this information, which is then adopted as negative prompts during generation. Moreover, we introduce the Implicit Concept Dataset (ICD), a novel image-text dataset imbued with three typical implicit concepts (i.e., QR codes, watermarks, and text), reflecting real-life situations where implicit concepts are easily injected. Geom-Erasing effectively mitigates the generation of implicit concepts, achieving the state-of-the-art results on the Inappropriate Image Prompts (I2P) and our challenging Implicit Concept Dataset (ICD) benchmarks.
♻ ☆ Depth Priors in Removal Neural Radiance Fields
Neural Radiance Fields (NeRF) have achieved impressive results in 3D reconstruction and novel view generation. A significant challenge within NeRF involves editing reconstructed 3D scenes, such as object removal, which demands consistency across multiple views and the synthesis of high-quality perspectives. Previous studies have integrated depth priors, typically sourced from LiDAR or sparse depth estimates from COLMAP, to enhance NeRF's performance in object removal. However, these methods are either expensive or time-consuming. This paper proposes a new pipeline that leverages SpinNeRF and monocular depth estimation models like ZoeDepth to enhance NeRF's performance in complex object removal with improved efficiency. A thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset is conducted to demonstrate that COLMAP can be viewed as a cost-effective and scalable alternative for acquiring depth ground truth compared to traditional methods like LiDAR. This serves as the basis for evaluating the performance of monocular depth estimation models to determine the best one for generating depth priors for SpinNeRF. The new pipeline is tested in various scenarios involving 3D reconstruction and object removal, and the results indicate that our pipeline significantly reduces the time required for the acquisition of depth priors for object removal and enhances the fidelity of the synthesized views, suggesting substantial potential for building high-fidelity digital twin systems with increased efficiency in the future.
comment: 17 pages
♻ ☆ Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis
Current machine learning methods for medical image analysis primarily focus on developing models tailored for their specific tasks, utilizing data within their target domain. These specialized models tend to be data-hungry and often exhibit limitations in generalizing to out-of-distribution samples. In this work, we show that employing models that incorporate multiple domains instead of specialized ones significantly alleviates the limitations observed in specialized models. We refer to this approach as multi-domain model and compare its performance to that of specialized models. For this, we introduce the incorporation of diverse medical image domains, including different imaging modalities like X-ray, MRI, CT, and ultrasound images, as well as various viewpoints such as axial, coronal, and sagittal views. Our findings underscore the superior generalization capabilities of multi-domain models, particularly in scenarios characterized by limited data availability and out-of-distribution, frequently encountered in healthcare applications. The integration of diverse data allows multi-domain models to utilize information across domains, enhancing the overall outcomes substantially. To illustrate, for organ recognition, multi-domain model can enhance accuracy by up to 8% compared to conventional specialized models.
♻ ☆ Out-of-distribution Detection in Medical Image Analysis: A survey
Computer-aided diagnostics has benefited from the development of deep learning-based computer vision techniques in these years. Traditional supervised deep learning methods assume that the test sample is drawn from the identical distribution as the training data. However, it is possible to encounter out-of-distribution samples in real-world clinical scenarios, which may cause silent failure in deep learning-based medical image analysis tasks. Recently, research has explored various out-of-distribution (OOD) detection situations and techniques to enable a trustworthy medical AI system. In this survey, we systematically review the recent advances in OOD detection in medical image analysis. We first explore several factors that may cause a distributional shift when using a deep-learning-based model in clinic scenarios, with three different types of distributional shift well defined on top of these factors. Then a framework is suggested to categorize and feature existing solutions, while the previous studies are reviewed based on the methodology taxonomy. Our discussion also includes evaluation protocols and metrics, as well as the challenge and a research direction lack of exploration.
comment: 23 pages, 3 figures
♻ ☆ Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients
Objective Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients. However, due to the nature of tumor heterogeneity, the clinical outcomes to NACT vary significantly among different subgroups. Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis. To address this clinical challenge, the purpose of this study is to develop a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage. Methods For this purpose, we first computed a total of 1373 radiomics features to quantify the tumor characteristics, which can be grouped into three categories: geometric, intensity, and texture features. Second, all these features were optimized by principal component analysis algorithm to generate a compact and informative feature cluster. This cluster was used as input for developing and optimizing support vector machine (SVM) based classifiers, which indicated the likelihood of receiving suboptimal cytoreduction after the NACT treatment. Two different kernels for SVM algorithm were explored and compared. A total of 42 ovarian cancer cases were retrospectively collected to validate the scheme. A nested leave-one-out cross-validation framework was adopted for model performance assessment. Results The results demonstrated that the model with a Gaussian radial basis function kernel SVM yielded an AUC (area under the ROC [receiver characteristic operation] curve) of 0.806. Meanwhile, this model achieved overall accuracy (ACC) of 83.3%, positive predictive value (PPV) of 81.8%, and negative predictive value (NPV) of 83.9%. Conclusion This study provides meaningful information for the development of radiomics based image markers in NACT treatment outcome prediction.
♻ ☆ Self-Cooperation Knowledge Distillation for Novel Class Discovery ECCV2024
Novel Class Discovery (NCD) aims to discover unknown and novel classes in an unlabeled set by leveraging knowledge already learned about known classes. Existing works focus on instance-level or class-level knowledge representation and build a shared representation space to achieve performance improvements. However, a long-neglected issue is the potential imbalanced number of samples from known and novel classes, pushing the model towards dominant classes. Therefore, these methods suffer from a challenging trade-off between reviewing known classes and discovering novel classes. Based on this observation, we propose a Self-Cooperation Knowledge Distillation (SCKD) method to utilize each training sample (whether known or novel, labeled or unlabeled) for both review and discovery. Specifically, the model's feature representations of known and novel classes are used to construct two disjoint representation spaces. Through spatial mutual information, we design a self-cooperation learning to encourage model learning from the two feature representation spaces from itself. Extensive experiments on six datasets demonstrate that our method can achieve significant performance improvements, achieving state-of-the-art performance.
comment: Accepted by ECCV2024
♻ ☆ Individual Tree Detection in Large-Scale Urban Environments using High-Resolution Multispectral Imagery
We introduce a novel deep learning method for detection of individual trees in urban environments using high-resolution multispectral aerial imagery. We use a convolutional neural network to regress a confidence map indicating the locations of individual trees, which are localized using a peak finding algorithm. Our method provides complete spatial coverage by detecting trees in both public and private spaces, and can scale to very large areas. We performed a thorough evaluation of our method, supported by a new dataset of over 1,500 images and almost 100,000 tree annotations, covering eight cities, six climate zones, and three image capture years. We trained our model on data from Southern California, and achieved a precision of 73.6% and recall of 73.3% using test data from this region. We generally observed similar precision and slightly lower recall when extrapolating to other California climate zones and image capture dates. We used our method to produce a map of trees in the entire urban forest of California, and estimated the total number of urban trees in California to be about 43.5 million. Our study indicates the potential for deep learning methods to support future urban forestry studies at unprecedented scales.
♻ ☆ Back to the Color: Learning Depth to Specific Color Transformation for Unsupervised Depth Estimation
Virtual engines can generate dense depth maps for various synthetic scenes, making them invaluable for training depth estimation models. However, discrepancies between synthetic and real-world colors pose significant challenges for depth estimation in real-world scenes, especially in complex and uncertain environments encountered in unsupervised monocular depth estimation tasks. To address this issue, we propose Back2Color, a framework that predicts realistic colors from depth using a model trained on real-world data, thus transforming synthetic colors into their real-world counterparts. Additionally, we introduce the Syn-Real CutMix method for joint training with both real-world unsupervised and synthetic supervised depth samples, enhancing monocular depth estimation performance in real-world scenes. Furthermore, to mitigate the impact of non-rigid motions on depth estimation, we present an auto-learning uncertainty temporal-spatial fusion method (Auto-UTSF), which leverages the strengths of unsupervised learning in both temporal and spatial dimensions. We also designed VADepth, based on the Vision Attention Network, which offers lower computational complexity and higher accuracy than transformers. Our Back2Color framework achieves state-of-the-art performance on the Kitti dataset, as evidenced by improvements in performance metrics and the production of fine-grained details. This is particularly evident on more challenging datasets such as Cityscapes for unsupervised depth estimation.
♻ ☆ Multi-modal Attribute Prompting for Vision-Language Models
Large pre-trained Vision-Language Models (VLMs), like CLIP, exhibit strong generalization ability to downstream tasks but struggle in few-shot scenarios. Existing prompting techniques primarily focus on global text and image representations, yet overlooking multi-modal attribute characteristics. This limitation hinders the model's ability to perceive fine-grained visual details and restricts its generalization ability to a broader range of unseen classes. To address this issue, we propose a Multi-modal Attribute Prompting method (MAP) by jointly exploring textual attribute prompting, visual attribute prompting, and attribute-level alignment. The proposed MAP enjoys several merits. First, we introduce learnable visual attribute prompts enhanced by textual attribute semantics to adaptively capture visual attributes for images from unknown categories, boosting fine-grained visual perception capabilities for CLIP. Second, the proposed attribute-level alignment complements the global alignment to enhance the robustness of cross-modal alignment for open-vocabulary objects. To our knowledge, this is the first work to establish cross-modal attribute-level alignment for CLIP-based few-shot adaptation. Extensive experimental results on 11 datasets demonstrate that our method performs favorably against state-of-the-art approaches.
♻ ☆ Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding ICCV 2023
3D visual grounding is the task of localizing the object in a 3D scene which is referred by a description in natural language. With a wide range of applications ranging from autonomous indoor robotics to AR/VR, the task has recently risen in popularity. A common formulation to tackle 3D visual grounding is grounding-by-detection, where localization is done via bounding boxes. However, for real-life applications that require physical interactions, a bounding box insufficiently describes the geometry of an object. We therefore tackle the problem of dense 3D visual grounding, i.e. referral-based 3D instance segmentation. We propose a dense 3D grounding network ConcreteNet, featuring four novel stand-alone modules that aim to improve grounding performance for challenging repetitive instances, i.e. instances with distractors of the same semantic class. First, we introduce a bottom-up attentive fusion module that aims to disambiguate inter-instance relational cues, next, we construct a contrastive training scheme to induce separation in the latent space, we then resolve view-dependent utterances via a learned global camera token, and finally we employ multi-view ensembling to improve referred mask quality. ConcreteNet ranks 1st on the challenging ScanRefer online benchmark and has won the ICCV 3rd Workshop on Language for 3D Scenes "3D Object Localization" challenge.
comment: Winner of the ICCV 2023 ScanRefer Challenge. Accepted at ECCV 2024
♻ ☆ Federated Distillation for Medical Image Classification: Towards Trustworthy Computer-Aided Diagnosis
Medical image classification plays a crucial role in computer-aided clinical diagnosis. While deep learning techniques have significantly enhanced efficiency and reduced costs, the privacy-sensitive nature of medical imaging data complicates centralized storage and model training. Furthermore, low-resource healthcare organizations face challenges related to communication overhead and efficiency due to increasing data and model scales. This paper proposes a novel privacy-preserving medical image classification framework based on federated learning to address these issues, named FedMIC. The framework enables healthcare organizations to learn from both global and local knowledge, enhancing local representation of private data despite statistical heterogeneity. It provides customized models for organizations with diverse data distributions while minimizing communication overhead and improving efficiency without compromising performance. Our FedMIC enhances robustness and practical applicability under resource-constrained conditions. We demonstrate FedMIC's effectiveness using four public medical image datasets for classical medical image classification tasks.
comment: Work in progress. This paper is the first to introduce intra-client knowledge distillation in the context of trustworthy medical image classification. arXiv admin note: text overlap with arXiv:2401.01493
♻ ☆ EarthMatch: Iterative Coregistration for Fine-grained Localization of Astronaut Photography CVPR 2024
Precise, pixel-wise geolocalization of astronaut photography is critical to unlocking the potential of this unique type of remotely sensed Earth data, particularly for its use in disaster management and climate change research. Recent works have established the Astronaut Photography Localization task, but have either proved too costly for mass deployment or generated too coarse a localization. Thus, we present EarthMatch, an iterative homography estimation method that produces fine-grained localization of astronaut photographs while maintaining an emphasis on speed. We refocus the astronaut photography benchmark, AIMS, on the geolocalization task itself, and prove our method's efficacy on this dataset. In addition, we offer a new, fair method for image matcher comparison, and an extensive evaluation of different matching models within our localization pipeline. Our method will enable fast and accurate localization of the 4.5 million and growing collection of astronaut photography of Earth. Webpage with code and data at https://earthloc-and-earthmatch.github.io
comment: CVPR 2024 IMW - webpage: https://earthloc-and-earthmatch.github.io
♻ ☆ BeNeRF: Neural Radiance Fields from a Single Blurry Image and Event Stream ECCV 2024
Neural implicit representation of visual scenes has attracted a lot of attention in recent research of computer vision and graphics. Most prior methods focus on how to reconstruct 3D scene representation from a set of images. In this work, we demonstrate the possibility to recover the neural radiance fields (NeRF) from a single blurry image and its corresponding event stream. We model the camera motion with a cubic B-Spline in SE(3) space. Both the blurry image and the brightness change within a time interval, can then be synthesized from the 3D scene representation given the 6-DoF poses interpolated from the cubic B-Spline. Our method can jointly learn both the implicit neural scene representation and recover the camera motion by minimizing the differences between the synthesized data and the real measurements without pre-computed camera poses from COLMAP. We evaluate the proposed method with both synthetic and real datasets. The experimental results demonstrate that we are able to render view-consistent latent sharp images from the learned NeRF and bring a blurry image alive in high quality. Code and data are available at https://github.com/WU-CVGL/BeNeRF.
comment: Accepted to ECCV 2024
♻ ☆ DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation
Text-to-image (T2I) generation models have significantly advanced in recent years. However, effective interaction with these models is challenging for average users due to the need for specialized prompt engineering knowledge and the inability to perform multi-turn image generation, hindering a dynamic and iterative creation process. Recent attempts have tried to equip Multi-modal Large Language Models (MLLMs) with T2I models to bring the user's natural language instructions into reality. Hence, the output modality of MLLMs is extended, and the multi-turn generation quality of T2I models is enhanced thanks to the strong multi-modal comprehension ability of MLLMs. However, many of these works face challenges in identifying correct output modalities and generating coherent images accordingly as the number of output modalities increases and the conversations go deeper. Therefore, we propose DialogGen, an effective pipeline to align off-the-shelf MLLMs and T2I models to build a Multi-modal Interactive Dialogue System (MIDS) for multi-turn Text-to-Image generation. It is composed of drawing prompt alignment, careful training data curation, and error correction. Moreover, as the field of MIDS flourishes, comprehensive benchmarks are urgently needed to evaluate MIDS fairly in terms of output modality correctness and multi-modal output coherence. To address this issue, we introduce the Multi-modal Dialogue Benchmark (DialogBen), a comprehensive bilingual benchmark designed to assess the ability of MLLMs to generate accurate and coherent multi-modal content that supports image editing. It contains two evaluation metrics to measure the model's ability to switch modalities and the coherence of the output images. Our extensive experiments on DialogBen and user study demonstrate the effectiveness of DialogGen compared with other State-of-the-Art models.
comment: Project page: https://hunyuan-dialoggen.github.io/
♻ ☆ ViG-Bias: Visually Grounded Bias Discovery and Mitigation ECCV 2024
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
comment: Accepted to ECCV 2024
♻ ☆ Semi-Supervised Semantic Segmentation via Marginal Contextual Information
We present a novel confidence refinement scheme that enhances pseudo labels in semi-supervised semantic segmentation. Unlike existing methods, which filter pixels with low-confidence predictions in isolation, our approach leverages the spatial correlation of labels in segmentation maps by grouping neighboring pixels and considering their pseudo labels collectively. With this contextual information, our method, named S4MC, increases the amount of unlabeled data used during training while maintaining the quality of the pseudo labels, all with negligible computational overhead. Through extensive experiments on standard benchmarks, we demonstrate that S4MC outperforms existing state-of-the-art semi-supervised learning approaches, offering a promising solution for reducing the cost of acquiring dense annotations. For example, S4MC achieves a 1.39 mIoU improvement over the prior art on PASCAL VOC 12 with 366 annotated images. The code to reproduce our experiments is available at https://s4mcontext.github.io/
comment: Published at TMLR
♻ ☆ Self-distilled Masked Attention guided masked image modeling with noise Regularized Teacher (SMART) for medical image analysis
Pretraining vision transformers (ViT) with attention guided masked image modeling (MIM) has shown to increase downstream accuracy for natural image analysis. Hierarchical shifted window (Swin) transformer, often used in medical image analysis cannot use attention guided masking as it lacks an explicit [CLS] token, needed for computing attention maps for selective masking. We thus enhanced Swin with semantic class attention. We developed a co-distilled Swin transformer that combines a noisy momentum updated teacher to guide selective masking for MIM. Our approach called \textsc{s}e\textsc{m}antic \textsc{a}ttention guided co-distillation with noisy teacher \textsc{r}egularized Swin \textsc{T}rans\textsc{F}ormer (SMARTFormer) was applied for analyzing 3D computed tomography datasets with lung nodules and malignant lung cancers (LC). We also analyzed the impact of semantic attention and noisy teacher on pretraining and downstream accuracy. SMARTFormer classified lesions (malignant from benign) with a high accuracy of 0.895 of 1000 nodules, predicted LC treatment response with accuracy of 0.74, and achieved high accuracies even in limited data regimes. Pretraining with semantic attention and noisy teacher improved ability to distinguish semantically meaningful structures such as organs in a unsupervised clustering task and localize abnormal structures like tumors. Code, models will be made available through GitHub upon paper acceptance.
comment: Paper is under review at TMI
♻ ☆ Unsupervised Latent Stain Adaptation for Computational Pathology MICCAI2024
In computational pathology, deep learning (DL) models for tasks such as segmentation or tissue classification are known to suffer from domain shifts due to different staining techniques. Stain adaptation aims to reduce the generalization error between different stains by training a model on source stains that generalizes to target stains. Despite the abundance of target stain data, a key challenge is the lack of annotations. To address this, we propose a joint training between artificially labeled and unlabeled data including all available stained images called Unsupervised Latent Stain Adaptation (ULSA). Our method uses stain translation to enrich labeled source images with synthetic target images in order to increase the supervised signals. Moreover, we leverage unlabeled target stain images using stain-invariant feature consistency learning. With ULSA we present a semi-supervised strategy for efficient stain adaptation without access to annotated target stain data. Remarkably, ULSA is task agnostic in patch-level analysis for whole slide images (WSIs). Through extensive evaluation on external datasets, we demonstrate that ULSA achieves state-of-the-art (SOTA) performance in kidney tissue segmentation and breast cancer classification across a spectrum of staining variations. Our findings suggest that ULSA is an important framework for stain adaptation in computational pathology.
comment: Accepted MICCAI2024
♻ ☆ Mixture-of-Experts for Open Set Domain Adaptation: A Dual-Space Detection Approach
Open Set Domain Adaptation (OSDA) aims to cope with the distribution and label shifts between the source and target domains simultaneously, performing accurate classification for known classes while identifying unknown class samples in the target domain. Most existing OSDA approaches, depending on the final image feature space of deep models, require manually-tuned thresholds, and may easily misclassify unknown samples as known classes. Mixture-of-Experts (MoE) could be a remedy. Within a MoE, different experts handle distinct input features, producing unique expert routing patterns for various classes in a routing feature space. As a result, unknown class samples may display different expert routing patterns to known classes. In this paper, we propose Dual-Space Detection, which exploits the inconsistencies between the image feature space and the routing feature space to detect unknown class samples without any threshold. Graph Router is further introduced to better make use of the spatial information among image patches. Experiments on three different datasets validated the effectiveness and superiority of our approach.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images ECCV2024
Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.
comment: Accpeted to ECCV2024
♻ ☆ I-MedSAM: Implicit Medical Image Segmentation with Segment Anything ECCV2024
With the development of Deep Neural Networks (DNNs), many efforts have been made to handle medical image segmentation. Traditional methods such as nnUNet train specific segmentation models on the individual datasets. Plenty of recent methods have been proposed to adapt the foundational Segment Anything Model (SAM) to medical image segmentation. However, they still focus on discrete representations to generate pixel-wise predictions, which are spatially inflexible and scale poorly to higher resolution. In contrast, implicit methods learn continuous representations for segmentation, which is crucial for medical image segmentation. In this paper, we propose I-MedSAM, which leverages the benefits of both continuous representations and SAM, to obtain better cross-domain ability and accurate boundary delineation. Since medical image segmentation needs to predict detailed segmentation boundaries, we designed a novel adapter to enhance the SAM features with high-frequency information during Parameter-Efficient Fine-Tuning (PEFT). To convert the SAM features and coordinates into continuous segmentation output, we utilize Implicit Neural Representation (INR) to learn an implicit segmentation decoder. We also propose an uncertainty-guided sampling strategy for efficient learning of INR. Extensive evaluations on 2D medical image segmentation tasks have shown that our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods. The code will be available at: https://github.com/ucwxb/I-MedSAM.
comment: accepted by ECCV2024
♻ ☆ Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics ECCV2024
Defect inspection is paramount within the closed-loop manufacturing system. However, existing datasets for defect inspection often lack precision and semantic granularity required for practical applications. In this paper, we introduce the Defect Spectrum, a comprehensive benchmark that offers precise, semantic-abundant, and large-scale annotations for a wide range of industrial defects. Building on four key industrial benchmarks, our dataset refines existing annotations and introduces rich semantic details, distinguishing multiple defect types within a single image. Furthermore, we introduce Defect-Gen, a two-stage diffusion-based generator designed to create high-quality and diverse defective images, even when working with limited datasets. The synthetic images generated by Defect-Gen significantly enhance the efficacy of defect inspection models. Overall, The Defect Spectrum dataset demonstrates its potential in defect inspection research, offering a solid platform for testing and refining advanced models.
comment: Accepted by ECCV2024. Please see our project page at https://envision-research.github.io/Defect_Spectrum/
♻ ☆ BLINK: Multimodal Large Language Models Can See but Not Perceive ECCV 2024
We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.
comment: Multimodal Benchmark, Project Url: https://zeyofu.github.io/blink/, ECCV 2024
♻ ☆ Investigating Event-Based Cameras for Video Frame Interpolation in Sports
Slow-motion replays provide a thrilling perspective on pivotal moments within sports games, offering a fresh and captivating visual experience. However, capturing slow-motion footage typically demands high-tech, expensive cameras and infrastructures. Deep learning Video Frame Interpolation (VFI) techniques have emerged as a promising avenue, capable of generating high-speed footage from regular camera feeds. Moreover, the utilization of event-based cameras has recently gathered attention as they provide valuable motion information between frames, further enhancing the VFI performances. In this work, we present a first investigation of event-based VFI models for generating sports slow-motion videos. Particularly, we design and implement a bi-camera recording setup, including an RGB and an event-based camera to capture sports videos, to temporally align and spatially register both cameras. Our experimental validation demonstrates that TimeLens, an off-the-shelf event-based VFI model, can effectively generate slow-motion footage for sports videos. This first investigation underscores the practical utility of event-based cameras in producing sports slow-motion content and lays the groundwork for future research endeavors in this domain.
♻ ☆ Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, inscrutable AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
♻ ☆ Nuisances via Negativa: Adjusting for Spurious Correlations via Data Augmentation
In prediction tasks, there exist features that are related to the label in the same way across different settings for that task; these are semantic features or semantics. Features with varying relationships to the label are nuisances. For example, in detecting cows from natural images, the shape of the head is semantic but because images of cows often have grass backgrounds but not always, the background is a nuisance. Models that exploit nuisance-label relationships face performance degradation when these relationships change. Building models robust to such changes requires additional knowledge beyond samples of the features and labels. For example, existing work uses annotations of nuisances or assumes ERM-trained models depend on nuisances. Approaches to integrate new kinds of additional knowledge enlarge the settings where robust models can be built. We develop an approach to use knowledge about the semantics by corrupting them in data, and then using the corrupted data to produce models which identify correlations between nuisances and the label. Once these correlations are identified, they can be used to adjust for where nuisances drive predictions. We study semantic corruptions in powering different spurious-correlation avoiding methods on multiple out-of-distribution (OOD) tasks like classifying waterbirds, natural language inference (NLI), and detecting cardiomegaly in chest X-rays.
♻ ☆ STAR: A First-Ever Dataset and A Large-Scale Benchmark for Scene Graph Generation in Large-Size Satellite Imagery
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it attractive to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, there lack such SGG datasets. Due to the complexity of large-size SAI, mining triplets heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size SAI. This paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named STAR (Scene graph generaTion in lArge-size satellite imageRy), encompassing over 210K objects and over 400K triplets. To realize SGG in large-size SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI regarding object detection (OBD), pair pruning and relationship prediction for SGG. We also release a SAI-oriented SGG toolkit with about 30 OBD and 10 SGG methods which need further adaptation by our devised modules on our challenging STAR dataset. The dataset and toolkit are available at: https://linlin-dev.github.io/project/STAR.
comment: 18 pages, 11 figures
♻ ☆ EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model
Segment Anything Model (SAM) has attracted widespread attention for its superior interactive segmentation capabilities with visual prompts while lacking further exploration of text prompts. In this paper, we empirically investigate what text prompt encoders (e.g., CLIP or LLM) are good for adapting SAM for referring expression segmentation and introduce the Early Vision-language Fusion-based SAM (EVF-SAM). EVF-SAM is a simple yet effective referring segmentation method which exploits multimodal prompts (i.e., image and text) and comprises a pre-trained vision-language model to generate referring prompts and a SAM model for segmentation. Surprisingly, we observe that: (1) multimodal prompts and (2) vision-language models with early fusion (e.g., BEIT-3) are beneficial for prompting SAM for accurate referring segmentation. Our experiments show that the proposed EVF-SAM based on BEIT-3 can obtain state-of-the-art performance on RefCOCO/+/g for referring expression segmentation and demonstrate the superiority of prompting SAM with early vision-language fusion. In addition, the proposed EVF-SAM with 1.32B parameters achieves remarkably higher performance while reducing nearly 82% of parameters compared to previous SAM methods based on large multimodal models.
comment: Preprint. Code and models are available at: https://github.com/hustvl/EVF-SAM
♻ ☆ RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models
Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.
comment: 24 pages, 1 Figure, 2 Table
♻ ☆ How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Deep learning algorithms demonstrate a surprising ability to learn high-dimensional tasks from limited examples. This is commonly attributed to the depth of neural networks, enabling them to build a hierarchy of abstract, low-dimensional data representations. However, how many training examples are required to learn such representations remains unknown. To quantitatively study this question, we introduce the Random Hierarchy Model: a family of synthetic tasks inspired by the hierarchical structure of language and images. The model is a classification task where each class corresponds to a group of high-level features, chosen among several equivalent groups associated with the same class. In turn, each feature corresponds to a group of sub-features chosen among several equivalent ones and so on, following a hierarchy of composition rules. We find that deep networks learn the task by developing internal representations invariant to exchanging equivalent groups. Moreover, the number of data required corresponds to the point where correlations between low-level features and classes become detectable. Overall, our results indicate how deep networks overcome the curse of dimensionality by building invariant representations, and provide an estimate of the number of data required to learn a hierarchical task.
comment: 9 pages, 8 figures
♻ ☆ A Systematic Performance Analysis of Deep Perceptual Loss Networks: Breaking Transfer Learning Conventions
In recent years, deep perceptual loss has been widely and successfully used to train machine learning models for many computer vision tasks, including image synthesis, segmentation, and autoencoding. Deep perceptual loss is a type of loss function for images that computes the error between two images as the distance between deep features extracted from a neural network. Most applications of the loss use pretrained networks called loss networks for deep feature extraction. However, despite increasingly widespread use, the effects of loss network implementation on the trained models have not been studied. This work rectifies this through a systematic evaluation of the effect of different pretrained loss networks on four different application areas. Specifically, the work evaluates 14 different pretrained architectures with four different feature extraction layers. The evaluation reveals that VGG networks without batch normalization have the best performance and that the choice of feature extraction layer is at least as important as the choice of architecture. The analysis also reveals that deep perceptual loss does not adhere to the transfer learning conventions that better ImageNet accuracy implies better downstream performance and that feature extraction from the later layers provides better performance.
♻ ☆ Character-Adapter: Prompt-Guided Region Control for High-Fidelity Character Customization
Customized image generation, which seeks to synthesize images with consistent characters, holds significant relevance for applications such as storytelling, portrait generation, and character design. However, previous approaches have encountered challenges in preserving characters with high-fidelity consistency due to inadequate feature extraction and concept confusion of reference characters. Therefore, we propose Character-Adapter, a plug-and-play framework designed to generate images that preserve the details of reference characters, ensuring high-fidelity consistency. Character-Adapter employs prompt-guided segmentation to ensure fine-grained regional features of reference characters and dynamic region-level adapters to mitigate concept confusion. Extensive experiments are conducted to validate the effectiveness of Character-Adapter. Both quantitative and qualitative results demonstrate that Character-Adapter achieves the state-of-the-art performance of consistent character generation, with an improvement of 24.8% compared with other methods. Our code will be released at https://github.com/Character-Adapter/Character-Adapter
♻ ☆ PaPr: Training-Free One-Step Patch Pruning with Lightweight ConvNets for Faster Inference ECCV 2024
As deep neural networks evolve from convolutional neural networks (ConvNets) to advanced vision transformers (ViTs), there is an increased need to eliminate redundant data for faster processing without compromising accuracy. Previous methods are often architecture-specific or necessitate re-training, restricting their applicability with frequent model updates. To solve this, we first introduce a novel property of lightweight ConvNets: their ability to identify key discriminative patch regions in images, irrespective of model's final accuracy or size. We demonstrate that fully-connected layers are the primary bottleneck for ConvNets performance, and their suppression with simple weight recalibration markedly enhances discriminative patch localization performance. Using this insight, we introduce PaPr, a method for substantially pruning redundant patches with minimal accuracy loss using lightweight ConvNets across a variety of deep learning architectures, including ViTs, ConvNets, and hybrid transformers, without any re-training. Moreover, the simple early-stage one-step patch pruning with PaPr enhances existing patch reduction methods. Through extensive testing on diverse architectures, PaPr achieves significantly higher accuracy over state-of-the-art patch reduction methods with similar FLOP count reduction. More specifically, PaPr reduces about 70% of redundant patches in videos with less than 0.8% drop in accuracy, and up to 3.7x FLOPs reduction, which is a 15% more reduction with 2.5% higher accuracy. Code is released at https://github.com/tanvir-utexas/PaPr.
comment: Accepted in ECCV 2024. Code: https://github.com/tanvir-utexas/PaPr
♻ ☆ Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions, such as arbitrary unimodal, symmetric distributions and discrete groups. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries, and demonstrate practical applications such as the detection of out-of-distribution symmetries. Our code is publicly available at https://github.com/aurban0/ssl-sym.
♻ ☆ FedIA: Federated Medical Image Segmentation with Heterogeneous Annotation Completeness MICCAI 2024
Federated learning has emerged as a compelling paradigm for medical image segmentation, particularly in light of increasing privacy concerns. However, most of the existing research relies on relatively stringent assumptions regarding the uniformity and completeness of annotations across clients. Contrary to this, this paper highlights a prevalent challenge in medical practice: incomplete annotations. Such annotations can introduce incorrectly labeled pixels, potentially undermining the performance of neural networks in supervised learning. To tackle this issue, we introduce a novel solution, named FedIA. Our insight is to conceptualize incomplete annotations as noisy data (i.e., low-quality data), with a focus on mitigating their adverse effects. We begin by evaluating the completeness of annotations at the client level using a designed indicator. Subsequently, we enhance the influence of clients with more comprehensive annotations and implement corrections for incomplete ones, thereby ensuring that models are trained on accurate data. Our method's effectiveness is validated through its superior performance on two extensively used medical image segmentation datasets, outperforming existing solutions. The code is available at https://github.com/HUSTxyy/FedIA.
comment: Early accepted by MICCAI 2024
♻ ☆ Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time ECCV 2024
Leveraging Large Language Models' remarkable proficiency in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend them to other modalities like vision and audio. However, the progress in these directions has been mostly focused on tasks that only require a coarse-grained understanding of the audio-visual semantics. We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio both spatially and temporally. With a new modality alignment module based on optimal transport and a cross-attention module that enforces audio-visual consistency, Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking. Moreover, we carefully curate a large dataset AVFIT that comprises 3M instruction tuning samples collected from open-source datasets, and introduce MeerkatBench that unifies five challenging audio-visual tasks. We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
comment: Accepted at ECCV 2024
♻ ☆ Language-Guided Face Animation by Recurrent StyleGAN-based Generator
Recent works on language-guided image manipulation have shown great power of language in providing rich semantics, especially for face images. However, the other natural information, motions, in language is less explored. In this paper, we leverage the motion information and study a novel task, language-guided face animation, that aims to animate a static face image with the help of languages. To better utilize both semantics and motions from languages, we propose a simple yet effective framework. Specifically, we propose a recurrent motion generator to extract a series of semantic and motion information from the language and feed it along with visual information to a pre-trained StyleGAN to generate high-quality frames. To optimize the proposed framework, three carefully designed loss functions are proposed including a regularization loss to keep the face identity, a path length regularization loss to ensure motion smoothness, and a contrastive loss to enable video synthesis with various language guidance in one single model. Extensive experiments with both qualitative and quantitative evaluations on diverse domains (\textit{e.g.,} human face, anime face, and dog face) demonstrate the superiority of our model in generating high-quality and realistic videos from one still image with the guidance of language. Code will be available at https://github.com/TiankaiHang/language-guided-animation.git.
♻ ☆ Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
This study evaluated a deep learning-based method using Deep Image Prior (DIP) to quantify triglyceride double bonds from chemical-shift encoded multi-echo gradient echo images without network training. We employed a cost function based on signal constraints to iteratively update the neural network on a single dataset. The method was validated using phantom experiments and in vivo scans. Results showed close alignment between measured and reference double bond values, with phantom experiments yielding a Pearson correlation coefficient of 0.96 (p = .0005). In vivo results demonstrated good agreement in subcutaneous fat. We conclude that Deep Image Prior shows feasibility for quantifying double bonds and fatty acid content from chemical-shift encoded multi-echo MRI.
♻ ☆ Accelerating Diffusion Sampling with Optimized Time Steps CVPR 2024
Diffusion probabilistic models (DPMs) have shown remarkable performance in high-resolution image synthesis, but their sampling efficiency is still to be desired due to the typically large number of sampling steps. Recent advancements in high-order numerical ODE solvers for DPMs have enabled the generation of high-quality images with much fewer sampling steps. While this is a significant development, most sampling methods still employ uniform time steps, which is not optimal when using a small number of steps. To address this issue, we propose a general framework for designing an optimization problem that seeks more appropriate time steps for a specific numerical ODE solver for DPMs. This optimization problem aims to minimize the distance between the ground-truth solution to the ODE and an approximate solution corresponding to the numerical solver. It can be efficiently solved using the constrained trust region method, taking less than $15$ seconds. Our extensive experiments on both unconditional and conditional sampling using pixel- and latent-space DPMs demonstrate that, when combined with the state-of-the-art sampling method UniPC, our optimized time steps significantly improve image generation performance in terms of FID scores for datasets such as CIFAR-10 and ImageNet, compared to using uniform time steps.
comment: CVPR 2024
♻ ☆ Self-supervised co-salient object detection via feature correspondence at multiple scales ECCV 2024
Our paper introduces a novel two-stage self-supervised approach for detecting co-occurring salient objects (CoSOD) in image groups without requiring segmentation annotations. Unlike existing unsupervised methods that rely solely on patch-level information (e.g. clustering patch descriptors) or on computation heavy off-the-shelf components for CoSOD, our lightweight model leverages feature correspondences at both patch and region levels, significantly improving prediction performance. In the first stage, we train a self-supervised network that detects co-salient regions by computing local patch-level feature correspondences across images. We obtain the segmentation predictions using confidence-based adaptive thresholding. In the next stage, we refine these intermediate segmentations by eliminating the detected regions (within each image) whose averaged feature representations are dissimilar to the foreground feature representation averaged across all the cross-attention maps (from the previous stage). Extensive experiments on three CoSOD benchmark datasets show that our self-supervised model outperforms the corresponding state-of-the-art models by a huge margin (e.g. on the CoCA dataset, our model has a 13.7% F-measure gain over the SOTA unsupervised CoSOD model). Notably, our self-supervised model also outperforms several recent fully supervised CoSOD models on the three test datasets (e.g., on the CoCA dataset, our model has a 4.6% F-measure gain over a recent supervised CoSOD model).
comment: Accepted to ECCV 2024
♻ ☆ The Unmet Promise of Synthetic Training Images: Using Retrieved Real Images Performs Better
Generative text-to-image models enable us to synthesize unlimited amounts of images in a controllable manner, spurring many recent efforts to train vision models with synthetic data. However, every synthetic image ultimately originates from the upstream data used to train the generator. What additional value does the intermediate generator provide over directly training on relevant parts of the upstream data? Grounding this question in the setting of image classification,a we compare finetuning on task-relevant, targeted synthetic data generated by Stable Diffusion -- a generative model trained on the LAION-2B dataset -- against finetuning on targeted real images retrieved directly from LAION-2B. We show that while synthetic data can benefit some downstream tasks, it is universally matched or outperformed by real data from our simple retrieval baseline. Our analysis suggests that this underperformance is partially due to generator artifacts and inaccurate task-relevant visual details in the synthetic images. Overall, we argue that retrieval is a critical baseline to consider when training with synthetic data -- a baseline that current methods do not yet surpass. We release code, data, and models at https://github.com/scottgeng00/unmet-promise.
comment: Correspondence to sgeng at cs dot washington dot edu. RK and PWK equally advised the project
♻ ☆ Similarity Distance-Based Label Assignment for Tiny Object Detection
Tiny object detection is becoming one of the most challenging tasks in computer vision because of the limited object size and lack of information. The label assignment strategy is a key factor affecting the accuracy of object detection. Although there are some effective label assignment strategies for tiny objects, most of them focus on reducing the sensitivity to the bounding boxes to increase the number of positive samples and have some fixed hyperparameters need to set. However, more positive samples may not necessarily lead to better detection results, in fact, excessive positive samples may lead to more false positives. In this paper, we introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes. This proposed strategy not only considers both location and shape similarity but also learns hyperparameters adaptively, ensuring that it can adapt to different datasets and various object sizes in a dataset. Our approach can be simply applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS). Extensive experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method, especially, 1.8 AP points and 4.1 AP points of very tiny higher than the state-of-the-art competitors on AI-TOD. Code is available at: \url{https://github.com/cszzshi/SimD}.
comment: 8 pages, 4 figures, this paper has been accepted by IEEE/RSJ International Conference on Intelligent Robots and Systems
♻ ☆ Swish-T : Enhancing Swish Activation with Tanh Bias for Improved Neural Network Performance
We propose the Swish-T family, an enhancement of the existing non-monotonic activation function Swish. Swish-T is defined by adding a Tanh bias to the original Swish function. This modification creates a family of Swish-T variants, each designed to excel in different tasks, showcasing specific advantages depending on the application context. The Tanh bias allows for broader acceptance of negative values during initial training stages, offering a smoother non-monotonic curve than the original Swish. We ultimately propose the Swish-T$_{\textbf{C}}$ function, while Swish-T and Swish-T$_{\textbf{B}}$, byproducts of Swish-T$_{\textbf{C}}$, also demonstrate satisfactory performance. Furthermore, our ablation study shows that using Swish-T$_{\textbf{C}}$ as a non-parametric function can still achieve high performance. The superiority of the Swish-T family has been empirically demonstrated across various models and benchmark datasets, including MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. The code is publicly available at https://github.com/ictseoyoungmin/Swish-T-pytorch.
comment: 11 pages, 6 figures Revised the derivative of the sigmoid function from 1-sigmoid to sigmoid(1-sigmoid) for correctness.Updated related equations in Section 3.2. Conclusions to Conclusion in Section 6
♻ ☆ Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey
Cardiac digital twins are personalized virtual representations used to understand complex heart mechanisms. Solving the ECG inverse problem is crucial for accurate virtual heart modelling, enabling the derivation of internal electrical activity information from recorded surface potentials. Despite challenges from cardiac complexity, noisy ECG data, and computational efficiency, recent advancements hold significant promise for enhancing virtual heart modelling, ultimately advancing precision medicine in cardiology. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the computing methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in cardiac digital twins.
♻ ☆ Can 3D Vision-Language Models Truly Understand Natural Language?
Rapid advancements in 3D vision-language (3D-VL) tasks have opened up new avenues for human interaction with embodied agents or robots using natural language. Despite this progress, we find a notable limitation: existing 3D-VL models exhibit sensitivity to the styles of language input, struggling to understand sentences with the same semantic meaning but written in different variants. This observation raises a critical question: Can 3D vision-language models truly understand natural language? To test the language understandability of 3D-VL models, we first propose a language robustness task for systematically assessing 3D-VL models across various tasks, benchmarking their performance when presented with different language style variants. Importantly, these variants are commonly encountered in applications requiring direct interaction with humans, such as embodied robotics, given the diversity and unpredictability of human language. We propose a 3D Language Robustness Dataset, designed based on the characteristics of human language, to facilitate the systematic study of robustness. Our comprehensive evaluation uncovers a significant drop in the performance of all existing models across various 3D-VL tasks. Even the state-of-the-art 3D-LLM fails to understand some variants of the same sentences. Further in-depth analysis suggests that the existing models have a fragile and biased fusion module, which stems from the low diversity of the existing dataset. Finally, we propose a training-free module driven by LLM, which improves language robustness. Datasets and code will be available at github.
comment: https://github.com/VincentDENGP/3D-LR
♻ ☆ ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text
Diffusion models have recently demonstrated their effectiveness in generating extremely high-quality images and are now utilized in a wide range of applications, including automatic sketch colorization. Although many methods have been developed for guided sketch colorization, there has been limited exploration of the potential conflicts between image prompts and sketch inputs, which can lead to severe deterioration in the results. Therefore, this paper exhaustively investigates reference-based sketch colorization models that aim to colorize sketch images using reference color images. We specifically investigate two critical aspects of reference-based diffusion models: the "distribution problem", which is a major shortcoming compared to text-based counterparts, and the capability in zero-shot sequential text-based manipulation. We introduce two variations of an image-guided latent diffusion model utilizing different image tokens from the pre-trained CLIP image encoder and propose corresponding manipulation methods to adjust their results sequentially using weighted text inputs. We conduct comprehensive evaluations of our models through qualitative and quantitative experiments as well as a user study.
♻ ☆ Losing Visual Needles in Image Haystacks: Vision Language Models are Easily Distracted in Short and Long Contexts
We present LoCoVQA, a dynamic benchmark generator for evaluating long-context extractive reasoning in vision language models (VLMs). LoCoVQA augments test examples for mathematical reasoning, VQA, and character recognition tasks with increasingly long visual contexts composed of both in-distribution and out-of-distribution distractor images. Across these tasks, a diverse set of VLMs rapidly lose performance as the visual context length grows, often exhibiting a striking logarithmic decay trend. This test assesses how well VLMs can ignore irrelevant information when answering queries -- a task that is quite easy for language models (LMs) in the text domain -- demonstrating that current state-of-the-art VLMs lack this essential capability for many long-context applications.
comment: Under review. Minor errata correction in revision
♻ ☆ Video Watermarking: Safeguarding Your Video from (Unauthorized) Annotations by Video-based LLMs
The advent of video-based Large Language Models (LLMs) has significantly enhanced video understanding. However, it has also raised some safety concerns regarding data protection, as videos can be more easily annotated, even without authorization. This paper introduces Video Watermarking, a novel technique to protect videos from unauthorized annotations by such video-based LLMs, especially concerning the video content and description, in response to specific queries. By imperceptibly embedding watermarks into key video frames with multi-modal flow-based losses, our method preserves the viewing experience while preventing misuse by video-based LLMs. Extensive experiments show that Video Watermarking significantly reduces the comprehensibility of videos with various video-based LLMs, demonstrating both stealth and robustness. In essence, our method provides a solution for securing video content, ensuring its integrity and confidentiality in the face of evolving video-based LLMs technologies.
comment: arXiv admin note: substantial text overlap with arXiv:2403.13507
♻ ☆ Rethinking Efficient and Effective Point-based Networks for Event Camera Classification and Regression: EventMamba
Event cameras, drawing inspiration from biological systems, efficiently detect changes in ambient light with low latency and high dynamic range while consuming minimal power. The most current approach to processing event data often involves converting it into frame-based representations, which is well-established in traditional vision. However, this approach neglects the sparsity of event data, loses fine-grained temporal information during the transformation process, and increases the computational burden, making it ineffective for characterizing event camera properties. In contrast, Point Cloud is a popular representation for 3D processing and is better suited to match the sparse and asynchronous nature of the event camera. Nevertheless, despite the theoretical compatibility of point-based methods with event cameras, the results show a performance gap that is not yet satisfactory compared to frame-based methods. In order to bridge the performance gap, we propose EventMamba, an efficient and effective Point Cloud framework that achieves competitive results even compared to the state-of-the-art (SOTA) frame-based method in both classification and regression tasks. This notable accomplishment is facilitated by our rethinking of the distinction between Event Cloud and Point Cloud, emphasizing effective temporal information extraction through optimized network structures. Specifically, EventMamba leverages temporal aggregation and State Space Model (SSM) based Mamba boasting enhanced temporal information extraction capabilities. Through a hierarchical structure, EventMamba is adept at abstracting local and global spatial features and implicit and explicit temporal features. By adhering to the lightweight design principle, EventMamba delivers impressive results with minimal computational resource utilization, demonstrating its efficiency and effectiveness.
comment: Extension Journal of TTPOINT and PEPNet, modify the dataset split method
♻ ☆ Evaluating and Analyzing Relationship Hallucinations in LVLMs ICML2024
The issue of hallucinations is a prevalent concern in existing Large Vision-Language Models (LVLMs). Previous efforts have primarily focused on investigating object hallucinations, which can be easily alleviated by introducing object detectors. However, these efforts neglect hallucinations in inter-object relationships, which is essential for visual comprehension. In this work, we introduce R-Bench, a novel benchmark for evaluating Vision Relationship Hallucination. R-Bench features image-level questions that focus on the existence of relationships and instance-level questions that assess local visual comprehension. We identify three types of relationship co-occurrences that lead to hallucinations: relationship-relationship, subject-relationship, and relationship-object. The visual instruction tuning dataset's long-tail distribution significantly impacts LVLMs' understanding of visual relationships. Furthermore, our analysis reveals that current LVLMs tend to disregard visual content and overly rely on the common sense knowledge of Large Language Models. They also struggle with reasoning about spatial relationships based on contextual information.
comment: ICML2024; Project Page:https://github.com/mrwu-mac/R-Bench
♻ ☆ Deep learning for 3D human pose estimation and mesh recovery: A survey
3D human pose estimation and mesh recovery have attracted widespread research interest in many areas, such as computer vision, autonomous driving, and robotics. Deep learning on 3D human pose estimation and mesh recovery has recently thrived, with numerous methods proposed to address different problems in this area. In this paper, to stimulate future research, we present a comprehensive review of recent progress over the past five years in deep learning methods for this area by delving into over 200 references. To the best of our knowledge, this survey is arguably the first to comprehensively cover deep learning methods for 3D human pose estimation, including both single-person and multi-person approaches, as well as human mesh recovery, encompassing methods based on explicit models and implicit representations. We also present comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions. A regularly updated project page can be found at https://github.com/liuyangme/SOTA-3DHPE-HMR.
♻ ☆ ShadowRefiner: Towards Mask-free Shadow Removal via Fast Fourier Transformer CVPR
Shadow-affected images often exhibit pronounced spatial discrepancies in color and illumination, consequently degrading various vision applications including object detection and segmentation systems. To effectively eliminate shadows in real-world images while preserving intricate details and producing visually compelling outcomes, we introduce a mask-free Shadow Removal and Refinement network (ShadowRefiner) via Fast Fourier Transformer. Specifically, the Shadow Removal module in our method aims to establish effective mappings between shadow-affected and shadow-free images via spatial and frequency representation learning. To mitigate the pixel misalignment and further improve the image quality, we propose a novel Fast-Fourier Attention based Transformer (FFAT) architecture, where an innovative attention mechanism is designed for meticulous refinement. Our method wins the championship in the Perceptual Track and achieves the second best performance in the Fidelity Track of NTIRE 2024 Image Shadow Removal Challenge. Besides, comprehensive experiment result also demonstrate the compelling effectiveness of our proposed method. The code is publicly available: https://github.com/movingforward100/Shadow_R.
comment: Accepted by CVPR workshop 2024 (NTIRE 2024); Corrected references
♻ ☆ Camera-LiDAR Cross-modality Gait Recognition ECCV 2024
Gait recognition is a crucial biometric identification technique. Camera-based gait recognition has been widely applied in both research and industrial fields. LiDAR-based gait recognition has also begun to evolve most recently, due to the provision of 3D structural information. However, in certain applications, cameras fail to recognize persons, such as in low-light environments and long-distance recognition scenarios, where LiDARs work well. On the other hand, the deployment cost and complexity of LiDAR systems limit its wider application. Therefore, it is essential to consider cross-modality gait recognition between cameras and LiDARs for a broader range of applications. In this work, we propose the first cross-modality gait recognition framework between Camera and LiDAR, namely CL-Gait. It employs a two-stream network for feature embedding of both modalities. This poses a challenging recognition task due to the inherent matching between 3D and 2D data, exhibiting significant modality discrepancy. To align the feature spaces of the two modalities, i.e., camera silhouettes and LiDAR points, we propose a contrastive pre-training strategy to mitigate modality discrepancy. To make up for the absence of paired camera-LiDAR data for pre-training, we also introduce a strategy for generating data on a large scale. This strategy utilizes monocular depth estimated from single RGB images and virtual cameras to generate pseudo point clouds for contrastive pre-training. Extensive experiments show that the cross-modality gait recognition is very challenging but still contains potential and feasibility with our proposed model and pre-training strategy. To the best of our knowledge, this is the first work to address cross-modality gait recognition.
comment: Accepted at ECCV 2024
♻ ☆ A Framework For Refining Text Classification and Object Recognition from Academic Articles
With the widespread use of the internet, it has become increasingly crucial to extract specific information from vast amounts of academic articles efficiently. Data mining techniques are generally employed to solve this issue. However, data mining for academic articles is challenging since it requires automatically extracting specific patterns in complex and unstructured layout documents. Current data mining methods for academic articles employ rule-based(RB) or machine learning(ML) approaches. However, using rule-based methods incurs a high coding cost for complex typesetting articles. On the other hand, simply using machine learning methods requires annotation work for complex content types within the paper, which can be costly. Furthermore, only using machine learning can lead to cases where patterns easily recognized by rule-based methods are mistakenly extracted. To overcome these issues, from the perspective of analyzing the standard layout and typesetting used in the specified publication, we emphasize implementing specific methods for specific characteristics in academic articles. We have developed a novel Text Block Refinement Framework (TBRF), a machine learning and rule-based scheme hybrid. We used the well-known ACL proceeding articles as experimental data for the validation experiment. The experiment shows that our approach achieved over 95% classification accuracy and 90% detection accuracy for tables and figures.
comment: This paper has been accepted at 'The International Symposium on Innovations in Intelligent Systems and Applications 2023 (INISTA 2023)'
♻ ☆ What's color got to do with it? Face recognition in grayscale CVPR
State-of-the-art deep CNN face matchers are typically created using extensive training sets of color face images. Our study reveals that such matchers attain virtually identical accuracy when trained on either grayscale or color versions of the training set, even when the evaluation is done using color test images. Furthermore, we demonstrate that shallower models, lacking the capacity to model complex representations, rely more heavily on low-level features such as those associated with color. As a result, they display diminished accuracy when trained with grayscale images. We then consider possible causes for deeper CNN face matchers "not seeing color". Popular web-scraped face datasets actually have 30 to 60% of their identities with one or more grayscale images. We analyze whether this grayscale element in the training set impacts the accuracy achieved, and conclude that it does not. We demonstrate that using only grayscale images for both training and testing achieves accuracy comparable to that achieved using only color images for deeper models. This holds true for both real and synthetic training datasets. HSV color space, which separates chroma and luma information, does not improve the network's learning about color any more than in the RGB color space. We then show that the skin region of an individual's images in a web-scraped training set exhibits significant variation in their mapping to color space. This suggests that color carries limited identity-specific information. We also show that when the first convolution layer is restricted to a single filter, models learn a grayscale conversion filter and pass a grayscale version of the input color image to the next layer. Finally, we demonstrate that leveraging the lower per-image storage for grayscale to increase the number of images in the training set can improve accuracy of the face recognition model.
comment: This is replacement version of the previous arxiv submission: 2309.05180 (Our Deep CNN Face Matchers Have Developed Achromatopsia). The past version is published in CVPRW and available in IEEE proceedings. This submitted version is an extension of the conference paper
♻ ☆ SOAF: Scene Occlusion-aware Neural Acoustic Field
This paper tackles the problem of novel view audio-visual synthesis along an arbitrary trajectory in an indoor scene, given the audio-video recordings from other known trajectories of the scene. Existing methods often overlook the effect of room geometry, particularly wall occlusion to sound propagation, making them less accurate in multi-room environments. In this work, we propose a new approach called Scene Occlusion-aware Acoustic Field (SOAF) for accurate sound generation. Our approach derives a prior for sound energy field using distance-aware parametric sound-propagation modelling and then transforms it based on scene transmittance learned from the input video. We extract features from the local acoustic field centred around the receiver using a Fibonacci Sphere to generate binaural audio for novel views with a direction-aware attention mechanism. Extensive experiments on the real dataset RWAVS and the synthetic dataset SoundSpaces demonstrate that our method outperforms previous state-of-the-art techniques in audio generation. Project page: https://github.com/huiyu-gao/SOAF/.
♻ ☆ Unveiling the Safety of GPT-4o: An Empirical Study using Jailbreak Attacks
The recent release of GPT-4o has garnered widespread attention due to its powerful general capabilities. While its impressive performance is widely acknowledged, its safety aspects have not been sufficiently explored. Given the potential societal impact of risky content generated by advanced generative AI such as GPT-4o, it is crucial to rigorously evaluate its safety. In response to this question, this paper for the first time conducts a rigorous evaluation of GPT-4o against jailbreak attacks. Specifically, this paper adopts a series of multi-modal and uni-modal jailbreak attacks on 4 commonly used benchmarks encompassing three modalities (ie, text, speech, and image), which involves the optimization of over 4,000 initial text queries and the analysis and statistical evaluation of nearly 8,000+ response on GPT-4o. Our extensive experiments reveal several novel observations: (1) In contrast to the previous version (such as GPT-4V), GPT-4o has enhanced safety in the context of text modality jailbreak; (2) The newly introduced audio modality opens up new attack vectors for jailbreak attacks on GPT-4o; (3) Existing black-box multimodal jailbreak attack methods are largely ineffective against GPT-4o and GPT-4V. These findings provide critical insights into the safety implications of GPT-4o and underscore the need for robust alignment guardrails in large models. Our code is available at \url{https://github.com/NY1024/Jailbreak_GPT4o}.
Machine Learning 150
☆ Planetarium: A Rigorous Benchmark for Translating Text to Structured Planning Languages
Many recent works have explored using language models for planning problems. One line of research focuses on translating natural language descriptions of planning tasks into structured planning languages, such as the planning domain definition language (PDDL). While this approach is promising, accurately measuring the quality of generated PDDL code continues to pose significant challenges. First, generated PDDL code is typically evaluated using planning validators that check whether the problem can be solved with a planner. This method is insufficient because a language model might generate valid PDDL code that does not align with the natural language description of the task. Second, existing evaluation sets often have natural language descriptions of the planning task that closely resemble the ground truth PDDL, reducing the challenge of the task. To bridge this gap, we introduce \benchmarkName, a benchmark designed to evaluate language models' ability to generate PDDL code from natural language descriptions of planning tasks. We begin by creating a PDDL equivalence algorithm that rigorously evaluates the correctness of PDDL code generated by language models by flexibly comparing it against a ground truth PDDL. Then, we present a dataset of $132,037$ text-to-PDDL pairs across 13 different tasks, with varying levels of difficulty. Finally, we evaluate several API-access and open-weight language models that reveal this task's complexity. For example, $87.6\%$ of the PDDL problem descriptions generated by GPT-4o are syntactically parseable, $82.2\%$ are valid, solve-able problems, but only $35.1\%$ are semantically correct, highlighting the need for a more rigorous benchmark for this problem.
☆ Value-Penalized Auxiliary Control from Examples for Learning without Rewards or Demonstrations
Learning from examples of success is an appealing approach to reinforcement learning that eliminates many of the disadvantages of using hand-crafted reward functions or full expert-demonstration trajectories, both of which can be difficult to acquire, biased, or suboptimal. However, learning from examples alone dramatically increases the exploration challenge, especially for complex tasks. This work introduces value-penalized auxiliary control from examples (VPACE); we significantly improve exploration in example-based control by adding scheduled auxiliary control and examples of auxiliary tasks. Furthermore, we identify a value-calibration problem, where policy value estimates can exceed their theoretical limits based on successful data. We resolve this problem, which is exacerbated by learning auxiliary tasks, through the addition of an above-success-level value penalty. Across three simulated and one real robotic manipulation environment, and 21 different main tasks, we show that our approach substantially improves learning efficiency. Videos, code, and datasets are available at https://papers.starslab.ca/vpace.
comment: Submitted to the Conference on Robot Learning (CoRL'24), Munich, Germany, Nov. 6-9, 2024
☆ Universal Length Generalization with Turing Programs
Length generalization refers to the ability to extrapolate from short training sequences to long test sequences and is a challenge for current large language models. While prior work has proposed some architecture or data format changes to achieve length generalization, these proposals typically apply to a limited set of tasks. Building on prior scratchpad and Chain-of-Thought (CoT) techniques, we propose Turing Programs, a novel CoT strategy that decomposes an algorithmic task into steps mimicking the computation of a Turing Machine. This framework is both universal, as it can accommodate any algorithmic task, and simple, requiring only copying text from the context with small modifications. We show that by using Turing Programs, we obtain robust length generalization on a range of algorithmic tasks: addition, multiplication and in-context SGD. We then demonstrate that transformers achieve length generalization on random Turing Programs, suggesting that length generalization is possible for any algorithmic task. Finally, we theoretically prove that transformers can implement Turing Programs, constructing a simple RASP (Weiss et al.) program that simulates an arbitrary Turing machine.
☆ DisCo-Diff: Enhancing Continuous Diffusion Models with Discrete Latents
Diffusion models (DMs) have revolutionized generative learning. They utilize a diffusion process to encode data into a simple Gaussian distribution. However, encoding a complex, potentially multimodal data distribution into a single continuous Gaussian distribution arguably represents an unnecessarily challenging learning problem. We propose Discrete-Continuous Latent Variable Diffusion Models (DisCo-Diff) to simplify this task by introducing complementary discrete latent variables. We augment DMs with learnable discrete latents, inferred with an encoder, and train DM and encoder end-to-end. DisCo-Diff does not rely on pre-trained networks, making the framework universally applicable. The discrete latents significantly simplify learning the DM's complex noise-to-data mapping by reducing the curvature of the DM's generative ODE. An additional autoregressive transformer models the distribution of the discrete latents, a simple step because DisCo-Diff requires only few discrete variables with small codebooks. We validate DisCo-Diff on toy data, several image synthesis tasks as well as molecular docking, and find that introducing discrete latents consistently improves model performance. For example, DisCo-Diff achieves state-of-the-art FID scores on class-conditioned ImageNet-64/128 datasets with ODE sampler.
comment: project page: https://research.nvidia.com/labs/lpr/disco-diff
☆ Vertex Exchange Method for a Class of Quadratic Programming Problems
A vertex exchange method is proposed for solving the strongly convex quadratic program subject to the generalized simplex constraint. We conduct rigorous convergence analysis for the proposed algorithm and demonstrate its essential roles in solving some important classes of constrained convex optimization. To get a feasible initial point to execute the algorithm, we also present and analyze a highly efficient semismooth Newton method for computing the projection onto the generalized simplex. The excellent practical performance of the proposed algorithms is demonstrated by a set of extensive numerical experiments. Our theoretical and numerical results further motivate the potential applications of the considered model and the proposed algorithms.
comment: 32 pages, 5 tables
☆ Correlated Privacy Mechanisms for Differentially Private Distributed Mean Estimation
Differentially private distributed mean estimation (DP-DME) is a fundamental building block in privacy-preserving federated learning, where a central server estimates the mean of $d$-dimensional vectors held by $n$ users while ensuring $(\epsilon,\delta)$-DP. Local differential privacy (LDP) and distributed DP with secure aggregation (SecAgg) are the most common notions of DP used in DP-DME settings with an untrusted server. LDP provides strong resilience to dropouts, colluding users, and malicious server attacks, but suffers from poor utility. In contrast, SecAgg-based DP-DME achieves an $O(n)$ utility gain over LDP in DME, but requires increased communication and computation overheads and complex multi-round protocols to handle dropouts and malicious attacks. In this work, we propose CorDP-DME, a novel DP-DME mechanism that spans the gap between DME with LDP and distributed DP, offering a favorable balance between utility and resilience to dropout and collusion. CorDP-DME is based on correlated Gaussian noise, ensuring DP without the perfect conditional privacy guarantees of SecAgg-based approaches. We provide an information-theoretic analysis of CorDP-DME, and derive theoretical guarantees for utility under any given privacy parameters and dropout/colluding user thresholds. Our results demonstrate that (anti) correlated Gaussian DP mechanisms can significantly improve utility in mean estimation tasks compared to LDP -- even in adversarial settings -- while maintaining better resilience to dropouts and attacks compared to distributed DP.
☆ Do Quantum Neural Networks have Simplicity Bias?
One hypothesis for the success of deep neural networks (DNNs) is that they are highly expressive, which enables them to be applied to many problems, and they have a strong inductive bias towards solutions that are simple, known as simplicity bias, which allows them to generalise well on unseen data because most real-world data is structured (i.e. simple). In this work, we explore the inductive bias and expressivity of quantum neural networks (QNNs), which gives us a way to compare their performance to those of DNNs. Our results show that it is possible to have simplicity bias with certain QNNs, but we prove that this type of QNN limits the expressivity of the QNN. We also show that it is possible to have QNNs with high expressivity, but they either have no inductive bias or a poor inductive bias and result in a worse generalisation performance compared to DNNs. We demonstrate that an artificial (restricted) inductive bias can be produced by intentionally restricting the expressivity of a QNN. Our results suggest a bias-expressivity tradeoff. Our conclusion is that the QNNs we studied can not generally offer an advantage over DNNs, because these QNNs either have a poor inductive bias or poor expressivity compared to DNNs.
comment: 9 pages, 42 pages with appendices
☆ Nearly Linear Sparsification of $\ell_p$ Subspace Approximation
The $\ell_p$ subspace approximation problem is an NP-hard low rank approximation problem that generalizes the median hyperplane problem ($p = 1$), principal component analysis ($p = 2$), and the center hyperplane problem ($p = \infty$). A popular approach to cope with the NP-hardness of this problem is to compute a strong coreset, which is a small weighted subset of the input points which simultaneously approximates the cost of every $k$-dimensional subspace, typically to $(1+\varepsilon)$ relative error for a small constant $\varepsilon$. We obtain the first algorithm for constructing a strong coreset for $\ell_p$ subspace approximation with a nearly optimal dependence on the rank parameter $k$, obtaining a nearly linear bound of $\tilde O(k)\mathrm{poly}(\varepsilon^{-1})$ for $p<2$ and $\tilde O(k^{p/2})\mathrm{poly}(\varepsilon^{-1})$ for $p>2$. Prior constructions either achieved a similar size bound but produced a coreset with a modification of the original points [SW18, FKW21], or produced a coreset of the original points but lost $\mathrm{poly}(k)$ factors in the coreset size [HV20, WY23]. Our techniques also lead to the first nearly optimal online strong coresets for $\ell_p$ subspace approximation with similar bounds as the offline setting, resolving a problem of [WY23]. All prior approaches lose $\mathrm{poly}(k)$ factors in this setting, even when allowed to modify the original points.
☆ Magnetic Hysteresis Modeling with Neural Operators
Hysteresis modeling is crucial to comprehend the behavior of magnetic devices, facilitating optimal designs. Hitherto, deep learning-based methods employed to model hysteresis, face challenges in generalizing to novel input magnetic fields. This paper addresses the generalization challenge by proposing neural operators for modeling constitutive laws that exhibit magnetic hysteresis by learning a mapping between magnetic fields. In particular, two prominent neural operators -- deep operator network and Fourier neural operator -- are employed to predict novel first-order reversal curves and minor loops, where novel means they are not used to train the model. In addition, a rate-independent Fourier neural operator is proposed to predict material responses at sampling rates different from those used during training to incorporate the rate-independent characteristics of magnetic hysteresis. The presented numerical experiments demonstrate that neural operators efficiently model magnetic hysteresis, outperforming the traditional neural recurrent methods on various metrics and generalizing to novel magnetic fields. The findings emphasize the advantages of using neural operators for modeling hysteresis under varying magnetic conditions, underscoring their importance in characterizing magnetic material based devices.
comment: 8 pages, 5 figures
☆ Modern Neighborhood Components Analysis: A Deep Tabular Baseline Two Decades Later
The growing success of deep learning in various domains has prompted investigations into its application to tabular data, where deep models have shown promising results compared to traditional tree-based methods. In this paper, we revisit Neighborhood Component Analysis (NCA), a classic tabular prediction method introduced in 2004, designed to learn a linear projection that captures semantic similarities between instances. We find that minor modifications, such as adjustments to the learning objectives and the integration of deep learning architectures, significantly enhance NCA's performance, enabling it to surpass most modern deep tabular models. Additionally, we introduce a stochastic neighbor sampling strategy that improves both the efficiency and predictive accuracy of our proposed ModernNCA -- sampling only a subset of neighbors during training, while utilizing the entire neighborhood during inference. Extensive experiments demonstrate that our ModernNCA achieves state-of-the-art results in both classification and regression tasks across various tabular datasets, outperforming both tree-based and other deep tabular models, while also reducing training time and model size.
☆ When big data actually are low-rank, or entrywise approximation of certain function-generated matrices
The article concerns low-rank approximation of matrices generated by sampling a smooth function of two $m$-dimensional variables. We refute an argument made in the literature that, for a specific class of analytic functions, such matrices admit accurate entrywise approximation of rank that is independent of $m$. We provide a theoretical explanation of the numerical results presented in support of this argument, describing three narrower classes of functions for which $n \times n$ function-generated matrices can be approximated within an entrywise error of order $\varepsilon$ with rank $\mathcal{O}(\log(n) \varepsilon^{-2} \mathrm{polylog}(\varepsilon^{-1}))$ that is independent of the dimension $m$: (i) functions of the inner product of the two variables, (ii) functions of the squared Euclidean distance between the variables, and (iii) shift-invariant positive-definite kernels. We extend our argument to low-rank tensor-train approximation of tensors generated with functions of the multi-linear product of their $m$-dimensional variables. We discuss our results in the context of low-rank approximation of attention in transformer neural networks.
☆ Terrain Classification Enhanced with Uncertainty for Space Exploration Robots from Proprioceptive Data ICML 2023
Terrain Classification is an essential task in space exploration, where unpredictable environments are difficult to observe using only exteroceptive sensors such as vision. Implementing Neural Network classifiers can have high performance but can be deemed untrustworthy as they lack transparency, which makes them unreliable for taking high-stakes decisions during mission planning. We address this by proposing Neural Networks with Uncertainty Quantification in Terrain Classification. We enable our Neural Networks with Monte Carlo Dropout, DropConnect, and Flipout in time series-capable architectures using only proprioceptive data as input. We use Bayesian Optimization with Hyperband for efficient hyperparameter optimization to find optimal models for trustworthy terrain classification.
comment: 6 pages, 4 figures. LatinX in AI Workshop @ ICML 2023 Camera Ready
☆ Self-Evaluation as a Defense Against Adversarial Attacks on LLMs
When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be made available at https://github.com/Linlt-leon/Adversarial-Alignments.
comment: 8 pages, 7 figures
☆ Single Character Perturbations Break LLM Alignment
When LLMs are deployed in sensitive, human-facing settings, it is crucial that they do not output unsafe, biased, or privacy-violating outputs. For this reason, models are both trained and instructed to refuse to answer unsafe prompts such as "Tell me how to build a bomb." We find that, despite these safeguards, it is possible to break model defenses simply by appending a space to the end of a model's input. In a study of eight open-source models, we demonstrate that this acts as a strong enough attack to cause the majority of models to generate harmful outputs with very high success rates. We examine the causes of this behavior, finding that the contexts in which single spaces occur in tokenized training data encourage models to generate lists when prompted, overriding training signals to refuse to answer unsafe requests. Our findings underscore the fragile state of current model alignment and promote the importance of developing more robust alignment methods. Code and data will be available at https://github.com/hannah-aught/space_attack.
comment: 8 pages, 6 figures
☆ How Does Quantization Affect Multilingual LLMs?
Quantization techniques are widely used to improve inference speed and deployment of large language models. While a wide body of work examines the impact of quantized LLMs on English tasks, none have examined the effect of quantization across languages. We conduct a thorough analysis of quantized multilingual LLMs, focusing on their performance across languages and at varying scales. We use automatic benchmarks, LLM-as-a-Judge methods, and human evaluation, finding that (1) harmful effects of quantization are apparent in human evaluation, and automatic metrics severely underestimate the detriment: a 1.7% average drop in Japanese across automatic tasks corresponds to a 16.0% drop reported by human evaluators on realistic prompts; (2) languages are disparately affected by quantization, with non-Latin script languages impacted worst; and (3) challenging tasks such as mathematical reasoning degrade fastest. As the ability to serve low-compute models is critical for wide global adoption of NLP technologies, our results urge consideration of multilingual performance as a key evaluation criterion for efficient models.
☆ Combining AI Control Systems and Human Decision Support via Robustness and Criticality
AI-enabled capabilities are reaching the requisite level of maturity to be deployed in the real world, yet do not always make correct or safe decisions. One way of addressing these concerns is to leverage AI control systems alongside and in support of human decisions, relying on the AI control system in safe situations while calling on a human co-decider for critical situations. We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks, including MuZero. Multiple improvements to the base agent architecture are proposed. We demonstrate how this technology has two applications: for intelligent decision tools and to enhance training / learning frameworks. In a decision support context, adversarial explanations help a user make the correct decision by highlighting those contextual factors that would need to change for a different AI-recommended decision. As another benefit of adversarial explanations, we show that the learned AI control system demonstrates robustness against adversarial tampering. Additionally, we supplement AE by introducing strategically similar autoencoders (SSAs) to help users identify and understand all salient factors being considered by the AI system. In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction. Finally, to identify when AI decisions would most benefit from human oversight, we tie this combined system to our prior art on statistically verified analyses of the criticality of decisions at any point in time.
comment: 19 pages, 12 figures
☆ Incremental Gauss--Newton Methods with Superlinear Convergence Rates
This paper addresses the challenge of solving large-scale nonlinear equations with H\"older continuous Jacobians. We introduce a novel Incremental Gauss--Newton (IGN) method within explicit superlinear convergence rate, which outperforms existing methods that only achieve linear convergence rate. In particular, we formulate our problem by the nonlinear least squares with finite-sum structure, and our method incrementally iterates with the information of one component in each round. We also provide a mini-batch extension to our IGN method that obtains an even faster superlinear convergence rate. Furthermore, we conduct numerical experiments to show the advantages of the proposed methods.
comment: 37 pages, 9 figures
☆ Prediction Instability in Machine Learning Ensembles ICML2024
In machine learning ensembles predictions from multiple models are aggregated. Despite widespread use and strong performance of ensembles in applied problems little is known about the mathematical properties of aggregating models and associated consequences for safe, explainable use of such models. In this paper we prove a theorem that shows that any ensemble will exhibit at least one of the following forms of prediction instability. It will either ignore agreement among all underlying models, change its mind when none of the underlying models have done so, or be manipulable through inclusion or exclusion of options it would never actually predict. As a consequence, ensemble aggregation procedures will always need to balance the benefits of information use against the risk of these prediction instabilities. This analysis also sheds light on what specific forms of prediction instability to expect from particular ensemble algorithms; for example popular tree ensembles like random forest, or xgboost will violate basic, intuitive monotonicity and fairness properties.
comment: 15 pages, uses a modified version of ICML2024.sty
☆ Multiple-Resolution Tokenization for Time Series Forecasting with an Application to Pricing
We propose a transformer architecture for time series forecasting with a focus on time series tokenisation and apply it to a real-world prediction problem from the pricing domain. Our architecture aims to learn effective representations at many scales across all available data simultaneously. The model contains a number of novel modules: a differentiated form of time series patching which employs multiple resolutions, a multiple-resolution module for time-varying known variables, a mixer-based module for capturing cross-series information, and a novel output head with favourable scaling to account for the increased number of tokens. We present an application of this model to a real world prediction problem faced by the markdown team at a very large retailer. On the experiments conducted our model outperforms in-house models and the selected existing deep learning architectures.
☆ Motion meets Attention: Video Motion Prompts
Videos contain rich spatio-temporal information. Traditional methods for extracting motion, used in tasks such as action recognition, often rely on visual contents rather than precise motion features. This phenomenon is referred to as 'blind motion extraction' behavior, which proves inefficient in capturing motions of interest due to a lack of motion-guided cues. Recently, attention mechanisms have enhanced many computer vision tasks by effectively highlighting salient visual areas. Inspired by this, we propose using a modified Sigmoid function with learnable slope and shift parameters as an attention mechanism to activate and modulate motion signals derived from frame differencing maps. This approach generates a sequence of attention maps that enhance the processing of motion-related video content. To ensure temporally continuity and smoothness of the attention maps, we apply pair-wise temporal attention variation regularization to remove unwanted motions (e.g., noise) while preserving important ones. We then perform Hadamard product between each pair of attention maps and the original video frames to highlight the evolving motions of interest over time. These highlighted motions, termed video motion prompts, are subsequently used as inputs to the model instead of the original video frames. We formalize this process as a motion prompt layer and incorporate the regularization term into the loss function to learn better motion prompts. This layer serves as an adapter between the model and the video data, bridging the gap between traditional 'blind motion extraction' and the extraction of relevant motions of interest.
comment: Research report
☆ Relating CNN-Transformer Fusion Network for Change Detection
While deep learning, particularly convolutional neural networks (CNNs), has revolutionized remote sensing (RS) change detection (CD), existing approaches often miss crucial features due to neglecting global context and incomplete change learning. Additionally, transformer networks struggle with low-level details. RCTNet addresses these limitations by introducing \textbf{(1)} an early fusion backbone to exploit both spatial and temporal features early on, \textbf{(2)} a Cross-Stage Aggregation (CSA) module for enhanced temporal representation, \textbf{(3)} a Multi-Scale Feature Fusion (MSF) module for enriched feature extraction in the decoder, and \textbf{(4)} an Efficient Self-deciphering Attention (ESA) module utilizing transformers to capture global information and fine-grained details for accurate change detection. Extensive experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods, showing significant improvement and an optimal balance between accuracy and computational cost.
comment: accepted by IEEE Conference on Multimedia Expo
☆ Bunny-VisionPro: Real-Time Bimanual Dexterous Teleoperation for Imitation Learning
Teleoperation is a crucial tool for collecting human demonstrations, but controlling robots with bimanual dexterous hands remains a challenge. Existing teleoperation systems struggle to handle the complexity of coordinating two hands for intricate manipulations. We introduce Bunny-VisionPro, a real-time bimanual dexterous teleoperation system that leverages a VR headset. Unlike previous vision-based teleoperation systems, we design novel low-cost devices to provide haptic feedback to the operator, enhancing immersion. Our system prioritizes safety by incorporating collision and singularity avoidance while maintaining real-time performance through innovative designs. Bunny-VisionPro outperforms prior systems on a standard task suite, achieving higher success rates and reduced task completion times. Moreover, the high-quality teleoperation demonstrations improve downstream imitation learning performance, leading to better generalizability. Notably, Bunny-VisionPro enables imitation learning with challenging multi-stage, long-horizon dexterous manipulation tasks, which have rarely been addressed in previous work. Our system's ability to handle bimanual manipulations while prioritizing safety and real-time performance makes it a powerful tool for advancing dexterous manipulation and imitation learning.
comment: project page: https://dingry.github.io/projects/bunny_visionpro.html
☆ SOS! Soft Prompt Attack Against Open-Source Large Language Models
Open-source large language models (LLMs) have become increasingly popular among both the general public and industry, as they can be customized, fine-tuned, and freely used. However, some open-source LLMs require approval before usage, which has led to third parties publishing their own easily accessible versions. Similarly, third parties have been publishing fine-tuned or quantized variants of these LLMs. These versions are particularly appealing to users because of their ease of access and reduced computational resource demands. This trend has increased the risk of training time attacks, compromising the integrity and security of LLMs. In this work, we present a new training time attack, SOS, which is designed to be low in computational demand and does not require clean data or modification of the model weights, thereby maintaining the model's utility intact. The attack addresses security issues in various scenarios, including the backdoor attack, jailbreak attack, and prompt stealing attack. Our experimental findings demonstrate that the proposed attack is effective across all evaluated targets. Furthermore, we present the other side of our SOS technique, namely the copyright token -- a novel technique that enables users to mark their copyrighted content and prevent models from using it.
☆ Let the Code LLM Edit Itself When You Edit the Code
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \underline{\textbf{Positional \textbf{I}ntegrity \textbf{E}ncoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
comment: Preprint. Work in Progress
Reinforcement Learning for Sequence Design Leveraging Protein Language Models
Protein sequence design, determined by amino acid sequences, are essential to protein engineering problems in drug discovery. Prior approaches have resorted to evolutionary strategies or Monte-Carlo methods for protein design, but often fail to exploit the structure of the combinatorial search space, to generalize to unseen sequences. In the context of discrete black box optimization over large search spaces, learning a mutation policy to generate novel sequences with reinforcement learning is appealing. Recent advances in protein language models (PLMs) trained on large corpora of protein sequences offer a potential solution to this problem by scoring proteins according to their biological plausibility (such as the TM-score). In this work, we propose to use PLMs as a reward function to generate new sequences. Yet the PLM can be computationally expensive to query due to its large size. To this end, we propose an alternative paradigm where optimization can be performed on scores from a smaller proxy model that is periodically finetuned, jointly while learning the mutation policy. We perform extensive experiments on various sequence lengths to benchmark RL-based approaches, and provide comprehensive evaluations along biological plausibility and diversity of the protein. Our experimental results include favorable evaluations of the proposed sequences, along with high diversity scores, demonstrating that RL is a strong candidate for biological sequence design. Finally, we provide a modular open source implementation can be easily integrated in most RL training loops, with support for replacing the reward model with other PLMs, to spur further research in this domain. The code for all experiments is provided in the supplementary material.
comment: 22 pages, 7 figures, 4 tables
☆ Stereo Risk: A Continuous Modeling Approach to Stereo Matching ICML 2024
We introduce Stereo Risk, a new deep-learning approach to solve the classical stereo-matching problem in computer vision. As it is well-known that stereo matching boils down to a per-pixel disparity estimation problem, the popular state-of-the-art stereo-matching approaches widely rely on regressing the scene disparity values, yet via discretization of scene disparity values. Such discretization often fails to capture the nuanced, continuous nature of scene depth. Stereo Risk departs from the conventional discretization approach by formulating the scene disparity as an optimal solution to a continuous risk minimization problem, hence the name "stereo risk". We demonstrate that $L^1$ minimization of the proposed continuous risk function enhances stereo-matching performance for deep networks, particularly for disparities with multi-modal probability distributions. Furthermore, to enable the end-to-end network training of the non-differentiable $L^1$ risk optimization, we exploited the implicit function theorem, ensuring a fully differentiable network. A comprehensive analysis demonstrates our method's theoretical soundness and superior performance over the state-of-the-art methods across various benchmark datasets, including KITTI 2012, KITTI 2015, ETH3D, SceneFlow, and Middlebury 2014.
comment: Accepted as an Oral Paper at ICML 2024. Draft info: 18 pages, 6 Figure, 16 Tables
☆ Speaker- and Text-Independent Estimation of Articulatory Movements and Phoneme Alignments from Speech
This paper introduces a novel combination of two tasks, previously treated separately: acoustic-to-articulatory speech inversion (AAI) and phoneme-to-articulatory (PTA) motion estimation. We refer to this joint task as acoustic phoneme-to-articulatory speech inversion (APTAI) and explore two different approaches, both working speaker- and text-independently during inference. We use a multi-task learning setup, with the end-to-end goal of taking raw speech as input and estimating the corresponding articulatory movements, phoneme sequence, and phoneme alignment. While both proposed approaches share these same requirements, they differ in their way of achieving phoneme-related predictions: one is based on frame classification, the other on a two-staged training procedure and forced alignment. We reach competitive performance of 0.73 mean correlation for the AAI task and achieve up to approximately 87% frame overlap compared to a state-of-the-art text-dependent phoneme force aligner.
comment: to be published in Interspeech 2024 proceedings
☆ Foundations and Frontiers of Graph Learning Theory
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures. Notably, Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm. With these models being usually characterized by intuition-driven design or highly intricate components, placing them within the theoretical analysis framework to distill the core concepts, helps understand the key principles that drive the functionality better and guide further development. Given this surge in interest, this article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models. Encompassing discussions on fundamental aspects such as expressiveness power, generalization, optimization, and unique phenomena such as over-smoothing and over-squashing, this piece delves into the theoretical foundations and frontier driving the evolution of graph learning. In addition, this article also presents several challenges and further initiates discussions on possible solutions.
comment: 36pages,273references
☆ Can machine learning solve the challenge of adaptive learning and the individualization of learning paths? A field experiment in an online learning platform
The individualization of learning contents based on digital technologies promises large individual and social benefits. However, it remains an open question how this individualization can be implemented. To tackle this question we conduct a randomized controlled trial on a large digital self-learning platform. We develop an algorithm based on two convolutional neural networks that assigns tasks to $4,365$ learners according to their learning paths. Learners are randomized into three groups: two treatment groups -- a group-based adaptive treatment group and an individual adaptive treatment group -- and one control group. We analyze the difference between the three groups with respect to effort learners provide and their performance on the platform. Our null results shed light on the multiple challenges associated with the individualization of learning paths.
☆ How Reliable and Stable are Explanations of XAI Methods?
Black box models are increasingly being used in the daily lives of human beings living in society. Along with this increase, there has been the emergence of Explainable Artificial Intelligence (XAI) methods aimed at generating additional explanations regarding how the model makes certain predictions. In this sense, methods such as Dalex, Eli5, eXirt, Lofo and Shap emerged as different proposals and methodologies for generating explanations of black box models in an agnostic way. Along with the emergence of these methods, questions arise such as "How Reliable and Stable are XAI Methods?". With the aim of shedding light on this main question, this research creates a pipeline that performs experiments using the diabetes dataset and four different machine learning models (LGBM, MLP, DT and KNN), creating different levels of perturbations of the test data and finally generates explanations from the eXirt method regarding the confidence of the models and also feature relevances ranks from all XAI methods mentioned, in order to measure their stability in the face of perturbations. As a result, it was found that eXirt was able to identify the most reliable models among all those used. It was also found that current XAI methods are sensitive to perturbations, with the exception of one specific method.
comment: 15 pages, 6 figures, submitted to BRACIS 2024
On Generalization for Generative Flow Networks
Generative Flow Networks (GFlowNets) have emerged as an innovative learning paradigm designed to address the challenge of sampling from an unnormalized probability distribution, called the reward function. This framework learns a policy on a constructed graph, which enables sampling from an approximation of the target probability distribution through successive steps of sampling from the learned policy. To achieve this, GFlowNets can be trained with various objectives, each of which can lead to the model s ultimate goal. The aspirational strength of GFlowNets lies in their potential to discern intricate patterns within the reward function and their capacity to generalize effectively to novel, unseen parts of the reward function. This paper attempts to formalize generalization in the context of GFlowNets, to link generalization with stability, and also to design experiments that assess the capacity of these models to uncover unseen parts of the reward function. The experiments will focus on length generalization meaning generalization to states that can be constructed only by longer trajectories than those seen in training.
☆ Conformal Prediction for Causal Effects of Continuous Treatments
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
☆ Revisiting the Performance of Deep Learning-Based Vulnerability Detection on Realistic Datasets
The impact of software vulnerabilities on everyday software systems is significant. Despite deep learning models being proposed for vulnerability detection, their reliability is questionable. Prior evaluations show high recall/F1 scores of up to 99%, but these models underperform in practical scenarios, particularly when assessed on entire codebases rather than just the fixing commit. This paper introduces Real-Vul, a comprehensive dataset representing real-world scenarios for evaluating vulnerability detection models. Evaluating DeepWukong, LineVul, ReVeal, and IVDetect shows a significant drop in performance, with precision decreasing by up to 95 percentage points and F1 scores by up to 91 points. Furthermore, Model performance fluctuates based on vulnerability characteristics, with better F1 scores for information leaks or code injection than for path resolution or predictable return values. The results highlight a significant performance gap that needs addressing before deploying deep learning-based vulnerability detection in practical settings. Overfitting is identified as a key issue, and an augmentation technique is proposed, potentially improving performance by up to 30%. Contributions include a dataset creation approach for better model evaluation, Real-Vul dataset, and empirical evidence of deep learning models struggling in real-world settings.
☆ Spatio-Temporal Adaptive Diffusion Models for EEG Super-Resolution in Epilepsy Diagnosis
Electroencephalogram (EEG) technology, particularly high-density EEG (HD EEG) devices, is widely used in fields such as neuroscience. HD EEG devices improve the spatial resolution of EEG by placing more electrodes on the scalp, meeting the requirements of clinical diagnostic applications such as epilepsy focus localization. However, this technique faces challenges such as high acquisition costs and limited usage scenarios. In this paper, spatio-temporal adaptive diffusion models (STADMs) are proposed to pioneer the use of diffusion models for achieving spatial SR reconstruction from low-resolution (LR, 64 channels or fewer) EEG to high-resolution (HR, 256 channels) EEG. Specifically, a spatio-temporal condition module is designed to extract the spatio-temporal features of LR EEG, which then serve as conditional inputs to guide the reverse denoising process of diffusion models. Additionally, a multi-scale Transformer denoising module is constructed to leverage multi-scale convolution blocks and cross-attention-based diffusion Transformer blocks for conditional guidance to generate subject-adaptive SR EEG. Experimental results demonstrate that the proposed method effectively enhances the spatial resolution of LR EEG and quantitatively outperforms existing methods. Furthermore, STADMs demonstrate their value by applying synthetic SR EEG to classification and source localization tasks of epilepsy patients, indicating their potential to significantly improve the spatial resolution of LR EEG.
☆ Effective Heterogeneous Federated Learning via Efficient Hypernetwork-based Weight Generation
While federated learning leverages distributed client resources, it faces challenges due to heterogeneous client capabilities. This necessitates allocating models suited to clients' resources and careful parameter aggregation to accommodate this heterogeneity. We propose HypeMeFed, a novel federated learning framework for supporting client heterogeneity by combining a multi-exit network architecture with hypernetwork-based model weight generation. This approach aligns the feature spaces of heterogeneous model layers and resolves per-layer information disparity during weight aggregation. To practically realize HypeMeFed, we also propose a low-rank factorization approach to minimize computation and memory overhead associated with hypernetworks. Our evaluations on a real-world heterogeneous device testbed indicate that HypeMeFed enhances accuracy by 5.12% over FedAvg, reduces the hypernetwork memory requirements by 98.22%, and accelerates its operations by 1.86 times compared to a naive hypernetwork approach. These results demonstrate HypeMeFed's effectiveness in leveraging and engaging heterogeneous clients for federated learning.
☆ Stable Heterogeneous Treatment Effect Estimation across Out-of-Distribution Populations ICDE'2024
Heterogeneous treatment effect (HTE) estimation is vital for understanding the change of treatment effect across individuals or subgroups. Most existing HTE estimation methods focus on addressing selection bias induced by imbalanced distributions of confounders between treated and control units, but ignore distribution shifts across populations. Thereby, their applicability has been limited to the in-distribution (ID) population, which shares a similar distribution with the training dataset. In real-world applications, where population distributions are subject to continuous changes, there is an urgent need for stable HTE estimation across out-of-distribution (OOD) populations, which, however, remains an open problem. As pioneers in resolving this problem, we propose a novel Stable Balanced Representation Learning with Hierarchical-Attention Paradigm (SBRL-HAP) framework, which consists of 1) Balancing Regularizer for eliminating selection bias, 2) Independence Regularizer for addressing the distribution shift issue, 3) Hierarchical-Attention Paradigm for coordination between balance and independence. In this way, SBRL-HAP regresses counterfactual outcomes using ID data, while ensuring the resulting HTE estimation can be successfully generalized to out-of-distribution scenarios, thereby enhancing the model's applicability in real-world settings. Extensive experiments conducted on synthetic and real-world datasets demonstrate the effectiveness of our SBRL-HAP in achieving stable HTE estimation across OOD populations, with an average 10% reduction in the error metric PEHE and 11% decrease in the ATE bias, compared to the SOTA methods.
comment: Accepted by ICDE'2024
☆ Artificial Inductive Bias for Synthetic Tabular Data Generation in Data-Scarce Scenarios
While synthetic tabular data generation using Deep Generative Models (DGMs) offers a compelling solution to data scarcity and privacy concerns, their effectiveness relies on substantial training data, often unavailable in real-world applications. This paper addresses this challenge by proposing a novel methodology for generating realistic and reliable synthetic tabular data with DGMs in limited real-data environments. Our approach proposes several ways to generate an artificial inductive bias in a DGM through transfer learning and meta-learning techniques. We explore and compare four different methods within this framework, demonstrating that transfer learning strategies like pre-training and model averaging outperform meta-learning approaches, like Model-Agnostic Meta-Learning, and Domain Randomized Search. We validate our approach using two state-of-the-art DGMs, namely, a Variational Autoencoder and a Generative Adversarial Network, to show that our artificial inductive bias fuels superior synthetic data quality, as measured by Jensen-Shannon divergence, achieving relative gains of up to 50\% when using our proposed approach. This methodology has broad applicability in various DGMs and machine learning tasks, particularly in areas like healthcare and finance, where data scarcity is often a critical issue.
comment: 19 pages, 6 Figures
☆ Warm-up Free Policy Optimization: Improved Regret in Linear Markov Decision Processes
Policy Optimization (PO) methods are among the most popular Reinforcement Learning (RL) algorithms in practice. Recently, Sherman et al. [2023a] proposed a PO-based algorithm with rate-optimal regret guarantees under the linear Markov Decision Process (MDP) model. However, their algorithm relies on a costly pure exploration warm-up phase that is hard to implement in practice. This paper eliminates this undesired warm-up phase, replacing it with a simple and efficient contraction mechanism. Our PO algorithm achieves rate-optimal regret with improved dependence on the other parameters of the problem (horizon and function approximation dimension) in two fundamental settings: adversarial losses with full-information feedback and stochastic losses with bandit feedback.
☆ FairJob: A Real-World Dataset for Fairness in Online Systems
We introduce a fairness-aware dataset for job recommendation in advertising, designed to foster research in algorithmic fairness within real-world scenarios. It was collected and prepared to comply with privacy standards and business confidentiality. An additional challenge is the lack of access to protected user attributes such as gender, for which we propose a solution to obtain a proxy estimate. Despite being anonymized and including a proxy for a sensitive attribute, our dataset preserves predictive power and maintains a realistic and challenging benchmark. This dataset addresses a significant gap in the availability of fairness-focused resources for high-impact domains like advertising -- the actual impact being having access or not to precious employment opportunities, where balancing fairness and utility is a common industrial challenge. We also explore various stages in the advertising process where unfairness can occur and introduce a method to compute a fair utility metric for the job recommendations in online systems case from a biased dataset. Experimental evaluations of bias mitigation techniques on the released dataset demonstrate potential improvements in fairness and the associated trade-offs with utility.
comment: 24 pages, 15 figures
☆ Improving Zero-shot Generalization of Learned Prompts via Unsupervised Knowledge Distillation ECCV24
Vision-Language Models (VLMs) demonstrate remarkable zero-shot generalization to unseen tasks, but fall short of the performance of supervised methods in generalizing to downstream tasks with limited data. Prompt learning is emerging as a parameter-efficient method for adapting VLMs, but state-of-the-art approaches require annotated samples. In this paper we propose a novel approach to prompt learning based on unsupervised knowledge distillation from more powerful models. Our approach, which we call Knowledge Distillation Prompt Learning (KDPL), can be integrated into existing prompt learning techniques and eliminates the need for labeled examples during adaptation. Our experiments on more than ten standard benchmark datasets demonstrate that KDPL is very effective at improving generalization of learned prompts for zero-shot domain generalization, zero-shot cross-dataset generalization, and zero-shot base-to-novel class generalization problems. KDPL requires no ground-truth labels for adaptation, and moreover we show that even in the absence of any knowledge of training class names it can be used to effectively transfer knowledge. The code is publicly available at https://github.com/miccunifi/KDPL.
comment: Accepted for publication at ECCV24
☆ JailbreakHunter: A Visual Analytics Approach for Jailbreak Prompts Discovery from Large-Scale Human-LLM Conversational Datasets
Large Language Models (LLMs) have gained significant attention but also raised concerns due to the risk of misuse. Jailbreak prompts, a popular type of adversarial attack towards LLMs, have appeared and constantly evolved to breach the safety protocols of LLMs. To address this issue, LLMs are regularly updated with safety patches based on reported jailbreak prompts. However, malicious users often keep their successful jailbreak prompts private to exploit LLMs. To uncover these private jailbreak prompts, extensive analysis of large-scale conversational datasets is necessary to identify prompts that still manage to bypass the system's defenses. This task is highly challenging due to the immense volume of conversation data, diverse characteristics of jailbreak prompts, and their presence in complex multi-turn conversations. To tackle these challenges, we introduce JailbreakHunter, a visual analytics approach for identifying jailbreak prompts in large-scale human-LLM conversational datasets. We have designed a workflow with three analysis levels: group-level, conversation-level, and turn-level. Group-level analysis enables users to grasp the distribution of conversations and identify suspicious conversations using multiple criteria, such as similarity with reported jailbreak prompts in previous research and attack success rates. Conversation-level analysis facilitates the understanding of the progress of conversations and helps discover jailbreak prompts within their conversation contexts. Turn-level analysis allows users to explore the semantic similarity and token overlap between a singleturn prompt and the reported jailbreak prompts, aiding in the identification of new jailbreak strategies. The effectiveness and usability of the system were verified through multiple case studies and expert interviews.
comment: 18 pages, 9 figures
☆ On the Client Preference of LLM Fine-tuning in Federated Learning
Reinforcement learning with human feedback (RLHF) fine-tunes a pretrained large language model (LLM) using preference datasets, enabling the LLM to generate outputs that align with human preferences. Given the sensitive nature of these preference datasets held by various clients, there is a need to implement RLHF within a federated learning (FL) framework, where clients are reluctant to share their data due to privacy concerns. To address this, we introduce a feasible framework in which clients collaboratively train a binary selector with their preference datasets using our proposed FedBis. With a well-trained selector, we can further enhance the LLM that generates human-preferred completions. Meanwhile, we propose a novel algorithm, FedBiscuit, that trains multiple selectors by organizing clients into balanced and disjoint clusters based on their preferences. Compared to the FedBis, FedBiscuit demonstrates superior performance in simulating human preferences for pairwise completions. Our extensive experiments on federated human preference datasets -- marking the first benchmark to address heterogeneous data partitioning among clients -- demonstrate that FedBiscuit outperforms FedBis and even surpasses traditional centralized training.
comment: Work in progress
☆ LoRA-Guard: Parameter-Efficient Guardrail Adaptation for Content Moderation of Large Language Models
Guardrails have emerged as an alternative to safety alignment for content moderation of large language models (LLMs). Existing model-based guardrails have not been designed for resource-constrained computational portable devices, such as mobile phones, more and more of which are running LLM-based applications locally. We introduce LoRA-Guard, a parameter-efficient guardrail adaptation method that relies on knowledge sharing between LLMs and guardrail models. LoRA-Guard extracts language features from the LLMs and adapts them for the content moderation task using low-rank adapters, while a dual-path design prevents any performance degradation on the generative task. We show that LoRA-Guard outperforms existing approaches with 100-1000x lower parameter overhead while maintaining accuracy, enabling on-device content moderation.
☆ Semantically Rich Local Dataset Generation for Explainable AI in Genomics
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms. Therefore, interpreting these models may provide novel insights into the underlying biology, supporting downstream biomedical applications. Due to their complexity, interpretable surrogate models can only be built for local explanations (e.g., a single instance). However, accomplishing this requires generating a dataset in the neighborhood of the input, which must maintain syntactic similarity to the original data while introducing semantic variability in the model's predictions. This task is challenging due to the complex sequence-to-function relationship of DNA. We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity. Our custom, domain-guided individual representation effectively constrains syntactic similarity, and we provide two alternative fitness functions that promote diversity with no computational effort. Applied to the RNA splicing domain, our approach quickly achieves good diversity and significantly outperforms a random baseline in exploring the search space, as shown by our proof-of-concept, short RNA sequence. Furthermore, we assess its generalizability and demonstrate scalability to larger sequences, resulting in a $\approx$30\% improvement over the baseline.
☆ IM-MoCo: Self-supervised MRI Motion Correction using Motion-Guided Implicit Neural Representations MICCAI 2024
Motion artifacts in Magnetic Resonance Imaging (MRI) arise due to relatively long acquisition times and can compromise the clinical utility of acquired images. Traditional motion correction methods often fail to address severe motion, leading to distorted and unreliable results. Deep Learning (DL) alleviated such pitfalls through generalization with the cost of vanishing structures and hallucinations, making it challenging to apply in the medical field where hallucinated structures can tremendously impact the diagnostic outcome. In this work, we present an instance-wise motion correction pipeline that leverages motion-guided Implicit Neural Representations (INRs) to mitigate the impact of motion artifacts while retaining anatomical structure. Our method is evaluated using the NYU fastMRI dataset with different degrees of simulated motion severity. For the correction alone, we can improve over state-of-the-art image reconstruction methods by $+5\%$ SSIM, $+5\:db$ PSNR, and $+14\%$ HaarPSI. Clinical relevance is demonstrated by a subsequent experiment, where our method improves classification outcomes by at least $+1.5$ accuracy percentage points compared to motion-corrupted images.
comment: Submitted to MICCAI 2024 (Before peer review version)
☆ Towards a Scalable Reference-Free Evaluation of Generative Models
While standard evaluation scores for generative models are mostly reference-based, a reference-dependent assessment of generative models could be generally difficult due to the unavailability of applicable reference datasets. Recently, the reference-free entropy scores, VENDI and RKE, have been proposed to evaluate the diversity of generated data. However, estimating these scores from data leads to significant computational costs for large-scale generative models. In this work, we leverage the random Fourier features framework to reduce the computational price and propose the Fourier-based Kernel Entropy Approximation (FKEA) method. We utilize FKEA's approximated eigenspectrum of the kernel matrix to efficiently estimate the mentioned entropy scores. Furthermore, we show the application of FKEA's proxy eigenvectors to reveal the method's identified modes in evaluating the diversity of produced samples. We provide a stochastic implementation of the FKEA assessment algorithm with a complexity $O(n)$ linearly growing with sample size $n$. We extensively evaluate FKEA's numerical performance in application to standard image, text, and video datasets. Our empirical results indicate the method's scalability and interpretability applied to large-scale generative models. The codebase is available at https://github.com/aziksh-ospanov/FKEA.
☆ ObfuscaTune: Obfuscated Offsite Fine-tuning and Inference of Proprietary LLMs on Private Datasets
This work addresses the timely yet underexplored problem of performing inference and finetuning of a proprietary LLM owned by a model provider entity on the confidential/private data of another data owner entity, in a way that ensures the confidentiality of both the model and the data. Hereby, the finetuning is conducted offsite, i.e., on the computation infrastructure of a third-party cloud provider. We tackle this problem by proposing ObfuscaTune, a novel, efficient and fully utility-preserving approach that combines a simple yet effective obfuscation technique with an efficient usage of confidential computing (only 5% of the model parameters are placed on TEE). We empirically demonstrate the effectiveness of ObfuscaTune by validating it on GPT-2 models with different sizes on four NLP benchmark datasets. Finally, we compare to a na\"ive version of our approach to highlight the necessity of using random matrices with low condition numbers in our approach to reduce errors induced by the obfuscation.
comment: Preprint
☆ IncogniText: Privacy-enhancing Conditional Text Anonymization via LLM-based Private Attribute Randomization
In this work, we address the problem of text anonymization where the goal is to prevent adversaries from correctly inferring private attributes of the author, while keeping the text utility, i.e., meaning and semantics. We propose IncogniText, a technique that anonymizes the text to mislead a potential adversary into predicting a wrong private attribute value. Our empirical evaluation shows a reduction of private attribute leakage by more than 90%. Finally, we demonstrate the maturity of IncogniText for real-world applications by distilling its anonymization capability into a set of LoRA parameters associated with an on-device model.
comment: Preprint
☆ PII-Compass: Guiding LLM training data extraction prompts towards the target PII via grounding ACL 2024
The latest and most impactful advances in large models stem from their increased size. Unfortunately, this translates into an improved memorization capacity, raising data privacy concerns. Specifically, it has been shown that models can output personal identifiable information (PII) contained in their training data. However, reported PIII extraction performance varies widely, and there is no consensus on the optimal methodology to evaluate this risk, resulting in underestimating realistic adversaries. In this work, we empirically demonstrate that it is possible to improve the extractability of PII by over ten-fold by grounding the prefix of the manually constructed extraction prompt with in-domain data. Our approach, PII-Compass, achieves phone number extraction rates of 0.92%, 3.9%, and 6.86% with 1, 128, and 2308 queries, respectively, i.e., the phone number of 1 person in 15 is extractable.
comment: Accepted at ACL 2024
☆ The More the Merrier? Navigating Accuracy vs. Energy Efficiency Design Trade-Offs in Ensemble Learning Systems
Background: Machine learning (ML) model composition is a popular technique to mitigate shortcomings of a single ML model and to design more effective ML-enabled systems. While ensemble learning, i.e., forwarding the same request to several models and fusing their predictions, has been studied extensively for accuracy, we have insufficient knowledge about how to design energy-efficient ensembles. Objective: We therefore analyzed three types of design decisions for ensemble learning regarding a potential trade-off between accuracy and energy consumption: a) ensemble size, i.e., the number of models in the ensemble, b) fusion methods (majority voting vs. a meta-model), and c) partitioning methods (whole-dataset vs. subset-based training). Methods: By combining four popular ML algorithms for classification in different ensembles, we conducted a full factorial experiment with 11 ensembles x 4 datasets x 2 fusion methods x 2 partitioning methods (176 combinations). For each combination, we measured accuracy (F1-score) and energy consumption in J (for both training and inference). Results: While a larger ensemble size significantly increased energy consumption (size 2 ensembles consumed 37.49% less energy than size 3 ensembles, which in turn consumed 26.96% less energy than the size 4 ensembles), it did not significantly increase accuracy. Furthermore, majority voting outperformed meta-model fusion both in terms of accuracy (Cohen's d of 0.38) and energy consumption (Cohen's d of 0.92). Lastly, subset-based training led to significantly lower energy consumption (Cohen's d of 0.91), while training on the whole dataset did not increase accuracy significantly. Conclusions: From a Green AI perspective, we recommend designing ensembles of small size (2 or maximum 3 models), using subset-based training, majority voting, and energy-efficient ML algorithms like decision trees, Naive Bayes, or KNN.
comment: Currently under review at a journal
☆ SFC: Achieve Accurate Fast Convolution under Low-precision Arithmetic ICML 2024
Fast convolution algorithms, including Winograd and FFT, can efficiently accelerate convolution operations in deep models. However, these algorithms depend on high-precision arithmetic to maintain inference accuracy, which conflicts with the model quantization. To resolve this conflict and further improve the efficiency of quantized convolution, we proposes SFC, a new algebra transform for fast convolution by extending the Discrete Fourier Transform (DFT) with symbolic computing, in which only additions are required to perform the transformation at specific transform points, avoiding the calculation of irrational number and reducing the requirement for precision. Additionally, we enhance convolution efficiency by introducing correction terms to convert invalid circular convolution outputs of the Fourier method into effective ones. The numerical error analysis is presented for the first time in this type of work and proves that our algorithms can provide a 3.68x multiplication reduction for 3x3 convolution, while the Winograd algorithm only achieves a 2.25x reduction with similarly low numerical errors. Experiments carried out on benchmarks and FPGA show that our new algorithms can further improve the computation efficiency of quantized models while maintaining accuracy, surpassing both the quantization-alone method and existing works on fast convolution quantization.
comment: ICML 2024
☆ The Shortcomings of Force-from-Motion in Robot Learning
Robotic manipulation requires accurate motion and physical interaction control. However, current robot learning approaches focus on motion-centric action spaces that do not explicitly give the policy control over the interaction. In this paper, we discuss the repercussions of this choice and argue for more interaction-explicit action spaces in robot learning.
Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization MICCAI 2024
Despite notable advancements, the integration of deep learning (DL) techniques into impactful clinical applications, particularly in the realm of digital histopathology, has been hindered by challenges associated with achieving robust generalization across diverse imaging domains and characteristics. Traditional mitigation strategies in this field such as data augmentation and stain color normalization have proven insufficient in addressing this limitation, necessitating the exploration of alternative methodologies. To this end, we propose a novel generative method for domain generalization in histopathology images. Our method employs a generative, self-supervised Vision Transformer to dynamically extract characteristics of image patches and seamlessly infuse them into the original images, thereby creating novel, synthetic images with diverse attributes. By enriching the dataset with such synthesized images, we aim to enhance its holistic nature, facilitating improved generalization of DL models to unseen domains. Extensive experiments conducted on two distinct histopathology datasets demonstrate the effectiveness of our proposed approach, outperforming the state of the art substantially, on the Camelyon17-wilds challenge dataset (+2%) and on a second epithelium-stroma dataset (+26%). Furthermore, we emphasize our method's ability to readily scale with increasingly available unlabeled data samples and more complex, higher parametric architectures. Source code is available at https://github.com/sdoerrich97/vits-are-generative-models .
comment: Accepted at MICCAI 2024. This is the submitted manuscript with added link to github repo and funding acknowledgements. No further post submission improvements or corrections were integrated. Final version not published yet
☆ GPTQT: Quantize Large Language Models Twice to Push the Efficiency
Due to their large size, generative Large Language Models (LLMs) require significant computing and storage resources. This paper introduces a new post-training quantization method, GPTQT, to reduce memory usage and enhance processing speed by expressing the weight of LLM in 3bit/2bit. Practice has shown that minimizing the quantization error of weights is ineffective, leading to overfitting. Therefore, GPTQT employs a progressive two-step approach: initially quantizing weights using Linear quantization to a relatively high bit, followed by converting obtained int weight to lower bit binary coding. A re-explore strategy is proposed to optimize initial scaling factor. During inference, these steps are merged into pure binary coding, enabling efficient computation. Testing across various models and datasets confirms GPTQT's effectiveness. Compared to the strong 3-bit quantization baseline, GPTQT further reduces perplexity by 4.01 on opt-66B and increases speed by 1.24 times on opt-30b. The results on Llama2 show that GPTQT is currently the best binary coding quantization method for such kind of LLMs.
comment: Accepted by 11th IEEE International Conference on Cybernetics and Intelligent Systems
☆ Joint Optimization of Resource Allocation and Data Selection for Fast and Cost-Efficient Federated Edge Learning
Deploying federated learning at the wireless edge introduces federated edge learning (FEEL). Given FEEL's limited communication resources and potential mislabeled data on devices, improper resource allocation or data selection can hurt convergence speed and increase training costs. Thus, to realize an efficient FEEL system, this paper emphasizes jointly optimizing resource allocation and data selection. Specifically, in this work, through rigorously modeling the training process and deriving an upper bound on FEEL's one-round convergence rate, we establish a problem of joint resource allocation and data selection, which, unfortunately, cannot be solved directly. Toward this end, we equivalently transform the original problem into a solvable form via a variable substitution and then break it into two subproblems, that is, the resource allocation problem and the data selection problem. The two subproblems are mixed-integer non-convex and integer non-convex problems, respectively, and achieving their optimal solutions is a challenging task. Based on the matching theory and applying the convex-concave procedure and gradient projection methods, we devise a low-complexity suboptimal algorithm for the two subproblems, respectively. Finally, the superiority of our proposed scheme of joint resource allocation and data selection is validated by numerical results.
☆ ShiftAddAug: Augment Multiplication-Free Tiny Neural Network with Hybrid Computation CVPR
Operators devoid of multiplication, such as Shift and Add, have gained prominence for their compatibility with hardware. However, neural networks (NNs) employing these operators typically exhibit lower accuracy compared to conventional NNs with identical structures. ShiftAddAug uses costly multiplication to augment efficient but less powerful multiplication-free operators, improving performance without any inference overhead. It puts a ShiftAdd tiny NN into a large multiplicative model and encourages it to be trained as a sub-model to obtain additional supervision. In order to solve the weight discrepancy problem between hybrid operators, a new weight sharing method is proposed. Additionally, a novel two stage neural architecture search is used to obtain better augmentation effects for smaller but stronger multiplication-free tiny neural networks. The superiority of ShiftAddAug is validated through experiments in image classification and semantic segmentation, consistently delivering noteworthy enhancements. Remarkably, it secures up to a 4.95% increase in accuracy on the CIFAR100 compared to its directly trained counterparts, even surpassing the performance of multiplicative NNs.
comment: Accepted by 2024 CVPR Workshop : Efficient Deep Learning for Computer Vision
☆ Knowledge Composition using Task Vectors with Learned Anisotropic Scaling
Pre-trained models produce strong generic representations that can be adapted via fine-tuning. The learned weight difference relative to the pre-trained model, known as a task vector, characterises the direction and stride of fine-tuning. The significance of task vectors is such that simple arithmetic operations on them can be used to combine diverse representations from different domains. This paper builds on these properties of task vectors and aims to answer (1) whether components of task vectors, particularly parameter blocks, exhibit similar characteristics, and (2) how such blocks can be used to enhance knowledge composition and transfer. To this end, we introduce aTLAS, an algorithm that linearly combines parameter blocks with different learned coefficients, resulting in anisotropic scaling at the task vector level. We show that such linear combinations explicitly exploit the low intrinsic dimensionality of pre-trained models, with only a few coefficients being the learnable parameters. Furthermore, composition of parameter blocks leverages the already learned representations, thereby reducing the dependency on large amounts of data. We demonstrate the effectiveness of our method in task arithmetic, few-shot recognition and test-time adaptation, with supervised or unsupervised objectives. In particular, we show that (1) learned anisotropic scaling allows task vectors to be more disentangled, causing less interference in composition; (2) task vector composition excels with scarce or no labeled data and is less prone to domain shift, thus leading to better generalisability; (3) mixing the most informative parameter blocks across different task vectors prior to training can reduce the memory footprint and improve the flexibility of knowledge transfer. Moreover, we show the potential of aTLAS as a PEFT method, particularly with less data, and demonstrate that its scalibility.
☆ Membership Inference Attacks Against Time-Series Models
Analyzing time-series data that may contain personal information, particularly in the medical field, presents serious privacy concerns. Sensitive health data from patients is often used to train machine-learning models for diagnostics and ongoing care. Assessing the privacy risk of such models is crucial to making knowledgeable decisions on whether to use a model in production, share it with third parties, or deploy it in patients homes. Membership Inference Attacks (MIA) are a key method for this kind of evaluation, however time-series prediction models have not been thoroughly studied in this context. We explore existing MIA techniques on time-series models, and introduce new features, focusing on the seasonality and trend components of the data. Seasonality is estimated using a multivariate Fourier transform, and a low-degree polynomial is used to approximate trends. We applied these techniques to various types of time-series models, using datasets from the health domain. Our results demonstrate that these new features enhance the effectiveness of MIAs in identifying membership, improving the understanding of privacy risks in medical data applications.
comment: 16 pages
☆ A Self-Supervised Task for Fault Detection in Satellite Multivariate Time Series SP
In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.
comment: SPAICE: AI in and for Space, 2024
☆ Early-Stage Anomaly Detection: A Study of Model Performance on Complete vs. Partial Flows
This study investigates the efficacy of machine learning models, specifically Random Forest, in anomaly detection systems when trained on complete flow records and tested on partial flow data. We explore the performance disparity that arises when models are applied to incomplete data typical in real-world, real-time network environments. Our findings demonstrate a significant decline in model performance, with precision and recall dropping by up to 30\% under certain conditions when models trained on complete flows are tested against partial flows. Conversely, models trained and tested on consistently complete or partial datasets maintain robustness, highlighting the importance of dataset consistency in training. The study reveals that a minimum of 7 packets in the test set is required for maintaining reliable detection rates. These results underscore the need for tailored training strategies that can effectively adapt to the dynamics of partial data, enhancing the practical applicability of anomaly detection systems in operational settings.
comment: 9 pages, 5 tables, 2 figures
☆ Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks
LLMs are known to be vulnerable to jailbreak attacks, even after safety alignment. An important observation is that, while different types of jailbreak attacks can generate significantly different queries, they mostly result in similar responses that are rooted in the same harmful knowledge (e.g., detailed steps to make a bomb). Therefore, we conjecture that directly unlearn the harmful knowledge in the LLM can be a more effective way to defend against jailbreak attacks than the mainstream supervised fine-tuning (SFT) based approaches. Our extensive experiments confirmed our insight and suggested surprising generalizability of our unlearning-based approach: using only 20 raw harmful questions \emph{without} any jailbreak prompt during training, our solution reduced the Attack Success Rate (ASR) in Vicuna-7B on \emph{out-of-distribution} (OOD) harmful questions wrapped with various complex jailbreak prompts from 82.6\% to 7.7\%. This significantly outperforms Llama2-7B-Chat, which is fine-tuned on about 0.1M safety alignment samples but still has an ASR of 21.9\% even under the help of an additional safety system prompt. Further analysis reveals that the generalization ability of our solution stems from the intrinsic relatedness among harmful responses across harmful questions (e.g., response patterns, shared steps and actions, and similarity among their learned representations in the LLM). Our code is available at \url{https://github.com/thu-coai/SafeUnlearning}.
comment: 15 pages
☆ Multi-Attention Integrated Deep Learning Frameworks for Enhanced Breast Cancer Segmentation and Identification
Breast cancer poses a profound threat to lives globally, claiming numerous lives each year. Therefore, timely detection is crucial for early intervention and improved chances of survival. Accurately diagnosing and classifying breast tumors using ultrasound images is a persistent challenge in medicine, demanding cutting-edge solutions for improved treatment strategies. This research introduces multiattention-enhanced deep learning (DL) frameworks designed for the classification and segmentation of breast cancer tumors from ultrasound images. A spatial channel attention mechanism is proposed for segmenting tumors from ultrasound images, utilizing a novel LinkNet DL framework with an InceptionResNet backbone. Following this, the paper proposes a deep convolutional neural network with an integrated multi-attention framework (DCNNIMAF) to classify the segmented tumor as benign, malignant, or normal. From experimental results, it is observed that the segmentation model has recorded an accuracy of 98.1%, with a minimal loss of 0.6%. It has also achieved high Intersection over Union (IoU) and Dice Coefficient scores of 96.9% and 97.2%, respectively. Similarly, the classification model has attained an accuracy of 99.2%, with a low loss of 0.31%. Furthermore, the classification framework has achieved outstanding F1-Score, precision, and recall values of 99.1%, 99.3%, and 99.1%, respectively. By offering a robust framework for early detection and accurate classification of breast cancer, this proposed work significantly advances the field of medical image analysis, potentially improving diagnostic precision and patient outcomes.
comment: 32 pages, 18 figures, 6 tables
☆ LANE: Logic Alignment of Non-tuning Large Language Models and Online Recommendation Systems for Explainable Reason Generation
The explainability of recommendation systems is crucial for enhancing user trust and satisfaction. Leveraging large language models (LLMs) offers new opportunities for comprehensive recommendation logic generation. However, in existing related studies, fine-tuning LLM models for recommendation tasks incurs high computational costs and alignment issues with existing systems, limiting the application potential of proven proprietary/closed-source LLM models, such as GPT-4. In this work, our proposed effective strategy LANE aligns LLMs with online recommendation systems without additional LLMs tuning, reducing costs and improving explainability. This innovative approach addresses key challenges in integrating language models with recommendation systems while fully utilizing the capabilities of powerful proprietary models. Specifically, our strategy operates through several key components: semantic embedding, user multi-preference extraction using zero-shot prompting, semantic alignment, and explainable recommendation generation using Chain of Thought (CoT) prompting. By embedding item titles instead of IDs and utilizing multi-head attention mechanisms, our approach aligns the semantic features of user preferences with those of candidate items, ensuring coherent and user-aligned recommendations. Sufficient experimental results including performance comparison, questionnaire voting, and visualization cases prove that our method can not only ensure recommendation performance, but also provide easy-to-understand and reasonable recommendation logic.
☆ Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks
Optimization algorithms is crucial in training physics-informed neural networks (PINNs), unsuitable methods may lead to poor solutions. Compared to the common gradient descent algorithm, implicit gradient descent (IGD) outperforms it in handling some multi-scale problems. In this paper, we provide convergence analysis for the implicit gradient descent for training over-parametrized two-layer PINNs. We first demonstrate the positive definiteness of Gram matrices for general smooth activation functions, like sigmoidal function, softplus function, tanh function and so on. Then the over-parameterization allows us to show that the randomly initialized IGD converges a globally optimal solution at a linear convergence rate. Moreover, due to the different training dynamics, the learning rate of IGD can be chosen independent of the sample size and the least eigenvalue of the Gram matrix.
☆ Representation learning with CGAN for casual inference
Conditional Generative Adversarial Nets (CGAN) is often used to improve conditional image generation performance. However, there is little research on Representation learning with CGAN for causal inference. This paper proposes a new method for finding representation learning functions by adopting the adversarial idea. We apply the pattern of CGAN and theoretically emonstrate the feasibility of finding a suitable representation function in the context of two distributions being balanced. The theoretical result shows that when two distributions are balanced, the ideal representation function can be found and thus can be used to further research.
comment: Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
☆ Effect of a Process Mining based Pre-processing Step in Prediction of the Critical Health Outcomes
Predicting critical health outcomes such as patient mortality and hospital readmission is essential for improving survivability. However, healthcare datasets have many concurrences that create complexities, leading to poor predictions. Consequently, pre-processing the data is crucial to improve its quality. In this study, we use an existing pre-processing algorithm, concatenation, to improve data quality by decreasing the complexity of datasets. Sixteen healthcare datasets were extracted from two databases - MIMIC III and University of Illinois Hospital - converted to the event logs, they were then fed into the concatenation algorithm. The pre-processed event logs were then fed to the Split Miner (SM) algorithm to produce a process model. Process model quality was evaluated before and after concatenation using the following metrics: fitness, precision, F-Measure, and complexity. The pre-processed event logs were also used as inputs to the Decay Replay Mining (DREAM) algorithm to predict critical outcomes. We compared predicted results before and after applying the concatenation algorithm using Area Under the Curve (AUC) and Confidence Intervals (CI). Results indicated that the concatenation algorithm improved the quality of the process models and predictions of the critical health outcomes.
☆ Efficient Training of Language Models with Compact and Consistent Next Token Distributions ACL 2024
Maximizing the likelihood of the next token is an established, statistically sound objective for pre-training language models. In this paper we show that we can train better models faster by pre-aggregating the corpus with a collapsed $n$-gram distribution. Previous studies have proposed corpus-level $n$-gram statistics as a regularizer; however, the construction and querying of such $n$-grams, if done naively, prove to be costly and significantly impede training speed, thereby limiting their application in modern large language model pre-training. We introduce an alternative compact representation of the next token distribution that, in expectation, aligns with the complete $n$-gram distribution while markedly reducing variance across mini-batches compared to the standard next-token loss. Empirically, we demonstrate that both the $n$-gram regularized model and our approximation yield substantial improvements in model quality and convergence rate compared to existing methods. Furthermore, our approximation facilitates scalability of gains to larger datasets and models compared to the straightforward $n$-gram regularization method.
comment: ACL 2024
☆ Data Overfitting for On-Device Super-Resolution with Dynamic Algorithm and Compiler Co-Design ECCV2024
Deep neural networks (DNNs) are frequently employed in a variety of computer vision applications. Nowadays, an emerging trend in the current video distribution system is to take advantage of DNN's overfitting properties to perform video resolution upscaling. By splitting videos into chunks and applying a super-resolution (SR) model to overfit each chunk, this scheme of SR models plus video chunks is able to replace traditional video transmission to enhance video quality and transmission efficiency. However, many models and chunks are needed to guarantee high performance, which leads to tremendous overhead on model switching and memory footprints at the user end. To resolve such problems, we propose a Dynamic Deep neural network assisted by a Content-Aware data processing pipeline to reduce the model number down to one (Dy-DCA), which helps promote performance while conserving computational resources. Additionally, to achieve real acceleration on the user end, we designed a framework that optimizes dynamic features (e.g., dynamic shapes, sizes, and control flow) in Dy-DCA to enable a series of compilation optimizations, including fused code generation, static execution planning, etc. By employing such techniques, our method achieves better PSNR and real-time performance (33 FPS) on an off-the-shelf mobile phone. Meanwhile, assisted by our compilation optimization, we achieve a 1.7$\times$ speedup while saving up to 1.61$\times$ memory consumption. Code available in https://github.com/coulsonlee/Dy-DCA-ECCV2024.
comment: ECCV2024
☆ SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Certifiable robustness gives the guarantee that small perturbations around an input to a classifier will not change the prediction. There are two approaches to provide certifiable robustness to adversarial examples: a) explicitly training classifiers with small Lipschitz constants, and b) Randomized smoothing, which adds random noise to the input to create a smooth classifier. We propose \textit{SPLITZ}, a practical and novel approach which leverages the synergistic benefits of both the above ideas into a single framework. Our main idea is to \textit{split} a classifier into two halves, constrain the Lipschitz constant of the first half, and smooth the second half via randomization. Motivation for \textit{SPLITZ} comes from the observation that many standard deep networks exhibit heterogeneity in Lipschitz constants across layers. \textit{SPLITZ} can exploit this heterogeneity while inheriting the scalability of randomized smoothing. We present a principled approach to train \textit{SPLITZ} and provide theoretical analysis to derive certified robustness guarantees during inference. We present a comprehensive comparison of robustness-accuracy tradeoffs and show that \textit{SPLITZ} consistently improves upon existing state-of-the-art approaches on MNIST and CIFAR-10 datasets. For instance, with $\ell_2$ norm perturbation budget of \textbf{$\epsilon=1$}, \textit{SPLITZ} achieves $\textbf{43.2\%}$ top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test accuracy $\textbf{39.8\%}
☆ Croppable Knowledge Graph Embedding
Knowledge Graph Embedding (KGE) is a common method for Knowledge Graphs (KGs) to serve various artificial intelligence tasks. The suitable dimensions of the embeddings depend on the storage and computing conditions of the specific application scenarios. Once a new dimension is required, a new KGE model needs to be trained from scratch, which greatly increases the training cost and limits the efficiency and flexibility of KGE in serving various scenarios. In this work, we propose a novel KGE training framework MED, through which we could train once to get a croppable KGE model applicable to multiple scenarios with different dimensional requirements, sub-models of the required dimensions can be cropped out of it and used directly without any additional training. In MED, we propose a mutual learning mechanism to improve the low-dimensional sub-models performance and make the high-dimensional sub-models retain the capacity that low-dimensional sub-models have, an evolutionary improvement mechanism to promote the high-dimensional sub-models to master the knowledge that the low-dimensional sub-models can not learn, and a dynamic loss weight to balance the multiple losses adaptively. Experiments on 3 KGE models over 4 standard KG completion datasets, 3 real application scenarios over a real-world large-scale KG, and the experiments of extending MED to the language model BERT show the effectiveness, high efficiency, and flexible extensibility of MED.
☆ Foster Adaptivity and Balance in Learning with Noisy Labels ECCV
Label noise is ubiquitous in real-world scenarios, posing a practical challenge to supervised models due to its effect in hurting the generalization performance of deep neural networks. Existing methods primarily employ the sample selection paradigm and usually rely on dataset-dependent prior knowledge (\eg, a pre-defined threshold) to cope with label noise, inevitably degrading the adaptivity. Moreover, existing methods tend to neglect the class balance in selecting samples, leading to biased model performance. To this end, we propose a simple yet effective approach named \textbf{SED} to deal with label noise in a \textbf{S}elf-adaptiv\textbf{E} and class-balance\textbf{D} manner. Specifically, we first design a novel sample selection strategy to empower self-adaptivity and class balance when identifying clean and noisy data. A mean-teacher model is then employed to correct labels of noisy samples. Subsequently, we propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples. Finally, we additionally employ consistency regularization on selected clean samples to improve model generalization performance. Extensive experimental results on synthetic and real-world datasets demonstrate the effectiveness and superiority of our proposed method. The source code has been made available at https://github.com/NUST-Machine-Intelligence-Laboratory/SED.
comment: accepted by the European Conference on Computer Vision (ECCV), 2024
MLKD-BERT: Multi-level Knowledge Distillation for Pre-trained Language Models
Knowledge distillation is an effective technique for pre-trained language model compression. Although existing knowledge distillation methods perform well for the most typical model BERT, they could be further improved in two aspects: the relation-level knowledge could be further explored to improve model performance; and the setting of student attention head number could be more flexible to decrease inference time. Therefore, we are motivated to propose a novel knowledge distillation method MLKD-BERT to distill multi-level knowledge in teacher-student framework. Extensive experiments on GLUE benchmark and extractive question answering tasks demonstrate that our method outperforms state-of-the-art knowledge distillation methods on BERT. In addition, MLKD-BERT can flexibly set student attention head number, allowing for substantial inference time decrease with little performance drop.
☆ Automatic gradient descent with generalized Newton's method
We propose the generalized Newton's method (GeN) -- a Hessian-informed approach that applies to any optimizer such as SGD and Adam, and covers the Newton-Raphson method as a sub-case. Our method automatically and dynamically selects the learning rate that accelerates the convergence, without the intensive tuning of the learning rate scheduler. In practice, out method is easily implementable, since it only requires additional forward passes with almost zero computational overhead (in terms of training time and memory cost), if the overhead is amortized over many iterations. We present extensive experiments on language and vision tasks (e.g. GPT and ResNet) to showcase that GeN optimizers match the state-of-the-art performance, which was achieved with carefully tuned learning rate schedulers. Code to be released at \url{https://github.com/ShiyunXu/AutoGeN}.
☆ Large language models, physics-based modeling, experimental measurements: the trinity of data-scarce learning of polymer properties
Large language models (LLMs) bear promise as a fast and accurate material modeling paradigm for evaluation, analysis, and design. Their vast number of trainable parameters necessitates a wealth of data to achieve accuracy and mitigate overfitting. However, experimental measurements are often limited and costly to obtain in sufficient quantities for finetuning. To this end, we present a physics-based training pipeline that tackles the pathology of data scarcity. The core enabler is a physics-based modeling framework that generates a multitude of synthetic data to align the LLM to a physically consistent initial state before finetuning. Our framework features a two-phase training strategy: (1) utilizing the large-in-amount while less accurate synthetic data for supervised pretraining, and (2) finetuning the phase-1 model with limited experimental data. We empirically demonstrate that supervised pretraining is vital to obtaining accurate finetuned LLMs, via the lens of learning polymer flammability metrics where cone calorimeter data is sparse.
☆ SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network
Graph Neural Network (GNN), with the main idea of encoding graph structure information of graphs by propagation and aggregation, has developed rapidly. It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs. However, merely stacking GNN layers may not improve the model's performance and can even be detrimental. For the phenomenon of performance degradation in deep GNNs, we propose a new perspective. Unlike the popular explanations of over-smoothing or over-squashing, we think the issue arises from the interference of low-quality node representations during message propagation. We introduce a simple and general method, SF-GNN, to address this problem. In SF-GNN, we define two representations for each node, one is the node representation that represents the feature of the node itself, and the other is the message representation specifically for propagating messages to neighbor nodes. A self-filter module evaluates the quality of the node representation and decides whether to integrate it into the message propagation based on this quality assessment. Experiments on node classification tasks for both homogeneous and heterogeneous graphs, as well as link prediction tasks on knowledge graphs, demonstrate that our method can be applied to various GNN models and outperforms state-of-the-art baseline methods in addressing deep GNN degradation.
☆ Multi-Scenario Combination Based on Multi-Agent Reinforcement Learning to Optimize the Advertising Recommendation System
This paper explores multi-scenario optimization on large platforms using multi-agent reinforcement learning (MARL). We address this by treating scenarios like search, recommendation, and advertising as a cooperative, partially observable multi-agent decision problem. We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective and allows for strategy communication to boost overall performance. Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales, confirming our method's efficacy in practical settings.
comment: Accepted by 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation IEEE (ISBN: 979-8-3503-6617-4)
☆ Differential Encoding for Improved Representation Learning over Graphs
Combining the message-passing paradigm with the global attention mechanism has emerged as an effective framework for learning over graphs. The message-passing paradigm and the global attention mechanism fundamentally generate node embeddings based on information aggregated from a node's local neighborhood or from the whole graph. The most basic and commonly used aggregation approach is to take the sum of information from a node's local neighbourhood or from the whole graph. However, it is unknown if the dominant information is from a node itself or from the node's neighbours (or the rest of the graph nodes). Therefore, there exists information lost at each layer of embedding generation, and this information lost could be accumulated and become more serious when more layers are used in the model. In this paper, we present a differential encoding method to address the issue of information lost. The idea of our method is to encode the differential representation between the information from a node's neighbours (or the rest of the graph nodes) and that from the node itself. The obtained differential encoding is then combined with the original aggregated local or global representation to generate the updated node embedding. By integrating differential encodings, the representational ability of generated node embeddings is improved. The differential encoding method is empirically evaluated on different graph tasks on seven benchmark datasets. The results show that it is a general method that improves the message-passing update and the global attention update, advancing the state-of-the-art performance for graph representation learning on these datasets.
♻ ☆ Dual Latent State Learning: Exploiting Regional Network Similarities for QoS Prediction
Individual objects, whether users or services, within a specific region often exhibit similar network states due to their shared origin from the same city or autonomous system (AS). Despite this regional network similarity, many existing techniques overlook its potential, resulting in subpar performance arising from challenges such as data sparsity and label imbalance. In this paper, we introduce the regional-based dual latent state learning network(R2SL), a novel deep learning framework designed to overcome the pitfalls of traditional individual object-based prediction techniques in Quality of Service (QoS) prediction. Unlike its predecessors, R2SL captures the nuances of regional network behavior by deriving two distinct regional network latent states: the city-network latent state and the AS-network latent state. These states are constructed utilizing aggregated data from common regions rather than individual object data. Furthermore, R2SL adopts an enhanced Huber loss function that adjusts its linear loss component, providing a remedy for prevalent label imbalance issues. To cap off the prediction process, a multi-scale perception network is leveraged to interpret the integrated feature map, a fusion of regional network latent features and other pertinent information, ultimately accomplishing the QoS prediction. Through rigorous testing on real-world QoS datasets, R2SL demonstrates superior performance compared to prevailing state-of-the-art methods. Our R2SL approach ushers in an innovative avenue for precise QoS predictions by fully harnessing the regional network similarities inherent in objects.
♻ ☆ Found in the Middle: Calibrating Positional Attention Bias Improves Long Context Utilization ACL
Large language models (LLMs), even when specifically trained to process long input contexts, struggle to capture relevant information located in the middle of their input. This phenomenon has been known as the lost-in-the-middle problem. In this work, we make three contributions. First, we set out to understand the factors that cause this phenomenon. In doing so, we establish a connection between lost-in-the-middle to LLMs' intrinsic attention bias: LLMs exhibit a U-shaped attention bias where the tokens at the beginning and at the end of its input receive higher attention, regardless of their relevance. Second, we mitigate this positional bias through a calibration mechanism, found-in-the-middle, that allows the model to attend to contexts faithfully according to their relevance, even though when they are in the middle. Third, we show found-in-the-middle not only achieves better performance in locating relevant information within a long context, but also eventually leads to improved retrieval-augmented generation (RAG) performance across various tasks, outperforming existing methods by up to 15 percentage points. These findings open up future directions in understanding LLM attention bias and its potential consequences.
comment: ACL Findings 2024
♻ ☆ Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery ICPR 2024
Discovering novel concepts in unlabelled datasets and in a continuous manner is an important desideratum of lifelong learners. In the literature such problems have been partially addressed under very restricted settings, where novel classes are learned by jointly accessing a related labelled set (e.g., NCD) or by leveraging only a supervisedly pre-trained model (e.g., class-iNCD). In this work we challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly, without needing any related labelled set. In detail, we propose to exploit the richer priors from strong self-supervised pre-trained models (PTM). To this end, we propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios. We conduct extensive empirical evaluation on a multitude of benchmarks and show the effectiveness of our proposed baselines when compared with sophisticated state-of-the-art methods. The code is open source.
comment: Accepted as a conference paper to ICPR 2024
♻ ☆ Naturalistic Music Decoding from EEG Data via Latent Diffusion Models
In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings. Unlike simpler music with limited timbres, such as MIDI-generated tunes or monophonic pieces, the focus here is on intricate music featuring a diverse array of instruments, voices, and effects, rich in harmonics and timbre. This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data, employing an end-to-end training approach directly on raw data without the need for manual pre-processing and channel selection. We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics. We additionally perform song classification based on the generated tracks. Our work contributes to the ongoing research in neural decoding and brain-computer interfaces, offering insights into the feasibility of using EEG data for complex auditory information reconstruction.
♻ ☆ An AI Architecture with the Capability to Explain Recognition Results
Explainability is needed to establish confidence in machine learning results. Some explainable methods take a post hoc approach to explain the weights of machine learning models, others highlight areas of the input contributing to decisions. These methods do not adequately explain decisions, in plain terms. Explainable property-based systems have been shown to provide explanations in plain terms, however, they have not performed as well as leading unexplainable machine learning methods. This research focuses on the importance of metrics to explainability and contributes two methods yielding performance gains. The first method introduces a combination of explainable and unexplainable flows, proposing a metric to characterize explainability of a decision. The second method compares classic metrics for estimating the effectiveness of neural networks in the system, posing a new metric as the leading performer. Results from the new methods and examples from handwritten datasets are presented.
♻ ☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
♻ ☆ CaLMQA: Exploring culturally specific long-form question answering across 23 languages
Large language models (LLMs) are used for long-form question answering (LFQA), which requires them to generate paragraph-length answers to complex questions. While LFQA has been well-studied in English, this research has not been extended to other languages. To bridge this gap, we introduce CaLMQA, a collection of 1.5K complex culturally specific questions spanning 23 languages and 51 culturally agnostic questions translated from English into 22 other languages. We define culturally specific questions as those uniquely or more likely to be asked by people from cultures associated with the question's language. We collect naturally-occurring questions from community web forums and hire native speakers to write questions to cover under-resourced, rarely-studied languages such as Fijian and Kirundi. Our dataset contains diverse, complex questions that reflect cultural topics (e.g. traditions, laws, news) and the language usage of native speakers. We automatically evaluate a suite of open- and closed-source models on CaLMQA by detecting incorrect language and token repetitions in answers, and observe that the quality of LLM-generated answers degrades significantly for some low-resource languages. Lastly, we perform human evaluation on a subset of models and languages. Manual evaluation reveals that model performance is significantly worse for culturally specific questions than for culturally agnostic questions. Our findings highlight the need for further research in non-English LFQA and provide an evaluation framework.
comment: 39 pages, 17 figures. Code and data available at https://github.com/2015aroras/CaLMQA. Revised argument in section 4, results unchanged
♻ ☆ Diffusion Models for Offline Multi-agent Reinforcement Learning with Safety Constraints
In recent advancements in Multi-agent Reinforcement Learning (MARL), its application has extended to various safety-critical scenarios. However, most methods focus on online learning, which presents substantial risks when deployed in real-world settings. Addressing this challenge, we introduce an innovative framework integrating diffusion models within the MARL paradigm. This approach notably enhances the safety of actions taken by multiple agents through risk mitigation while modeling coordinated action. Our framework is grounded in the Centralized Training with Decentralized Execution (CTDE) architecture, augmented by a Diffusion Model for prediction trajectory generation. Additionally, we incorporate a specialized algorithm to further ensure operational safety. We evaluate our model against baselines on the DSRL benchmark. Experiment results demonstrate that our model not only adheres to stringent safety constraints but also achieves superior performance compared to existing methodologies. This underscores the potential of our approach in advancing the safety and efficacy of MARL in real-world applications.
♻ ☆ Unveiling and Controlling Anomalous Attention Distribution in Transformers
With the advent of large models based on the Transformer architecture, researchers have observed an anomalous phenomenon in the Attention mechanism--there is a very high attention on the first element, which is prevalent across Transformer-based models. It is crucial to understand it for the development of techniques focusing on attention distribution, such as Key-Value (KV) Cache compression and infinite extrapolation; however, the latent cause leaves to be unknown. In this paper, we analyze such a phenomenon from the perspective of waiver phenomenon, which involves reducing the internal values of certain elements in the sequence, allowing them to absorb excess attention without affecting their contribution to information. In specific models, due to differences in positional encoding and attention patterns, we have found that the selection of waiver elements by the model can be categorized into two methods: positional-encoding-based and feature-distribution-within-elements-based.
♻ ☆ YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention
The accurate prediction of drug molecule solubility is essential for determining their therapeutic effectiveness and safety, influencing the drug's ADME processes. Traditional solubility prediction techniques often fail to capture the complex nature of molecular tructures, leading to notable deviations between predictions and actual results. For example, the Discussion on Advanced Drug-Like Compound Structures. Lusci highlighted issues in capturing crucial cyclic structural information in molecules with ring structures. To overcome this issue, our research introduces a novel deep learning framework combining attention-based transformers, Long Short-Term Memory (LSTM) networks, and Graph Convolutional Networks (GCN), aimed at enhancing the precision of solubility predictions. Utilizing a training set of 9,943 compounds and testing on an anticancer compound dataset, our method achieved a correlation coefficient ($R^2$) of 0.55 and a Root Mean Square Error (RMSE) of 0.59, which outperforms the benchmark models' scores of 0.52 ($R^2$) and 0.61 (RMSE). Importantly, in an additional independent test, our model significantly outperformed the baseline with an RMSE of 1.05 compared to 1.28, a relative accuracy improvement of 45.9%. This research not only demonstrates the vast potential of deep learning for improving solubility prediction accuracy but also offers novel insights for drug design and selection in the future. Continued efforts will be directed towards optimizing the model architecture and extending its application to better support the drug development process, underscoring the pivotal role of deep learning in drug discovery.
comment: 18 pages, 12 figures, 6 tables
♻ ☆ Backstepping Neural Operators for $2\times 2$ Hyperbolic PDEs
Deep neural network approximation of nonlinear operators, commonly referred to as DeepONet, has proven capable of approximating PDE backstepping designs in which a single Goursat-form PDE governs a single feedback gain function. In boundary control of coupled PDEs, coupled Goursat-form PDEs govern two or more gain kernels-a PDE structure unaddressed thus far with DeepONet. In this paper, we explore the subject of approximating systems of gain kernel PDEs for hyperbolic PDE plants by considering a simple counter-convecting $2\times 2$ coupled system in whose control a $2\times 2$ kernel PDE system in Goursat form arises. Engineering applications include oil drilling, the Saint-Venant model of shallow water waves, and the Aw-Rascle-Zhang model of stop-and-go instability in congested traffic flow. We establish the continuity of the mapping from a total of five plant PDE functional coefficients to the kernel PDE solutions, prove the existence of an arbitrarily close DeepONet approximation to the kernel PDEs, and ensure that the DeepONet-approximated gains guarantee stabilization when replacing the exact backstepping gain kernels. Taking into account anti-collocated boundary actuation and sensing, our $L^2$-Globally-exponentially stabilizing (GES) approximate gain kernel-based output feedback design implies the deep learning of both the controller's and the observer's gains. Moreover, the encoding of the output-feedback law into DeepONet ensures semi-global practical exponential stability (SG-PES). The DeepONet operator speeds up the computation of the controller gains by multiple orders of magnitude. Its theoretically proven stabilizing capability is demonstrated through simulations.
♻ ☆ VITS : Variational Inference Thompson Sampling for contextual bandits
In this paper, we introduce and analyze a variant of the Thompson sampling (TS) algorithm for contextual bandits. At each round, traditional TS requires samples from the current posterior distribution, which is usually intractable. To circumvent this issue, approximate inference techniques can be used and provide samples with distribution close to the posteriors. However, current approximate techniques yield to either poor estimation (Laplace approximation) or can be computationally expensive (MCMC methods, Ensemble sampling...). In this paper, we propose a new algorithm, Varational Inference Thompson sampling VITS, based on Gaussian Variational Inference. This scheme provides powerful posterior approximations which are easy to sample from, and is computationally efficient, making it an ideal choice for TS. In addition, we show that VITS achieves a sub-linear regret bound of the same order in the dimension and number of round as traditional TS for linear contextual bandit. Finally, we demonstrate experimentally the effectiveness of VITS on both synthetic and real world datasets.
♻ ☆ Are demographically invariant models and representations in medical imaging fair?
Medical imaging models have been shown to encode information about patient demographics such as age, race, and sex in their latent representation, raising concerns about their potential for discrimination. Here, we ask whether requiring models not to encode demographic attributes is desirable. We point out that marginal and class-conditional representation invariance imply the standard group fairness notions of demographic parity and equalized odds, respectively. In addition, however, they require matching the risk distributions, thus potentially equalizing away important group differences. Enforcing the traditional fairness notions directly instead does not entail these strong constraints. Moreover, representationally invariant models may still take demographic attributes into account for deriving predictions, implying unequal treatment - in fact, achieving representation invariance may require doing so. In theory, this can be prevented using counterfactual notions of (individual) fairness or invariance. We caution, however, that properly defining medical image counterfactuals with respect to demographic attributes is fraught with challenges. Finally, we posit that encoding demographic attributes may even be advantageous if it enables learning a task-specific encoding of demographic features that does not rely on social constructs such as 'race' and 'gender.' We conclude that demographically invariant representations are neither necessary nor sufficient for fairness in medical imaging. Models may need to encode demographic attributes, lending further urgency to calls for comprehensive model fairness assessments in terms of predictive performance across diverse patient groups.
♻ ☆ Estimating Treatment Effects under Recommender Interference: A Structured Neural Networks Approach
Recommender systems are essential for content-sharing platforms by curating personalized content. To evaluate updates to recommender systems targeting content creators, platforms frequently rely on creator-side randomized experiments. The treatment effect measures the change in outcomes when a new algorithm is implemented compared to the status quo. We show that the standard difference-in-means estimator can lead to biased estimates due to recommender interference that arises when treated and control creators compete for exposure. We propose a "recommender choice model" that describes which item gets exposed from a pool containing both treated and control items. By combining a structural choice model with neural networks, this framework directly models the interference pathway while accounting for rich viewer-content heterogeneity. We construct a debiased estimator of the treatment effect and prove it is $\sqrt n$-consistent and asymptotically normal with potentially correlated samples. We validate our estimator's empirical performance with a field experiment on Weixin short-video platform. In addition to the standard creator-side experiment, we conduct a costly double-sided randomization design to obtain a benchmark estimate free from interference bias. We show that the proposed estimator yields results comparable to the benchmark, whereas the standard difference-in-means estimator can exhibit significant bias and even produce reversed signs.
♻ ☆ Malign Overfitting: Interpolation Can Provably Preclude Invariance
Learned classifiers should often possess certain invariance properties meant to encourage fairness, robustness, or out-of-distribution generalization. However, multiple recent works empirically demonstrate that common invariance-inducing regularizers are ineffective in the over-parameterized regime, in which classifiers perfectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of "benign overfitting", in which models generalize well despite interpolating, might not favorably extend to settings in which robustness or fairness are desirable. In this work we provide a theoretical justification for these observations. We prove that -- even in the simplest of settings -- any interpolating learning rule (with arbitrarily small margin) will not satisfy these invariance properties. We then propose and analyze an algorithm that -- in the same setting -- successfully learns a non-interpolating classifier that is provably invariant. We validate our theoretical observations on simulated data and the Waterbirds dataset.
♻ ☆ Deconvolving Complex Neuronal Networks into Interpretable Task-Specific Connectomes
Task-specific functional MRI (fMRI) images provide excellent modalities for studying the neuronal basis of cognitive processes. We use fMRI data to formulate and solve the problem of deconvolving task-specific aggregate neuronal networks into a set of basic building blocks called canonical networks, to use these networks for functional characterization, and to characterize the physiological basis of these responses by mapping them to regions of the brain. Our results show excellent task-specificity of canonical networks, i.e., the expression of a small number of canonical networks can be used to accurately predict tasks; generalizability across cohorts, i.e., canonical networks are conserved across diverse populations, studies, and acquisition protocols; and that canonical networks have strong anatomical and physiological basis. From a methods perspective, the problem of identifying these canonical networks poses challenges rooted in the high dimensionality, small sample size, acquisition variability, and noise. Our deconvolution technique is based on non-negative matrix factorization (NMF) that identifies canonical networks as factors of a suitably constructed matrix. We demonstrate that our method scales to large datasets, yields stable and accurate factors, and is robust to noise.
comment: 9 pages, 5 figures
♻ ☆ A Computational Framework for Solving Wasserstein Lagrangian Flows
The dynamical formulation of the optimal transport can be extended through various choices of the underlying geometry (kinetic energy), and the regularization of density paths (potential energy). These combinations yield different variational problems (Lagrangians), encompassing many variations of the optimal transport problem such as the Schr\"odinger bridge, unbalanced optimal transport, and optimal transport with physical constraints, among others. In general, the optimal density path is unknown, and solving these variational problems can be computationally challenging. We propose a novel deep learning based framework approaching all of these problems from a unified perspective. Leveraging the dual formulation of the Lagrangians, our method does not require simulating or backpropagating through the trajectories of the learned dynamics, and does not need access to optimal couplings. We showcase the versatility of the proposed framework by outperforming previous approaches for the single-cell trajectory inference, where incorporating prior knowledge into the dynamics is crucial for correct predictions.
♻ ☆ Multi-domain improves out-of-distribution and data-limited scenarios for medical image analysis
Current machine learning methods for medical image analysis primarily focus on developing models tailored for their specific tasks, utilizing data within their target domain. These specialized models tend to be data-hungry and often exhibit limitations in generalizing to out-of-distribution samples. In this work, we show that employing models that incorporate multiple domains instead of specialized ones significantly alleviates the limitations observed in specialized models. We refer to this approach as multi-domain model and compare its performance to that of specialized models. For this, we introduce the incorporation of diverse medical image domains, including different imaging modalities like X-ray, MRI, CT, and ultrasound images, as well as various viewpoints such as axial, coronal, and sagittal views. Our findings underscore the superior generalization capabilities of multi-domain models, particularly in scenarios characterized by limited data availability and out-of-distribution, frequently encountered in healthcare applications. The integration of diverse data allows multi-domain models to utilize information across domains, enhancing the overall outcomes substantially. To illustrate, for organ recognition, multi-domain model can enhance accuracy by up to 8% compared to conventional specialized models.
♻ ☆ MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation
Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.
comment: Accepted in ISLAD 2024
♻ ☆ Discovering Nuclear Models from Symbolic Machine Learning
Numerous phenomenological nuclear models have been proposed to describe specific observables within different regions of the nuclear chart. However, developing a unified model that describes the complex behavior of all nuclei remains an open challenge. Here, we explore whether novel symbolic Machine Learning (ML) can rediscover traditional nuclear physics models or identify alternatives with improved simplicity, fidelity, and predictive power. To address this challenge, we developed a Multi-objective Iterated Symbolic Regression approach that handles symbolic regressions over multiple target observables, accounts for experimental uncertainties and is robust against high-dimensional problems. As a proof of principle, we applied this method to describe the nuclear binding energies and charge radii of light and medium mass nuclei. Our approach identified simple analytical relationships based on the number of protons and neutrons, providing interpretable models with precision comparable to state-of-the-art nuclear models. Additionally, we integrated this ML-discovered model with an existing complementary model to estimate the limits of nuclear stability. These results highlight the potential of symbolic ML to develop accurate nuclear models and guide our description of complex many-body problems.
♻ ☆ LLMs can learn self-restraint through iterative self-reflection
In order to be deployed safely, Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood, which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a utility function that can encourage the model to produce responses only when it is confident in them. This utility function can be used to score generation of different length and abstention. To optimize this function, we introduce ReSearch, a process of "self-reflection" consisting of iterative self-prompting and self-evaluation. We use the ReSearch algorithm to generate synthetic data on which we finetune our models. Compared to their original versions, our resulting models generate fewer \emph{hallucinations} overall at no additional inference cost, for both known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to abstain by augmenting the samples generated by the model during the search procedure with an answer expressing abstention.
♻ ☆ Jamba: A Hybrid Transformer-Mamba Language Model
We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-of-experts (MoE) architecture. Specifically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model families. MoE is added in some of these layers to increase model capacity while keeping active parameter usage manageable. This flexible architecture allows resource- and objective-specific configurations. In the particular configuration we have implemented, we end up with a powerful model that fits in a single 80GB GPU. Built at large scale, Jamba provides high throughput and small memory footprint compared to vanilla Transformers, and at the same time state-of-the-art performance on standard language model benchmarks and long-context evaluations. Remarkably, the model presents strong results for up to 256K tokens context length. We study various architectural decisions, such as how to combine Transformer and Mamba layers, and how to mix experts, and show that some of them are crucial in large scale modeling. We also describe several interesting properties of these architectures which the training and evaluation of Jamba have revealed, and plan to release checkpoints from various ablation runs, to encourage further exploration of this novel architecture. We make the weights of our implementation of Jamba publicly available under a permissive license.
comment: Webpage: https://www.ai21.com/jamba
♻ ☆ Towards Efficient and Optimal Covariance-Adaptive Algorithms for Combinatorial Semi-Bandits
We address the problem of stochastic combinatorial semi-bandits, where a player selects among $P$ actions from the power set of a set containing $d$ base items. Adaptivity to the problem's structure is essential in order to obtain optimal regret upper bounds. As estimating the coefficients of a covariance matrix can be manageable in practice, leveraging them should improve the regret. We design ``optimistic'' covariance-adaptive algorithms relying on online estimations of the covariance structure, called OLSUCBC and COSV (only the variances for the latter). They both yields improved gap-free regret. Although COSV can be slightly suboptimal, it improves on computational complexity by taking inspiration from Thompson Sampling approaches. It is the first sampling-based algorithm satisfying a $\sqrt{T}$ gap-free regret (up to poly-logs). We also show that in some cases, our approach efficiently leverages the semi-bandit feedback and outperforms bandit feedback approaches, not only in exponential regimes where $P\gg d$ but also when $P\leq d$, which is not covered by existing analyses.
♻ ☆ Fredformer: Frequency Debiased Transformer for Time Series Forecasting KDD2024
The Transformer model has shown leading performance in time series forecasting. Nevertheless, in some complex scenarios, it tends to learn low-frequency features in the data and overlook high-frequency features, showing a frequency bias. This bias prevents the model from accurately capturing important high-frequency data features. In this paper, we undertook empirical analyses to understand this bias and discovered that frequency bias results from the model disproportionately focusing on frequency features with higher energy. Based on our analysis, we formulate this bias and propose Fredformer, a Transformer-based framework designed to mitigate frequency bias by learning features equally across different frequency bands. This approach prevents the model from overlooking lower amplitude features important for accurate forecasting. Extensive experiments show the effectiveness of our proposed approach, which can outperform other baselines in different real-world time-series datasets. Furthermore, we introduce a lightweight variant of the Fredformer with an attention matrix approximation, which achieves comparable performance but with much fewer parameters and lower computation costs. The code is available at: https://github.com/chenzRG/Fredformer
comment: This paper has been accepted by SIGKDD2024
♻ ☆ Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning
Large language models (LLMs) have emerged as powerful tools for tackling complex tasks across diverse domains, but they also raise privacy concerns when fine-tuned on sensitive data due to potential memorization. While differential privacy (DP) offers a promising solution by ensuring models are 'almost indistinguishable' with or without any particular privacy unit, current evaluations on LLMs mostly treat each example (text record) as the privacy unit. This leads to uneven user privacy guarantees when contributions per user vary. We therefore study user-level DP motivated by applications where it necessary to ensure uniform privacy protection across users. We present a systematic evaluation of user-level DP for LLM fine-tuning on natural language generation tasks. Focusing on two mechanisms for achieving user-level DP guarantees, Group Privacy and User-wise DP-SGD, we investigate design choices like data selection strategies and parameter tuning for the best privacy-utility tradeoff.
♻ ☆ Noise Contrastive Alignment of Language Models with Explicit Rewards
User intentions are typically formalized as evaluation rewards to be maximized when fine-tuning language models (LMs). Existing alignment methods, such as Direct Preference Optimization (DPO), are mainly tailored for pairwise preference data where rewards are implicitly defined rather than explicitly given. In this paper, we introduce a general framework for LM alignment, leveraging Noise Contrastive Estimation (NCE) to bridge the gap in handling reward datasets explicitly annotated with scalar evaluations. Our framework comprises two parallel algorithms, NCA and InfoNCA, both enabling the direct extraction of an LM policy from reward data as well as preference data. Notably, we show that the DPO loss is a special case of our proposed InfoNCA objective under pairwise preference settings, thereby integrating and extending current alignment theories. By comparing NCA and InfoNCA, we demonstrate that the well-observed decreasing-likelihood trend of DPO/InfoNCA is caused by their focus on adjusting relative likelihood across different responses. In contrast, NCA optimizes the absolute likelihood for each response, thereby effectively preventing the chosen likelihood from decreasing. We evaluate our methods in both reward and preference settings with Mistral-8*7B and 7B models. Experiments suggest that InfoNCA/NCA surpasses various preference baselines when reward datasets are available. We also find NCA significantly outperforms DPO in complex reasoning tasks like math and coding.
♻ ☆ Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Direct Preference Optimisation (DPO) is effective at significantly improving the performance of large language models (LLMs) on downstream tasks such as reasoning, summarisation, and alignment. Using pairs of preferred and dispreferred data, DPO models the relative probability of picking one response over another. In this work, first we show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. We then show empirically that this phenomenon occurs when fine-tuning LLMs on common datasets, especially datasets in which the edit distance between pairs of completions is low. Using these insights, we design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode. Surprisingly, we find that DPOP outperforms DPO and other fine-tuning procedures across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions. Furthermore, we find that the DPOP-tuned model outperforms the DPO-tuned model (all else equal) on benchmarks independent of the fine-tuning data, such as MT-Bench. Finally, using DPOP, we create and open-source Smaug-34B and Smaug-72B, with the latter becoming the first open-source LLM to surpass an average accuracy of 80% on the HuggingFace Open LLM Leaderboard.
♻ ☆ NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions
Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks. Among the most computationally intensive operations in a neural network (NN) is the dot product between the feature and weight vectors. Thus, some previous FPGA acceleration works have proposed mapping neurons with quantized inputs and outputs directly to lookup tables (LUTs) for hardware implementation. In these works, the boundaries of the neurons coincide with the boundaries of the LUTs. We propose relaxing these boundaries and mapping entire sub-networks to a single LUT. As the sub-networks are absorbed within the LUT, the NN topology and precision within a partition do not affect the size of the lookup tables generated. Therefore, we utilize fully connected layers with floating-point precision inside each partition, which benefit from being universal function approximators, but with rigid sparsity and quantization enforced between partitions, where the NN topology becomes exposed to the circuit topology. Although cheap to implement, this approach can lead to very deep NNs, and so to tackle challenges like vanishing gradients, we also introduce skip connections inside the partitions. The resulting methodology can be seen as training DNNs with a specific FPGA hardware-inspired sparsity pattern that allows them to be mapped to much shallower circuit-level networks, thereby significantly improving latency. We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST. Our approach allows for greater function expressivity within the LUTs compared to existing work, leading to up to $4.3\times$ lower latency NNs for the same accuracy.
♻ ☆ UFRec: Integrating Uniformity and Frequency to Enhance Sequential Recommendations
Effective representation learning in sequential recommendation systems is pivotal for precisely capturing user interaction patterns and enhancing recommendation accuracy. Nonetheless, current methodologies largely focus on item-to-item transitions, frequently overlooking the time intervals between interactions, which are integral to understanding behavior pattern shifts. Moreover, critical interaction attributes like item frequency are often neglected. Our research indicates that sequences with more consistent time intervals and items with higher interaction frequency result in superior predictive performance. In contrast, sequences with non-uniform intervals contribute to user interest drift, and infrequently interacted items are challenging to model due to sparse data, posing unique challenges that existing methods fail to adequately address. In this study, we introduce UFRec, an innovative bidirectional enhancement method for sequential recommendations. UFRec harnesses sequence uniformity and item frequency to boost performance, particularly improving the representation of non-uniform sequences and less-frequent items. These two components synergistically enhance each other, driving holistic performance optimization in intricate sequential recommendation scenarios. Additionally, we introduce a multidimensional time module to further augment adaptability. To the best of our knowledge, UFRec is the pioneering method to exploit the properties of uniformity and frequency for feature augmentation. Through comparisons with eleven state-of-the-art models across four datasets, we demonstrate that UFRec significantly surpasses current leading models.
comment: 15 pages, 8 figures, for source code, see https://github.com/Linxi000/UniRec
♻ ☆ PWM: Policy Learning with Large World Models
Reinforcement Learning (RL) has achieved impressive results on complex tasks but struggles in multi-task settings with different embodiments. World models offer scalability by learning a simulation of the environment, yet they often rely on inefficient gradient-free optimization methods. We introduce Policy learning with large World Models (PWM), a novel model-based RL algorithm that learns continuous control policies from large multi-task world models. By pre-training the world model on offline data and using it for first-order gradient policy learning, PWM effectively solves tasks with up to 152 action dimensions and outperforms methods using ground-truth dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27% higher rewards than existing baselines without the need for expensive online planning. Visualizations and code available at https://www.imgeorgiev.com/pwm
comment: Visualizations and code available at https://www.imgeorgiev.com/pwm
♻ ☆ Explanations Based on Item Response Theory (eXirt): A Model-Specific Method to Explain Tree-Ensemble Model in Trust Perspective
In recent years, XAI researchers have been formalizing proposals and developing new methods to explain black box models, with no general consensus in the community on which method to use to explain these models, with this choice being almost directly linked to the popularity of a specific method. Methods such as Ciu, Dalex, Eli5, Lofo, Shap and Skater emerged with the proposal to explain black box models through global rankings of feature relevance, which based on different methodologies, generate global explanations that indicate how the model's inputs explain its predictions. In this context, 41 datasets, 4 tree-ensemble algorithms (Light Gradient Boosting, CatBoost, Random Forest, and Gradient Boosting), and 6 XAI methods were used to support the launch of a new XAI method, called eXirt, based on Item Response Theory - IRT and aimed at tree-ensemble black box models that use tabular data referring to binary classification problems. In the first set of analyses, the 164 global feature relevance ranks of the eXirt were compared with 984 ranks of the other XAI methods present in the literature, seeking to highlight their similarities and differences. In a second analysis, exclusive explanations of the eXirt based on Explanation-by-example were presented that help in understanding the model trust. Thus, it was verified that eXirt is able to generate global explanations of tree-ensemble models and also local explanations of instances of models through IRT, showing how this consolidated theory can be used in machine learning in order to obtain explainable and reliable models.
comment: 59 pages, 16 Figures, 3 Equations, 6 table
♻ ☆ ArchesWeather: An efficient AI weather forecasting model at 1.5° resolution ICML 2024
One of the guiding principles for designing AI-based weather forecasting systems is to embed physical constraints as inductive priors in the neural network architecture. A popular prior is locality, where the atmospheric data is processed with local neural interactions, like 3D convolutions or 3D local attention windows as in Pangu-Weather. On the other hand, some works have shown great success in weather forecasting without this locality principle, at the cost of a much higher parameter count. In this paper, we show that the 3D local processing in Pangu-Weather is computationally sub-optimal. We design ArchesWeather, a transformer model that combines 2D attention with a column-wise attention-based feature interaction module, and demonstrate that this design improves forecasting skill. ArchesWeather is trained at 1.5{\deg} resolution and 24h lead time, with a training budget of a few GPU-days and a lower inference cost than competing methods. An ensemble of four of our models shows better RMSE scores than the IFS HRES and is competitive with the 1.4{\deg} 50-members NeuralGCM ensemble for one to three days ahead forecasting. Our code and models are publicly available at https://github.com/gcouairon/ArchesWeather.
comment: Accepted at the Machine Learning for Earth System Modeling Workshop at ICML 2024
♻ ☆ Thermodynamics-informed super-resolution of scarce temporal dynamics data
We present a method to increase the resolution of measurements of a physical system and subsequently predict its time evolution using thermodynamics-aware neural networks. Our method uses adversarial autoencoders, which reduce the dimensionality of the full order model to a set of latent variables that are enforced to match a prior, for example a normal distribution. Adversarial autoencoders are seen as generative models, and they can be trained to generate high-resolution samples from low-resoution inputs, meaning they can address the so-called super-resolution problem. Then, a second neural network is trained to learn the physical structure of the latent variables and predict their temporal evolution. This neural network is known as an structure-preserving neural network. It learns the metriplectic-structure of the system and applies a physical bias to ensure that the first and second principles of thermodynamics are fulfilled. The integrated trajectories are decoded to their original dimensionality, as well as to the higher dimensionality space produced by the adversarial autoencoder and they are compared to the ground truth solution. The method is tested with two examples of flow over a cylinder, where the fluid properties are varied between both examples.
comment: 18 pages, 11 figures
♻ ☆ Semi-Supervised Semantic Segmentation via Marginal Contextual Information
We present a novel confidence refinement scheme that enhances pseudo labels in semi-supervised semantic segmentation. Unlike existing methods, which filter pixels with low-confidence predictions in isolation, our approach leverages the spatial correlation of labels in segmentation maps by grouping neighboring pixels and considering their pseudo labels collectively. With this contextual information, our method, named S4MC, increases the amount of unlabeled data used during training while maintaining the quality of the pseudo labels, all with negligible computational overhead. Through extensive experiments on standard benchmarks, we demonstrate that S4MC outperforms existing state-of-the-art semi-supervised learning approaches, offering a promising solution for reducing the cost of acquiring dense annotations. For example, S4MC achieves a 1.39 mIoU improvement over the prior art on PASCAL VOC 12 with 366 annotated images. The code to reproduce our experiments is available at https://s4mcontext.github.io/
comment: Published at TMLR
♻ ☆ Online Variational Sequential Monte Carlo
Being the most classical generative model for serial data, state-space models (SSM) are fundamental in AI and statistical machine learning. In SSM, any form of parameter learning or latent state inference typically involves the computation of complex latent-state posteriors. In this work, we build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference by combining particle methods and variational inference. While standard VSMC operates in the offline mode, by re-processing repeatedly a given batch of data, we distribute the approximation of the gradient of the VSMC surrogate ELBO in time using stochastic approximation, allowing for online learning in the presence of streams of data. This results in an algorithm, online VSMC, that is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation. In addition, we provide rigorous theoretical results describing the algorithm's convergence properties as the number of data tends to infinity as well as numerical illustrations of its excellent convergence properties and usefulness also in batch-processing settings.
comment: In this version there are better explanatory figures for the simulations in Section 5, and some text improvements/typos fixed
♻ ☆ Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing
We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.
♻ ☆ When Benchmarks are Targets: Revealing the Sensitivity of Large Language Model Leaderboards ACL 2024
Large Language Model (LLM) leaderboards based on benchmark rankings are regularly used to guide practitioners in model selection. Often, the published leaderboard rankings are taken at face value - we show this is a (potentially costly) mistake. Under existing leaderboards, the relative performance of LLMs is highly sensitive to (often minute) details. We show that for popular multiple-choice question benchmarks (e.g., MMLU), minor perturbations to the benchmark, such as changing the order of choices or the method of answer selection, result in changes in rankings up to 8 positions. We explain this phenomenon by conducting systematic experiments over three broad categories of benchmark perturbations and identifying the sources of this behavior. Our analysis results in several best-practice recommendations, including the advantage of a hybrid scoring method for answer selection. Our study highlights the dangers of relying on simple benchmark evaluations and charts the path for more robust evaluation schemes on the existing benchmarks. The code for this paper is available at https://github.com/National-Center-for-AI-Saudi-Arabia/lm-evaluation-harness.
comment: updated with ACL 2024 camera ready version
♻ ☆ Meta-Learning Based Optimization for Large Scale Wireless Systems
Optimization algorithms for wireless systems play a fundamental role in improving their performance and efficiency. However, it is known that the complexity of conventional optimization algorithms in the literature often exponentially increases with the number of transmit antennas and communication users in the wireless system. Therefore, in the large scale regime, the astronomically large complexity of these optimization algorithms prohibits their use and prevents assessing large scale wireless systems performance under optimized conditions. To overcome this limitation, this work proposes instead the use of an unsupervised meta-learning based approach to directly perform non-convex optimization at significantly reduced complexity. To demonstrate the effectiveness of the proposed meta-learning based solution, the sum-rate (SR) maximization problem for the following three emerging 6G technologies is contemplated: hierarchical rate-splitting multiple access (H-RSMA), integrated sensing and communication (ISAC), and beyond-diagonal reconfigurable intelligent surfaces (BD-RIS). Through numerical results, it is demonstrated that the proposed meta-learning based optimization framework is able to successfully optimize the performance and also reveal unknown aspects of the operation in the large scale regime for the considered three 6G technologies.
♻ ☆ Mixture-of-Experts for Open Set Domain Adaptation: A Dual-Space Detection Approach
Open Set Domain Adaptation (OSDA) aims to cope with the distribution and label shifts between the source and target domains simultaneously, performing accurate classification for known classes while identifying unknown class samples in the target domain. Most existing OSDA approaches, depending on the final image feature space of deep models, require manually-tuned thresholds, and may easily misclassify unknown samples as known classes. Mixture-of-Experts (MoE) could be a remedy. Within a MoE, different experts handle distinct input features, producing unique expert routing patterns for various classes in a routing feature space. As a result, unknown class samples may display different expert routing patterns to known classes. In this paper, we propose Dual-Space Detection, which exploits the inconsistencies between the image feature space and the routing feature space to detect unknown class samples without any threshold. Graph Router is further introduced to better make use of the spatial information among image patches. Experiments on three different datasets validated the effectiveness and superiority of our approach.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Explainable AI for Comparative Analysis of Intrusion Detection Models
Explainable Artificial Intelligence (XAI) has become a widely discussed topic, the related technologies facilitate better understanding of conventional black-box models like Random Forest, Neural Networks and etc. However, domain-specific applications of XAI are still insufficient. To fill this gap, this research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic on the same dataset using occlusion sensitivity. The models evaluated include Linear Regression, Logistic Regression, Linear Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random Forest, Decision Trees, and Multi-Layer Perceptrons (MLP). We trained all models to the accuracy of 90\% on the UNSW-NB15 Dataset. We found that most classifiers leverage only less than three critical features to achieve such accuracies, indicating that effective feature engineering could actually be far more important for intrusion detection than applying complicated models. We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness. Data and code available at https://github.com/pcwhy/XML-IntrusionDetection.git
comment: Submitted to IEEE MeditCom 2024 - WS-05
♻ ☆ ChatGPT Code Detection: Techniques for Uncovering the Source of Code
In recent times, large language models (LLMs) have made significant strides in generating computer code, blurring the lines between code created by humans and code produced by artificial intelligence (AI). As these technologies evolve rapidly, it is crucial to explore how they influence code generation, especially given the risk of misuse in areas like higher education. This paper explores this issue by using advanced classification techniques to differentiate between code written by humans and that generated by ChatGPT, a type of LLM. We employ a new approach that combines powerful embedding features (black-box) with supervised learning algorithms - including Deep Neural Networks, Random Forests, and Extreme Gradient Boosting - to achieve this differentiation with an impressive accuracy of 98%. For the successful combinations, we also examine their model calibration, showing that some of the models are extremely well calibrated. Additionally, we present white-box features and an interpretable Bayes classifier to elucidate critical differences between the code sources, enhancing the explainability and transparency of our approach. Both approaches work well but provide at most 85-88% accuracy. We also show that untrained humans solve the same task not better than random guessing. This study is crucial in understanding and mitigating the potential risks associated with using AI in code generation, particularly in the context of higher education, software development, and competitive programming.
comment: Accepted for publication in MDPI AI Journal
♻ ☆ Federated Continual Learning Goes Online: Leveraging Uncertainty for Modality-Agnostic Class-Incremental Learning
Given the ability to model more realistic and dynamic problems, Federated Continual Learning (FCL) has been increasingly investigated recently. A well-known problem encountered in this setting is the so-called catastrophic forgetting, for which the learning model is inclined to focus on more recent tasks while forgetting the previously learned knowledge. The majority of the current approaches in FCL propose generative-based solutions to solve said problem. However, this setting requires multiple training epochs over the data, implying an offline setting where datasets are stored locally and remain unchanged over time. Furthermore, the proposed solutions are tailored for vision tasks solely. To overcome these limitations, we propose a new modality-agnostic approach to deal with the online scenario where new data arrive in streams of mini-batches that can only be processed once. To solve catastrophic forgetting, we propose an uncertainty-aware memory-based approach. In particular, we suggest using an estimator based on the Bregman Information (BI) to compute the model's variance at the sample level. Through measures of predictive uncertainty, we retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach to reduce the forgetting effect in realistic settings.
♻ ☆ ENOT: Expectile Regularization for Fast and Accurate Training of Neural Optimal Transport
We present a new approach for Neural Optimal Transport (NOT) training procedure, capable of accurately and efficiently estimating optimal transportation plan via specific regularization on dual Kantorovich potentials. The main bottleneck of existing NOT solvers is associated with the procedure of finding a near-exact approximation of the conjugate operator (i.e., the c-transform), which is done either by optimizing over non-convex max-min objectives or by the computationally intensive fine-tuning of the initial approximated prediction. We resolve both issues by proposing a new, theoretically justified loss in the form of expectile regularisation which enforces binding conditions on the learning process of dual potentials. Such a regularization provides the upper bound estimation over the distribution of possible conjugate potentials and makes the learning stable, completely eliminating the need for additional extensive fine-tuning. Proposed method, called Expectile-Regularised Neural Optimal Transport (ENOT), outperforms previous state-of-the-art approaches on the established Wasserstein-2 benchmark tasks by a large margin (up to a 3-fold improvement in quality and up to a 10-fold improvement in runtime). Moreover, we showcase performance of ENOT for varying cost functions on different tasks such as image generation, showing robustness of proposed algorithm. OTT-JAX library includes our implementation of ENOT algorithm https://ott-jax.readthedocs.io/en/latest/tutorials/ENOT.html
♻ ☆ MLEM: Generative and Contrastive Learning as Distinct Modalities for Event Sequences
This study explores the application of self-supervised learning techniques for event sequences. It is a key modality in various applications such as banking, e-commerce, and healthcare. However, there is limited research on self-supervised learning for event sequences, and methods from other domains like images, texts, and speech may not easily transfer. To determine the most suitable approach, we conduct a detailed comparative analysis of previously identified best-performing methods. We find that neither the contrastive nor generative method is superior. Our assessment includes classifying event sequences, predicting the next event, and evaluating embedding quality. These results further highlight the potential benefits of combining both methods. Given the lack of research on hybrid models in this domain, we initially adapt the baseline model from another domain. However, upon observing its underperformance, we develop a novel method called the Multimodal-Learning Event Model (MLEM). MLEM treats contrastive learning and generative modeling as distinct yet complementary modalities, aligning their embeddings. The results of our study demonstrate that combining contrastive and generative approaches into one procedure with MLEM achieves superior performance across multiple metrics.
comment: 11 pages, 9 figures
♻ ☆ Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
Autonomous Vehicles (AVs) have attracted significant attention in recent years and Reinforcement Learning (RL) has shown remarkable performance in improving the autonomy of vehicles. In that regard, the widely adopted Model-Free RL (MFRL) promises to solve decision-making tasks in connected AVs (CAVs), contingent on the readiness of a significant amount of data samples for training. Nevertheless, it might be infeasible in practice and possibly lead to learning instability. In contrast, Model-Based RL (MBRL) manifests itself in sample-efficient learning, but the asymptotic performance of MBRL might lag behind the state-of-the-art MFRL algorithms. Furthermore, most studies for CAVs are limited to the decision-making of a single AV only, thus underscoring the performance due to the absence of communications. In this study, we try to address the decision-making problem of multiple CAVs with limited communications and propose a decentralized Multi-Agent Probabilistic Ensembles with Trajectory Sampling algorithm MA-PETS. In particular, in order to better capture the uncertainty of the unknown environment, MA-PETS leverages Probabilistic Ensemble (PE) neural networks to learn from communicated samples among neighboring CAVs. Afterwards, MA-PETS capably develops Trajectory Sampling (TS)-based model-predictive control for decision-making. On this basis, we derive the multi-agent group regret bound affected by the number of agents within the communication range and mathematically validate that incorporating effective information exchange among agents into the multi-agent learning scheme contributes to reducing the group regret bound in the worst case. Finally, we empirically demonstrate the superiority of MA-PETS in terms of the sample efficiency comparable to MFBL.
♻ ☆ Explainable AI for Safe and Trustworthy Autonomous Driving: A Systematic Review
Artificial Intelligence (AI) shows promising applications for the perception and planning tasks in autonomous driving (AD) due to its superior performance compared to conventional methods. However, inscrutable AI systems exacerbate the existing challenge of safety assurance of AD. One way to mitigate this challenge is to utilize explainable AI (XAI) techniques. To this end, we present the first comprehensive systematic literature review of explainable methods for safe and trustworthy AD. We begin by analyzing the requirements for AI in the context of AD, focusing on three key aspects: data, model, and agency. We find that XAI is fundamental to meeting these requirements. Based on this, we explain the sources of explanations in AI and describe a taxonomy of XAI. We then identify five key contributions of XAI for safe and trustworthy AI in AD, which are interpretable design, interpretable surrogate models, interpretable monitoring, auxiliary explanations, and interpretable validation. Finally, we propose a modular framework called SafeX to integrate these contributions, enabling explanation delivery to users while simultaneously ensuring the safety of AI models.
♻ ☆ Expressivity of Graph Neural Networks Through the Lens of Adversarial Robustness ICML
We perform the first adversarial robustness study into Graph Neural Networks (GNNs) that are provably more powerful than traditional Message Passing Neural Networks (MPNNs). In particular, we use adversarial robustness as a tool to uncover a significant gap between their theoretically possible and empirically achieved expressive power. To do so, we focus on the ability of GNNs to count specific subgraph patterns, which is an established measure of expressivity, and extend the concept of adversarial robustness to this task. Based on this, we develop efficient adversarial attacks for subgraph counting and show that more powerful GNNs fail to generalize even to small perturbations to the graph's structure. Expanding on this, we show that such architectures also fail to count substructures on out-of-distribution graphs.
comment: Published in ${2}^{nd}$ AdvML Frontiers workshop at ${40}^{th}$ International Conference on Machine Learning (ICML)
♻ ☆ Nuisances via Negativa: Adjusting for Spurious Correlations via Data Augmentation
In prediction tasks, there exist features that are related to the label in the same way across different settings for that task; these are semantic features or semantics. Features with varying relationships to the label are nuisances. For example, in detecting cows from natural images, the shape of the head is semantic but because images of cows often have grass backgrounds but not always, the background is a nuisance. Models that exploit nuisance-label relationships face performance degradation when these relationships change. Building models robust to such changes requires additional knowledge beyond samples of the features and labels. For example, existing work uses annotations of nuisances or assumes ERM-trained models depend on nuisances. Approaches to integrate new kinds of additional knowledge enlarge the settings where robust models can be built. We develop an approach to use knowledge about the semantics by corrupting them in data, and then using the corrupted data to produce models which identify correlations between nuisances and the label. Once these correlations are identified, they can be used to adjust for where nuisances drive predictions. We study semantic corruptions in powering different spurious-correlation avoiding methods on multiple out-of-distribution (OOD) tasks like classifying waterbirds, natural language inference (NLI), and detecting cardiomegaly in chest X-rays.
♻ ☆ RIDGE: Reproducibility, Integrity, Dependability, Generalizability, and Efficiency Assessment of Medical Image Segmentation Models
Deep learning techniques hold immense promise for advancing medical image analysis, particularly in tasks like image segmentation, where precise annotation of regions or volumes of interest within medical images is crucial but manually laborious and prone to interobserver and intraobserver biases. As such, deep learning approaches could provide automated solutions for such applications. However, the potential of these techniques is often undermined by challenges in reproducibility and generalizability, which are key barriers to their clinical adoption. This paper introduces the RIDGE checklist, a comprehensive framework designed to assess the Reproducibility, Integrity, Dependability, Generalizability, and Efficiency of deep learning-based medical image segmentation models. The RIDGE checklist is not just a tool for evaluation but also a guideline for researchers striving to improve the quality and transparency of their work. By adhering to the principles outlined in the RIDGE checklist, researchers can ensure that their developed segmentation models are robust, scientifically valid, and applicable in a clinical setting.
comment: 24 pages, 1 Figure, 2 Table
♻ ☆ How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Deep learning algorithms demonstrate a surprising ability to learn high-dimensional tasks from limited examples. This is commonly attributed to the depth of neural networks, enabling them to build a hierarchy of abstract, low-dimensional data representations. However, how many training examples are required to learn such representations remains unknown. To quantitatively study this question, we introduce the Random Hierarchy Model: a family of synthetic tasks inspired by the hierarchical structure of language and images. The model is a classification task where each class corresponds to a group of high-level features, chosen among several equivalent groups associated with the same class. In turn, each feature corresponds to a group of sub-features chosen among several equivalent ones and so on, following a hierarchy of composition rules. We find that deep networks learn the task by developing internal representations invariant to exchanging equivalent groups. Moreover, the number of data required corresponds to the point where correlations between low-level features and classes become detectable. Overall, our results indicate how deep networks overcome the curse of dimensionality by building invariant representations, and provide an estimate of the number of data required to learn a hierarchical task.
comment: 9 pages, 8 figures
♻ ☆ A Systematic Performance Analysis of Deep Perceptual Loss Networks: Breaking Transfer Learning Conventions
In recent years, deep perceptual loss has been widely and successfully used to train machine learning models for many computer vision tasks, including image synthesis, segmentation, and autoencoding. Deep perceptual loss is a type of loss function for images that computes the error between two images as the distance between deep features extracted from a neural network. Most applications of the loss use pretrained networks called loss networks for deep feature extraction. However, despite increasingly widespread use, the effects of loss network implementation on the trained models have not been studied. This work rectifies this through a systematic evaluation of the effect of different pretrained loss networks on four different application areas. Specifically, the work evaluates 14 different pretrained architectures with four different feature extraction layers. The evaluation reveals that VGG networks without batch normalization have the best performance and that the choice of feature extraction layer is at least as important as the choice of architecture. The analysis also reveals that deep perceptual loss does not adhere to the transfer learning conventions that better ImageNet accuracy implies better downstream performance and that feature extraction from the later layers provides better performance.
♻ ☆ A primer on synthetic health data
Recent advances in deep generative models have greatly expanded the potential to create realistic synthetic health datasets. These synthetic datasets aim to preserve the characteristics, patterns, and overall scientific conclusions derived from sensitive health datasets without disclosing patient identity or sensitive information. Thus, synthetic data can facilitate safe data sharing that supports a range of initiatives including the development of new predictive models, advanced health IT platforms, and general project ideation and hypothesis development. However, many questions and challenges remain, including how to consistently evaluate a synthetic dataset's similarity and predictive utility in comparison to the original real dataset and risk to privacy when shared. Additional regulatory and governance issues have not been widely addressed. In this primer, we map the state of synthetic health data, including generation and evaluation methods and tools, existing examples of deployment, the regulatory and ethical landscape, access and governance options, and opportunities for further development.
♻ ☆ Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Group equivariance can overly constrain models if the symmetries in the group differ from those observed in data. While common methods address this by determining the appropriate level of symmetry at the dataset level, they are limited to supervised settings and ignore scenarios in which multiple levels of symmetry co-exist in the same dataset. In this paper, we propose a method able to detect the level of symmetry of each input without the need for labels. Our framework is general enough to accommodate different families of both continuous and discrete symmetry distributions, such as arbitrary unimodal, symmetric distributions and discrete groups. We validate the effectiveness of our approach on synthetic datasets with different per-class levels of symmetries, and demonstrate practical applications such as the detection of out-of-distribution symmetries. Our code is publicly available at https://github.com/aurban0/ssl-sym.
♻ ☆ Fairness-aware Federated Minimax Optimization with Convergence Guarantee
Federated learning (FL) has garnered considerable attention due to its privacy-preserving feature. Nonetheless, the lack of freedom in managing user data can lead to group fairness issues, where models are biased towards sensitive factors such as race or gender. To tackle this issue, this paper proposes a novel algorithm, fair federated averaging with augmented Lagrangian method (FFALM), designed explicitly to address group fairness issues in FL. Specifically, we impose a fairness constraint on the training objective and solve the minimax reformulation of the constrained optimization problem. Then, we derive the theoretical upper bound for the convergence rate of FFALM. The effectiveness of FFALM in improving fairness is shown empirically on CelebA and UTKFace datasets in the presence of severe statistical heterogeneity.
♻ ☆ Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time ECCV 2024
Leveraging Large Language Models' remarkable proficiency in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend them to other modalities like vision and audio. However, the progress in these directions has been mostly focused on tasks that only require a coarse-grained understanding of the audio-visual semantics. We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio both spatially and temporally. With a new modality alignment module based on optimal transport and a cross-attention module that enforces audio-visual consistency, Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking. Moreover, we carefully curate a large dataset AVFIT that comprises 3M instruction tuning samples collected from open-source datasets, and introduce MeerkatBench that unifies five challenging audio-visual tasks. We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
comment: Accepted at ECCV 2024
♻ ☆ ULLER: A Unified Language for Learning and Reasoning
The field of neuro-symbolic artificial intelligence (NeSy), which combines learning and reasoning, has recently experienced significant growth. There now are a wide variety of NeSy frameworks, each with its own specific language for expressing background knowledge and how to relate it to neural networks. This heterogeneity hinders accessibility for newcomers and makes comparing different NeSy frameworks challenging. We propose a unified language for NeSy, which we call ULLER, a Unified Language for LEarning and Reasoning. ULLER encompasses a wide variety of settings, while ensuring that knowledge described in it can be used in existing NeSy systems. ULLER has a neuro-symbolic first-order syntax for which we provide example semantics including classical, fuzzy, and probabilistic logics. We believe ULLER is a first step towards making NeSy research more accessible and comparable, paving the way for libraries that streamline training and evaluation across a multitude of semantics, knowledge bases, and NeSy systems.
comment: Pre-review version. Final version accepted at NeSy 2024
♻ ☆ Accelerating Diffusion Sampling with Optimized Time Steps CVPR 2024
Diffusion probabilistic models (DPMs) have shown remarkable performance in high-resolution image synthesis, but their sampling efficiency is still to be desired due to the typically large number of sampling steps. Recent advancements in high-order numerical ODE solvers for DPMs have enabled the generation of high-quality images with much fewer sampling steps. While this is a significant development, most sampling methods still employ uniform time steps, which is not optimal when using a small number of steps. To address this issue, we propose a general framework for designing an optimization problem that seeks more appropriate time steps for a specific numerical ODE solver for DPMs. This optimization problem aims to minimize the distance between the ground-truth solution to the ODE and an approximate solution corresponding to the numerical solver. It can be efficiently solved using the constrained trust region method, taking less than $15$ seconds. Our extensive experiments on both unconditional and conditional sampling using pixel- and latent-space DPMs demonstrate that, when combined with the state-of-the-art sampling method UniPC, our optimized time steps significantly improve image generation performance in terms of FID scores for datasets such as CIFAR-10 and ImageNet, compared to using uniform time steps.
comment: CVPR 2024
♻ ☆ Learning and Forgetting Unsafe Examples in Large Language Models ICML 24
As the number of large language models (LLMs) released to the public grows, there is a pressing need to understand the safety implications associated with these models learning from third-party custom finetuning data. We explore the behavior of LLMs finetuned on noisy custom data containing unsafe content, represented by datasets that contain biases, toxicity, and harmfulness, finding that while aligned LLMs can readily learn this unsafe content, they also tend to forget it more significantly than other examples when subsequently finetuned on safer content. Drawing inspiration from the discrepancies in forgetting, we introduce the "ForgetFilter" algorithm, which filters unsafe data based on how strong the model's forgetting signal is for that data. We demonstrate that the ForgetFilter algorithm ensures safety in customized finetuning without compromising downstream task performance, unlike sequential safety finetuning. ForgetFilter outperforms alternative strategies like replay and moral self-correction in curbing LLMs' ability to assimilate unsafe content during custom finetuning, e.g. 75% lower than not applying any safety measures and 62% lower than using self-correction in toxicity score.
comment: accepted by ICML 24
♻ ☆ PCL-Indexability and Whittle Index for Restless Bandits with General Observation Models
In this paper, we consider a general observation model for restless multi-armed bandit problems. The operation of the player needs to be based on certain feedback mechanism that is error-prone due to resource constraints or environmental or intrinsic noises. By establishing a general probabilistic model for dynamics of feedback/observation, we formulate the problem as a restless bandit with a countable belief state space starting from an arbitrary initial belief (a priori information). We apply the achievable region method with partial conservation law (PCL) to the infinite-state problem and analyze its indexability and priority index (Whittle index). Finally, we propose an approximation process to transform the problem into which the AG algorithm of Ni\~no-Mora and Bertsimas for finite-state problems can be applied to. Numerical experiments show that our algorithm has an excellent performance.
♻ ☆ ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models
Activation sparsity refers to the existence of considerable weakly-contributed elements among activation outputs. As a prevalent property of the models using the ReLU activation function, activation sparsity has been proven a promising paradigm to boost model inference efficiency. Nevertheless, most large language models (LLMs) adopt activation functions without intrinsic activation sparsity (e.g., GELU and Swish). Some recent efforts have explored introducing ReLU or its variants as the substitutive activation function to help LLMs achieve activation sparsity and inference acceleration, but few can simultaneously obtain high sparsity and comparable model performance. This paper introduces a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. Specifically, after substituting the activation function of LLMs with ReLU, ProSparse adopts progressive sparsity regularization with a factor smoothly increasing along the multi-stage sine curves. This can enhance activation sparsity and mitigate performance degradation by avoiding radical shifts in activation distributions. With ProSparse, we obtain high sparsity of 89.32% for LLaMA2-7B, 88.80% for LLaMA2-13B, and 87.89% for end-size MiniCPM-1B, respectively, achieving comparable performance to their original Swish-activated versions. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Our inference acceleration experiments further demonstrate the significant practical acceleration potential of LLMs with higher activation sparsity, obtaining up to 4.52$\times$ inference speedup.
comment: 19 pages, 4 figures, 9 tables
♻ ☆ Tuning-Free Alignment of Diffusion Models with Direct Noise Optimization
In this work, we focus on the alignment problem of diffusion models with a continuous reward function, which represents specific objectives for downstream tasks, such as improving human preference. The central goal of the alignment problem is to adjust the distribution learned by diffusion models such that the generated samples maximize the target reward function. We propose a novel alignment approach, named Direct Noise Optimization (DNO), that optimizes the injected noise during the sampling process of diffusion models. By design, DNO is tuning-free and prompt-agnostic, as the alignment occurs in an online fashion during generation. We rigorously study the theoretical properties of DNO and also propose variants to deal with non-differentiable reward functions. Furthermore, we identify that naive implementation of DNO occasionally suffers from the out-of-distribution reward hacking problem, where optimized samples have high rewards but are no longer in the support of the pretrained distribution. To remedy this issue, we leverage classical high-dimensional statistics theory and propose to augment the DNO loss with certain probability regularization. We conduct extensive experiments on several popular reward functions trained on human feedback data and demonstrate that the proposed DNO approach achieves state-of-the-art reward scores as well as high image quality, all within a reasonable time budget for generation.
♻ ☆ Swish-T : Enhancing Swish Activation with Tanh Bias for Improved Neural Network Performance
We propose the Swish-T family, an enhancement of the existing non-monotonic activation function Swish. Swish-T is defined by adding a Tanh bias to the original Swish function. This modification creates a family of Swish-T variants, each designed to excel in different tasks, showcasing specific advantages depending on the application context. The Tanh bias allows for broader acceptance of negative values during initial training stages, offering a smoother non-monotonic curve than the original Swish. We ultimately propose the Swish-T$_{\textbf{C}}$ function, while Swish-T and Swish-T$_{\textbf{B}}$, byproducts of Swish-T$_{\textbf{C}}$, also demonstrate satisfactory performance. Furthermore, our ablation study shows that using Swish-T$_{\textbf{C}}$ as a non-parametric function can still achieve high performance. The superiority of the Swish-T family has been empirically demonstrated across various models and benchmark datasets, including MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. The code is publicly available at https://github.com/ictseoyoungmin/Swish-T-pytorch.
comment: 11 pages, 6 figures Revised the derivative of the sigmoid function from 1-sigmoid to sigmoid(1-sigmoid) for correctness.Updated related equations in Section 3.2. Conclusions to Conclusion in Section 6
♻ ☆ Gradient Projection For Continual Parameter-Efficient Tuning
Parameter-efficient tunings (PETs) have demonstrated impressive performance and promising perspectives in training large models, while they are still confronted with a common problem: the trade-off between learning new content and protecting old knowledge, e.g., zero-shot generalization ability, and cross-modal hallucination. In this paper, we reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection, and firstly propose a unified framework called Parameter Efficient Gradient Projection (PEGP). We introduce orthogonal gradient projection into different PET paradigms and theoretically demonstrate that the orthogonal condition for the gradient can effectively resist forgetting even for large-scale models. It therefore modifies the gradient towards the direction that has less impact on the old feature space, with less extra memory space and training time. We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets, and experiments comprehensively demonstrate its efficiency in reducing forgetting in class, online class, domain, task, and multi-modality continual settings. The project page is available at https://dmcv-ecnu-pegp.github.io/.
♻ ☆ DistiLLM: Towards Streamlined Distillation for Large Language Models ICML 2024
Knowledge distillation (KD) is widely used for compressing a teacher model to a smaller student model, reducing its inference cost and memory footprint while preserving model capabilities. However, current KD methods for auto-regressive sequence models (e.g., large language models) suffer from missing a standardized objective function. Moreover, the recent use of student-generated outputs to address training-inference mismatches has significantly escalated computational costs. To tackle these issues, we introduce DistiLLM, a more effective and efficient KD framework for auto-regressive language models. DistiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs. Extensive experiments, including instruction-following tasks, demonstrate the effectiveness of DistiLLM in building high-performing student models while achieving up to 4.3$\times$ speedup compared to recent KD methods.
comment: ICML 2024; Code is available at https://github.com/jongwooko/distillm
♻ ☆ A Fixed-Parameter Tractable Algorithm for Counting Markov Equivalence Classes with the same Skeleton
Causal DAGs (also known as Bayesian networks) are a popular tool for encoding conditional dependencies between random variables. In a causal DAG, the random variables are modeled as vertices in the DAG, and it is stipulated that every random variable is independent of its ancestors conditioned on its parents. It is possible, however, for two different causal DAGs on the same set of random variables to encode exactly the same set of conditional dependencies. Such causal DAGs are said to be Markov equivalent, and equivalence classes of Markov equivalent DAGs are known as Markov Equivalent Classes (MECs). Beautiful combinatorial characterizations of MECs have been developed in the past few decades, and it is known, in particular that all DAGs in the same MEC must have the same "skeleton" (underlying undirected graph) and v-structures (induced subgraph of the form $a\rightarrow b \leftarrow c$). These combinatorial characterizations also suggest several natural algorithmic questions. One of these is: given an undirected graph $G$ as input, how many distinct Markov equivalence classes have the skeleton $G$? Much work has been devoted in the last few years to this and other closely related problems. However, to the best of our knowledge, a polynomial time algorithm for the problem remains unknown. In this paper, we make progress towards this goal by giving a fixed parameter tractable algorithm for the above problem, with the parameters being the treewidth and the maximum degree of the input graph $G$. The main technical ingredient in our work is a construction we refer to as shadow, which lets us create a "local description" of long-range constraints imposed by the combinatorial characterizations of MECs.
comment: 75 pages, 2 Figures
♻ ☆ GLADformer: A Mixed Perspective for Graph-level Anomaly Detection
Graph-Level Anomaly Detection (GLAD) aims to distinguish anomalous graphs within a graph dataset. However, current methods are constrained by their receptive fields, struggling to learn global features within the graphs. Moreover, most contemporary methods are based on spatial domain and lack exploration of spectral characteristics. In this paper, we propose a multi-perspective hybrid graph-level anomaly detector namely GLADformer, consisting of two key modules. Specifically, we first design a Graph Transformer module with global spectrum enhancement, which ensures balanced and resilient parameter distributions by fusing global features and spectral distribution characteristics. Furthermore, to uncover local anomalous attributes, we customize a band-pass spectral GNN message passing module that further enhances the model's generalization capability. Through comprehensive experiments on ten real-world datasets from multiple domains, we validate the effectiveness and robustness of GLADformer. This demonstrates that GLADformer outperforms current state-of-the-art models in graph-level anomaly detection, particularly in effectively capturing global anomaly representations and spectral characteristics.
♻ ☆ Learnability in Online Kernel Selection with Memory Constraint via Data-dependent Regret Analysis
Online kernel selection is a fundamental problem of online kernel methods.In this paper,we study online kernel selection with memory constraint in which the memory of kernel selection and online prediction procedures is limited to a fixed budget. An essential question is what is the intrinsic relationship among online learnability, memory constraint, and data complexity? To answer the question,it is necessary to show the trade-offs between regret and memory constraint.Previous work gives a worst-case lower bound depending on the data size,and shows learning is impossible within a small memory constraint.In contrast, we present distinct results by offering data-dependent upper bounds that rely on two data complexities:kernel alignment and the cumulative losses of competitive hypothesis.We propose an algorithmic framework giving data-dependent upper bounds for two types of loss functions.For the hinge loss function,our algorithm achieves an expected upper bound depending on kernel alignment.For smooth loss functions,our algorithm achieves a high-probability upper bound depending on the cumulative losses of competitive hypothesis.We also prove a matching lower bound for smooth loss functions.Our results show that if the two data complexities are sub-linear,then learning is possible within a small memory constraint.Our algorithmic framework depends on a new buffer maintaining framework and a reduction from online kernel selection to prediction with expert advice. Finally,we empirically verify the prediction performance of our algorithms on benchmark datasets.
♻ ☆ Understanding the Expressive Power and Mechanisms of Transformer for Sequence Modeling
We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads. These theoretical insights are validated experimentally and offer natural suggestions for alternative architectures.
comment: 70 pages
♻ ☆ Injecting linguistic knowledge into BERT for Dialogue State Tracking
Dialogue State Tracking (DST) models often employ intricate neural network architectures, necessitating substantial training data, and their inference process lacks transparency. This paper proposes a method that extracts linguistic knowledge via an unsupervised framework and subsequently utilizes this knowledge to augment BERT's performance and interpretability in DST tasks. The knowledge extraction procedure is computationally economical and does not require annotations or additional training data. The injection of the extracted knowledge can be achieved by the addition of simple neural modules. We employ the Convex Polytopic Model (CPM) as a feature extraction tool for DST tasks and illustrate that the acquired features correlate with syntactic and semantic patterns in the dialogues. This correlation facilitates a comprehensive understanding of the linguistic features influencing the DST model's decision-making process. We benchmark this framework on various DST tasks and observe a notable improvement in accuracy.
comment: Accepted for publication at IEEE Access
♻ ☆ One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes KDD 2024
Recent studies have highlighted fairness issues in Graph Neural Networks (GNNs), where they produce discriminatory predictions against specific protected groups categorized by sensitive attributes such as race and age. While various efforts to enhance GNN fairness have made significant progress, these approaches are often tailored to specific sensitive attributes. Consequently, they necessitate retraining the model from scratch to accommodate changes in the sensitive attribute requirement, resulting in high computational costs. To gain deeper insights into this issue, we approach the graph fairness problem from a causal modeling perspective, where we identify the confounding effect induced by the sensitive attribute as the underlying reason. Motivated by this observation, we formulate the fairness problem in graphs from an invariant learning perspective, which aims to learn invariant representations across environments. Accordingly, we propose a graph fairness framework based on invariant learning, namely FairINV, which enables the training of fair GNNs to accommodate various sensitive attributes within a single training session. Specifically, FairINV incorporates sensitive attribute partition and trains fair GNNs by eliminating spurious correlations between the label and various sensitive attributes. Experimental results on several real-world datasets demonstrate that FairINV significantly outperforms state-of-the-art fairness approaches, underscoring its effectiveness. Our code is available via: https://github.com/ZzoomD/FairINV/.
comment: Accepted by KDD 2024
♻ ☆ LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
Generative Pre-trained Transformer (GPT) models have achieved remarkable performance on various natural language processing tasks, and have shown great potential as backbones for audio-and-text large language models (LLMs). Previous mainstream audio-and-text LLMs use discrete audio tokens to represent both input and output audio; however, they suffer from performance degradation on tasks such as automatic speech recognition, speech-to-text translation, and speech enhancement over models using continuous speech features. In this paper, we propose LauraGPT, a novel unified audio-and-text GPT-based LLM for audio recognition, understanding, and generation. LauraGPT is a versatile LLM that can process both audio and text inputs and generate outputs in either modalities. We propose a novel data representation that combines continuous and discrete features for audio: LauraGPT encodes input audio into continuous representations using an audio encoder and generates output audio from discrete codec codes. We propose a one-step codec vocoder to overcome the prediction challenge caused by the multimodal distribution of codec tokens. We fine-tune LauraGPT using supervised multi-task learning. Extensive experiments show that LauraGPT consistently achieves comparable to superior performance compared to strong baselines on a wide range of audio tasks related to content, semantics, paralinguistics, and audio-signal analysis, such as automatic speech recognition, speech-to-text translation, text-to-speech synthesis, speech enhancement, automated audio captioning, speech emotion recognition, and spoken language understanding.
comment: 10 pages, work in progress
♻ ☆ Instance Temperature Knowledge Distillation
Knowledge distillation (KD) enhances the performance of a student network by allowing it to learn the knowledge transferred from a teacher network incrementally. Existing methods dynamically adjust the temperature to enable the student network to adapt to the varying learning difficulties at different learning stages of KD. KD is a continuous process, but when adjusting the temperature, these methods consider only the immediate benefits of the operation in the current learning phase and fail to take into account its future returns. To address this issue, we formulate the adjustment of temperature as a sequential decision-making task and propose a method based on reinforcement learning, termed RLKD. Importantly, we design a novel state representation to enable the agent to make more informed action (i.e. instance temperature adjustment). To handle the problem of delayed rewards in our method due to the KD setting, we explore an instance reward calibration approach. In addition,we devise an efficient exploration strategy that enables the agent to learn valuable instance temperature adjustment policy more efficiently. Our framework can serve as a plug-and-play technique to be inserted into various KD methods easily, and we validate its effectiveness on both image classification and object detection tasks. Our project is at https://www.zayx.me/ITKD.github.io/.
♻ ☆ DyGPrompt: Learning Feature and Time Prompts on Dynamic Graphs
Dynamic graphs are pervasive in the real world, modeling dynamic relations between objects across various fields. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique, which are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs. However, existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DyGPrompt, a novel pre-training and prompting framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and dynamic variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DyGPrompt through extensive experiments on three public datasets.
comment: Under review
System/Control 24
☆ Magnetic Hysteresis Modeling with Neural Operators
Hysteresis modeling is crucial to comprehend the behavior of magnetic devices, facilitating optimal designs. Hitherto, deep learning-based methods employed to model hysteresis, face challenges in generalizing to novel input magnetic fields. This paper addresses the generalization challenge by proposing neural operators for modeling constitutive laws that exhibit magnetic hysteresis by learning a mapping between magnetic fields. In particular, two prominent neural operators -- deep operator network and Fourier neural operator -- are employed to predict novel first-order reversal curves and minor loops, where novel means they are not used to train the model. In addition, a rate-independent Fourier neural operator is proposed to predict material responses at sampling rates different from those used during training to incorporate the rate-independent characteristics of magnetic hysteresis. The presented numerical experiments demonstrate that neural operators efficiently model magnetic hysteresis, outperforming the traditional neural recurrent methods on various metrics and generalizing to novel magnetic fields. The findings emphasize the advantages of using neural operators for modeling hysteresis under varying magnetic conditions, underscoring their importance in characterizing magnetic material based devices.
comment: 8 pages, 5 figures
☆ TieBot: Learning to Knot a Tie from Visual Demonstration through a Real-to-Sim-to-Real Approach
The tie-knotting task is highly challenging due to the tie's high deformation and long-horizon manipulation actions. This work presents TieBot, a Real-to-Sim-to-Real learning from visual demonstration system for the robots to learn to knot a tie. We introduce the Hierarchical Feature Matching approach to estimate a sequence of tie's meshes from the demonstration video. With these estimated meshes used as subgoals, we first learn a teacher policy using privileged information. Then, we learn a student policy with point cloud observation by imitating teacher policy. Lastly, our pipeline learns a residual policy when the learned policy is applied to real-world execution, mitigating the Sim2Real gap. We demonstrate the effectiveness of TieBot in simulation and the real world. In the real-world experiment, a dual-arm robot successfully knots a tie, achieving 50% success rate among 10 trials. Videos can be found on our $\href{https://tiebots.github.io/}{\text{website}}$.
comment: initial commit
☆ PPO-based Dynamic Control of Uncertain Floating Platforms in the Zero-G Environment ICRA
In the field of space exploration, floating platforms play a crucial role in scientific investigations and technological advancements. However, controlling these platforms in zero-gravity environments presents unique challenges, including uncertainties and disturbances. This paper introduces an innovative approach that combines Proximal Policy Optimization (PPO) with Model Predictive Control (MPC) in the zero-gravity laboratory (Zero-G Lab) at the University of Luxembourg. This approach leverages PPO's reinforcement learning power and MPC's precision to navigate the complex control dynamics of floating platforms. Unlike traditional control methods, this PPO-MPC approach learns from MPC predictions, adapting to unmodeled dynamics and disturbances, resulting in a resilient control framework tailored to the zero-gravity environment. Simulations and experiments in the Zero-G Lab validate this approach, showcasing the adaptability of the PPO agent. This research opens new possibilities for controlling floating platforms in zero-gravity settings, promising advancements in space exploration.
comment: Pre-print version submitted to 2024 International Conference on Robotics and Automation (ICRA)
☆ A Formal Model for Artificial Intelligence Applications in Automation Systems
The integration of Artificial Intelligence (AI) into automation systems has the potential to enhance efficiency and to address currently unsolved existing technical challenges. However, the industry-wide adoption of AI is hindered by the lack of standardized documentation for the complex compositions of automation systems, AI software, production hardware, and their interdependencies. This paper proposes a formal model using standards and ontologies to provide clear and structured documentation of AI applications in automation systems. The proposed information model for artificial intelligence in automation systems (AIAS) utilizes ontology design patterns to map and link various aspects of automation systems and AI software. Validated through a practical example, the model demonstrates its effectiveness in improving documentation practices and aiding the sustainable implementation of AI in industrial settings.
☆ Protection Degree and Migration in the Stochastic SIRS Model: A Queueing System Perspective
With the prevalence of COVID-19, the modeling of epidemic propagation and its analyses have played a significant role in controlling epidemics. However, individual behaviors, in particular the self-protection and migration, which have a strong influence on epidemic propagation, were always neglected in previous studies. In this paper, we mainly propose two models from the individual and population perspectives. In the first individual model, we introduce the individual protection degree that effectively suppresses the epidemic level as a stochastic variable to the SIRS model. In the alternative population model, an open Markov queueing network is constructed to investigate the individual number of each epidemic state, and we present an evolving population network via the migration of people. Besides, stochastic methods are applied to analyze both models. In various simulations, the infected probability, the number of individuals in each state and its limited distribution are demonstrated.
☆ Game-Theoretic Protection Adoption Against Networked SIS Epidemics
In this paper, we investigate game-theoretic strategies for containing spreading processes on large-scale networks. Specifically, we consider the class of networked susceptible-infected-susceptible (SIS) epidemics where a large population of agents strategically choose whether to adopt partially effective protection. We define the utilities of the agents which depends on the degree of the agent, its individual infection status and action, as well as the the overall prevalence of the epidemic and strategy profile of the entire population. We further present the coupled dynamics of epidemic evolution as well as strategy update which is assumed to follow the replicator dynamics. By relying on timescale separation arguments, we first derive the optimal strategy of protection adoption by the agents for a given epidemic state, and then present the reduced epidemic dynamics. The existence and uniqueness of endemic equilibrium is rigorously characterized and forms the main result of this paper. Finally, we present extensive numerical results to highlight the impacts of heterogeneous node degrees, infection rates, cost of protection adoption, and effectiveness of protection on the epidemic prevalence at the equilibrium.
☆ Predictions and Decision Making for Resilient Intelligent Sustainable Energy Systems
Future energy systems are subject to various uncertain influences. As resilient systems they should maintain a constantly high operational performance whatever happens. We explore different levels and time scales of decision making in energy systems, highlighting different uncertainty sources that are relevant in different domains. We discuss how the uncertainties can be represented and how one can react to them. The article closes by summarizing, which uncertainties are already well examined and which ones still need further scientific inquiry to obtain resilient energy systems.
☆ Development of a semi-autonomous framework for NDT inspection with a tilting aerial platform
This letter investigates the problem of controlling an aerial manipulator, composed of an omnidirectional tilting drone equipped with a five-degrees-of-freedom robotic arm. The robot has to interact with the environment to inspect structures and perform non-destructive measurements. A parallel force-impedance control technique is developed to establish contact with the designed surface with a desired force profile. During the interaction, a pushing phase is required to create a vacuum between the surface and the echometer sensor mounted at the end-effector, to measure the thickness of the interaction surface. Repetitive measures are performed to show the repeatability of the algorithm.
comment: In proceedings of 18th International Symposium on Experimental Robotics (ISER 2023)
☆ Federated Fine-Tuning for Pre-Trained Foundation Models Over Wireless Networks
Pre-trained foundation models (FMs), with extensive number of neurons, are key to advancing next-generation intelligence services, where personalizing these models requires massive amount of task-specific data and computational resources. The prevalent solution involves centralized processing at the edge server, which, however, raises privacy concerns due to the transmission of raw data. Instead, federated fine-tuning (FedFT) is an emerging privacy-preserving fine-tuning (FT) paradigm for personalized pre-trained foundation models. In particular, by integrating low-rank adaptation (LoRA) with federated learning (FL), federated LoRA enables the collaborative FT of a global model with edge devices, achieving comparable learning performance to full FT while training fewer parameters over distributed data and preserving raw data privacy. However, the limited radio resources and computation capabilities of edge devices pose significant challenges for deploying federated LoRA over wireless networks. To this paper, we propose a split federated LoRA framework, which deploys the computationally-intensive encoder of a pre-trained model at the edge server, while keeping the embedding and task modules at the edge devices. Building on this split framework, the paper provides a rigorous analysis of the upper bound of the convergence gap for the wireless federated LoRA system. This analysis motivates the formulation of a long-term upper bound minimization problem, where we decompose the formulated long-term mixed-integer programming (MIP) problem into sequential sub-problems using the Lyapunov technique. We then develop an online algorithm for effective device scheduling and bandwidth allocation. Simulation results demonstrate the effectiveness of the proposed online algorithm in enhancing learning performance.
☆ Performance Analysis of UAV-Assisted RF-UOWC Systems
This paper introduces a relay-assisted solution for downlink communications in a mixed system of Radio Frequency (RF) and Underwater Optical Wireless Communications (UOWC) technologies. During the initial downlink phase, data transmission occurs via RF link between hovering Unmanned Aerial Vehicle (UAV) and the floating buoys at the water surface. As fixed buoy acts as amplify-and-forward relays, the second UOWC link represents downlink signal transmission from the floating buoy to the underwater device. Best relay selection is adopted, meaning that only the buoy with the best estimated RF-based UAV-buoy channel will perform signal transmission to an underwater device. Analytical expression for the outage probability is derived and utilized to examine the system's performance behaviour for various UOWC and RF channel conditions.
comment: 5 pages, 4 figures
☆ Prävention und Beseitigung von Fehlerursachen im Kontext von unbemannten Fahrzeugen
Mobile robots, becoming increasingly autonomous, are capable of operating in diverse and unknown environments. This flexibility allows them to fulfill goals independently and adapting their actions dynamically without rigidly predefined control codes. However, their autonomous behavior complicates guaranteeing safety and reliability due to the limited influence of a human operator to accurately supervise and verify each robot's actions. To ensure autonomous mobile robot's safety and reliability, which are aspects of dependability, methods are needed both in the planning and execution of missions for autonomous mobile robots. In this article, a twofold approach is presented that ensures fault removal in the context of mission planning and fault prevention during mission execution for autonomous mobile robots. First, the approach consists of a concept based on formal verification applied during the planning phase of missions. Second, the approach consists of a rule-based concept applied during mission execution. A use case applying the approach is presented, discussing how the two concepts complement each other and what contribution they make to certain aspects of dependability. Unbemannte Fahrzeuge sind durch zunehmende Autonomie in der Lage in unterschiedlichen unbekannten Umgebungen zu operieren. Diese Flexibilit\"at erm\"oglicht es ihnen Ziele eigenst\"andig zu erf\"ullen und ihre Handlungen dynamisch anzupassen ohne starr vorgegebenen Steuerungscode. Allerdings erschwert ihr autonomes Verhalten die Gew\"ahrleistung von Sicherheit und Zuverl\"assigkeit, bzw. der Verl\"asslichkeit, da der Einfluss eines menschlichen Bedieners zur genauen \"Uberwachung und Verifizierung der Aktionen jedes Roboters begrenzt ist. Daher werden Methoden sowohl in der Planung als auch in der Ausf\"uhrung von Missionen f\"ur unbemannte Fahrzeuge ben\"otigt, um die Sicherheit und Zuverl\"assigkeit dieser Fahrzeuge zu gew\"ahrleisten. In diesem Artikel wird ein zweistufiger Ansatz vorgestellt, der eine Fehlerbeseitigung w\"ahrend der Missionsplanung und eine Fehlerpr\"avention w\"ahrend der Missionsausf\"uhrung f\"ur unbemannte Fahrzeuge sicherstellt. Die Fehlerbeseitigung basiert auf formaler Verifikation, die w\"ahrend der Planungsphase der Missionen angewendet wird. Die Fehlerpr\"avention basiert auf einem regelbasierten Konzept, das w\"ahrend der Missionsausf\"uhrung angewendet wird. Der Ansatz wird an einem Beispiel angewendet und es wird diskutiert, wie die beiden Konzepte sich erg\"anzen und welchen Beitrag sie zu verschiedenen Aspekten der Verl\"asslichkeit leisten.
comment: Language: German. Dieser Beitrag wird eingereicht in: "dtec.bw-Beitr\"age der Helmut-Schmidt-Universit\"at/Universit\"at der Bundeswehr Hamburg: Forschungsaktivit\"aten im Zentrum f\"ur Digitalisierungs- und Technologieforschung der Bundeswehr dtec.bw"
☆ Mobile Edge Generation-Enabled Digital Twin: Architecture Design and Research Opportunities
A novel paradigm of mobile edge generation (MEG)-enabled digital twin (DT) is proposed, which enables distributed on-device generation at mobile edge networks for real-time DT applications. First, an MEG-DT architecture is put forward to decentralize generative artificial intelligence (GAI) models onto edge servers (ESs) and user equipments (UEs), which has the advantages of low latency, privacy preservation, and individual-level customization. Then, various single-user and multi-user generation mechanisms are conceived for MEG-DT, which strike trade-offs between generation latency, hardware costs, and device coordination. Furthermore, to perform efficient distributed generation, two operating protocols are explored for transmitting interpretable and latent features between ESs and UEs, namely sketch-based generation and seed-based generation, respectively. Based on the proposed protocols, the convergence between MEG and DT are highlighted. Considering the seed-based image generation scenario, numerical case studies are provided to reveal the superiority of MEG-DT over centralized generation. Finally, promising applications and research opportunities are identified.
comment: 7 pages, 6 figures
☆ Exact Instability Radius of Discrete-Time LTI Systems
The robust instability of an unstable plant subject to stable perturbations is of significant importance and arises in the study of sustained oscillatory phenomena in nonlinear systems. This paper analyzes the robust instability of linear discrete-time systems against stable perturbations via the notion of robust instability radius (RIR) as a measure of instability. We determine the exact RIR for certain unstable systems using small-gain type conditions by formulating the problem in terms of a phase change rate maximization subject to appropriate constraints at unique peak-gain frequencies, for which stable first-order all-pass functions are shown to be optimal. Two real-world applications -- minimum-effort sampled-data control of magnetic levitation systems and neural spike generations in the FitzHugh--Nagumo model subject to perturbations -- are provided to illustrate the utility of our results.
Graphon Particle Systems, Part II: Dynamics of Distributed Stochastic Continuum Optimization
We study the distributed optimization problem over a graphon with a continuum of nodes, which is regarded as the limit of the distributed networked optimization as the number of nodes goes to infinity. Each node has a private local cost function. The global cost function, which all nodes cooperatively minimize, is the integral of the local cost functions on the node set. We propose stochastic gradient descent and gradient tracking algorithms over the graphon. We establish a general lemma for the upper bound estimation related to a class of time-varying differential inequalities with negative linear terms, based upon which, we prove that for both kinds of algorithms, the second moments of the nodes' states are uniformly bounded. Especially, for the stochastic gradient tracking algorithm, we transform the convergence analysis into the asymptotic property of coupled nonlinear differential inequalities with time-varying coefficients and develop a decoupling method. For both kinds of algorithms, we show that by choosing the time-varying algorithm gains properly, all nodes' states achieve $\mathcal{L}^{\infty}$-consensus for a connected graphon. Furthermore, if the local cost functions are strongly convex, then all nodes' states converge to the minimizer of the global cost function and the auxiliary states in the stochastic gradient tracking algorithm converge to the gradient value of the global cost function at the minimizer uniformly in mean square.
☆ A Two-stage Identification Method for Switched Linear Systems
In this work, a new two-stage identification method based on dynamic programming and sparsity inducing is proposed for switched linear systems. Our method achieves sparsity inducing in the identification of switched linear systems by the constrained switching mechanism, in contrast to previous optimization-based identification techniques that rely on the rigid data distribution assumption in the parameter space. The proposed mechanism assumes the existence of a minimal interval between adjacent switching instants. First, an efficient iterative dynamic programming approach is used to determine the switching instants and segments using the constrained switching mechanism. Then, each submodel is identified as a combinatorial $\ell_0$ optimization problem, and the true parameter for each submodel is determined by solving the problem. The problem of combinatorial $\ell_0$ optimization is solved by relaxing it into a convex $\ell_1$-norm optimization problem. Furthermore, the unbiasedness of the switched linear system identification is discussed thoroughly with the constrained switching mechanism and a new persistent excitation condition is proposed. Simulation experiments are conducted to indicate that our algorithms exhibit strong robustness against noise.
☆ Building a Better B-Dot: Fast Detumbling with Non-Monotonic Lyapunov Functions
Spacecraft detumbling with magnetic torque coils is an inherently underactuated control problem. Contemporary and classical magnetorquer detumbling methods do not adequately consider this underactuation, and suffer from poor performance as a result. These controllers can get stuck on an uncontrollable manifold, resulting in long detumbling times and high power consumption. This work presents a novel detumble controller based on a non-monotonic Lyapunov function that predicts the future magnetic field along the satellite's orbit and avoids uncontrollable configurations. In comparison to other controllers in the literature, our controller detumbles a satellite in significantly less time while also converging to lower overall angular momentum. We provide a derivation and proof of convergence for our controller as well as Monte-Carlo simulation results demonstrating its performance in representative use cases.
☆ Analytical Gradient and Hessian Evaluation for System Identification using State-Parameter Transition Tensors
In this work, the Einstein notation is utilized to synthesize state and parameter transition matrices, by solving a set of ordinary differential equations. Additionally, for the system identification problem, it has been demonstrated that the gradient and Hessian of a cost function can be analytically constructed using the same matrix and tensor metrics. A general gradientbased optimization problem is then posed to identify unknown system parameters and unknown initial conditions. Here, the analytical gradient and Hessian of the cost function are derived using these state and parameter transition matrices. The more robust performance of the proposed method for identifying unknown system parameters and unknown initial conditions over an existing conventional quasi-Newton method-based system identification toolbox (available in MATLAB) is demonstrated by using two widely used benchmark datasets from real dynamic systems. In the existing toolbox, gradient and Hessian information, which are derived using a finite difference method, are more susceptible to numerical errors compared to the analytical approach presented. Keywords: Gradient-based Optimization, Transition matrix and tensors, Gradient and Hessian, System identification.
comment: 6 pages, Accepted in 2024 Modeling, Estimation and Control Conference
☆ Passenger Route and Departure Time Guidance under Disruptions in Oversaturated Urban Rail Transit Networks
The urban rail transit (URT) system attracts many commuters with its punctuality and convenience. However, it is vulnerable to disruptions caused by factors like extreme weather and temporary equipment failures, which greatly impact passengers' journeys and diminish the system's service quality. In this study, we propose targeted travel guidance for passengers at different space-time locations by devising passenger rescheduling strategies during disruptions. This guidance not only offers insights into route changes but also provides practical recommendations for delaying departure times when required. We present a novel three-feature four-group passenger classification principle, integrating temporal, spatial, and spatio-temporal features to classify passengers in disrupted URT networks. This approach results in the creation of four distinct solution spaces based on passenger groups. A mixed integer programming model is built based on individual level considering the First-in-First-out (FIFO) rule in oversaturated networks. Additionally, we present a two-stage solution approach for handling the complex issues in large-scale networks. Experimental results from both small-scale artificial networks and the real-world Beijing URT network validate the efficacy of our proposed passenger rescheduling strategies in mitigating disruptions. Specifically, when compared to scenarios with no travel guidance during disruptions, our strategies achieve a substantial reduction in total passenger travel time by 29.7% and 50.9% respectively, underscoring the effectiveness in managing unexpected disruptions.
♻ ☆ Minimax problems for ensembles of affine-control systems
In this paper, we consider ensembles of affine-control systems in $\mathbb{R}^d$, and we study simultaneous optimal control problems related to the worst-case minimization. After proving that such problems admit solutions, denoting with $(\Theta^N)_N$ a sequence of compact sets that parametrize the ensembles of systems, we first show that the corresponding minimax optimal control problems are $\Gamma$-convergent whenever $(\Theta^N)_N$ has a limit with respect to the Hausdorff distance. Besides its independent interest, the previous result is crucial role for establishing the Pontryagin Maximum Principle (PMP) when the ensemble is parametrized by a set $\Theta$ consisting of infinitely many points. Namely, we first approximate $\Theta$ by finite and increasing-in-size sets $(\Theta^N)_N$ for which the PMP is known, and then we derive the PMP for the $\Gamma$-limiting problem. The same strategy can be pursued in applications, where we can reduce infinite ensembles to finite ones to compute the minimizers numerically. We bring as a numerical example the Schr\"odinger equation for a qubit with uncertain resonance frequency.
comment: 21 pages, 1 Figure. Correction of typos and new section with a numerical example
♻ ☆ Traffic State Estimation for Connected Vehicles using the Second-Order Aw-Rascle-Zhang Traffic Model
This paper addresses the problem of traffic state estimation (TSE) in the presence of heterogeneous sensors which include both fixed and moving sensors. Traditional fixed sensors are expensive and cannot be installed throughout the highway. Moving sensors such as Connected Vehicles (CVs) offer a relatively cheap alternative to measure traffic states across the network. Moving forward it is thus important to develop such models that effectively use the data from CVs. One such model is the nonlinear second-order Aw-Rascle-Zhang (ARZ) model which is a realistic traffic model, reliable for TSE and control. A state-space formulation is presented for the ARZ model considering junctions in the formulation which is important to model real highways with ramps. A Moving Horizon Estimation (MHE) implementation is presented for TSE using a linearized ARZ model. Various state-estimation methods used for TSE in the literature along with the presented approach are compared with regard to accuracy and computational tractability with the help of a numerical study using the VISSIM traffic simulation software. The impact of various strategies for querying CV data on the estimation performance is also considered. Several research questions are posed and addressed with a thorough analysis of the results.
♻ ☆ Regret Optimal Control for Uncertain Stochastic Systems
We consider control of uncertain linear time-varying stochastic systems from the perspective of regret minimization. Specifically, we focus on the problem of designing a feedback controller that minimizes the loss relative to a clairvoyant optimal policy that has foreknowledge of both the system dynamics and the exogenous disturbances. In this competitive framework, establishing robustness guarantees proves challenging as, differently from the case where the model is known, the clairvoyant optimal policy is not only inapplicable, but also impossible to compute without knowledge of the system parameters. To address this challenge, we embrace a scenario optimization approach, and we propose minimizing regret robustly over a finite set of randomly sampled system parameters. We prove that this policy optimization problem can be solved through semidefinite programming, and that the corresponding solution retains strong probabilistic out-of-sample regret guarantees in face of the uncertain dynamics. Our method naturally extends to include satisfaction of safety constraints with high probability. We validate our theoretical results and showcase the potential of our approach by means of numerical simulations.
comment: Accepted for presentation at the European Control Conference 2024 and selected for publication in the 2024 ECC Special Issue of the European Journal of Control
♻ ☆ Comparing Lazy Constraint Selection Strategies in Train Routing with Moving Block Control
Railroad transportation plays a vital role in the future of sustainable mobility. Besides building new infrastructure, capacity can be improved by modern train control systems, e.g., based on moving blocks. At the same time, there is only limited work on how to optimally route trains using the potential gained by these systems. Recently, an initial approach for train routing with moving block control has been proposed to address this demand. However, detailed evaluations on so-called lazy constraints are missing, and no publicly available implementation exists. In this work, we close this gap by providing an extended approach as well as a flexible open-source implementation that can use different solving strategies. Using that, we experimentally evaluate what choices should be made when implementing a lazy constraint approach. The corresponding implementation and benchmarks are publicly available as part of the Munich Train Control Toolkit (MTCT) at https://github.com/cda-tum/mtct.
comment: Accepted Version: 19th Conference on Computer Science and Intelligence Systems (FedCSIS 2024)
♻ ☆ A Convex Hull Cheapest Insertion Heuristic for the Non-Euclidean TSP
The convex hull cheapest insertion heuristic produces good solutions to the Euclidean Traveling Salesperson Problem, but it has never been extended to the non-Euclidean problem. This paper uses multidimensional scaling to first project the points from a non-Euclidean space into a Euclidean space, enabling the generation of a convex hull that initializes the algorithm. To evaluate the proposed algorithm, non-Euclidean spaces are created by adding separators to the TSPLIB data-set, or by using the L1 norm as a metric.
comment: Revised manuscript submitted on 2 July 2024 to the Operations Research Letters
♻ ☆ Graphon Particle Systems, Part I: Spatio-Temporal Approximation and Law of Large Numbers
We study a class of graphon particle systems with time-varying random coefficients. In a graphon particle system, the interactions among particles are characterized by the coupled mean field terms through an underlying graphon and the randomness of the coefficients comes from the stochastic processes associated with the particle labels. By constructing two-level approximated sequences converging in 2-Wasserstein distance, we prove the existence and uniqueness of the solution to the system. Besides, by constructing two-level approximated functions converging to the graphon mean field terms, we establish the law of large numbers, which reveals that if the number of particles tends to infinity and the discretization step tends to zero, then the discrete-time interacting particle system over a large-scale network converges to the graphon particle system. As a byproduct, we discover that the graphon particle system can describe the limiting dynamics of the distributed stochastic gradient descent algorithm over the large-scale network and prove that if the gradients of the local cost functions are Lipschitz continuous, then the graphon particle system can be regarded as the spatio-temporal approximation of the discrete-time distributed stochastic gradient descent algorithm as the number of network nodes tends to infinity and the algorithm step size tends to zero.
Robotics 53
☆ Open Scene Graphs for Open World Object-Goal Navigation
How can we build robots for open-world semantic navigation tasks, like searching for target objects in novel scenes? While foundation models have the rich knowledge and generalisation needed for these tasks, a suitable scene representation is needed to connect them into a complete robot system. We address this with Open Scene Graphs (OSGs), a topo-semantic representation that retains and organises open-set scene information for these models, and has a structure that can be configured for different environment types. We integrate foundation models and OSGs into the OpenSearch system for Open World Object-Goal Navigation, which is capable of searching for open-set objects specified in natural language, while generalising zero-shot across diverse environments and embodiments. Our OSGs enhance reasoning with Large Language Models (LLM), enabling robust object-goal navigation outperforming existing LLM approaches. Through simulation and real-world experiments, we validate OpenSearch's generalisation across varied environments, robots and novel instructions.
☆ PWM: Policy Learning with Large World Models
Reinforcement Learning (RL) has achieved impressive results on complex tasks but struggles in multi-task settings with different embodiments. World models offer scalability by learning a simulation of the environment, yet they often rely on inefficient gradient-free optimization methods. We introduce Policy learning with large World Models (PWM), a novel model-based RL algorithm that learns continuous control policies from large multi-task world models. By pre-training the world model on offline data and using it for first-order gradient policy learning, PWM effectively solves tasks with up to 152 action dimensions and outperforms methods using ground-truth dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27% higher rewards than existing baselines without the need for expensive online planning. Visualizations and code available at https://policy-world-model.github.io
comment: Visualizations and code available at https://policy-world-model.github.io
☆ Revisión de Métodos de Planificación de Camino de Cobertura para Entornos Agrícolas
The use of an efficient coverage planning method is key for autonomous navigation in agricultural environments, where a robot must cover large areas of crops. This paper generally reviews the current state of the art of coverage path planning methods. Two widely used techniques applicable to agricultural environments are described in detail. The first consists of breaking down a complex field with obstacles into simpler subregions known as cells, to subsequently generate a coverage pattern in each of them. The second analyzes spaces composed of parallel strips through which the robot must circulate, in order to find the optimal order of visiting strips that minimizes the total distance traveled. Additionally, the combination of both techniques is discussed in order to obtain a more efficient global coverage plan. This analysis was conceived to be implemented with the soybean crop weeding robot developed at CIFASIS (CONICET-UNR).
comment: in Spanish language
☆ Comparative Evaluation of Learning Models for Bionic Robots: Non-Linear Transfer Function Identifications
The control and modeling of bionic robot dynamics have increasingly adopted model-free control strategies using machine learning methods. Given the non-linear elastic nature of bionic robotic systems, learning-based methods provide reliable alternatives by utilizing numerical data to establish a direct mapping from actuation inputs to robot trajectories without complex kinematics models. However, for developers, the method of identifying an appropriate learning model for their specific bionic robots and further constructing the transfer function has not been thoroughly discussed. Thus, this research trains four types of models, including ensemble learning models, regularization-based models, kernel-based models, and neural network models, suitable for multi-input multi-output (MIMO) data and non-linear transfer function identification, in order to evaluate their (1) accuracy, (2) computation complexity, and (3) performance of capturing biological movements. This research encompasses data collection methods for control inputs and action outputs, selection of machine learning models, comparative analysis of training results, and transfer function identifications. The main objective is to provide a comprehensive evaluation strategy and framework for the application of model-free control.
comment: 16 pages, 20 figures
☆ Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones
Pocket-sized autonomous nano-drones can revolutionize many robotic use cases, such as visual inspection in narrow, constrained spaces, and ensure safer human-robot interaction due to their tiny form factor and weight -- i.e., tens of grams. This compelling vision is challenged by the high level of intelligence needed aboard, which clashes against the limited computational and storage resources available on PULP (parallel-ultra-low-power) MCU class navigation and mission controllers that can be hosted aboard. This work moves from PULP-Dronet, a State-of-the-Art convolutional neural network for autonomous navigation on nano-drones. We introduce Tiny-PULP-Dronet: a novel methodology to squeeze by more than one order of magnitude model size (50x fewer parameters), and number of operations (27x less multiply-and-accumulate) required to run inference with similar flight performance as PULP-Dronet. This massive reduction paves the way towards affordable multi-tasking on nano-drones, a fundamental requirement for achieving high-level intelligence.
comment: 3 Figures, 1 table. Accepted for publication at IEEE Artificial Intelligence Circuits and Systems (AICAS), 2022
☆ Real Time Collision Avoidance with GPU-Computed Distance Maps
This paper presents reactive obstacle and self-collision avoidance of redundant robotic manipulators within real time kinematic feedback control using GPU-computed distance transform. The proposed framework utilizes discretized representation of the robot and the environment to calculate 3D Euclidean distance transform for task-priority based kinematic control. The environment scene is represented using a 3D GPU-voxel map created and updated from a live pointcloud data while the robotic link model is converted into a voxels offline and inserted into the voxel map according to the joint state of the robot to form the self-obstacle map. The proposed approach is evaluated using the Tiago robot, showing that all obstacle and self collision avoidance constraints are respected within one framework even with fast moving obstacles while the robot performs end-effector pose tracking in real time. A comparison of related works that depend on GPU and CPU computed distance fields is also presented to highlight the time performance as well as accuracy of the GPU distance field.
comment: 11 pages, 13 figures
☆ Learning Bipedal Walking on a Quadruped Robot via Adversarial Motion Priors
Previous studies have successfully demonstrated agile and robust locomotion in challenging terrains for quadrupedal robots. However, the bipedal locomotion mode for quadruped robots remains unverified. This paper explores the adaptation of a learning framework originally designed for quadrupedal robots to operate blind locomotion in biped mode. We leverage a framework that incorporates Adversarial Motion Priors with a teacher-student policy to enable imitation of a reference trajectory and navigation on tough terrain. Our work involves transferring and evaluating a similar learning framework on a quadruped robot in biped mode, aiming to achieve stable walking on both flat and complicated terrains. Our simulation results demonstrate that the trained policy enables the quadruped robot to navigate both flat and challenging terrains, including stairs and uneven surfaces.
comment: 7 pages,5 figures
☆ DextrAH-G: Pixels-to-Action Dexterous Arm-Hand Grasping with Geometric Fabrics
A pivotal challenge in robotics is achieving fast, safe, and robust dexterous grasping across a diverse range of objects, an important goal within industrial applications. However, existing methods often have very limited speed, dexterity, and generality, along with limited or no hardware safety guarantees. In this work, we introduce DextrAH-G, a depth-based dexterous grasping policy trained entirely in simulation that combines reinforcement learning, geometric fabrics, and teacher-student distillation. We address key challenges in joint arm-hand policy learning, such as high-dimensional observation and action spaces, the sim2real gap, collision avoidance, and hardware constraints. DextrAH-G enables a 23 motor arm-hand robot to safely and continuously grasp and transport a large variety of objects at high speed using multi-modal inputs including depth images, allowing generalization across object geometry. Videos at https://sites.google.com/view/dextrah-g.
☆ Safe CoR: A Dual-Expert Approach to Integrating Imitation Learning and Safe Reinforcement Learning Using Constraint Rewards IROS
In the realm of autonomous agents, ensuring safety and reliability in complex and dynamic environments remains a paramount challenge. Safe reinforcement learning addresses these concerns by introducing safety constraints, but still faces challenges in navigating intricate environments such as complex driving situations. To overcome these challenges, we present the safe constraint reward (Safe CoR) framework, a novel method that utilizes two types of expert demonstrations$\unicode{x2013}$reward expert demonstrations focusing on performance optimization and safe expert demonstrations prioritizing safety. By exploiting a constraint reward (CoR), our framework guides the agent to balance performance goals of reward sum with safety constraints. We test the proposed framework in diverse environments, including the safety gym, metadrive, and the real$\unicode{x2013}$world Jackal platform. Our proposed framework enhances the performance of algorithms by $39\%$ and reduces constraint violations by $88\%$ on the real-world Jackal platform, demonstrating the framework's efficacy. Through this innovative approach, we expect significant advancements in real-world performance, leading to transformative effects in the realm of safe and reliable autonomous agents.
comment: Accepted to the Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024
☆ Efficient Extrinsic Self-Calibration of Multiple IMUs using Measurement Subset Selection IROS2024
This paper addresses the problem of choosing a sparse subset of measurements for quick calibration parameter estimation. A standard solution to this is selecting a measurement only if its utility -- the difference between posterior (with the measurement) and prior information (without the measurement) -- exceeds some threshold. Theoretically, utility, a function of the parameter estimate, should be evaluated at the estimate obtained with all measurements selected so far, hence necessitating a recalibration with each new measurement. However, we hypothesize that utility is insensitive to changes in the parameter estimate for many systems of interest, suggesting that evaluating utility at some initial parameter guess would yield equivalent results in practice. We provide evidence supporting this hypothesis for extrinsic calibration of multiple inertial measurement units (IMUs), showing the reduction in calibration time by two orders of magnitude by forgoing recalibration for each measurement.
comment: Accepted at the 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2024)
☆ Safety-Driven Deep Reinforcement Learning Framework for Cobots: A Sim2Real Approach
This study presents a novel methodology incorporating safety constraints into a robotic simulation during the training of deep reinforcement learning (DRL). The framework integrates specific parts of the safety requirements, such as velocity constraints, as specified by ISO 10218, directly within the DRL model that becomes a part of the robot's learning algorithm. The study then evaluated the efficiency of these safety constraints by subjecting the DRL model to various scenarios, including grasping tasks with and without obstacle avoidance. The validation process involved comprehensive simulation-based testing of the DRL model's responses to potential hazards and its compliance. Also, the performance of the system is carried out by the functional safety standards IEC 61508 to determine the safety integrity level. The study indicated a significant improvement in the safety performance of the robotic system. The proposed DRL model anticipates and mitigates hazards while maintaining operational efficiency. This study was validated in a testbed with a collaborative robotic arm with safety sensors and assessed with metrics such as the average number of safety violations, obstacle avoidance, and the number of successful grasps. The proposed approach outperforms the conventional method by a 16.5% average success rate on the tested scenarios in the simulations and 2.5% in the testbed without safety violations. The project repository is available at https://github.com/ammar-n-abbas/sim2real-ur-gym-gazebo.
comment: This paper has been accepted for publication in the proceedings of the IEEE/IFAC International Conference on Control, Decision, and Information Technologies (CoDIT), 2024
☆ Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models
In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and solving mathematical problems, leading to advancements in various fields. We propose an LLM-embodied path planning framework for mobile agents, focusing on solving high-level coverage path planning issues and low-level control. Our proposed multi-layer architecture uses prompted LLMs in the path planning phase and integrates them with the mobile agents' low-level actuators. To evaluate the performance of various LLMs, we propose a coverage-weighted path planning metric to assess the performance of the embodied models. Our experiments show that the proposed framework improves LLMs' spatial inference abilities. We demonstrate that the proposed multi-layer framework significantly enhances the efficiency and accuracy of these tasks by leveraging the natural language understanding and generative capabilities of LLMs. Our experiments show that this framework can improve LLMs' 2D plane reasoning abilities and complete coverage path planning tasks. We also tested three LLM kernels: gpt-4o, gemini-1.5-flash, and claude-3.5-sonnet. The experimental results show that claude-3.5 can complete the coverage planning task in different scenarios, and its indicators are better than those of the other models.
comment: 7 pages, 2 figures, conference
☆ Research on Reliable and Safe Occupancy Grid Prediction in Underground Parking Lots
Against the backdrop of advancing science and technology, autonomous vehicle technology has emerged as a focal point of intense scrutiny within the academic community. Nevertheless, the challenge persists in guaranteeing the safety and reliability of this technology when navigating intricate scenarios. While a substantial portion of autonomous driving research is dedicated to testing in open-air environments, such as urban roads and highways, where the myriad variables at play are meticulously examined, enclosed indoor spaces like underground parking lots have, to a significant extent, been overlooked in the scholarly discourse. This discrepancy highlights a gap in derstanding the unique challenges these confined settings pose for autonomous navigation systems. This study tackles indoor autonomous driving, particularly in overlooked spaces like underground parking lots. Using CARLA's simulation platform, a realistic parking model is created for data gathering. An occupancy grid network then processes this data to predict vehicle paths and obstacles, enhancing the system's perception in complex indoor environments. Ultimately, this strategy improves safety in autonomous parking operations. The paper meticulously evaluates the model's predictive capabilities, validating its efficacy in the context of underground parking. Our findings confirm that the proposed strategy successfully enhances autonomous vehicle performance in these complex indoor settings. It equips autonomous systems with improved adaptation to underground lots, reinforcing safety measures and dependability. This work paves the way for future advancements and applications by addressing the research shortfall concerning indoor parking environments, serving as a pivotal reference point.
comment: 15 pages, 19 figures
☆ Categorized Grid and Unknown Space Causes for LiDAR-based Dynamic Occupancy Grids
Occupancy Grids have been widely used for perception of the environment as they allow to model the obstacles in the scene, as well as free and unknown space. Recently, there has been a growing interest in the unknown space due to the necessity of better understanding the situation. Although Occupancy Grids have received numerous extensions over the years to address emerging needs, currently, few works go beyond the delimitation of the unknown space area and seek to incorporate additional information. This work builds upon the already well-established LiDAR-based Dynamic Occupancy Grid to introduce a complementary Categorized Grid that conveys its estimation using semantic labels while adding new insights into the possible causes of unknown space. The proposed categorization first divides the space by occupancy and then further categorizes the occupied and unknown space. Occupied space is labeled based on its dynamic state and reliability, while the unknown space is labeled according to its possible causes, whether they stem from the perception system's inherent constraints, limitations induced by the environment, or other causes. The proposed Categorized Grid is showcased in real-world scenarios demonstrating its usefulness for better situation understanding.
comment: Submitted to the 27th IEEE International Conference on Intelligent Transportation Systems
☆ I2EKF-LO: A Dual-Iteration Extended Kalman Filter Based LiDAR Odometry IROS 2024
LiDAR odometry is a pivotal technology in the fields of autonomous driving and autonomous mobile robotics. However, most of the current works focus on nonlinear optimization methods, and still existing many challenges in using the traditional Iterative Extended Kalman Filter (IEKF) framework to tackle the problem: IEKF only iterates over the observation equation, relying on a rough estimate of the initial state, which is insufficient to fully eliminate motion distortion in the input point cloud; the system process noise is difficult to be determined during state estimation of the complex motions; and the varying motion models across different sensor carriers. To address these issues, we propose the Dual-Iteration Extended Kalman Filter (I2EKF) and the LiDAR odometry based on I2EKF (I2EKF-LO). This approach not only iterates over the observation equation but also leverages state updates to iteratively mitigate motion distortion in LiDAR point clouds. Moreover, it dynamically adjusts process noise based on the confidence level of prior predictions during state estimation and establishes motion models for different sensor carriers to achieve accurate and efficient state estimation. Comprehensive experiments demonstrate that I2EKF-LO achieves outstanding levels of accuracy and computational efficiency in the realm of LiDAR odometry. Additionally, to foster community development, our code is open-sourced.https://github.com/YWL0720/I2EKF-LO.
comment: Accepted by IROS 2024
☆ Occlusion-Aware Seamless Segmentation ECCV 2024
Panoramic images can broaden the Field of View (FoV), occlusion-aware prediction can deepen the understanding of the scene, and domain adaptation can transfer across viewing domains. In this work, we introduce a novel task, Occlusion-Aware Seamless Segmentation (OASS), which simultaneously tackles all these three challenges. For benchmarking OASS, we establish a new human-annotated dataset for Blending Panoramic Amodal Seamless Segmentation, i.e., BlendPASS. Besides, we propose the first solution UnmaskFormer, aiming at unmasking the narrow FoV, occlusions, and domain gaps all at once. Specifically, UnmaskFormer includes the crucial designs of Unmasking Attention (UA) and Amodal-oriented Mix (AoMix). Our method achieves state-of-the-art performance on the BlendPASS dataset, reaching a remarkable mAPQ of 26.58% and mIoU of 43.66%. On public panoramic semantic segmentation datasets, i.e., SynPASS and DensePASS, our method outperforms previous methods and obtains 45.34% and 48.08% in mIoU, respectively. The fresh BlendPASS dataset and our source code will be made publicly available at https://github.com/yihong-97/OASS.
comment: Accepted to ECCV 2024. The fresh dataset and the source code will be made publicly available at https://github.com/yihong-97/OASS
☆ Labeling Sentences with Symbolic and Deictic Gestures via Semantic Similarity
Co-speech gesture generation on artificial agents has gained attention recently, mainly when it is based on data-driven models. However, end-to-end methods often fail to generate co-speech gestures related to semantics with specific forms, i.e., Symbolic and Deictic gestures. In this work, we identify which words in a sentence are contextually related to Symbolic and Deictic gestures. Firstly, we appropriately chose 12 gestures recognized by people from the Italian culture, which different humanoid robots can reproduce. Then, we implemented two rule-based algorithms to label sentences with Symbolic and Deictic gestures. The rules depend on the semantic similarity scores computed with the RoBerta model between sentences that heuristically represent gestures and sub-sentences inside an objective sentence that artificial agents have to pronounce. We also implemented a baseline algorithm that assigns gestures without computing similarity scores. Finally, to validate the results, we asked 30 persons to label a set of sentences with Deictic and Symbolic gestures through a Graphical User Interface (GUI), and we compared the labels with the ones produced by our algorithms. For this scope, we computed Average Precision (AP) and Intersection Over Union (IOU) scores, and we evaluated the Average Computational Time (ACT). Our results show that semantic similarity scores are useful for finding Symbolic and Deictic gestures in utterances.
comment: 8 pages, 7 figures, 2 tables. To be published in IEEE ROMAN 2024
☆ Universal Plans: One Action Sequence to Solve Them All!
This paper introduces the notion of a universal plan, which when executed, is guaranteed to solve all planning problems in a category, regardless of the obstacles, initial state, and goal set. Such plans are specified as a deterministic sequence of actions that are blindly applied without any sensor feedback. Thus, they can be considered as pure exploration in a reinforcement learning context, and we show that with basic memory requirements, they even yield asymptotically optimal plans. Building upon results in number theory and theory of automata, we provide universal plans both for discrete and continuous (motion) planning and prove their (semi)completeness. The concepts are applied and illustrated through simulation studies, and several directions for future research are sketched.
comment: 21 pages, 4 figures
☆ MARLIN: A Cloud Integrated Robotic Solution to Support Intralogistics in Retail
In this paper, we present the service robot MARLIN and its integration with the K4R platform, a cloud system for complex AI applications in retail. At its core, this platform contains so-called semantic digital twins, a semantically annotated representation of the retail store. MARLIN continuously exchanges data with the K4R platform, improving the robot's capabilities in perception, autonomous navigation, and task planning. We exploit these capabilities in a retail intralogistics scenario, specifically by assisting store employees in stocking shelves. We demonstrate that MARLIN is able to update the digital representation of the retail store by detecting and classifying obstacles, autonomously planning and executing replenishment missions, adapting to unforeseen changes in the environment, and interacting with store employees. Experiments are conducted in simulation, in a laboratory environment, and in a real store. We also describe and evaluate a novel algorithm for autonomous navigation of articulated tractor-trailer systems. The algorithm outperforms the manufacturer's proprietary navigation approach and improves MARLIN's navigation capabilities in confined spaces.
☆ LiDAR-based HD Map Localization using Semantic Generalized ICP with Road Marking Detection
In GPS-denied scenarios, a robust environmental perception and localization system becomes crucial for autonomous driving. In this paper, a LiDAR-based online localization system is developed, incorporating road marking detection and registration on a high-definition (HD) map. Within our system, a road marking detection approach is proposed with real-time performance, in which an adaptive segmentation technique is first introduced to isolate high-reflectance points correlated with road markings, enhancing real-time efficiency. Then, a spatio-temporal probabilistic local map is formed by aggregating historical LiDAR scans, providing a dense point cloud. Finally, a LiDAR bird's-eye view (LiBEV) image is generated, and an instance segmentation network is applied to accurately label the road markings. For road marking registration, a semantic generalized iterative closest point (SG-ICP) algorithm is designed. Linear road markings are modeled as 1-manifolds embedded in 2D space, mitigating the influence of constraints along the linear direction, addressing the under-constrained problem and achieving a higher localization accuracy on HD maps than ICP. Extensive experiments are conducted in real-world scenarios, demonstrating the effectiveness and robustness of our system.
☆ Behavior Forests: Real-Time Discovery of Dynamic Behavior for Data Selection
Automated Driving Systems (ADS) development relies on utilizing real-world vehicle data. The volume of data generated by modern vehicles presents transmission, storage, and computational challenges. Focusing on Dynamic Behavior (DB) offers a promising approach to distinguish relevant from irrelevant information for ADS functionalities, thereby reducing data. Time series pattern recognition is beneficial for this task as it can analyze the temporal context of vehicle driving behavior. However, existing state-of-the-art methods often lack the adaptability to identify variable-length patterns or provide analytical descriptions of discovered patterns. This contribution proposes a Behavior Forest framework for real-time data selection by constructing a Behavior Graph during vehicle operation, facilitating analytical descriptions without pre-training. The method demonstrates its performance using a synthetically generated and electrocardiogram data set. An automotive time series data set is used to evaluate the data reduction capabilities, in which this method discarded 96.01% of the incoming data stream, while relevant DB remain included.
☆ Cloud-Edge-Terminal Collaborative AIGC for Autonomous Driving
In dynamic autonomous driving environment, Artificial Intelligence-Generated Content (AIGC) technology can supplement vehicle perception and decision making by leveraging models' generative and predictive capabilities, and has the potential to enhance motion planning, trajectory prediction and traffic simulation. This article proposes a cloud-edge-terminal collaborative architecture to support AIGC for autonomous driving. By delving into the unique properties of AIGC services, this article initiates the attempts to construct mutually supportive AIGC and network systems for autonomous driving, including communication, storage and computation resource allocation schemes to support AIGC services, and leveraging AIGC to assist system design and resource management.
☆ LDP: A Local Diffusion Planner for Efficient Robot Navigation and Collision Avoidance IROS 2024
The conditional diffusion model has been demonstrated as an efficient tool for learning robot policies, owing to its advancement to accurately model the conditional distribution of policies. The intricate nature of real-world scenarios, characterized by dynamic obstacles and maze-like structures, underscores the complexity of robot local navigation decision-making as a conditional distribution problem. Nevertheless, leveraging the diffusion model for robot local navigation is not trivial and encounters several under-explored challenges: (1) Data Urgency. The complex conditional distribution in local navigation needs training data to include diverse policy in diverse real-world scenarios; (2) Myopic Observation. Due to the diversity of the perception scenarios, diffusion decisions based on the local perspective of robots may prove suboptimal for completing the entire task, as they often lack foresight. In certain scenarios requiring detours, the robot may become trapped. To address these issues, our approach begins with an exploration of a diverse data generation mechanism that encompasses multiple agents exhibiting distinct preferences through target selection informed by integrated global-local insights. Then, based on this diverse training data, a diffusion agent is obtained, capable of excellent collision avoidance in diverse scenarios. Subsequently, we augment our Local Diffusion Planner, also known as LDP by incorporating global observations in a lightweight manner. This enhancement broadens the observational scope of LDP, effectively mitigating the risk of becoming ensnared in local optima and promoting more robust navigational decisions.
comment: 8 pages, 6 figures, accepted by IROS 2024
☆ Learning Granular Media Avalanche Behavior for Indirectly Manipulating Obstacles on a Granular Slope
Legged robot locomotion on sand slopes is challenging due to the complex dynamics of granular media and how the lack of solid surfaces can hinder locomotion. A promising strategy, inspired by ghost crabs and other organisms in nature, is to strategically interact with rocks, debris, and other obstacles to facilitate movement. To provide legged robots with this ability, we present a novel approach that leverages avalanche dynamics to indirectly manipulate objects on a granular slope. We use a Vision Transformer (ViT) to process image representations of granular dynamics and robot excavation actions. The ViT predicts object movement, which we use to determine which leg excavation action to execute. We collect training data from 100 real physical trials and, at test time, deploy our trained model in novel settings. Experimental results suggest that our model can accurately predict object movements and achieve a success rate $\geq 80\%$ in a variety of manipulation tasks with up to four obstacles, and can also generalize to objects with different physics properties. To our knowledge, this is the first paper to leverage granular media avalanche dynamics to indirectly manipulate objects on granular slopes. Supplementary material is available at https://sites.google.com/view/grain-corl2024/home.
comment: Submitted to CoRL 2024
☆ Refined Motion Compensation with Soft Laser Manipulators using Data-Driven Surrogate Models
Non-contact laser ablation, a precise thermal technique, simultaneously cuts and coagulates tissue without the insertion errors associated with rigid needles. Human organ motions, such as those in the liver, exhibit rhythmic components influenced by respiratory and cardiac cycles, making effective laser energy delivery to target lesions while compensating for tumor motion crucial. This research introduces a data-driven method to derive surrogate models of a soft manipulator. These low-dimensional models offer computational efficiency when integrated into the Model Predictive Control (MPC) framework, while still capturing the manipulator's dynamics with and without control input. Spectral Submanifolds (SSM) theory models the manipulator's autonomous dynamics, acknowledging its tendency to reach equilibrium when external forces are removed. Preliminary results show that the MPC controller using the surrogate model outperforms two other models within the same MPC framework. The data-driven MPC controller also supports a design-agnostic feature, allowing the interchangeability of different soft manipulators within the laser ablation surgery robot system.
☆ PO-MSCKF: An Efficient Visual-Inertial Odometry by Reconstructing the Multi-State Constrained Kalman Filter with the Pose-only Theory
Efficient Visual-Inertial Odometry (VIO) is crucial for payload-constrained robots. Though modern optimization-based algorithms have achieved superior accuracy, the MSCKF-based VIO algorithms are still widely demanded for their efficient and consistent performance. As MSCKF is built upon the conventional multi-view geometry, the measured residuals are not only related to the state errors but also related to the feature position errors. To apply EKF fusion, a projection process is required to remove the feature position error from the observation model, which can lead to model and accuracy degradation. To obtain an efficient visual-inertial fusion model, while also preserving the model consistency, we propose to reconstruct the MSCKF VIO with the novel Pose-Only (PO) multi-view geometry description. In the newly constructed filter, we have modeled PO reprojection residuals, which are solely related to the motion states and thus overcome the requirements of space projection. Moreover, the new filter does not require any feature position information, which removes the computational cost and linearization errors brought in by the 3D reconstruction procedure. We have conducted comprehensive experiments on multiple datasets, where the proposed method has shown accuracy improvements and consistent performance in challenging sequences.
☆ Referring Atomic Video Action Recognition ECCV 2024
We introduce a new task called Referring Atomic Video Action Recognition (RAVAR), aimed at identifying atomic actions of a particular person based on a textual description and the video data of this person. This task differs from traditional action recognition and localization, where predictions are delivered for all present individuals. In contrast, we focus on recognizing the correct atomic action of a specific individual, guided by text. To explore this task, we present the RefAVA dataset, containing 36,630 instances with manually annotated textual descriptions of the individuals. To establish a strong initial benchmark, we implement and validate baselines from various domains, e.g., atomic action localization, video question answering, and text-video retrieval. Since these existing methods underperform on RAVAR, we introduce RefAtomNet -- a novel cross-stream attention-driven method specialized for the unique challenges of RAVAR: the need to interpret a textual referring expression for the targeted individual, utilize this reference to guide the spatial localization and harvest the prediction of the atomic actions for the referring person. The key ingredients are: (1) a multi-stream architecture that connects video, text, and a new location-semantic stream, and (2) cross-stream agent attention fusion and agent token fusion which amplify the most relevant information across these streams and consistently surpasses standard attention-based fusion on RAVAR. Extensive experiments demonstrate the effectiveness of RefAtomNet and its building blocks for recognizing the action of the described individual. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR.
comment: Accepted to ECCV 2024. The dataset and code will be made publicly available at https://github.com/KPeng9510/RAVAR
☆ Geometric Static Modeling Framework for Piecewise-Continuous Curved-Link Multi Point-of-Contact Tensegrity Robots
Tensegrities synergistically combine tensile (cable) and rigid (link) elements to achieve structural integrity, making them lightweight, packable, and impact resistant. Consequently, they have high potential for locomotion in unstructured environments. This research presents geometric modeling of a Tensegrity eXploratory Robot (TeXploR) comprised of two semi-circular, curved links held together by 12 prestressed cables and actuated with an internal mass shifting along each link. This design allows for efficient rolling with stability (e.g., tip-over on an incline). However, the unique design poses static and dynamic modeling challenges given the discontinuous nature of the semi-circular, curved links, two changing points of contact with the surface plane, and instantaneous movement of the masses along the links. The robot is modeled using a geometric approach where the holonomic constraints confirm the experimentally observed four-state hybrid system, proving TeXploR rolls along one link while pivoting about the end of the other. It also identifies the quasi-static state transition boundaries that enable a continuous change in the robot states via internal mass shifting. This is the first time in literature a non-spherical two-point contact system is kinematically and geometrically modeled. Furthermore, the static solutions are closed-form and do not require numerical exploration of the solution. The MATLAB simulations are experimentally validated on a tetherless prototype with mean absolute error of 4.36{\deg}.
comment: This work has been submitted to the IEEE RA-L for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Autonomous Ground Navigation in Highly Constrained Spaces: Lessons learned from The 3rd BARN Challenge at ICRA 2024
The 3rd BARN (Benchmark Autonomous Robot Navigation) Challenge took place at the 2024 IEEE International Conference on Robotics and Automation (ICRA 2024) in Yokohama, Japan and continued to evaluate the performance of state-of-the-art autonomous ground navigation systems in highly constrained environments. Similar to the trend in The 1st and 2nd BARN Challenge at ICRA 2022 and 2023 in Philadelphia (North America) and London (Europe), The 3rd BARN Challenge in Yokohama (Asia) became more regional, i.e., mostly Asian teams participated. The size of the competition has slightly shrunk (six simulation teams, four of which were invited to the physical competition). The competition results, compared to last two years, suggest that the field has adopted new machine learning approaches while at the same time slightly converged to a few common practices. However, the regional nature of the physical participants suggests a challenge to promote wider participation all over the world and provide more resources to travel to the venue. In this article, we discuss the challenge, the approaches used by the three winning teams, and lessons learned to direct future research and competitions.
comment: arXiv admin note: text overlap with arXiv:2308.03205
☆ Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions. For example, in a search and rescue mission, a legged robot could climb over debris, crawl through gaps, and navigate out of dead ends. However, the robot's controller needs to respond intelligently to such varied obstacles, and this requires handling unexpected and unusual scenarios successfully. This presents an open challenge to current learning methods, which often struggle with generalization to the long tail of unexpected situations without heavy human supervision. To address this issue, we investigate how to leverage the broad knowledge about the structure of the world and commonsense reasoning capabilities of vision-language models (VLMs) to aid legged robots in handling difficult, ambiguous situations. We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection with VLMs: (1) in-context adaptation over previous robot interactions and (2) planning multiple skills into the future and replanning. We evaluate VLM-PC on several challenging real-world obstacle courses, involving dead ends and climbing and crawling, on a Go1 quadruped robot. Our experiments show that by reasoning over the history of interactions and future plans, VLMs enable the robot to autonomously perceive, navigate, and act in a wide range of complex scenarios that would otherwise require environment-specific engineering or human guidance.
comment: 27 pages
☆ The path towards contact-based physical human-robot interaction
With the advancements in human-robot interaction (HRI), robots are now capable of operating in close proximity and engaging in physical interactions with humans (pHRI). Likewise, contact-based pHRI is becoming increasingly common as robots are equipped with a range of sensors to perceive human motions. Despite the presence of surveys exploring various aspects of HRI and pHRI, there is presently a gap in comprehensive studies that collect, organize and relate developments across all aspects of contact-based pHRI. It has become challenging to gain a comprehensive understanding of the current state of the field, thoroughly analyze the aspects that have been covered, and identify areas needing further attention. Hence, the present survey. While it includes key developments in pHRI, a particular focus is placed on contact-based interaction, which has numerous applications in industrial, rehabilitation and medical robotics. Across the literature, a common denominator is the importance to establish a safe, compliant and human intention-oriented interaction. This endeavour encompasses aspects of perception, planning and control, and how they work together to enhance safety and reliability. Notably, the survey highlights the application of data-driven techniques: backed by a growing body of literature demonstrating their effectiveness, approaches like reinforcement learning and learning from demonstration have become key to improving robot perception and decision-making within complex and uncertain pHRI scenarios. As the field is yet in its early stage, these observations may help guide future developments and steer research towards the responsible integration of physically interactive robots into workplaces, public spaces, and elements of private life.
☆ STRIDE: An Open-Source, Low-Cost, and Versatile Bipedal Robot Platform for Research and Education
In this paper, we present STRIDE, a Simple, Terrestrial, Reconfigurable, Intelligent, Dynamic, and Educational bipedal platform. STRIDE aims to propel bipedal robotics research and education by providing a cost-effective implementation with step-by-step instructions for building a bipedal robotic platform while providing flexible customizations via a modular and durable design. Moreover, a versatile terrain setup and a quantitative disturbance injection system are augmented to the robot platform to replicate natural terrains and push forces that can be used to evaluate legged locomotion in practical and adversarial scenarios. We demonstrate the functionalities of this platform by realizing an adaptive step-to-step dynamics based walking controller to achieve dynamic walking. Our work with the open-soured implementation shows that STRIDE is a highly versatile and durable platform that can be used in research and education to evaluate locomotion algorithms, mechanical designs, and robust and adaptative controls.
comment: 8 pages, 8 figures
☆ Wildfire Autonomous Response and Prediction Using Cellular Automata (WARP-CA)
Wildfires pose a severe challenge to ecosystems and human settlements, exacerbated by climate change and environmental factors. Traditional wildfire modeling, while useful, often fails to adapt to the rapid dynamics of such events. This report introduces the (Wildfire Autonomous Response and Prediction Using Cellular Automata) WARP-CA model, a novel approach that integrates terrain generation using Perlin noise with the dynamism of Cellular Automata (CA) to simulate wildfire spread. We explore the potential of Multi-Agent Reinforcement Learning (MARL) to manage wildfires by simulating autonomous agents, such as UAVs and UGVs, within a collaborative framework. Our methodology combines world simulation techniques and investigates emergent behaviors in MARL, focusing on efficient wildfire suppression and considering critical environmental factors like wind patterns and terrain features.
☆ Adaptive Autopilot: Constrained DRL for Diverse Driving Behaviors
In pursuit of autonomous vehicles, achieving human-like driving behavior is vital. This study introduces adaptive autopilot (AA), a unique framework utilizing constrained-deep reinforcement learning (C-DRL). AA aims to safely emulate human driving to reduce the necessity for driver intervention. Focusing on the car-following scenario, the process involves (i) extracting data from the highD natural driving study and categorizing it into three driving styles using a rule-based classifier; (ii) employing deep neural network (DNN) regressors to predict human-like acceleration across styles; and (iii) using C-DRL, specifically the soft actor-critic Lagrangian technique, to learn human-like safe driving policies. Results indicate effectiveness in each step, with the rule-based classifier distinguishing driving styles, the regressor model accurately predicting acceleration, outperforming traditional car-following models, and C-DRL agents learning optimal policies for humanlike driving across styles.
comment: 8 pages, 9 figures
Research on Autonomous Robots Navigation based on Reinforcement Learning
Reinforcement learning continuously optimizes decision-making based on real-time feedback reward signals through continuous interaction with the environment, demonstrating strong adaptive and self-learning capabilities. In recent years, it has become one of the key methods to achieve autonomous navigation of robots. In this work, an autonomous robot navigation method based on reinforcement learning is introduced. We use the Deep Q Network (DQN) and Proximal Policy Optimization (PPO) models to optimize the path planning and decision-making process through the continuous interaction between the robot and the environment, and the reward signals with real-time feedback. By combining the Q-value function with the deep neural network, deep Q network can handle high-dimensional state space, so as to realize path planning in complex environments. Proximal policy optimization is a strategy gradient-based method, which enables robots to explore and utilize environmental information more efficiently by optimizing policy functions. These methods not only improve the robot's navigation ability in the unknown environment, but also enhance its adaptive and self-learning capabilities. Through multiple training and simulation experiments, we have verified the effectiveness and robustness of these models in various complex scenarios.
♻ ☆ Survey of Simulators for Aerial Robots
Uncrewed Aerial Vehicle (UAV) research faces challenges with safety, scalability, costs, and ecological impact when conducting hardware testing. High-fidelity simulators offer a vital solution by replicating real-world conditions to enable the development and evaluation of novel perception and control algorithms. However, the large number of available simulators poses a significant challenge for researchers to determine which simulator best suits their specific use-case, based on each simulator's limitations and customization readiness. In this paper we present an overview of 43 UAV simulators, including in-depth, systematic comparisons for 17 of the simulators. Additionally, we present a set of decision factors for selection of simulators, aiming to enhance the efficiency and safety of research endeavors.
comment: \copyright 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. Project website: https://boyuan.space/diffusion-forcing/
comment: Project website: https://boyuan.space/diffusion-forcing/
♻ ☆ ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning
We present a framework for intuitive robot programming by non-experts, leveraging natural language prompts and contextual information from the Robot Operating System (ROS). Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface. Key features of the framework include: integration of ROS with an AI agent connected to a plethora of open-source and commercial LLMs, automatic extraction of a behavior from the LLM output and execution of ROS actions/services, support for three behavior modes (sequence, behavior tree, state machine), imitation learning for adding new robot actions to the library of possible actions, and LLM reflection via human and environment feedback. Extensive experiments validate the framework, showcasing robustness, scalability, and versatility in diverse scenarios, including long-horizon tasks, tabletop rearrangements, and remote supervisory control. To facilitate the adoption of our framework and support the reproduction of our results, we have made our code open-source. You can access it at: https://github.com/huawei-noah/HEBO/tree/master/ROSLLM.
comment: This document contains 26 pages and 13 figures
♻ ☆ Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition
Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system poses significant challenges due to its high dimensionality, complex motions, and differences in physiological structure. In this study, we introduce a novel system for joint learning between human operators and robots, that enables human operators to share control of a robot end-effector with a learned assistive agent, facilitating simultaneous human demonstration collection and robot manipulation teaching. In this setup, as data accumulates, the assistive agent gradually learns. Consequently, less human effort and attention are required, enhancing the efficiency of the data collection process. It also allows the human operator to adjust the control ratio to achieve a trade-off between manual and automated control. We conducted experiments in both simulated environments and physical real-world settings. Through user studies and quantitative evaluations, it is evident that the proposed system could enhance data collection efficiency and reduce the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks. Videos are available at https://norweig1an.github.io/human-agent-joint-learning.github.io/.
comment: 8 pages, 6 figures
♻ ☆ Safe & Accurate at Speed with Tendons: A Robot Arm for Exploring Dynamic Motion
Operating robots precisely and at high speeds has been a long-standing goal of robotics research. Balancing these competing demands is key to enabling the seamless collaboration of robots and humans and increasing task performance. However, traditional motor-driven systems often fall short in this balancing act. Due to their rigid and often heavy design exacerbated by positioning the motors into the joints, faster motions of such robots transfer high forces at impact. To enable precise and safe dynamic motions, we introduce a four degree-of-freedom~(DoF) tendon-driven robot arm. Tendons allow placing the actuation at the base to reduce the robot's inertia, which we show significantly reduces peak collision forces compared to conventional robots with motors placed near the joints. Pairing our robot with pneumatic muscles allows generating high forces and highly accelerated motions, while benefiting from impact resilience through passive compliance. Since tendons are subject to additional friction and hence prone to wear and tear, we validate the reliability of our robotic arm on various experiments, including long-term dynamic motions. We also demonstrate its ease of control by quantifying the nonlinearities of the system and the performance on a challenging dynamic table tennis task learned from scratch using reinforcement learning. We open-source the entire hardware design, which can be largely 3D printed, the control software, and a proprioceptive dataset of 25 days of diverse robot motions at webdav.tuebingen.mpg.de/pamy2.
♻ ☆ Tracking Object Positions in Reinforcement Learning: A Metric for Keypoint Detection (extended version)
Reinforcement learning (RL) for robot control typically requires a detailed representation of the environment state, including information about task-relevant objects not directly measurable. Keypoint detectors, such as spatial autoencoders (SAEs), are a common approach to extracting a low-dimensional representation from high-dimensional image data. SAEs aim at spatial features such as object positions, which are often useful representations in robotic RL. However, whether an SAE is actually able to track objects in the scene and thus yields a spatial state representation well suited for RL tasks has rarely been examined due to a lack of established metrics. In this paper, we propose to assess the performance of an SAE instance by measuring how well keypoints track ground truth objects in images. We present a computationally lightweight metric and use it to evaluate common baseline SAE architectures on image data from a simulated robot task. We find that common SAEs differ substantially in their spatial extraction capability. Furthermore, we validate that SAEs that perform well in our metric achieve superior performance when used in downstream RL. Thus, our metric is an effective and lightweight indicator of RL performance before executing expensive RL training. Building on these insights, we identify three key modifications of SAE architectures to improve tracking performance.
comment: 19 pages, 12 figures
♻ ☆ Koopman Spectrum Nonlinear Regulators and Efficient Online Learning
Most modern reinforcement learning algorithms optimize a cumulative single-step cost along a trajectory. The optimized motions are often 'unnatural', representing, for example, behaviors with sudden accelerations that waste energy and lack predictability. In this work, we present a novel paradigm of controlling nonlinear systems via the minimization of the Koopman spectrum cost: a cost over the Koopman operator of the controlled dynamics. This induces a broader class of dynamical behaviors that evolve over stable manifolds such as nonlinear oscillators, closed loops, and smooth movements. We demonstrate that some dynamics characterizations that are not possible with a cumulative cost are feasible in this paradigm, which generalizes the classical eigenstructure and pole assignments to nonlinear decision making. Moreover, we present a sample efficient online learning algorithm for our problem that enjoys a sub-linear regret bound under some structural assumptions.
comment: 41 pages, 21 figures
♻ ☆ A Survey on Integration of Large Language Models with Intelligent Robots
In recent years, the integration of large language models (LLMs) has revolutionized the field of robotics, enabling robots to communicate, understand, and reason with human-like proficiency. This paper explores the multifaceted impact of LLMs on robotics, addressing key challenges and opportunities for leveraging these models across various domains. By categorizing and analyzing LLM applications within core robotics elements -- communication, perception, planning, and control -- we aim to provide actionable insights for researchers seeking to integrate LLMs into their robotic systems. Our investigation focuses on LLMs developed post-GPT-3.5, primarily in text-based modalities while also considering multimodal approaches for perception and control. We offer comprehensive guidelines and examples for prompt engineering, facilitating beginners' access to LLM-based robotics solutions. Through tutorial-level examples and structured prompt construction, we illustrate how LLM-guided enhancements can be seamlessly integrated into robotics applications. This survey serves as a roadmap for researchers navigating the evolving landscape of LLM-driven robotics, offering a comprehensive overview and practical guidance for harnessing the power of language models in robotics development.
comment: 24 pages, 1 figure, Accepted to Intelligent Service Robotics (ISR)
♻ ☆ PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency
Accurate and robust localization and mapping are essential components for most autonomous robots. In this paper, we propose a SLAM system for building globally consistent maps, called PIN-SLAM, that is based on an elastic and compact point-based implicit neural map representation. Taking range measurements as input, our approach alternates between incremental learning of the local implicit signed distance field and the pose estimation given the current local map using a correspondence-free, point-to-implicit model registration. Our implicit map is based on sparse optimizable neural points, which are inherently elastic and deformable with the global pose adjustment when closing a loop. Loops are also detected using the neural point features. Extensive experiments validate that PIN-SLAM is robust to various environments and versatile to different range sensors such as LiDAR and RGB-D cameras. PIN-SLAM achieves pose estimation accuracy better or on par with the state-of-the-art LiDAR odometry or SLAM systems and outperforms the recent neural implicit SLAM approaches while maintaining a more consistent, and highly compact implicit map that can be reconstructed as accurate and complete meshes. Finally, thanks to the voxel hashing for efficient neural points indexing and the fast implicit map-based registration without closest point association, PIN-SLAM can run at the sensor frame rate on a moderate GPU. Codes will be available at: https://github.com/PRBonn/PIN_SLAM.
comment: 20 pages
♻ ☆ Trajectory Tracking for UAVs: An Interpolating Control Approach
Building on our previous work, this paper investigates the effectiveness of interpolating control (IC) for real-time trajectory tracking. Unlike prior studies that focused on trajectory tracking itself or UAV stabilization control in simulation, we evaluate the performance of a modified extended IC (eIC) controller compared to Model Predictive Control (MPC) through both simulated and laboratory experiments with a remotely controlled UAV. The evaluation focuses on the computational efficiency and control quality of real-time UAV trajectory tracking compared to previous IC applications. The results demonstrate that the eIC controller achieves competitive performance compared to MPC while significantly reducing computational complexity, making it a promising alternative for resource-constrained platforms.
comment: 7 pages, submitted to MMAR2024 conference
♻ ☆ Natural Language Can Help Bridge the Sim2Real Gap
The main challenge in learning image-conditioned robotic policies is acquiring a visual representation conducive to low-level control. Due to the high dimensionality of the image space, learning a good visual representation requires a considerable amount of visual data. However, when learning in the real world, data is expensive. Sim2Real is a promising paradigm for overcoming data scarcity in the real-world target domain by using a simulator to collect large amounts of cheap data closely related to the target task. However, it is difficult to transfer an image-conditioned policy from sim to real when the domains are very visually dissimilar. To bridge the sim2real visual gap, we propose using natural language descriptions of images as a unifying signal across domains that captures the underlying task-relevant semantics. Our key insight is that if two image observations from different domains are labeled with similar language, the policy should predict similar action distributions for both images. We demonstrate that training the image encoder to predict the language description or the distance between descriptions of a sim or real image serves as a useful, data-efficient pretraining step that helps learn a domain-invariant image representation. We can then use this image encoder as the backbone of an IL policy trained simultaneously on a large amount of simulated and a handful of real demonstrations. Our approach outperforms widely used prior sim2real methods and strong vision-language pretraining baselines like CLIP and R3M by 25 to 40%. See additional videos and materials at https://robin-lab.cs.utexas.edu/lang4sim2real/.
comment: To appear in RSS 2024. Project website at https://robin-lab.cs.utexas.edu/lang4sim2real/
♻ ☆ Geometrically Modulable Gait Design for Quadrupeds
Miniature-legged robots are constrained by their onboard computation and control, thus motivating the need for simple, first-principles-based geometric models that connect \emph{periodic actuation or gaits} (a universal robot control paradigm) to the induced average locomotion. In this paper, we develop a \emph{modulable two-beat gait design framework} for sprawled planar quadrupedal systems under the no-slip using tools from geometric mechanics. We reduce standard two-beat gaits into unique subgaits in mutually exclusive shape subspaces. Subgaits are characterized by a locomotive stance phase when limbs are in ground contact and a non-locomotive, instantaneous swing phase where the limbs are reset without contact. During the stance phase, the contacting limbs form a four-bar mechanism. To analyze the ensuing locomotion, we develop the following tools: (a) a vector field to generate nonslip actuation, (b) the kinematics of a four-bar mechanism as a local connection, and (c) stratified panels that combine the kinematics and constrained actuation to encode the net change in the system's position generated by a stance-swing subgait cycle. Decoupled subgaits are then designed independently using flows on the shape-change basis and are combined with appropriate phasing to produce a two-beat gait. Further, we introduce ``scaling" and ``sliding" control inputs to continuously modulate the global trajectories of the quadrupedal system in gait time through which we demonstrate cycle-average speed, direction, and steering control using the control inputs. Thus, this framework has the potential to create uncomplicated open-loop gait plans or gain schedules for robots with limited resources, bringing them closer to achieving autonomous control.
comment: 8 pages, 6 figures
♻ ☆ Exploring 6G Potential for Industrial Digital Twinning and Swarm Intelligence in Obstacle-Rich Environments
With the advent of 6G technology, the demand for efficient and intelligent systems in industrial applications has surged, driving the need for advanced solutions in target localization. Utilizing swarm robots to locate unknown targets involves navigating increasingly complex environments. Digital Twinning (DT) offers a robust solution by creating a virtual replica of the physical world, which enhances the swarm's navigation capabilities. Our framework leverages DT and integrates Swarm Intelligence to store physical map information in the cloud, enabling robots to efficiently locate unknown targets. The simulation results demonstrate that the DT framework, augmented by Swarm Intelligence, significantly improves target location efficiency in obstacle-rich environments compared to traditional methods. This research underscores the potential of combining DT and Swarm Intelligence to advance the field of robotic navigation and target localization in complex industrial settings.
comment: Submitted to IEEE VTM
♻ ☆ Residual-MPPI: Online Policy Customization for Continuous Control
Policies learned through Reinforcement Learning (RL) and Imitation Learning (IL) have demonstrated significant potential in achieving advanced performance in continuous control tasks. However, in real-world environments, it is often necessary to further customize a trained policy when there are additional requirements that were unforeseen during the original training phase. It is possible to fine-tune the policy to meet the new requirements, but this often requires collecting new data with the added requirements and access to the original training metric and policy parameters. In contrast, an online planning algorithm, if capable of meeting the additional requirements, can eliminate the necessity for extensive training phases and customize the policy without knowledge of the original training scheme or task. In this work, we propose a generic online planning algorithm for customizing continuous-control policies at the execution time which we call Residual-MPPI. It is able to customize a given prior policy on new performance metrics in few-shot and even zero-shot online settings. Also, Residual-MPPI only requires access to the action distribution produced by the prior policy, without additional knowledge regarding the original task. Through our experiments, we demonstrate that the proposed Residual-MPPI algorithm can accomplish the few-shot/zero-shot online policy customization task effectively, including customizing the champion-level racing agent, Gran Turismo Sophy (GT Sophy) 1.0, in the challenging car racing scenario, Gran Turismo Sport (GTS) environment. Demo videos are available on our website: https://sites.google.com/view/residual-mppi
♻ ☆ AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents ICRA 2024
Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
comment: 26 pages, 9 figures, ICRA 2024 VLMNM Workshop
♻ ☆ Automated Robot Recovery from Assumption Violations of High-Level Specifications
This paper presents a framework that enables robots to automatically recover from assumption violations of high-level specifications during task execution. In contrast to previous methods relying on user intervention to impose additional assumptions for failure recovery, our approach leverages synthesis-based repair to suggest new robot skills that, when implemented, repair the task. Our approach detects violations of environment safety assumptions during the task execution, relaxes the assumptions to admit observed environment behaviors, and acquires new robot skills for task completion. We demonstrate our approach with a Hello Robot Stretch in a factory-like scenario.
comment: To appear in the Proceedings of the 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE 2024)
♻ ☆ SlideSLAM: Sparse, Lightweight, Decentralized Metric-Semantic SLAM for Multi-Robot Navigation
This paper develops a real-time decentralized metric-semantic Simultaneous Localization and Mapping (SLAM) approach that leverages a sparse and lightweight object-based representation to enable a heterogeneous robot team to autonomously explore 3D environments featuring indoor, urban, and forested areas without relying on GPS. We use a hierarchical metric-semantic representation of the environment, including high-level sparse semantic maps of object models and low-level voxel maps. We leverage the informativeness and viewpoint invariance of the high-level semantic map to obtain an effective semantics-driven place-recognition algorithm for inter-robot loop closure detection across aerial and ground robots with different sensing modalities. A communication module is designed to track each robot's own observations and those of other robots whenever communication links are available. Such observations are then used to construct a merged map. Our framework enables real-time decentralized operations onboard robots, allowing them to opportunistically leverage communication. We integrate and deploy our proposed framework on three types of aerial and ground robots. Extensive experimental results show an average inter-robot localization error of approximately 20 cm in position and 0.2 degrees in orientation, an object mapping F1 score consistently over 0.9, and a communication packet size of merely 2-3 megabytes per kilometer trajectory with as many as 1,000 landmarks. The project website can be found at https://xurobotics.github.io/slideslam/.
comment: Preliminary release
♻ ☆ Efficient, Responsive, and Robust Hopping on Deformable Terrain
Legged robot locomotion is hindered by a mismatch between applications where legs can outperform wheels or treads, most of which feature deformable substrates, and existing tools for planning and control, most of which assume flat, rigid substrates. In this study we focus on the ramifications of plastic terrain deformation on the hop-to-hop energy dynamics of a spring-legged monopedal hopping robot animated by a switched-compliance energy injection controller. From this deliberately simple robot-terrain template, we derive a hop-to-hop energy return map, and we use physical experiments and simulations to validate the hop-to-hop energy map for a real robot hopping on a real deformable substrate. The dynamical properties (fixed points, eigenvalues, basins of attraction) of this map provide insights into efficient, responsive, and robust locomotion on deformable terrain. Specifically, we identify constant-fixed-point surfaces in a controller parameter space that suggest it is possible to tune control parameters for efficiency or responsiveness while targeting a desired gait energy level. We also identify conditions under which fixed points of the energy map are globally stable, and we further characterize the basins of attraction of fixed points when these conditions are not satisfied. We conclude by discussing the implications of this hop-to-hop energy map for planning, control, and estimation for efficient, agile, and robust legged locomotion on deformable terrain.
comment: 20 pages, 13 figures, submitted to IEEE Transactions on Robotics
Vision 150
☆ Magic Insert: Style-Aware Drag-and-Drop
We present Magic Insert, a method for dragging-and-dropping subjects from a user-provided image into a target image of a different style in a physically plausible manner while matching the style of the target image. This work formalizes the problem of style-aware drag-and-drop and presents a method for tackling it by addressing two sub-problems: style-aware personalization and realistic object insertion in stylized images. For style-aware personalization, our method first fine-tunes a pretrained text-to-image diffusion model using LoRA and learned text tokens on the subject image, and then infuses it with a CLIP representation of the target style. For object insertion, we use Bootstrapped Domain Adaption to adapt a domain-specific photorealistic object insertion model to the domain of diverse artistic styles. Overall, the method significantly outperforms traditional approaches such as inpainting. Finally, we present a dataset, SubjectPlop, to facilitate evaluation and future progress in this area. Project page: https://magicinsert.github.io/
comment: Project page: https://magicinsert.github.io/
☆ Characterizing the Interpretability of Attention Maps in Digital Pathology
Interpreting machine learning model decisions is crucial for high-risk applications like healthcare. In digital pathology, large whole slide images (WSIs) are decomposed into smaller tiles and tile-derived features are processed by attention-based multiple instance learning (ABMIL) models to predict WSI-level labels. These networks generate tile-specific attention weights, which can be visualized as attention maps for interpretability. However, a standardized evaluation framework for these maps is lacking, questioning their reliability and ability to detect spurious correlations that can mislead models. We herein propose a framework to assess the ability of attention networks to attend to relevant features in digital pathology by creating artificial model confounders and using dedicated interpretability metrics. Models are trained and evaluated on data with tile modifications correlated with WSI labels, enabling the analysis of model sensitivity to artificial confounders and the accuracy of attention maps in highlighting them. Confounders are introduced either through synthetic tile modifications or through tile ablations based on their specific image-based features, with the latter being used to assess more clinically relevant scenarios. We also analyze the impact of varying confounder quantities at both the tile and WSI levels. Our results show that ABMIL models perform as desired within our framework. While attention maps generally highlight relevant regions, their robustness is affected by the type and number of confounders. Our versatile framework has the potential to be used in the evaluation of various methods and the exploration of image-based features driving model predictions, which could aid in biomarker discovery.
☆ Boosting Consistency in Story Visualization with Rich-Contextual Conditional Diffusion Models
Recent research showcases the considerable potential of conditional diffusion models for generating consistent stories. However, current methods, which predominantly generate stories in an autoregressive and excessively caption-dependent manner, often underrate the contextual consistency and relevance of frames during sequential generation. To address this, we propose a novel Rich-contextual Conditional Diffusion Models (RCDMs), a two-stage approach designed to enhance story generation's semantic consistency and temporal consistency. Specifically, in the first stage, the frame-prior transformer diffusion model is presented to predict the frame semantic embedding of the unknown clip by aligning the semantic correlations between the captions and frames of the known clip. The second stage establishes a robust model with rich contextual conditions, including reference images of the known clip, the predicted frame semantic embedding of the unknown clip, and text embeddings of all captions. By jointly injecting these rich contextual conditions at the image and feature levels, RCDMs can generate semantic and temporal consistency stories. Moreover, RCDMs can generate consistent stories with a single forward inference compared to autoregressive models. Our qualitative and quantitative results demonstrate that our proposed RCDMs outperform in challenging scenarios. The code and model will be available at https://github.com/muzishen/RCDMs.
☆ Understanding Alignment in Multimodal LLMs: A Comprehensive Study
Preference alignment has become a crucial component in enhancing the performance of Large Language Models (LLMs), yet its impact in Multimodal Large Language Models (MLLMs) remains comparatively underexplored. Similar to language models, MLLMs for image understanding tasks encounter challenges like hallucination. In MLLMs, hallucination can occur not only by stating incorrect facts but also by producing responses that are inconsistent with the image content. A primary objective of alignment for MLLMs is to encourage these models to align responses more closely with image information. Recently, multiple works have introduced preference datasets for MLLMs and examined different alignment methods, including Direct Preference Optimization (DPO) and Proximal Policy Optimization (PPO). However, due to variations in datasets, base model types, and alignment methods, it remains unclear which specific elements contribute most significantly to the reported improvements in these works. In this paper, we independently analyze each aspect of preference alignment in MLLMs. We start by categorizing the alignment algorithms into two groups, offline (such as DPO), and online (such as online-DPO), and show that combining offline and online methods can improve the performance of the model in certain scenarios. We review a variety of published multimodal preference datasets and discuss how the details of their construction impact model performance. Based on these insights, we introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS) that needs neither additional annotation nor external models, and show that it can achieve competitive performance to previously published alignment work for multimodal models across a range of benchmarks.
☆ SUPER: Seated Upper Body Pose Estimation using mmWave Radars
In industrial countries, adults spend a considerable amount of time sedentary each day at work, driving and during activities of daily living. Characterizing the seated upper body human poses using mmWave radars is an important, yet under-studied topic with many applications in human-machine interaction, transportation and road safety. In this work, we devise SUPER, a framework for seated upper body human pose estimation that utilizes dual-mmWave radars in close proximity. A novel masking algorithm is proposed to coherently fuse data from the radars to generate intensity and Doppler point clouds with complementary information for high-motion but small radar cross section areas (e.g., upper extremities) and low-motion but large RCS areas (e.g. torso). A lightweight neural network extracts both global and local features of upper body and output pose parameters for the Skinned Multi-Person Linear (SMPL) model. Extensive leave-one-subject-out experiments on various motion sequences from multiple subjects show that SUPER outperforms a state-of-the-art baseline method by 30 -- 184%. We also demonstrate its utility in a simple downstream task for hand-object interaction.
☆ Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials
We present Meta 3D AssetGen (AssetGen), a significant advancement in text-to-3D generation which produces faithful, high-quality meshes with texture and material control. Compared to works that bake shading in the 3D object's appearance, AssetGen outputs physically-based rendering (PBR) materials, supporting realistic relighting. AssetGen generates first several views of the object with factored shaded and albedo appearance channels, and then reconstructs colours, metalness and roughness in 3D, using a deferred shading loss for efficient supervision. It also uses a sign-distance function to represent 3D shape more reliably and introduces a corresponding loss for direct shape supervision. This is implemented using fused kernels for high memory efficiency. After mesh extraction, a texture refinement transformer operating in UV space significantly improves sharpness and details. AssetGen achieves 17% improvement in Chamfer Distance and 40% in LPIPS over the best concurrent work for few-view reconstruction, and a human preference of 72% over the best industry competitors of comparable speed, including those that support PBR. Project page with generated assets: https://assetgen.github.io
comment: Project Page: https://assetgen.github.io
☆ Predicting Visual Attention in Graphic Design Documents
We present a model for predicting visual attention during the free viewing of graphic design documents. While existing works on this topic have aimed at predicting static saliency of graphic designs, our work is the first attempt to predict both spatial attention and dynamic temporal order in which the document regions are fixated by gaze using a deep learning based model. We propose a two-stage model for predicting dynamic attention on such documents, with webpages being our primary choice of document design for demonstration. In the first stage, we predict the saliency maps for each of the document components (e.g. logos, banners, texts, etc. for webpages) conditioned on the type of document layout. These component saliency maps are then jointly used to predict the overall document saliency. In the second stage, we use these layout-specific component saliency maps as the state representation for an inverse reinforcement learning model of fixation scanpath prediction during document viewing. To test our model, we collected a new dataset consisting of eye movements from 41 people freely viewing 450 webpages (the largest dataset of its kind). Experimental results show that our model outperforms existing models in both saliency and scanpath prediction for webpages, and also generalizes very well to other graphic design documents such as comics, posters, mobile UIs, etc. and natural images.
☆ Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks
The widespread use of personal data for training machine learning models raises significant privacy concerns, as individuals have limited control over how their public data is subsequently utilized. Availability attacks have emerged as a means for data owners to safeguard their data by desning imperceptible perturbations that degrade model performance when incorporated into training datasets. However, existing availability attacks exhibit limitations in practical applicability, particularly when only a portion of the data can be perturbed. To address this challenge, we propose a novel availability attack approach termed Parameter Matching Attack (PMA). PMA is the first availability attack that works when only a portion of data can be perturbed. PMA optimizes perturbations so that when the model is trained on a mixture of clean and perturbed data, the resulting model will approach a model designed to perform poorly. Experimental results across four datasets demonstrate that PMA outperforms existing methods, achieving significant model performance degradation when a part of the training data is perturbed. Our code is available in the supplementary.
comment: 10 pages
☆ Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects
The recent availability and adaptability of text-to-image models has sparked a new era in many related domains that benefit from the learned text priors as well as high-quality and fast generation capabilities, one of which is texture generation for 3D objects. Although recent texture generation methods achieve impressive results by using text-to-image networks, the combination of global consistency, quality, and speed, which is crucial for advancing texture generation to real-world applications, remains elusive. To that end, we introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality and globally consistent textures for arbitrary geometries of any complexity degree in less than 20 seconds. Our method achieves state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map, as demonstrated by extensive qualitative and quantitative evaluations. In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.
☆ Close, But Not There: Boosting Geographic Distance Sensitivity in Visual Place Recognition
Visual Place Recognition (VPR) plays a critical role in many localization and mapping pipelines. It consists of retrieving the closest sample to a query image, in a certain embedding space, from a database of geotagged references. The image embedding is learned to effectively describe a place despite variations in visual appearance, viewpoint, and geometric changes. In this work, we formulate how limitations in the Geographic Distance Sensitivity of current VPR embeddings result in a high probability of incorrectly sorting the top-k retrievals, negatively impacting the recall. In order to address this issue in single-stage VPR, we propose a novel mining strategy, CliqueMining, that selects positive and negative examples by sampling cliques from a graph of visually similar images. Our approach boosts the sensitivity of VPR embeddings at small distance ranges, significantly improving the state of the art on relevant benchmarks. In particular, we raise recall@1 from 75% to 82% in MSLS Challenge, and from 76% to 90% in Nordland. Models and code are available at https://github.com/serizba/cliquemining.
☆ AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions. Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations. At the same time, the importance of each slice in decision-making is learned, allowing the generation of a voxel-level attention map to produces an explainable MRI. To test our method and ensure the reproducibility of our results, we chose a standardized collection of MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). On this dataset, our method significantly outperforms state-of-the-art methods in (i) distinguishing AD from cognitive normal (CN) with an accuracy of 0.856 and Matthew's correlation coefficient (MCC) of 0.712, representing improvements of 2.4\% and 5.3\% respectively over the second-best, and (ii) in the prognostic task of discerning stable from progressive mild cognitive impairment (MCI) with an accuracy of 0.725 and MCC of 0.443, showing improvements of 10.2\% and 20.5\% respectively over the second-best. We achieved this prognostic result by adopting a double transfer learning strategy, which enhanced sensitivity to morphological changes and facilitated early-stage AD detection. With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions: the \emph{hippocampus}, the \emph{amygdala}, the \emph{parahippocampal}, and the \emph{inferior lateral ventricles}. All these areas are clinically associated with AD development. Furthermore, our approach consistently found the same AD-related areas across different cross-validation folds, proving its robustness and precision in highlighting areas that align closely with known pathological markers of the disease.
comment: 21 pages, 9 figures, 9 tables
☆ Video Watermarking: Safeguarding Your Video from (Unauthorized) Annotations by Video-based LLMs
The advent of video-based Large Language Models (LLMs) has significantly enhanced video understanding. However, it has also raised some safety concerns regarding data protection, as videos can be more easily annotated, even without authorization. This paper introduces Video Watermarking, a novel technique to protect videos from unauthorized annotations by such video-based LLMs, especially concerning the video content and description, in response to specific queries. By imperceptibly embedding watermarks into key video frames with multi-modal flow-based losses, our method preserves the viewing experience while preventing misuse by video-based LLMs. Extensive experiments show that Video Watermarking significantly reduces the comprehensibility of videos with various video-based LLMs, demonstrating both stealth and robustness. In essence, our method provides a solution for securing video content, ensuring its integrity and confidentiality in the face of evolving video-based LLMs technologies.
comment: arXiv admin note: substantial text overlap with arXiv:2403.13507
☆ Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones
Pocket-sized autonomous nano-drones can revolutionize many robotic use cases, such as visual inspection in narrow, constrained spaces, and ensure safer human-robot interaction due to their tiny form factor and weight -- i.e., tens of grams. This compelling vision is challenged by the high level of intelligence needed aboard, which clashes against the limited computational and storage resources available on PULP (parallel-ultra-low-power) MCU class navigation and mission controllers that can be hosted aboard. This work moves from PULP-Dronet, a State-of-the-Art convolutional neural network for autonomous navigation on nano-drones. We introduce Tiny-PULP-Dronet: a novel methodology to squeeze by more than one order of magnitude model size (50x fewer parameters), and number of operations (27x less multiply-and-accumulate) required to run inference with similar flight performance as PULP-Dronet. This massive reduction paves the way towards affordable multi-tasking on nano-drones, a fundamental requirement for achieving high-level intelligence.
comment: 3 Figures, 1 table. Accepted for publication at IEEE Artificial Intelligence Circuits and Systems (AICAS), 2022
☆ Face Reconstruction Transfer Attack as Out-of-Distribution Generalization ECCV2024
Understanding the vulnerability of face recognition systems to malicious attacks is of critical importance. Previous works have focused on reconstructing face images that can penetrate a targeted verification system. Even in the white-box scenario, however, naively reconstructed images misrepresent the identity information, hence the attacks are easily neutralized once the face system is updated or changed. In this paper, we aim to reconstruct face images which are capable of transferring face attacks on unseen encoders. We term this problem as Face Reconstruction Transfer Attack (FRTA) and show that it can be formulated as an out-of-distribution (OOD) generalization problem. Inspired by its OOD nature, we propose to solve FRTA by Averaged Latent Search and Unsupervised Validation with pseudo target (ALSUV). To strengthen the reconstruction attack on OOD unseen encoders, ALSUV reconstructs the face by searching the latent of amortized generator StyleGAN2 through multiple latent optimization, latent optimization trajectory averaging, and unsupervised validation with a pseudo target. We demonstrate the efficacy and generalization of our method on widely used face datasets, accompanying it with extensive ablation studies and visually, qualitatively, and quantitatively analyses. The source code will be released.
comment: Accepted to ECCV2024
☆ Consistency Flow Matching: Defining Straight Flows with Velocity Consistency
Flow matching (FM) is a general framework for defining probability paths via Ordinary Differential Equations (ODEs) to transform between noise and data samples. Recent approaches attempt to straighten these flow trajectories to generate high-quality samples with fewer function evaluations, typically through iterative rectification methods or optimal transport solutions. In this paper, we introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field. Consistency-FM directly defines straight flows starting from different times to the same endpoint, imposing constraints on their velocity values. Additionally, we propose a multi-segment training approach for Consistency-FM to enhance expressiveness, achieving a better trade-off between sampling quality and speed. Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models and 1.7x faster than rectified flow models while achieving better generation quality. Our code is available at: https://github.com/YangLing0818/consistency_flow_matching
comment: Code: https://github.com/YangLing0818/consistency_flow_matching
☆ Similarity Distance-Based Label Assignment for Tiny Object Detection
Tiny object detection is becoming one of the most challenging tasks in computer vision because of the limited object size and lack of information. The label assignment strategy is a key factor affecting the accuracy of object detection. Although there are some effective label assignment strategies for tiny objects, most of them focus on reducing the sensitivity to the bounding boxes to increase the number of positive samples and have some fixed hyperparameters need to set. However, more positive samples may not necessarily lead to better detection results, in fact, excessive positive samples may lead to more false positives. In this paper, we introduce a simple but effective strategy named the Similarity Distance (SimD) to evaluate the similarity between bounding boxes. This proposed strategy not only considers both location and shape similarity but also learns hyperparameters adaptively, ensuring that it can adapt to different datasets and various object sizes in a dataset. Our approach can be simply applied in common anchor-based detectors in place of the IoU for label assignment and Non Maximum Suppression (NMS). Extensive experiments on four mainstream tiny object detection datasets demonstrate superior performance of our method, especially, 1.8 AP points and 4.1 AP points of very tiny higher than the state-of-the-art competitors on AI-TOD. Code is available at: \url{https://github.com/cszzshi/SimD}.
comment: 8 pages, 4 figures, 6 tables
☆ TokenPacker: Efficient Visual Projector for Multimodal LLM
The visual projector serves as an essential bridge between the visual encoder and the Large Language Model (LLM) in a Multimodal LLM (MLLM). Typically, MLLMs adopt a simple MLP to preserve all visual contexts via one-to-one transformation. However, the visual tokens are redundant and can be considerably increased when dealing with high-resolution images, impairing the efficiency of MLLMs significantly. Some recent works have introduced resampler or abstractor to reduce the number of resulting visual tokens. Unfortunately, they fail to capture finer details and undermine the visual reasoning capabilities of MLLMs. In this work, we propose a novel visual projector, which adopts a coarse-to-fine scheme to inject the enriched characteristics to generate the condensed visual tokens. In specific, we first interpolate the visual features as a low-resolution point query, providing the overall visual representation as the foundation. Then, we introduce a region-to-point injection module that utilizes high-resolution, multi-level region-based cues as fine-grained reference keys and values, allowing them to be fully absorbed within the corresponding local context region. This step effectively updates the coarse point query, transforming it into an enriched one for the subsequent LLM reasoning. Extensive experiments demonstrate that our approach compresses the visual tokens by 75%~89%, while achieves comparable or even better performance across diverse benchmarks with significantly higher efficiency. The source codes can be found at https://github.com/CircleRadon/TokenPacker.
comment: 16 pages, Codes:https://github.com/CircleRadon/TokenPacker
☆ SafaRi:Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation ECCV 2024
Referring Expression Segmentation (RES) aims to provide a segmentation mask of the target object in an image referred to by the text (i.e., referring expression). Existing methods require large-scale mask annotations. Moreover, such approaches do not generalize well to unseen/zero-shot scenarios. To address the aforementioned issues, we propose a weakly-supervised bootstrapping architecture for RES with several new algorithmic innovations. To the best of our knowledge, ours is the first approach that considers only a fraction of both mask and box annotations (shown in Figure 1 and Table 1) for training. To enable principled training of models in such low-annotation settings, improve image-text region-level alignment, and further enhance spatial localization of the target object in the image, we propose Cross-modal Fusion with Attention Consistency module. For automatic pseudo-labeling of unlabeled samples, we introduce a novel Mask Validity Filtering routine based on a spatially aware zero-shot proposal scoring approach. Extensive experiments show that with just 30% annotations, our model SafaRi achieves 59.31 and 48.26 mIoUs as compared to 58.93 and 48.19 mIoUs obtained by the fully-supervised SOTA method SeqTR respectively on RefCOCO+@testA and RefCOCO+testB datasets. SafaRi also outperforms SeqTR by 11.7% (on RefCOCO+testA) and 19.6% (on RefCOCO+testB) in a fully-supervised setting and demonstrates strong generalization capabilities in unseen/zero-shot tasks.
comment: Accepted at ECCV 2024
☆ Real HSI-MSI-PAN image dataset for the hyperspectral/multi-spectral/panchromatic image fusion and super-resolution fields
Nowadays, most of the hyperspectral image (HSI) fusion experiments are based on simulated datasets to compare different fusion methods. However, most of the spectral response functions and spatial downsampling functions used to create the simulated datasets are not entirely accurate, resulting in deviations in spatial and spectral features between the generated images for fusion and the real images for fusion. This reduces the credibility of the fusion algorithm, causing unfairness in the comparison between different algorithms and hindering the development of the field of hyperspectral image fusion. Therefore, we release a real HSI/MSI/PAN image dataset to promote the development of the field of hyperspectral image fusion. These three images are spatially registered, meaning fusion can be performed between HSI and MSI, HSI and PAN image, MSI and PAN image, as well as among HSI, MSI, and PAN image. This real dataset could be available at https://aistudio.baidu.com/datasetdetail/281612. The related code to process the data could be available at https://github.com/rs-lsl/CSSNet.
☆ OpenSlot: Mixed Open-set Recognition with Object-centric Learning
Existing open-set recognition (OSR) studies typically assume that each image contains only one class label, and the unknown test set (negative) has a disjoint label space from the known test set (positive), a scenario termed full-label shift. This paper introduces the mixed OSR problem, where test images contain multiple class semantics, with known and unknown classes co-occurring in negatives, leading to a more challenging super-label shift. Addressing the mixed OSR requires classification models to accurately distinguish different class semantics within images and measure their "knowness". In this study, we propose the OpenSlot framework, built upon object-centric learning. OpenSlot utilizes slot features to represent diverse class semantics and produce class predictions. Through our proposed anti-noise-slot (ANS) technique, we mitigate the impact of noise (invalid and background) slots during classification training, effectively addressing the semantic misalignment between class predictions and the ground truth. We conduct extensive experiments with OpenSlot on mixed & conventional OSR benchmarks. Without elaborate designs, OpenSlot not only exceeds existing OSR studies in detecting super-label shifts across single & multi-label mixed OSR tasks but also achieves state-of-the-art performance on conventional benchmarks. Remarkably, our method can localize class objects without using bounding boxes during training. The competitive performance in open-set object detection demonstrates OpenSlot's ability to explicitly explain label shifts and benefits in computational efficiency and generalization.
comment: This study is under IEEE TMM review
OpenVid-1M: A Large-Scale High-Quality Dataset for Text-to-video Generation
Text-to-video (T2V) generation has recently garnered significant attention thanks to the large multi-modality model Sora. However, T2V generation still faces two important challenges: 1) Lacking a precise open sourced high-quality dataset. The previous popular video datasets, e.g. WebVid-10M and Panda-70M, are either with low quality or too large for most research institutions. Therefore, it is challenging but crucial to collect a precise high-quality text-video pairs for T2V generation. 2) Ignoring to fully utilize textual information. Recent T2V methods have focused on vision transformers, using a simple cross attention module for video generation, which falls short of thoroughly extracting semantic information from text prompt. To address these issues, we introduce OpenVid-1M, a precise high-quality dataset with expressive captions. This open-scenario dataset contains over 1 million text-video pairs, facilitating research on T2V generation. Furthermore, we curate 433K 1080p videos from OpenVid-1M to create OpenVidHD-0.4M, advancing high-definition video generation. Additionally, we propose a novel Multi-modal Video Diffusion Transformer (MVDiT) capable of mining both structure information from visual tokens and semantic information from text tokens. Extensive experiments and ablation studies verify the superiority of OpenVid-1M over previous datasets and the effectiveness of our MVDiT.
comment: 15 pages, 9 figures
☆ Investigating Event-Based Cameras for Video Frame Interpolation in Sports
Slow-motion replays provide a thrilling perspective on pivotal moments within sports games, offering a fresh and captivating visual experience. However, capturing slow-motion footage typically demands high-tech, expensive cameras and infrastructures. Deep learning Video Frame Interpolation (VFI) techniques have emerged as a promising avenue, capable of generating high-speed footage from regular camera feeds. Moreover, the utilization of event-based cameras has recently gathered attention as they provide valuable motion information between frames, further enhancing the VFI performances. In this work, we present a first investigation of event-based VFI models for generating sports slow-motion videos. Particularly, we design and implement a bi-camera recording setup, including an RGB and an event-based camera to capture sports videos, to temporally align and spatially register both cameras. Our experimental validation demonstrates that TimeLens, an off-the-shelf event-based VFI model, can effectively generate slow-motion footage for sports videos. This first investigation underscores the practical utility of event-based cameras in producing sports slow-motion content and lays the groundwork for future research endeavors in this domain.
☆ GCF: Graph Convolutional Networks for Facial Expression Recognition
Facial Expression Recognition (FER) is vital for understanding interpersonal communication. However, existing classification methods often face challenges such as vulnerability to noise, imbalanced datasets, overfitting, and generalization issues. In this paper, we propose GCF, a novel approach that utilizes Graph Convolutional Networks for FER. GCF integrates Convolutional Neural Networks (CNNs) for feature extraction, using either custom architectures or pretrained models. The extracted visual features are then represented on a graph, enhancing local CNN features with global features via a Graph Convolutional Neural Network layer. We evaluate GCF on benchmark datasets including CK+, JAFFE, and FERG. The results show that GCF significantly improves performance over state-of-the-art methods. For example, GCF enhances the accuracy of ResNet18 from 92% to 98% on CK+, from 66% to 89% on JAFFE, and from 94% to 100% on FERG. Similarly, GCF improves the accuracy of VGG16 from 89% to 97% on CK+, from 72% to 92% on JAFFE, and from 96% to 99.49% on FERG. We provide a comprehensive analysis of our approach, demonstrating its effectiveness in capturing nuanced facial expressions. By integrating graph convolutions with CNNs, GCF significantly advances FER, offering improved accuracy and robustness in real-world applications.
☆ Enable the Right to be Forgotten with Federated Client Unlearning in Medical Imaging
The right to be forgotten, as stated in most data regulations, poses an underexplored challenge in federated learning (FL), leading to the development of federated unlearning (FU). However, current FU approaches often face trade-offs between efficiency, model performance, forgetting efficacy, and privacy preservation. In this paper, we delve into the paradigm of Federated Client Unlearning (FCU) to guarantee a client the right to erase the contribution or the influence, introducing the first FU framework in medical imaging. In the unlearning process of a client, the proposed model-contrastive unlearning marks a pioneering step towards feature-level unlearning, and frequency-guided memory preservation ensures smooth forgetting of local knowledge while maintaining the generalizability of the trained global model, thus avoiding performance compromises and guaranteeing rapid post-training. We evaluated our FCU framework on two public medical image datasets, including Intracranial hemorrhage diagnosis and skin lesion diagnosis, demonstrating that our framework outperformed other state-of-the-art FU frameworks, with an expected speed-up of 10-15 times compared with retraining from scratch. The code and the organized datasets can be found at: https://github.com/dzp2095/FCU.
☆ Conceptual Codebook Learning for Vision-Language Models
In this paper, we propose Conceptual Codebook Learning (CoCoLe), a novel fine-tuning method for vision-language models (VLMs) to address the challenge of improving the generalization capability of VLMs while fine-tuning them on downstream tasks in a few-shot setting. We recognize that visual concepts, such as textures, shapes, and colors are naturally transferable across domains and play a crucial role in generalization tasks. Motivated by this interesting finding, we learn a conceptual codebook consisting of visual concepts as keys and conceptual prompts as values, which serves as a link between the image encoder's outputs and the text encoder's inputs. Specifically, for a given image, we leverage the codebook to identify the most relevant conceptual prompts associated with the class embeddings to perform the classification. Additionally, we incorporate a handcrafted concept cache as a regularization to alleviate the overfitting issues in low-shot scenarios. We observe that this conceptual codebook learning method is able to achieve enhanced alignment between visual and linguistic modalities. Extensive experimental results demonstrate that our CoCoLe method remarkably outperforms the existing state-of-the-art methods across various evaluation settings, including base-to-new generalization, cross-dataset evaluation, and domain generalization tasks. Detailed ablation studies further confirm the efficacy of each component in CoCoLe.
☆ CALICO: Confident Active Learning with Integrated Calibration ICANN2024
The growing use of deep learning in safety-critical applications, such as medical imaging, has raised concerns about limited labeled data, where this demand is amplified as model complexity increases, posing hurdles for domain experts to annotate data. In response to this, active learning (AL) is used to efficiently train models with limited annotation costs. In the context of deep neural networks (DNNs), AL often uses confidence or probability outputs as a score for selecting the most informative samples. However, modern DNNs exhibit unreliable confidence outputs, making calibration essential. We propose an AL framework that self-calibrates the confidence used for sample selection during the training process, referred to as Confident Active Learning with Integrated CalibratiOn (CALICO). CALICO incorporates the joint training of a classifier and an energy-based model, instead of the standard softmax-based classifier. This approach allows for simultaneous estimation of the input data distribution and the class probabilities during training, improving calibration without needing an additional labeled dataset. Experimental results showcase improved classification performance compared to a softmax-based classifier with fewer labeled samples. Furthermore, the calibration stability of the model is observed to depend on the prior class distribution of the data.
comment: Accepted to ICANN2024
☆ Why do LLaVA Vision-Language Models Reply to Images in English?
We uncover a surprising multilingual bias occurring in a popular class of multimodal vision-language models (VLMs). Including an image in the query to a LLaVA-style VLM significantly increases the likelihood of the model returning an English response, regardless of the language of the query. This paper investigates the causes of this loss with a two-pronged approach that combines extensive ablation of the design space with a mechanistic analysis of the models' internal representations of image and text inputs. Both approaches indicate that the issue stems in the language modelling component of the LLaVA model. Statistically, we find that switching the language backbone for a bilingual language model has the strongest effect on reducing this error. Mechanistically, we provide compelling evidence that visual inputs are not mapped to a similar space as text ones, and that intervening on intermediary attention layers can reduce this bias. Our findings provide important insights to researchers and engineers seeking to understand the crossover between multimodal and multilingual spaces, and contribute to the goal of developing capable and inclusive VLMs for non-English contexts.
comment: Pre-print
☆ MIGC++: Advanced Multi-Instance Generation Controller for Image Synthesis
We introduce the Multi-Instance Generation (MIG) task, which focuses on generating multiple instances within a single image, each accurately placed at predefined positions with attributes such as category, color, and shape, strictly following user specifications. MIG faces three main challenges: avoiding attribute leakage between instances, supporting diverse instance descriptions, and maintaining consistency in iterative generation. To address attribute leakage, we propose the Multi-Instance Generation Controller (MIGC). MIGC generates multiple instances through a divide-and-conquer strategy, breaking down multi-instance shading into single-instance tasks with singular attributes, later integrated. To provide more types of instance descriptions, we developed MIGC++. MIGC++ allows attribute control through text \& images and position control through boxes \& masks. Lastly, we introduced the Consistent-MIG algorithm to enhance the iterative MIG ability of MIGC and MIGC++. This algorithm ensures consistency in unmodified regions during the addition, deletion, or modification of instances, and preserves the identity of instances when their attributes are changed. We introduce the COCO-MIG and Multimodal-MIG benchmarks to evaluate these methods. Extensive experiments on these benchmarks, along with the COCO-Position benchmark and DrawBench, demonstrate that our methods substantially outperform existing techniques, maintaining precise control over aspects including position, attribute, and quantity. Project page: https://github.com/limuloo/MIGC.
☆ VFIMamba: Video Frame Interpolation with State Space Models
Inter-frame modeling is pivotal in generating intermediate frames for video frame interpolation (VFI). Current approaches predominantly rely on convolution or attention-based models, which often either lack sufficient receptive fields or entail significant computational overheads. Recently, Selective State Space Models (S6) have emerged, tailored specifically for long sequence modeling, offering both linear complexity and data-dependent modeling capabilities. In this paper, we propose VFIMamba, a novel frame interpolation method for efficient and dynamic inter-frame modeling by harnessing the S6 model. Our approach introduces the Mixed-SSM Block (MSB), which initially rearranges tokens from adjacent frames in an interleaved fashion and subsequently applies multi-directional S6 modeling. This design facilitates the efficient transmission of information across frames while upholding linear complexity. Furthermore, we introduce a novel curriculum learning strategy that progressively cultivates proficiency in modeling inter-frame dynamics across varying motion magnitudes, fully unleashing the potential of the S6 model. Experimental findings showcase that our method attains state-of-the-art performance across diverse benchmarks, particularly excelling in high-resolution scenarios. In particular, on the X-TEST dataset, VFIMamba demonstrates a noteworthy improvement of 0.80 dB for 4K frames and 0.96 dB for 2K frames.
☆ Semantically Guided Representation Learning For Action Anticipation ECCV'24
Action anticipation is the task of forecasting future activity from a partially observed sequence of events. However, this task is exposed to intrinsic future uncertainty and the difficulty of reasoning upon interconnected actions. Unlike previous works that focus on extrapolating better visual and temporal information, we concentrate on learning action representations that are aware of their semantic interconnectivity based on prototypical action patterns and contextual co-occurrences. To this end, we propose the novel Semantically Guided Representation Learning (S-GEAR) framework. S-GEAR learns visual action prototypes and leverages language models to structure their relationship, inducing semanticity. To gather insights on S-GEAR's effectiveness, we test it on four action anticipation benchmarks, obtaining improved results compared to previous works: +3.5, +2.7, and +3.5 absolute points on Top-1 Accuracy on Epic-Kitchen 55, EGTEA Gaze+ and 50 Salads, respectively, and +0.8 on Top-5 Recall on Epic-Kitchens 100. We further observe that S-GEAR effectively transfers the geometric associations between actions from language to visual prototypes. Finally, S-GEAR opens new research frontiers in anticipation tasks by demonstrating the intricate impact of action semantic interconnectivity.
comment: Accepted as a full paper at ECCV'24 with Paper ID #4140
☆ Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather ECCV 2024
Existing LiDAR semantic segmentation methods often struggle with performance declines in adverse weather conditions. Previous research has addressed this issue by simulating adverse weather or employing universal data augmentation during training. However, these methods lack a detailed analysis and understanding of how adverse weather negatively affects LiDAR semantic segmentation performance. Motivated by this issue, we identified key factors of adverse weather and conducted a toy experiment to pinpoint the main causes of performance degradation: (1) Geometric perturbation due to refraction caused by fog or droplets in the air and (2) Point drop due to energy absorption and occlusions. Based on these findings, we propose new strategic data augmentation techniques. First, we introduced a Selective Jittering (SJ) that jitters points in the random range of depth (or angle) to mimic geometric perturbation. Additionally, we developed a Learnable Point Drop (LPD) to learn vulnerable erase patterns with Deep Q-Learning Network to approximate the point drop phenomenon from adverse weather conditions. Without precise weather simulation, these techniques strengthen the LiDAR semantic segmentation model by exposing it to vulnerable conditions identified by our data-centric analysis. Experimental results confirmed the suitability of the proposed data augmentation methods for enhancing robustness against adverse weather conditions. Our method attains a remarkable 39.5 mIoU on the SemanticKITTI-to-SemanticSTF benchmark, surpassing the previous state-of-the-art by over 5.4%p, tripling the improvement over the baseline compared to previous methods achieved.
comment: 19 pages, 6 figures, accpeted in ECCV 2024
☆ A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling
Feature upsampling is a fundamental and indispensable ingredient of almost all current network structures for image segmentation tasks. Recently, a popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance to help upsample the low-resolution deep feature based on their local similarity. Albeit achieving promising performance, this pipeline has specific limitations: 1) HR query and LR key features are not well aligned; 2) the similarity between query-key features is computed based on the fixed inner product form; 3) neighbor selection is coarsely operated on LR features, resulting in mosaic artifacts. These shortcomings make the existing methods along this pipeline primarily applicable to hierarchical network architectures with iterative features as guidance and they are not readily extended to a broader range of structures, especially for a direct high-ratio upsampling. Against the issues, we meticulously optimize every methodological design. Specifically, we firstly propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives, and then construct a parameterized paired central difference convolution block for flexibly calculating the similarity between the well-aligned query-key features. Besides, we develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts. Based on these careful designs, we systematically construct a refreshed similarity-based feature upsampling framework named ReSFU. Extensive experiments substantiate that our proposed ReSFU is finely applicable to various types of architectures in a direct high-ratio upsampling manner, and consistently achieves satisfactory performance on different segmentation applications, showing superior generality and ease of deployment.
comment: Codes are available at https://github.com/zmhhmz/ReSFU
☆ FedIA: Federated Medical Image Segmentation with Heterogeneous Annotation Completeness MICCAI 2024
Federated learning has emerged as a compelling paradigm for medical image segmentation, particularly in light of increasing privacy concerns. However, most of the existing research relies on relatively stringent assumptions regarding the uniformity and completeness of annotations across clients. Contrary to this, this paper highlights a prevalent challenge in medical practice: incomplete annotations. Such annotations can introduce incorrectly labeled pixels, potentially undermining the performance of neural networks in supervised learning. To tackle this issue, we introduce a novel solution, named FedIA. Our insight is to conceptualize incomplete annotations as noisy data (\textit{i.e.}, low-quality data), with a focus on mitigating their adverse effects. We begin by evaluating the completeness of annotations at the client level using a designed indicator. Subsequently, we enhance the influence of clients with more comprehensive annotations and implement corrections for incomplete ones, thereby ensuring that models are trained on accurate data. Our method's effectiveness is validated through its superior performance on two extensively used medical image segmentation datasets, outperforming existing solutions. The code is available at https://github.com/HUSTxyy/FedIA.
comment: Early accepted by MICCAI 2024
☆ Aligning Human Motion Generation with Human Perceptions
Human motion generation is a critical task with a wide range of applications. Achieving high realism in generated motions requires naturalness, smoothness, and plausibility. Despite rapid advancements in the field, current generation methods often fall short of these goals. Furthermore, existing evaluation metrics typically rely on ground-truth-based errors, simple heuristics, or distribution distances, which do not align well with human perceptions of motion quality. In this work, we propose a data-driven approach to bridge this gap by introducing a large-scale human perceptual evaluation dataset, MotionPercept, and a human motion critic model, MotionCritic, that capture human perceptual preferences. Our critic model offers a more accurate metric for assessing motion quality and could be readily integrated into the motion generation pipeline to enhance generation quality. Extensive experiments demonstrate the effectiveness of our approach in both evaluating and improving the quality of generated human motions by aligning with human perceptions. Code and data are publicly available at https://motioncritic.github.io/.
comment: Project page: https://motioncritic.github.io/
☆ SOAF: Scene Occlusion-aware Neural Acoustic Field
This paper tackles the problem of novel view audio-visual synthesis along an arbitrary trajectory in an indoor scene, given the audio-video recordings from other known trajectories of the scene. Existing methods often overlook the effect of room geometry, particularly wall occlusion to sound propagation, making them less accurate in multi-room environments. In this work, we propose a new approach called Scene Occlusion-aware Acoustic Field (SOAF) for accurate sound generation. Our approach derives a prior for sound energy field using distance-aware parametric sound-propagation modelling and then transforms it based on scene transmittance learned from the input video. We extract features from the local acoustic field centred around the receiver using a Fibonacci Sphere to generate binaural audio for novel views with a direction-aware attention mechanism. Extensive experiments on the real dataset~\emph{RWAVS} and the synthetic dataset~\emph{SoundSpaces} demonstrate that our method outperforms previous state-of-the-art techniques in audio generation. Project page: https://github.com/huiyu-gao/SOAF/.
☆ Federated Distillation for Medical Image Classification: Towards Trustworthy Computer-Aided Diagnosis
Medical image classification plays a crucial role in computer-aided clinical diagnosis. While deep learning techniques have significantly enhanced efficiency and reduced costs, the privacy-sensitive nature of medical imaging data complicates centralized storage and model training. Furthermore, low-resource healthcare organizations face challenges related to communication overhead and efficiency due to increasing data and model scales. This paper proposes a novel privacy-preserving medical image classification framework based on federated learning to address these issues, named FedMIC. The framework enables healthcare organizations to learn from both global and local knowledge, enhancing local representation of private data despite statistical heterogeneity. It provides customized models for organizations with diverse data distributions while minimizing communication overhead and improving efficiency without compromising performance. Our FedMIC enhances robustness and practical applicability under resource-constrained conditions. We demonstrate FedMIC's effectiveness using four public medical image datasets for classical medical image classification tasks.
comment: work in progress. arXiv admin note: text overlap with arXiv:2401.01493
☆ Parameter-Selective Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to adapt a pretrained model to ever-changing environments during the test time under continuous domain shifts. Most existing CTTA approaches are based on the Mean Teacher (MT) structure, which contains a student and a teacher model, where the student is updated using the pseudo-labels from the teacher model, and the teacher is then updated by exponential moving average strategy. However, these methods update the MT model indiscriminately on all parameters of the model. That is, some critical parameters involving sharing knowledge across different domains may be erased, intensifying error accumulation and catastrophic forgetting. In this paper, we introduce Parameter-Selective Mean Teacher (PSMT) method, which is capable of effectively updating the critical parameters within the MT network under domain shifts. First, we introduce a selective distillation mechanism in the student model, which utilizes past knowledge to regularize novel knowledge, thereby mitigating the impact of error accumulation. Second, to avoid catastrophic forgetting, in the teacher model, we create a mask through Fisher information to selectively update parameters via exponential moving average, with preservation measures applied to crucial parameters. Extensive experimental results verify that PSMT outperforms state-of-the-art methods across multiple benchmark datasets. Our code is available at \url{https://github.com/JiaxuTian/PSMT}.
comment: 17pages, 4 figures
☆ GlyphDraw2: Automatic Generation of Complex Glyph Posters with Diffusion Models and Large Language Models
Posters play a crucial role in marketing and advertising, contributing significantly to industrial design by enhancing visual communication and brand visibility. With recent advances in controllable text-to-image diffusion models, more concise research is now focusing on rendering text within synthetic images. Despite improvements in text rendering accuracy, the field of end-to-end poster generation remains underexplored. This complex task involves striking a balance between text rendering accuracy and automated layout to produce high-resolution images with variable aspect ratios. To tackle this challenge, we propose an end-to-end text rendering framework employing a triple cross-attention mechanism rooted in align learning, designed to create precise poster text within detailed contextual backgrounds. Additionally, we introduce a high-resolution dataset that exceeds 1024 pixels in image resolution. Our approach leverages the SDXL architecture. Extensive experiments validate the ability of our method to generate poster images featuring intricate and contextually rich backgrounds. Codes will be available at https://github.com/OPPO-Mente-Lab/GlyphDraw2.
☆ EvolBA: Evolutionary Boundary Attack under Hard-label Black Box condition
Research has shown that deep neural networks (DNNs) have vulnerabilities that can lead to the misrecognition of Adversarial Examples (AEs) with specifically designed perturbations. Various adversarial attack methods have been proposed to detect vulnerabilities under hard-label black box (HL-BB) conditions in the absence of loss gradients and confidence scores.However, these methods fall into local solutions because they search only local regions of the search space. Therefore, this study proposes an adversarial attack method named EvolBA to generate AEs using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) under the HL-BB condition, where only a class label predicted by the target DNN model is available. Inspired by formula-driven supervised learning, the proposed method introduces domain-independent operators for the initialization process and a jump that enhances search exploration. Experimental results confirmed that the proposed method could determine AEs with smaller perturbations than previous methods in images where the previous methods have difficulty.
☆ Sign Language Recognition Based On Facial Expression and Hand Skeleton
Sign language is a visual language used by the deaf and dumb community to communicate. However, for most recognition methods based on monocular cameras, the recognition accuracy is low and the robustness is poor. Even if the effect is good on some data, it may perform poorly in other data with different interference due to the inability to extract effective features. To solve these problems, we propose a sign language recognition network that integrates skeleton features of hands and facial expression. Among this, we propose a hand skeleton feature extraction based on coordinate transformation to describe the shape of the hand more accurately. Moreover, by incorporating facial expression information, the accuracy and robustness of sign language recognition are finally improved, which was verified on A Dataset for Argentinian Sign Language and SEU's Chinese Sign Language Recognition Database (SEUCSLRD).
comment: 2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC)
☆ LaMoD: Latent Motion Diffusion Model For Myocardial Strain Generation
Motion and deformation analysis of cardiac magnetic resonance (CMR) imaging videos is crucial for assessing myocardial strain of patients with abnormal heart functions. Recent advances in deep learning-based image registration algorithms have shown promising results in predicting motion fields from routinely acquired CMR sequences. However, their accuracy often diminishes in regions with subtle appearance change, with errors propagating over time. Advanced imaging techniques, such as displacement encoding with stimulated echoes (DENSE) CMR, offer highly accurate and reproducible motion data but require additional image acquisition, which poses challenges in busy clinical flows. In this paper, we introduce a novel Latent Motion Diffusion model (LaMoD) to predict highly accurate DENSE motions from standard CMR videos. More specifically, our method first employs an encoder from a pre-trained registration network that learns latent motion features (also considered as deformation-based shape features) from image sequences. Supervised by the ground-truth motion provided by DENSE, LaMoD then leverages a probabilistic latent diffusion model to reconstruct accurate motion from these extracted features. Experimental results demonstrate that our proposed method, LaMoD, significantly improves the accuracy of motion analysis in standard CMR images; hence improving myocardial strain analysis in clinical settings for cardiac patients. Our code will be publicly available on upon acceptance.
☆ MTMamba: Enhancing Multi-Task Dense Scene Understanding by Mamba-Based Decoders
Multi-task dense scene understanding, which learns a model for multiple dense prediction tasks, has a wide range of application scenarios. Modeling long-range dependency and enhancing cross-task interactions are crucial to multi-task dense prediction. In this paper, we propose MTMamba, a novel Mamba-based architecture for multi-task scene understanding. It contains two types of core blocks: self-task Mamba (STM) block and cross-task Mamba (CTM) block. STM handles long-range dependency by leveraging Mamba, while CTM explicitly models task interactions to facilitate information exchange across tasks. Experiments on NYUDv2 and PASCAL-Context datasets demonstrate the superior performance of MTMamba over Transformer-based and CNN-based methods. Notably, on the PASCAL-Context dataset, MTMamba achieves improvements of +2.08, +5.01, and +4.90 over the previous best method in the tasks of semantic segmentation, human parsing, and object boundary detection, respectively. The code is available at \url{https://github.com/EnVision-Research/MTMamba}.
Detecting Driver Fatigue With Eye Blink Behavior
Traffic accidents, causing millions of deaths and billions of dollars in economic losses each year globally, have become a significant issue. One of the main causes of these accidents is drivers being sleepy or fatigued. Recently, various studies have focused on detecting drivers' sleep/wake states using camera-based solutions that do not require physical contact with the driver, thereby enhancing ease of use. In this study, besides the eye blink frequency, a driver adaptive eye blink behavior feature set have been evaluated to detect the fatigue status. It is observed from the results that behavior of eye blink carries useful information on fatigue detection. The developed image-based system provides a solution that can work adaptively to the physical characteristics of the drivers and their positions in the vehicle
comment: 9 pages, 4 figures 3 tables
☆ Multi-Modal Video Dialog State Tracking in the Wild ECCV 2024
We present MST-MIXER - a novel video dialog model operating over a generic multi-modal state tracking scheme. Current models that claim to perform multi-modal state tracking fall short of two major aspects: (1) They either track only one modality (mostly the visual input) or (2) they target synthetic datasets that do not reflect the complexity of real-world in the wild scenarios. Our model addresses these two limitations in an attempt to close this crucial research gap. Specifically, MST-MIXER first tracks the most important constituents of each input modality. Then, it predicts the missing underlying structure of the selected constituents of each modality by learning local latent graphs using a novel multi-modal graph structure learning method. Subsequently, the learned local graphs and features are parsed together to form a global graph operating on the mix of all modalities which further refines its structure and node embeddings. Finally, the fine-grained graph node features are used to enhance the hidden states of the backbone Vision-Language Model (VLM). MST-MIXER achieves new state-of-the-art results on five challenging benchmarks.
comment: ECCV 2024
☆ Research on Reliable and Safe Occupancy Grid Prediction in Underground Parking Lots
Against the backdrop of advancing science and technology, autonomous vehicle technology has emerged as a focal point of intense scrutiny within the academic community. Nevertheless, the challenge persists in guaranteeing the safety and reliability of this technology when navigating intricate scenarios. While a substantial portion of autonomous driving research is dedicated to testing in open-air environments, such as urban roads and highways, where the myriad variables at play are meticulously examined, enclosed indoor spaces like underground parking lots have, to a significant extent, been overlooked in the scholarly discourse. This discrepancy highlights a gap in derstanding the unique challenges these confined settings pose for autonomous navigation systems. This study tackles indoor autonomous driving, particularly in overlooked spaces like underground parking lots. Using CARLA's simulation platform, a realistic parking model is created for data gathering. An occupancy grid network then processes this data to predict vehicle paths and obstacles, enhancing the system's perception in complex indoor environments. Ultimately, this strategy improves safety in autonomous parking operations. The paper meticulously evaluates the model's predictive capabilities, validating its efficacy in the context of underground parking. Our findings confirm that the proposed strategy successfully enhances autonomous vehicle performance in these complex indoor settings. It equips autonomous systems with improved adaptation to underground lots, reinforcing safety measures and dependability. This work paves the way for future advancements and applications by addressing the research shortfall concerning indoor parking environments, serving as a pivotal reference point.
comment: 15 pages, 19 figures
☆ Structure-Aware Consensus Network on Graphs with Few Labeled Nodes
Graph node classification with few labeled nodes presents significant challenges due to limited supervision. Conventional methods often exploit the graph in a transductive learning manner. They fail to effectively utilize the abundant unlabeled data and the structural information inherent in graphs. To address these issues, we introduce a Structure-Aware Consensus Network (SACN) from three perspectives. Firstly, SACN leverages a novel structure-aware consensus learning strategy between two strongly augmented views. The proposed strategy can fully exploit the potentially useful information of the unlabeled nodes and the structural information of the entire graph. Secondly, SACN uniquely integrates the graph's structural information to achieve strong-to-strong consensus learning, improving the utilization of unlabeled data while maintaining multiview learning. Thirdly, unlike two-branch graph neural network-based methods, SACN is designed for multiview feature learning within a single-branch architecture. Furthermore, a class-aware pseudolabel selection strategy helps address class imbalance and achieve effective weak-to-strong supervision. Extensive experiments on three benchmark datasets demonstrate SACN's superior performance in node classification tasks, particularly at very low label rates, outperforming state-of-the-art methods while maintaining computational simplicity.The source code is available at https://github.com/kunzhan/SACN
comment: under review
☆ Virtually Objective Quantification of in vitro Wound Healing Scratch Assays with the Segment Anything Model
The in vitro scratch assay is a widely used assay in cell biology to assess the rate of wound closure related to a variety of therapeutic interventions. While manual measurement is subjective and vulnerable to intra- and interobserver variability, computer-based tools are theoretically objective, but in practice often contain parameters which are manually adjusted (individually per image or data set) and thereby provide a source for subjectivity. Modern deep learning approaches typically require large annotated training data which complicates instant applicability. In this paper, we make use of the segment anything model, a deep foundation model based on interactive point-prompts, which enables class-agnostic segmentation without tuning the network's parameters based on domain specific training data. The proposed method clearly outperformed a semi-objective baseline method that required manual inspection and, if necessary, adjustment of parameters per image. Even though the point prompts of the proposed approach are theoretically also a source for subjectivity, results attested very low intra- and interobserver variability, even compared to manual segmentation of domain experts.
☆ Occlusion-Aware Seamless Segmentation ECCV 2024
Panoramic images can broaden the Field of View (FoV), occlusion-aware prediction can deepen the understanding of the scene, and domain adaptation can transfer across viewing domains. In this work, we introduce a novel task, Occlusion-Aware Seamless Segmentation (OASS), which simultaneously tackles all these three challenges. For benchmarking OASS, we establish a new human-annotated dataset for Blending Panoramic Amodal Seamless Segmentation, i.e., BlendPASS. Besides, we propose the first solution UnmaskFormer, aiming at unmasking the narrow FoV, occlusions, and domain gaps all at once. Specifically, UnmaskFormer includes the crucial designs of Unmasking Attention (UA) and Amodal-oriented Mix (AoMix). Our method achieves state-of-the-art performance on the BlendPASS dataset, reaching a remarkable mAPQ of 26.58% and mIoU of 43.66%. On public panoramic semantic segmentation datasets, i.e., SynPASS and DensePASS, our method outperforms previous methods and obtains 45.34% and 48.08% in mIoU, respectively. The fresh BlendPASS dataset and our source code will be made publicly available at https://github.com/yihong-97/OASS.
comment: Accepted to ECCV 2024. The fresh dataset and the source code will be made publicly available at https://github.com/yihong-97/OASS
☆ BeNeRF: Neural Radiance Fields from a Single Blurry Image and Event Stream ECCV 2024
Neural implicit representation of visual scenes has attracted a lot of attention in recent research of computer vision and graphics. Most prior methods focus on how to reconstruct 3D scene representation from a set of images. In this work, we demonstrate the possibility to recover the neural radiance fields (NeRF) from a single blurry image and its corresponding event stream. We model the camera motion with a cubic B-Spline in SE(3) space. Both the blurry image and the brightness change within a time interval, can then be synthesized from the 3D scene representation given the 6-DoF poses interpolated from the cubic B-Spline. Our method can jointly learn both the implicit neural scene representation and recover the camera motion by minimizing the differences between the synthesized data and the real measurements without pre-computed camera poses from COLMAP. We evaluate the proposed method with both synthetic and real datasets. The experimental results demonstrate that we are able to render view-consistent latent sharp images from the learned NeRF and bring a blurry image alive in high quality. Code and data are available at https://github.com/WU-CVGL/BeNeRF.
comment: Accepted to ECCV 2024
☆ RETINA: a hardware-in-the-loop optical facility with reduced optical aberrations
The increasing interest in spacecraft autonomy and the complex tasks to be accomplished by the spacecraft raise the need for a trustworthy approach to perform Verification & Validation of Guidance, Navigation, and Control algorithms. In the context of autonomous operations, vision-based navigation algorithms have established themselves as effective solutions to determine the spacecraft state in orbit with low-cost and versatile sensors. Nevertheless, detailed testing must be performed on ground to understand the algorithm's robustness and performance on flight hardware. Given the impossibility of testing directly on orbit these algorithms, a dedicated simulation framework must be developed to emulate the orbital environment in a laboratory setup. This paper presents the design of a low-aberration optical facility called RETINA to perform this task. RETINA is designed to accommodate cameras with different characteristics (e.g., sensor size and focal length) while ensuring the correct stimulation of the camera detector. A preliminary design is performed to identify the range of possible components to be used in the facility according to the facility requirements. Then, a detailed optical design is performed in Zemax OpticStudio to optimize the number and characteristics of the lenses composing the facility's optical systems. The final design is compared against the preliminary design to show the superiority of the optical performance achieved with this approach. This work presents also a calibration procedure to estimate the misalignment and the centering errors in the facility. These estimated parameters are used in a dedicated compensation algorithm, enabling the stimulation of the camera at tens of arcseconds of precision. Finally, two different applications are presented to show the versatility of RETINA in accommodating different cameras and in simulating different mission scenarios.
☆ WildAvatar: Web-scale In-the-wild Video Dataset for 3D Avatar Creation
Existing human datasets for avatar creation are typically limited to laboratory environments, wherein high-quality annotations (e.g., SMPL estimation from 3D scans or multi-view images) can be ideally provided. However, their annotating requirements are impractical for real-world images or videos, posing challenges toward real-world applications on current avatar creation methods. To this end, we propose the WildAvatar dataset, a web-scale in-the-wild human avatar creation dataset extracted from YouTube, with $10,000+$ different human subjects and scenes. WildAvatar is at least $10\times$ richer than previous datasets for 3D human avatar creation. We evaluate several state-of-the-art avatar creation methods on our dataset, highlighting the unexplored challenges in real-world applications on avatar creation. We also demonstrate the potential for generalizability of avatar creation methods, when provided with data at scale. We will publicly release our data source links and annotations, to push forward 3D human avatar creation and other related fields for real-world applications.
☆ SparseSSP: 3D Subcellular Structure Prediction from Sparse-View Transmitted Light Images ECCV 2024
Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.
comment: ECCV 2024
☆ UltraPixel: Advancing Ultra-High-Resolution Image Synthesis to New Peaks
Ultra-high-resolution image generation poses great challenges, such as increased semantic planning complexity and detail synthesis difficulties, alongside substantial training resource demands. We present UltraPixel, a novel architecture utilizing cascade diffusion models to generate high-quality images at multiple resolutions (\textit{e.g.}, 1K to 6K) within a single model, while maintaining computational efficiency. UltraPixel leverages semantics-rich representations of lower-resolution images in the later denoising stage to guide the whole generation of highly detailed high-resolution images, significantly reducing complexity. Furthermore, we introduce implicit neural representations for continuous upsampling and scale-aware normalization layers adaptable to various resolutions. Notably, both low- and high-resolution processes are performed in the most compact space, sharing the majority of parameters with less than 3$\%$ additional parameters for high-resolution outputs, largely enhancing training and inference efficiency. Our model achieves fast training with reduced data requirements, producing photo-realistic high-resolution images and demonstrating state-of-the-art performance in extensive experiments.
☆ FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs
Dynamic Facial Expression Recognition (DFER) is crucial for understanding human behavior. However, current methods exhibit limited performance mainly due to the scarcity of high-quality data, the insufficient utilization of facial dynamics, and the ambiguity of expression semantics, etc. To this end, we propose a novel framework, named Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs (FineCLIPER), incorporating the following novel designs: 1) To better distinguish between similar facial expressions, we extend the class labels to textual descriptions from both positive and negative aspects, and obtain supervision by calculating the cross-modal similarity based on the CLIP model; 2) Our FineCLIPER adopts a hierarchical manner to effectively mine useful cues from DFE videos. Specifically, besides directly embedding video frames as input (low semantic level), we propose to extract the face segmentation masks and landmarks based on each frame (middle semantic level) and utilize the Multi-modal Large Language Model (MLLM) to further generate detailed descriptions of facial changes across frames with designed prompts (high semantic level). Additionally, we also adopt Parameter-Efficient Fine-Tuning (PEFT) to enable efficient adaptation of large pre-trained models (i.e., CLIP) for this task. Our FineCLIPER achieves SOTA performance on the DFEW, FERV39k, and MAFW datasets in both supervised and zero-shot settings with few tunable parameters. Analysis and ablation studies further validate its effectiveness.
comment: Project Page: https://haroldchen19.github.io/FineCLIPER-Page/
☆ VRBiom: A New Periocular Dataset for Biometric Applications of HMD
With advancements in hardware, high-quality HMD devices are being developed by numerous companies, driving increased consumer interest in AR, VR, and MR applications. In this work, we present a new dataset, called VRBiom, of periocular videos acquired using a Virtual Reality headset. The VRBiom, targeted at biometric applications, consists of 900 short videos acquired from 25 individuals recorded in the NIR spectrum. These 10s long videos have been captured using the internal tracking cameras of Meta Quest Pro at 72 FPS. To encompass real-world variations, the dataset includes recordings under three gaze conditions: steady, moving, and partially closed eyes. We have also ensured an equal split of recordings without and with glasses to facilitate the analysis of eye-wear. These videos, characterized by non-frontal views of the eye and relatively low spatial resolutions (400 x 400), can be instrumental in advancing state-of-the-art research across various biometric applications. The VRBiom dataset can be utilized to evaluate, train, or adapt models for biometric use-cases such as iris and/or periocular recognition and associated sub-tasks such as detection and semantic segmentation. In addition to data from real individuals, we have included around 1100 PA constructed from 92 PA instruments. These PAIs fall into six categories constructed through combinations of print attacks (real and synthetic identities), fake 3D eyeballs, plastic eyes, and various types of masks and mannequins. These PA videos, combined with genuine (bona-fide) data, can be utilized to address concerns related to spoofing, which is a significant threat if these devices are to be used for authentication. The VRBiom dataset is publicly available for research purposes related to biometric applications only.
☆ Hybrid Feature Collaborative Reconstruction Network for Few-Shot Fine-Grained Image Classification
Our research focuses on few-shot fine-grained image classification, which faces two major challenges: appearance similarity of fine-grained objects and limited number of samples. To preserve the appearance details of images, traditional feature reconstruction networks usually enhance the representation ability of key features by spatial feature reconstruction and minimizing the reconstruction error. However, we find that relying solely on a single type of feature is insufficient for accurately capturing inter-class differences of fine-grained objects in scenarios with limited samples. In contrast, the introduction of channel features provides additional information dimensions, aiding in better understanding and distinguishing the inter-class differences of fine-grained objects. Therefore, in this paper, we design a new Hybrid Feature Collaborative Reconstruction Network (HFCR-Net) for few-shot fine-grained image classification, which includes a Hybrid Feature Fusion Process (HFFP) and a Hybrid Feature Reconstruction Process (HFRP). In HFRP, we fuse the channel features and the spatial features. Through dynamic weight adjustment, we aggregate the spatial dependencies between arbitrary two positions and the correlations between different channels of each image to increase the inter-class differences. Additionally, we introduce the reconstruction of channel dimension in HFRP. Through the collaborative reconstruction of channel dimension and spatial dimension, the inter-class differences are further increased in the process of support-to-query reconstruction, while the intra-class differences are reduced in the process of query-to-support reconstruction. Ultimately, our extensive experiments on three widely used fine-grained datasets demonstrate the effectiveness and superiority of our approach.
☆ HRSAM: Efficiently Segment Anything in High-Resolution Images
The Segment Anything Model (SAM) has significantly advanced interactive segmentation but struggles with high-resolution images crucial for high-precision segmentation. This is primarily due to the quadratic space complexity of SAM-implemented attention and the length extrapolation issue in common global attention. This study proposes HRSAM that integrates Flash Attention and incorporates Plain, Shifted and newly proposed Cycle-scan Window (PSCWin) attention to address these issues. The shifted window attention is redesigned with padding to maintain consistent window sizes, enabling effective length extrapolation. The cycle-scan window attention adopts the recently developed State Space Models (SSMs) to ensure global information exchange with minimal computational overhead. Such window-based attention allows HRSAM to perform effective attention computations on scaled input images while maintaining low latency. Moreover, we further propose HRSAM++ that additionally employs a multi-scale strategy to enhance HRSAM's performance. The experiments on the high-precision segmentation datasets HQSeg44K and DAVIS show that high-resolution inputs enable the SAM-distilled HRSAM models to outperform the teacher model while maintaining lower latency. Compared to the SOTAs, HRSAM achieves a 1.56 improvement in interactive segmentation's NoC95 metric with only 31% of the latency. HRSAM++ further enhances the performance, achieving a 1.63 improvement in NoC95 with just 38% of the latency.
☆ Joint-Dataset Learning and Cross-Consistent Regularization for Text-to-Motion Retrieval
Pose-estimation methods enable extracting human motion from common videos in the structured form of 3D skeleton sequences. Despite great application opportunities, effective content-based access to such spatio-temporal motion data is a challenging problem. In this paper, we focus on the recently introduced text-motion retrieval tasks, which aim to search for database motions that are the most relevant to a specified natural-language textual description (text-to-motion) and vice-versa (motion-to-text). Despite recent efforts to explore these promising avenues, a primary challenge remains the insufficient data available to train robust text-motion models effectively. To address this issue, we propose to investigate joint-dataset learning - where we train on multiple text-motion datasets simultaneously - together with the introduction of a Cross-Consistent Contrastive Loss function (CCCL), which regularizes the learned text-motion common space by imposing uni-modal constraints that augment the representation ability of the trained network. To learn a proper motion representation, we also introduce a transformer-based motion encoder, called MoT++, which employs spatio-temporal attention to process sequences of skeleton data. We demonstrate the benefits of the proposed approaches on the widely-used KIT Motion-Language and HumanML3D datasets. We perform detailed experimentation on joint-dataset learning and cross-dataset scenarios, showing the effectiveness of each introduced module in a carefully conducted ablation study and, in turn, pointing out the limitations of state-of-the-art methods.
☆ DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection
Applying deep neural networks to 3D point cloud processing has attracted increasing attention due to its advanced performance in many areas, such as AR/VR, autonomous driving, and robotics. However, as neural network models and 3D point clouds expand in size, it becomes a crucial challenge to reduce the computational and memory overhead to meet latency and energy constraints in real-world applications. Although existing approaches have proposed to reduce both computational cost and memory footprint, most of them only address the spatial redundancy in inputs, i.e. removing the redundancy of background points in 3D data. In this paper, we propose a novel post-training weight pruning scheme for 3D object detection that is (1) orthogonal to all existing point cloud sparsifying methods, which determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence (detection distortion); and (2) a universal plug-and-play pruning framework that works with arbitrary 3D detection model. This framework aims to minimize detection distortion of network output to maximally maintain detection precision, by identifying layer-wise sparsity based on second-order Taylor approximation of the distortion. Albeit utilizing second-order information, we introduced a lightweight scheme to efficiently acquire Hessian information, and subsequently perform dynamic programming to solve the layer-wise sparsity. Extensive experiments on KITTI, Nuscenes and ONCE datasets demonstrate that our approach is able to maintain and even boost the detection precision on pruned model under noticeable computation reduction (FLOPs). Noticeably, we achieve over 3.89x, 3.72x FLOPs reduction on CenterPoint and PVRCNN model, respectively, without mAP decrease, significantly improving the state-of-the-art.
☆ MARLIN: A Cloud Integrated Robotic Solution to Support Intralogistics in Retail
In this paper, we present the service robot MARLIN and its integration with the K4R platform, a cloud system for complex AI applications in retail. At its core, this platform contains so-called semantic digital twins, a semantically annotated representation of the retail store. MARLIN continuously exchanges data with the K4R platform, improving the robot's capabilities in perception, autonomous navigation, and task planning. We exploit these capabilities in a retail intralogistics scenario, specifically by assisting store employees in stocking shelves. We demonstrate that MARLIN is able to update the digital representation of the retail store by detecting and classifying obstacles, autonomously planning and executing replenishment missions, adapting to unforeseen changes in the environment, and interacting with store employees. Experiments are conducted in simulation, in a laboratory environment, and in a real store. We also describe and evaluate a novel algorithm for autonomous navigation of articulated tractor-trailer systems. The algorithm outperforms the manufacturer's proprietary navigation approach and improves MARLIN's navigation capabilities in confined spaces.
☆ Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion ECCV 2024
Camera-based 3D semantic scene completion (SSC) is pivotal for predicting complicated 3D layouts with limited 2D image observations. The existing mainstream solutions generally leverage temporal information by roughly stacking history frames to supplement the current frame, such straightforward temporal modeling inevitably diminishes valid clues and increases learning difficulty. To address this problem, we present HTCL, a novel Hierarchical Temporal Context Learning paradigm for improving camera-based semantic scene completion. The primary innovation of this work involves decomposing temporal context learning into two hierarchical steps: (a) cross-frame affinity measurement and (b) affinity-based dynamic refinement. Firstly, to separate critical relevant context from redundant information, we introduce the pattern affinity with scale-aware isolation and multiple independent learners for fine-grained contextual correspondence modeling. Subsequently, to dynamically compensate for incomplete observations, we adaptively refine the feature sampling locations based on initially identified locations with high affinity and their neighboring relevant regions. Our method ranks $1^{st}$ on the SemanticKITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU on the OpenOccupancy benchmark. Our code is available on https://github.com/Arlo0o/HTCL.
comment: ECCV 2024
☆ Label Anything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts
We present Label Anything, an innovative neural network architecture designed for few-shot semantic segmentation (FSS) that demonstrates remarkable generalizability across multiple classes with minimal examples required per class. Diverging from traditional FSS methods that predominantly rely on masks for annotating support images, Label Anything introduces varied visual prompts -- points, bounding boxes, and masks -- thereby enhancing the framework's versatility and adaptability. Unique to our approach, Label Anything is engineered for end-to-end training across multi-class FSS scenarios, efficiently learning from diverse support set configurations without retraining. This approach enables a "universal" application to various FSS challenges, ranging from $1$-way $1$-shot to complex $N$-way $K$-shot configurations while remaining agnostic to the specific number of class examples. This innovative training strategy reduces computational requirements and substantially improves the model's adaptability and generalization across diverse segmentation tasks. Our comprehensive experimental validation, particularly achieving state-of-the-art results on the COCO-$20^i$ benchmark, underscores Label Anything's robust generalization and flexibility. The source code is publicly available at: https://github.com/pasqualedem/LabelAnything.
☆ LPViT: Low-Power Semi-structured Pruning for Vision Transformers
Vision transformers have emerged as a promising alternative to convolutional neural networks for various image analysis tasks, offering comparable or superior performance. However, one significant drawback of ViTs is their resource-intensive nature, leading to increased memory footprint, computation complexity, and power consumption. To democratize this high-performance technology and make it more environmentally friendly, it is essential to compress ViT models, reducing their resource requirements while maintaining high performance. In this paper, we introduce a new block-structured pruning to address the resource-intensive issue for ViTs, offering a balanced trade-off between accuracy and hardware acceleration. Unlike unstructured pruning or channel-wise structured pruning, block pruning leverages the block-wise structure of linear layers, resulting in more efficient matrix multiplications. To optimize this pruning scheme, our paper proposes a novel hardware-aware learning objective that simultaneously maximizes speedup and minimizes power consumption during inference, tailored to the block sparsity structure. This objective eliminates the need for empirical look-up tables and focuses solely on reducing parametrized layer connections. Moreover, our paper provides a lightweight algorithm to achieve post-training pruning for ViTs, utilizing second-order Taylor approximation and empirical optimization to solve the proposed hardware-aware objective. Extensive experiments on ImageNet are conducted across various ViT architectures, including DeiT-B and DeiT-S, demonstrating competitive performance with other pruning methods and achieving a remarkable balance between accuracy preservation and power savings. Especially, we achieve up to 3.93x and 1.79x speedups on dedicated hardware and GPUs respectively for DeiT-B, and also observe an inference power reduction by 1.4x on real-world GPUs.
CountFormer: Multi-View Crowd Counting Transformer ECCV2024
Multi-view counting (MVC) methods have shown their superiority over single-view counterparts, particularly in situations characterized by heavy occlusion and severe perspective distortions. However, hand-crafted heuristic features and identical camera layout requirements in conventional MVC methods limit their applicability and scalability in real-world scenarios.In this work, we propose a concise 3D MVC framework called \textbf{CountFormer}to elevate multi-view image-level features to a scene-level volume representation and estimate the 3D density map based on the volume features. By incorporating a camera encoding strategy, CountFormer successfully embeds camera parameters into the volume query and image-level features, enabling it to handle various camera layouts with significant differences.Furthermore, we introduce a feature lifting module capitalized on the attention mechanism to transform image-level features into a 3D volume representation for each camera view. Subsequently, the multi-view volume aggregation module attentively aggregates various multi-view volumes to create a comprehensive scene-level volume representation, allowing CountFormer to handle images captured by arbitrary dynamic camera layouts. The proposed method performs favorably against the state-of-the-art approaches across various widely used datasets, demonstrating its greater suitability for real-world deployment compared to conventional MVC frameworks.
comment: Accepted By ECCV2024
☆ ScaleDreamer: Scalable Text-to-3D Synthesis with Asynchronous Score Distillation ECCV 2024
By leveraging the text-to-image diffusion priors, score distillation can synthesize 3D contents without paired text-3D training data. Instead of spending hours of online optimization per text prompt, recent studies have been focused on learning a text-to-3D generative network for amortizing multiple text-3D relations, which can synthesize 3D contents in seconds. However, existing score distillation methods are hard to scale up to a large amount of text prompts due to the difficulties in aligning pretrained diffusion prior with the distribution of rendered images from various text prompts. Current state-of-the-arts such as Variational Score Distillation finetune the pretrained diffusion model to minimize the noise prediction error so as to align the distributions, which are however unstable to train and will impair the model's comprehension capability to numerous text prompts. Based on the observation that the diffusion models tend to have lower noise prediction errors at earlier timesteps, we propose Asynchronous Score Distillation (ASD), which minimizes the noise prediction error by shifting the diffusion timestep to earlier ones. ASD is stable to train and can scale up to 100k prompts. It reduces the noise prediction error without changing the weights of pre-trained diffusion model, thus keeping its strong comprehension capability to prompts. We conduct extensive experiments across different 2D diffusion models, including Stable Diffusion and MVDream, and text-to-3D generators, including Hyper-iNGP, 3DConv-Net and Triplane-Transformer. The results demonstrate ASD's effectiveness in stable 3D generator training, high-quality 3D content synthesis, and its superior prompt-consistency, especially under large prompt corpus.
comment: Accepted by ECCV 2024. Code available at https://github.com/theEricMa/ScaleDreamer
☆ Camera-LiDAR Cross-modality Gait Recognition
Gait recognition is a crucial biometric identification technique. Camera-based gait recognition has been widely applied in both research and industrial fields. LiDAR-based gait recognition has also begun to evolve most recently, due to the provision of 3D structural information. However, in certain applications, cameras fail to recognize persons, such as in low-light environments and long-distance recognition scenarios, where LiDARs work well. On the other hand, the deployment cost and complexity of LiDAR systems limit its wider application. Therefore, it is essential to consider cross-modality gait recognition between cameras and LiDARs for a broader range of applications. In this work, we propose the first cross-modality gait recognition framework between Camera and LiDAR, namely CL-Gait. It employs a two-stream network for feature embedding of both modalities. This poses a challenging recognition task due to the inherent matching between 3D and 2D data, exhibiting significant modality discrepancy. To align the feature spaces of the two modalities, i.e., camera silhouettes and LiDAR points, we propose a contrastive pre-training strategy to mitigate modality discrepancy. To make up for the absence of paired camera-LiDAR data for pre-training, we also introduce a strategy for generating data on a large scale. This strategy utilizes monocular depth estimated from single RGB images and virtual cameras to generate pseudo point clouds for contrastive pre-training. Extensive experiments show that the cross-modality gait recognition is very challenging but still contains potential and feasibility with our proposed model and pre-training strategy. To the best of our knowledge, this is the first work to address cross-modality gait recognition.
☆ TrAME: Trajectory-Anchored Multi-View Editing for Text-Guided 3D Gaussian Splatting Manipulation
Despite significant strides in the field of 3D scene editing, current methods encounter substantial challenge, particularly in preserving 3D consistency in multi-view editing process. To tackle this challenge, we propose a progressive 3D editing strategy that ensures multi-view consistency via a Trajectory-Anchored Scheme (TAS) with a dual-branch editing mechanism. Specifically, TAS facilitates a tightly coupled iterative process between 2D view editing and 3D updating, preventing error accumulation yielded from text-to-image process. Additionally, we explore the relationship between optimization-based methods and reconstruction-based methods, offering a unified perspective for selecting superior design choice, supporting the rationale behind the designed TAS. We further present a tuning-free View-Consistent Attention Control (VCAC) module that leverages cross-view semantic and geometric reference from the source branch to yield aligned views from the target branch during the editing of 2D views. To validate the effectiveness of our method, we analyze 2D examples to demonstrate the improved consistency with the VCAC module. Further extensive quantitative and qualitative results in text-guided 3D scene editing indicate that our method achieves superior editing quality compared to state-of-the-art methods. We will make the complete codebase publicly available following the conclusion of the double-blind review process.
☆ Multi-Grained Contrast for Data-Efficient Unsupervised Representation Learning
The existing contrastive learning methods mainly focus on single-grained representation learning, e.g., part-level, object-level or scene-level ones, thus inevitably neglecting the transferability of representations on other granularity levels. In this paper, we aim to learn multi-grained representations, which can effectively describe the image on various granularity levels, thus improving generalization on extensive downstream tasks. To this end, we propose a novel Multi-Grained Contrast method (MGC) for unsupervised representation learning. Specifically, we construct delicate multi-grained correspondences between positive views and then conduct multi-grained contrast by the correspondences to learn more general unsupervised representations. Without pretrained on large-scale dataset, our method significantly outperforms the existing state-of-the-art methods on extensive downstream tasks, including object detection, instance segmentation, scene parsing, semantic segmentation and keypoint detection. Moreover, experimental results support the data-efficient property and excellent representation transferability of our method. The source code and trained weights are available at \url{https://github.com/visresearch/mgc}.
☆ SAVE: Segment Audio-Visual Easy way using Segment Anything Model
The primary aim of Audio-Visual Segmentation (AVS) is to precisely identify and locate auditory elements within visual scenes by accurately predicting segmentation masks at the pixel level. Achieving this involves comprehensively considering data and model aspects to address this task effectively. This study presents a lightweight approach, SAVE, which efficiently adapts the pre-trained segment anything model (SAM) to the AVS task. By incorporating an image encoder adapter into the transformer blocks to better capture the distinct dataset information and proposing a residual audio encoder adapter to encode the audio features as a sparse prompt, our proposed model achieves effective audio-visual fusion and interaction during the encoding stage. Our proposed method accelerates the training and inference speed by reducing the input resolution from 1024 to 256 pixels while achieving higher performance compared with the previous SOTA. Extensive experimentation validates our approach, demonstrating that our proposed model outperforms other SOTA methods significantly. Moreover, leveraging the pre-trained model on synthetic data enhances performance on real AVSBench data, achieving 84.59 mIoU on the S4 (V1S) subset and 70.28 mIoU on the MS3 (V1M) set with only 256 pixels for input images. This increases up to 86.16 mIoU on the S4 (V1S) and 70.83 mIoU on the MS3 (V1M) with inputs of 1024 pixels.
☆ ViG-Bias: Visually Grounded Bias Discovery and Mitigation ECCV 2024
The proliferation of machine learning models in critical decision making processes has underscored the need for bias discovery and mitigation strategies. Identifying the reasons behind a biased system is not straightforward, since in many occasions they are associated with hidden spurious correlations which are not easy to spot. Standard approaches rely on bias audits performed by analyzing model performance in pre-defined subgroups of data samples, usually characterized by common attributes like gender or ethnicity when it comes to people, or other specific attributes defining semantically coherent groups of images. However, it is not always possible to know a-priori the specific attributes defining the failure modes of visual recognition systems. Recent approaches propose to discover these groups by leveraging large vision language models, which enable the extraction of cross-modal embeddings and the generation of textual descriptions to characterize the subgroups where a certain model is underperforming. In this work, we argue that incorporating visual explanations (e.g. heatmaps generated via GradCAM or other approaches) can boost the performance of such bias discovery and mitigation frameworks. To this end, we introduce Visually Grounded Bias Discovery and Mitigation (ViG-Bias), a simple yet effective technique which can be integrated to a variety of existing frameworks to improve both, discovery and mitigation performance. Our comprehensive evaluation shows that incorporating visual explanations enhances existing techniques like DOMINO, FACTS and Bias-to-Text, across several challenging datasets, including CelebA, Waterbirds, and NICO++.
comment: Accepted to ECCV 2024
☆ AHMsys: An Automated HVAC Modeling System for BIM Project
This paper presents a novel system, named AHMsys, designed to automate the process of generating 3D Heating, Ventilation, and Air Conditioning (HVAC) models from 2D Computer-Aided Design (CAD) drawings, a key component of Building Information Modeling (BIM). By automatically preprocessing and extracting essential HVAC object information then creating detailed 3D models, our proposed AHMsys significantly reduced the 20 percent work schedule of the BIM process in Akila. This advancement highlights the essential impact of integrating AI technologies in managing the lifecycle of a digital representation of the building.
☆ SADL: An Effective In-Context Learning Method for Compositional Visual QA
Large vision-language models (LVLMs) offer a novel capability for performing in-context learning (ICL) in Visual QA. When prompted with a few demonstrations of image-question-answer triplets, LVLMs have demonstrated the ability to discern underlying patterns and transfer this latent knowledge to answer new questions about unseen images without the need for expensive supervised fine-tuning. However, designing effective vision-language prompts, especially for compositional questions, remains poorly understood. Adapting language-only ICL techniques may not necessarily work because we need to bridge the visual-linguistic semantic gap: Symbolic concepts must be grounded in visual content, which does not share the syntactic linguistic structures. This paper introduces SADL, a new visual-linguistic prompting framework for the task. SADL revolves around three key components: SAmpling, Deliberation, and Pseudo-Labeling of image-question pairs. Given an image-question query, we sample image-question pairs from the training data that are in semantic proximity to the query. To address the compositional nature of questions, the deliberation step decomposes complex questions into a sequence of subquestions. Finally, the sequence is progressively annotated one subquestion at a time to generate a sequence of pseudo-labels. We investigate the behaviors of SADL under OpenFlamingo on large-scale Visual QA datasets, namely GQA, GQA-OOD, CLEVR, and CRIC. The evaluation demonstrates the critical roles of sampling in the neighborhood of the image, the decomposition of complex questions, and the accurate pairing of the subquestions and labels. These findings do not always align with those found in language-only ICL, suggesting fresh insights in vision-language settings.
☆ Pseudo-Labeling by Multi-Policy Viewfinder Network for Image Cropping
Automatic image cropping models predict reframing boxes to enhance image aesthetics. Yet, the scarcity of labeled data hinders the progress of this task. To overcome this limitation, we explore the possibility of utilizing both labeled and unlabeled data together to expand the scale of training data for image cropping models. This idea can be implemented in a pseudo-labeling way: producing pseudo labels for unlabeled data by a teacher model and training a student model with these pseudo labels. However, the student may learn from teacher's mistakes. To address this issue, we propose the multi-policy viewfinder network (MPV-Net) that offers diverse refining policies to rectify the mistakes in original pseudo labels from the teacher. The most reliable policy is selected to generate trusted pseudo labels. The reliability of policies is evaluated via the robustness against box jittering. The efficacy of our method can be evaluated by the improvement compared to the supervised baseline which only uses labeled data. Notably, our MPV-Net outperforms off-the-shelf pseudo-labeling methods, yielding the most substantial improvement over the supervised baseline. Furthermore, our approach achieves state-of-the-art results on both the FCDB and FLMS datasets, signifying the superiority of our approach.
comment: 18 pages, 8figures
☆ Unleash the Power of Local Representations for Few-Shot Classification
Generalizing to novel classes unseen during training is a key challenge of few-shot classification. Recent metric-based methods try to address this by local representations. However, they are unable to take full advantage of them due to (i) improper supervision for pretraining the feature extractor, and (ii) lack of adaptability in the metric for handling various possible compositions of local feature sets. In this work, we unleash the power of local representations in improving novel-class generalization. For the feature extractor, we design a novel pretraining paradigm that learns randomly cropped patches by soft labels. It utilizes the class-level diversity of patches while diminishing the impact of their semantic misalignments to hard labels. To align network output with soft labels, we also propose a UniCon KL-Divergence that emphasizes the equal contribution of each base class in describing "non-base" patches. For the metric, we formulate measuring local feature sets as an entropy-regularized optimal transport problem to introduce the ability to handle sets consisting of homogeneous elements. Furthermore, we design a Modulate Module to endow the metric with the necessary adaptability. Our method achieves new state-of-the-art performance on three popular benchmarks. Moreover, it exceeds state-of-the-art transductive and cross-modal methods in the fine-grained scenario.
☆ Zero-shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model
Diffusion-based zero-shot image restoration and enhancement models have achieved great success in various image restoration and enhancement tasks without training. However, directly applying them to video restoration and enhancement results in severe temporal flickering artifacts. In this paper, we propose the first framework for zero-shot video restoration and enhancement based on a pre-trained image diffusion model. By replacing the self-attention layer with the proposed cross-previous-frame attention layer, the pre-trained image diffusion model can take advantage of the temporal correlation between neighboring frames. We further propose temporal consistency guidance, spatial-temporal noise sharing, and an early stopping sampling strategy for better temporally consistent sampling. Our method is a plug-and-play module that can be inserted into any diffusion-based zero-shot image restoration or enhancement methods to further improve their performance. Experimental results demonstrate the superiority of our proposed method in producing temporally consistent videos with better fidelity.
comment: 19 pages
☆ FlowTrack: Point-level Flow Network for 3D Single Object Tracking IROS2024
3D single object tracking (SOT) is a crucial task in fields of mobile robotics and autonomous driving. Traditional motion-based approaches achieve target tracking by estimating the relative movement of target between two consecutive frames. However, they usually overlook local motion information of the target and fail to exploit historical frame information effectively. To overcome the above limitations, we propose a point-level flow method with multi-frame information for 3D SOT task, called FlowTrack. Specifically, by estimating the flow for each point in the target, our method could capture the local motion details of target, thereby improving the tracking performance. At the same time, to handle scenes with sparse points, we present a learnable target feature as the bridge to efficiently integrate target information from past frames. Moreover, we design a novel Instance Flow Head to transform dense point-level flow into instance-level motion, effectively aggregating local motion information to obtain global target motion. Finally, our method achieves competitive performance with improvements of 5.9% on the KITTI dataset and 2.9% on NuScenes. The code will be made publicly available soon.
comment: Accepted by IROS2024
☆ Indoor 3D Reconstruction with an Unknown Camera-Projector Pair
Structured light-based method with a camera-projector pair (CPP) plays a vital role in indoor 3D reconstruction, especially for scenes with weak textures. Previous methods usually assume known intrinsics, which are pre-calibrated from known objects, or self-calibrated from multi-view observations. It is still challenging to reliably recover CPP intrinsics from only two views without any known objects. In this paper, we provide a simple yet reliable solution. We demonstrate that, for the first time, sufficient constraints on CPP intrinsics can be derived from an unknown cuboid corner (C2), e.g. a room's corner, which is a common structure in indoor scenes. In addition, with only known camera principal point, the complex multi-variable estimation of all CPP intrinsics can be simplified to a simple univariable optimization problem, leading to reliable calibration and thus direct 3D reconstruction with unknown CPP. Extensive results have demonstrated the superiority of the proposed method over both traditional and learning-based counterparts. Furthermore, the proposed method also demonstrates impressive potential to solve similar tasks without active lighting, such as sparse-view structure from motion.
☆ Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness
The ability to acknowledge the inevitable uncertainty in their knowledge and reasoning is a prerequisite for AI systems to be truly truthful and reliable. In this paper, we present a taxonomy of uncertainty specific to vision-language AI systems, distinguishing between epistemic uncertainty (arising from a lack of information) and aleatoric uncertainty (due to inherent unpredictability), and further explore finer categories within. Based on this taxonomy, we synthesize a benchmark dataset, CertainlyUncertain, featuring 178K visual question answering (VQA) samples as contrastive pairs. This is achieved by 1) inpainting images to make previously answerable questions into unanswerable ones; and 2) using image captions to prompt large language models for both answerable and unanswerable questions. Additionally, we introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error, to address the shortcomings of existing metrics.
comment: 26 pages
☆ Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images
The study of physiology demonstrates that the form (shape)of anatomical structures dictates their functions, and analyzing the form of anatomies plays a crucial role in clinical research. Statistical shape modeling (SSM) is a widely used tool for quantitative analysis of forms of anatomies, aiding in characterizing and identifying differences within a population of subjects. Despite its utility, the conventional SSM construction pipeline is often complex and time-consuming. Additionally, reliance on linearity assumptions further limits the model from capturing clinically relevant variations. Recent advancements in deep learning solutions enable the direct inference of SSM from unsegmented medical images, streamlining the process and improving accessibility. However, the new methods of SSM from images do not adequately account for situations where the imaging data quality is poor or where only sparse information is available. Moreover, quantifying aleatoric uncertainty, which represents inherent data variability, is crucial in deploying deep learning for clinical tasks to ensure reliable model predictions and robust decision-making, especially in challenging imaging conditions. Therefore, we propose SPI-CorrNet, a unified model that predicts 3D correspondences from sparse imaging data. It leverages a teacher network to regularize feature learning and quantifies data-dependent aleatoric uncertainty by adapting the network to predict intrinsic input variances. Experiments on the LGE MRI left atrium dataset and Abdomen CT-1K liver datasets demonstrate that our technique enhances the accuracy and robustness of sparse image-driven SSM.
☆ Self-Cooperation Knowledge Distillation for Novel Class Discovery ECCV2024
Novel Class Discovery (NCD) aims to discover unknown and novel classes in an unlabeled set by leveraging knowledge already learned about known classes. Existing works focus on instance-level or class-level knowledge representation and build a shared representation space to achieve performance improvements. However, a long-neglected issue is the potential imbalanced number of samples from known and novel classes, pushing the model towards dominant classes. Therefore, these methods suffer from a challenging trade-off between reviewing known classes and discovering novel classes. Based on this observation, we propose a Self-Cooperation Knowledge Distillation (SCKD) method to utilize each training sample (whether known or novel, labeled or unlabeled) for both review and discovery. Specifically, the model's feature representations of known and novel classes are used to construct two disjoint representation spaces. Through spatial mutual information, we design a self-cooperation learning to encourage model learning from the two feature representation spaces from itself. Extensive experiments on six datasets demonstrate that our method can achieve significant performance improvements, achieving state-of-the-art performance.
comment: Accepted by ECCV2024
☆ SymPoint Revolutionized: Boosting Panoptic Symbol Spotting with Layer Feature Enhancement
SymPoint is an initial attempt that utilizes point set representation to solve the panoptic symbol spotting task on CAD drawing. Despite its considerable success, it overlooks graphical layer information and suffers from prohibitively slow training convergence. To tackle this issue, we introduce SymPoint-V2, a robust and efficient solution featuring novel, streamlined designs that overcome these limitations. In particular, we first propose a Layer Feature-Enhanced module (LFE) to encode the graphical layer information into the primitive feature, which significantly boosts the performance. We also design a Position-Guided Training (PGT) method to make it easier to learn, which accelerates the convergence of the model in the early stages and further promotes performance. Extensive experiments show that our model achieves better performance and faster convergence than its predecessor SymPoint on the public benchmark. Our code and trained models are available at https://github.com/nicehuster/SymPointV2.
comment: code at https://github.com/nicehuster/SymPointV2
☆ Chemical Shift Encoding based Double Bonds Quantification in Triglycerides using Deep Image Prior
This study evaluated a deep learning-based method using Deep Image Prior (DIP) to quantify triglyceride double bonds from chemical-shift encoded multi-echo gradient echo images without network training. We employed a cost function based on signal constraints to iteratively update the neural network on a single dataset. The method was validated using phantom experiments and in vivo scans. Results showed close alignment between measured and reference double bond values, with phantom experiments yielding a Pearson correlation coefficient of 0.96 (p = .0005). In vivo results demonstrated good agreement in subcutaneous fat. We conclude that Deep Image Prior shows feasibility for quantifying double bonds and fatty acid content from chemical-shift encoded multi-echo MRI.
☆ Looking From the Future: Multi-order Iterations Can Enhance Adversarial Attack Transferability
Various methods try to enhance adversarial transferability by improving the generalization from different perspectives. In this paper, we rethink the optimization process and propose a novel sequence optimization concept, which is named Looking From the Future (LFF). LFF makes use of the original optimization process to refine the very first local optimization choice. Adapting the LFF concept to the adversarial attack task, we further propose an LFF attack as well as an MLFF attack with better generalization ability. Furthermore, guiding with the LFF concept, we propose an $LLF^{\mathcal{N}}$ attack which entends the LFF attack to a multi-order attack, further enhancing the transfer attack ability. All our proposed methods can be directly applied to the iteration-based attack methods. We evaluate our proposed method on the ImageNet1k dataset by applying several SOTA adversarial attack methods under four kinds of tasks. Experimental results show that our proposed method can greatly enhance the attack transferability. Ablation experiments are also applied to verify the effectiveness of each component. The source code will be released after this paper is accepted.
☆ GVDIFF: Grounded Text-to-Video Generation with Diffusion Models
In text-to-video (T2V) generation, significant attention has been directed toward its development, yet unifying discrete and continuous grounding conditions in T2V generation remains under-explored. This paper proposes a Grounded text-to-Video generation framework, termed GVDIFF. First, we inject the grounding condition into the self-attention through an uncertainty-based representation to explicitly guide the focus of the network. Second, we introduce a spatial-temporal grounding layer that connects the grounding condition with target objects and enables the model with the grounded generation capacity in the spatial-temporal domain. Third, our dynamic gate network adaptively skips the redundant grounding process to selectively extract grounding information and semantics while improving efficiency. We extensively evaluate the grounded generation capacity of GVDIFF and demonstrate its versatility in applications, including long-range video generation, sequential prompts, and object-specific editing.
☆ To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models
Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material. Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge. However, current unlearning paradigms are mired in vague forgetting boundaries, often erasing knowledge indiscriminately. In this work, we introduce KnowUnDo, a benchmark containing copyrighted content and user privacy domains to evaluate if the unlearning process inadvertently erases essential knowledge. Our findings indicate that existing unlearning methods often suffer from excessive unlearning. To address this, we propose a simple yet effective method, MemFlex, which utilizes gradient information to precisely target and unlearn sensitive parameters. Experimental results show that MemFlex is superior to existing methods in both precise knowledge unlearning and general knowledge retaining of LLMs. Code and dataset will be released at https://github.com/zjunlp/KnowUnDo.
comment: Work in progress
☆ A Method to Facilitate Membership Inference Attacks in Deep Learning Models NDSS'25
Modern machine learning (ML) ecosystems offer a surging number of ML frameworks and code repositories that can greatly facilitate the development of ML models. Today, even ordinary data holders who are not ML experts can apply off-the-shelf codebase to build high-performance ML models on their data, many of which are sensitive in nature (e.g., clinical records). In this work, we consider a malicious ML provider who supplies model-training code to the data holders, does not have access to the training process, and has only black-box query access to the resulting model. In this setting, we demonstrate a new form of membership inference attack that is strictly more powerful than prior art. Our attack empowers the adversary to reliably de-identify all the training samples (average >99% attack TPR@0.1% FPR), and the compromised models still maintain competitive performance as their uncorrupted counterparts (average <1% accuracy drop). Moreover, we show that the poisoned models can effectively disguise the amplified membership leakage under common membership privacy auditing, which can only be revealed by a set of secret samples known by the adversary. Overall, our study not only points to the worst-case membership privacy leakage, but also unveils a common pitfall underlying existing privacy auditing methods, which calls for future efforts to rethink the current practice of auditing membership privacy in machine learning models.
comment: NDSS'25 (a shorter version of this paper will appear in the conference proceeding)
☆ Efficient Stochastic Differential Equation for DEM Super Resolution with Void Filling
Digital Elevation Model (DEM) plays a fundamental role in remote sensing and photogrammetry. Enhancing the quality of DEM is crucial for various applications. Although multiple types of defects may appear simultaneously in the same DEM, they are commonly addressed separately. Most existing approaches only aim to fill the DEM voids, or apply super-resolution to the intact DEM. This paper introduces a unified generative model that simultaneously addresses voids and low-resolution problems, rather than taking two separate measures. The proposed approach presents the DEM Stochastic Differential Equation (DEM-SDE) for unified DEM quality enhancement. The DEM degradation of downsampling and random voids adding is modeled as the SDE forwarding, and the restoration is achieved by simulating the corresponding revert process. Conditioned on the terrain feature, and adopting efficient submodules with lightweight channel attention, DEM-SDE simultaneously enhances the DEM quality with an efficient process for training. The experiments show that DEM-SDE method achieves highly competitive performance in simultaneous super-resolution and void filling compared to the state-of-the-art work. DEM-SDE also manifests robustness for larger DEM patches.
☆ The Solution for the ICCV 2023 Perception Test Challenge 2023 -- Task 6 -- Grounded videoQA
In this paper, we introduce a grounded video question-answering solution. Our research reveals that the fixed official baseline method for video question answering involves two main steps: visual grounding and object tracking. However, a significant challenge emerges during the initial step, where selected frames may lack clearly identifiable target objects. Furthermore, single images cannot address questions like "Track the container from which the person pours the first time." To tackle this issue, we propose an alternative two-stage approach:(1) First, we leverage the VALOR model to answer questions based on video information.(2) concatenate the answered questions with their respective answers. Finally, we employ TubeDETR to generate bounding boxes for the targets.
☆ Enhancing Multi-Class Anomaly Detection via Diffusion Refinement with Dual Conditioning
Anomaly detection, the technique of identifying abnormal samples using only normal samples, has attracted widespread interest in industry. Existing one-model-per-category methods often struggle with limited generalization capabilities due to their focus on a single category, and can fail when encountering variations in product. Recent feature reconstruction methods, as representatives in one-model-all-categories schemes, face challenges including reconstructing anomalous samples and blurry reconstructions. In this paper, we creatively combine a diffusion model and a transformer for multi-class anomaly detection. This approach leverages diffusion to obtain high-frequency information for refinement, greatly alleviating the blurry reconstruction problem while maintaining the sampling efficiency of the reverse diffusion process. The task is transformed into image inpainting to disconnect the input-output correlation, thereby mitigating the "identical shortcuts" problem and avoiding the model from reconstructing anomalous samples. Besides, we introduce category-awareness using dual conditioning to ensure the accuracy of prediction and reconstruction in the reverse diffusion process, preventing excessive deviation from the target category, thus effectively enabling multi-class anomaly detection. Futhermore, Spatio-temporal fusion is also employed to fuse heatmaps predicted at different timesteps and scales, enhancing the performance of multi-class anomaly detection. Extensive experiments on benchmark datasets demonstrate the superior performance and exceptional multi-class anomaly detection capabilities of our proposed method compared to others.
☆ Text-Aware Diffusion for Policy Learning
Training an agent to achieve particular goals or perform desired behaviors is often accomplished through reinforcement learning, especially in the absence of expert demonstrations. However, supporting novel goals or behaviors through reinforcement learning requires the ad-hoc design of appropriate reward functions, which quickly becomes intractable. To address this challenge, we propose Text-Aware Diffusion for Policy Learning (TADPoLe), which uses a pretrained, frozen text-conditioned diffusion model to compute dense zero-shot reward signals for text-aligned policy learning. We hypothesize that large-scale pretrained generative models encode rich priors that can supervise a policy to behave not only in a text-aligned manner, but also in alignment with a notion of naturalness summarized from internet-scale training data. In our experiments, we demonstrate that TADPoLe is able to learn policies for novel goal-achievement and continuous locomotion behaviors specified by natural language, in both Humanoid and Dog environments. The behaviors are learned zero-shot without ground-truth rewards or expert demonstrations, and are qualitatively more natural according to human evaluation. We further show that TADPoLe performs competitively when applied to robotic manipulation tasks in the Meta-World environment.
☆ Adaptive Modality Balanced Online Knowledge Distillation for Brain-Eye-Computer based Dim Object Detection
Advanced cognition can be extracted from the human brain using brain-computer interfaces. Integrating these interfaces with computer vision techniques, which possess efficient feature extraction capabilities, can achieve more robust and accurate detection of dim targets in aerial images. However, existing target detection methods primarily concentrate on homogeneous data, lacking efficient and versatile processing capabilities for heterogeneous multimodal data. In this paper, we first build a brain-eye-computer based object detection system for aerial images under few-shot conditions. This system detects suspicious targets using region proposal networks, evokes the event-related potential (ERP) signal in electroencephalogram (EEG) through the eye-tracking-based slow serial visual presentation (ESSVP) paradigm, and constructs the EEG-image data pairs with eye movement data. Then, an adaptive modality balanced online knowledge distillation (AMBOKD) method is proposed to recognize dim objects with the EEG-image data. AMBOKD fuses EEG and image features using a multi-head attention module, establishing a new modality with comprehensive features. To enhance the performance and robust capability of the fusion modality, simultaneous training and mutual learning between modalities are enabled by end-to-end online knowledge distillation. During the learning process, an adaptive modality balancing module is proposed to ensure multimodal equilibrium by dynamically adjusting the weights of the importance and the training gradients across various modalities. The effectiveness and superiority of our method are demonstrated by comparing it with existing state-of-the-art methods. Additionally, experiments conducted on public datasets and system validations in real-world scenarios demonstrate the reliability and practicality of the proposed system and the designed method.
comment: 18 pages,15 figures
☆ PO-MSCKF: An Efficient Visual-Inertial Odometry by Reconstructing the Multi-State Constrained Kalman Filter with the Pose-only Theory
Efficient Visual-Inertial Odometry (VIO) is crucial for payload-constrained robots. Though modern optimization-based algorithms have achieved superior accuracy, the MSCKF-based VIO algorithms are still widely demanded for their efficient and consistent performance. As MSCKF is built upon the conventional multi-view geometry, the measured residuals are not only related to the state errors but also related to the feature position errors. To apply EKF fusion, a projection process is required to remove the feature position error from the observation model, which can lead to model and accuracy degradation. To obtain an efficient visual-inertial fusion model, while also preserving the model consistency, we propose to reconstruct the MSCKF VIO with the novel Pose-Only (PO) multi-view geometry description. In the newly constructed filter, we have modeled PO reprojection residuals, which are solely related to the motion states and thus overcome the requirements of space projection. Moreover, the new filter does not require any feature position information, which removes the computational cost and linearization errors brought in by the 3D reconstruction procedure. We have conducted comprehensive experiments on multiple datasets, where the proposed method has shown accuracy improvements and consistent performance in challenging sequences.
☆ EIT-1M: One Million EEG-Image-Text Pairs for Human Visual-textual Recognition and More
Recently, electroencephalography (EEG) signals have been actively incorporated to decode brain activity to visual or textual stimuli and achieve object recognition in multi-modal AI. Accordingly, endeavors have been focused on building EEG-based datasets from visual or textual single-modal stimuli. However, these datasets offer limited EEG epochs per category, and the complex semantics of stimuli presented to participants compromise their quality and fidelity in capturing precise brain activity. The study in neuroscience unveils that the relationship between visual and textual stimulus in EEG recordings provides valuable insights into the brain's ability to process and integrate multi-modal information simultaneously. Inspired by this, we propose a novel large-scale multi-modal dataset, named EIT-1M, with over 1 million EEG-image-text pairs. Our dataset is superior in its capacity of reflecting brain activities in simultaneously processing multi-modal information. To achieve this, we collected data pairs while participants viewed alternating sequences of visual-textual stimuli from 60K natural images and category-specific texts. Common semantic categories are also included to elicit better reactions from participants' brains. Meanwhile, response-based stimulus timing and repetition across blocks and sessions are included to ensure data diversity. To verify the effectiveness of EIT-1M, we provide an in-depth analysis of EEG data captured from multi-modal stimuli across different categories and participants, along with data quality scores for transparency. We demonstrate its validity on two tasks: 1) EEG recognition from visual or textual stimuli or both and 2) EEG-to-visual generation.
♻ ☆ ImageFlowNet: Forecasting Multiscale Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images
The forecasting of disease progression from images is a holy grail for clinical decision making. However, this task is complicated by the inherent high dimensionality, temporal sparsity and sampling irregularity in longitudinal image acquisitions. Existing methods often rely on extracting hand-crafted features and performing time-series analysis in this vector space, leading to a loss of rich spatial information within the images. To overcome these challenges, we introduce ImageFlowNet, a novel framework that learns latent-space flow fields that evolve multiscale representations in joint embedding spaces using neural ODEs and SDEs to model disease progression in the image domain. Notably, ImageFlowNet learns multiscale joint representation spaces by combining cohorts of patients together so that information can be transferred between the patient samples. The dynamics then provide plausible trajectories of progression, with the SDE providing alternative trajectories from the same starting point. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We then demonstrate ImageFlowNet's effectiveness through empirical evaluations on three longitudinal medical image datasets depicting progression in retinal geographic atrophy, multiple sclerosis, and glioblastoma.
comment: Included reference to codebase. Added acknowledgements
♻ ☆ Benchmarking bias: Expanding clinical AI model card to incorporate bias reporting of social and non-social factors
Clinical AI model reporting cards should be expanded to incorporate a broad bias reporting of both social and non-social factors. Non-social factors consider the role of other factors, such as disease dependent, anatomic, or instrument factors on AI model bias, which are essential to ensure safe deployment.
♻ ☆ Enhancing Deep Neural Network Training Efficiency and Performance through Linear Prediction
Deep neural networks (DNN) have achieved remarkable success in various fields, including computer vision and natural language processing. However, training an effective DNN model still poses challenges. This paper aims to propose a method to optimize the training effectiveness of DNN, with the goal of improving model performance. Firstly, based on the observation that the DNN parameters change in certain laws during training process, the potential of parameter prediction for improving model training efficiency and performance is discovered. Secondly, considering the magnitude of DNN model parameters, hardware limitations and characteristics of Stochastic Gradient Descent (SGD) for noise tolerance, a Parameter Linear Prediction (PLP) method is exploit to perform DNN parameter prediction. Finally, validations are carried out on some representative backbones. Experiment results show that compare to the normal training ways, under the same training conditions and epochs, by employing proposed PLP method, the optimal model is able to obtain average about 1% accuracy improvement and 0.01 top-1/top-5 error reduction for Vgg16, Resnet18 and GoogLeNet based on CIFAR-100 dataset, which shown the effectiveness of the proposed method on different DNN structures, and validated its capacity in enhancing DNN training efficiency and performance.
♻ ☆ ColorizeDiffusion: Adjustable Sketch Colorization with Reference Image and Text
Diffusion models have recently demonstrated their effectiveness in generating extremely high-quality images and are now utilized in a wide range of applications, including automatic sketch colorization. Although many methods have been developed for guided sketch colorization, there has been limited exploration of the potential conflicts between image prompts and sketch inputs, which can lead to severe deterioration in the results. Therefore, this paper exhaustively investigates reference-based sketch colorization models that aim to colorize sketch images using reference color images. We specifically investigate two critical aspects of reference-based diffusion models: the "distribution problem", which is a major shortcoming compared to text-based counterparts, and the capability in zero-shot sequential text-based manipulation. We introduce two variations of an image-guided latent diffusion model utilizing different image tokens from the pre-trained CLIP image encoder and propose corresponding manipulation methods to adjust their results sequentially using weighted text inputs. We conduct comprehensive evaluations of our models through qualitative and quantitative experiments as well as a user study.
♻ ☆ Forward Learning for Gradient-based Black-box Saliency Map Generation
Gradient-based saliency maps are widely used to explain deep neural network decisions. However, as models become deeper and more black-box, such as in closed-source APIs like ChatGPT, computing gradients become challenging, hindering conventional explanation methods. In this work, we introduce a novel unified framework for estimating gradients in black-box settings and generating saliency maps to interpret model decisions. We employ the likelihood ratio method to estimate output-to-input gradients and utilize them for saliency map generation. Additionally, we propose blockwise computation techniques to enhance estimation accuracy. Extensive experiments in black-box settings validate the effectiveness of our method, demonstrating accurate gradient estimation and explainability of generated saliency maps. Furthermore, we showcase the scalability of our approach by applying it to explain GPT-Vision, revealing the continued relevance of gradient-based explanation methods in the era of large, closed-source, and black-box models.
comment: The evaluation is based on small datasets and limited models, of which bias leads to misleading conclusions
♻ ☆ SINCERE: Supervised Information Noise-Contrastive Estimation REvisited
The information noise-contrastive estimation (InfoNCE) loss function provides the basis of many self-supervised deep learning methods due to its strong empirical results and theoretic motivation. Previous work suggests a supervised contrastive (SupCon) loss to extend InfoNCE to learn from available class labels. This SupCon loss has been widely-used due to reports of good empirical performance. However, in this work we find that the prior SupCon loss formulation has questionable justification because it can encourage some images from the same class to repel one another in the learned embedding space. This problematic intra-class repulsion gets worse as the number of images sharing one class label increases. We propose the Supervised InfoNCE REvisited (SINCERE) loss as a theoretically-justified supervised extension of InfoNCE that eliminates intra-class repulsion. Experiments show that SINCERE leads to better separation of embeddings from different classes and improves transfer learning classification accuracy. We additionally utilize probabilistic modeling to derive an information-theoretic bound that relates SINCERE loss to the symmeterized KL divergence between data-generating distributions for a target class and all other classes.
♻ ☆ StructLDM: Structured Latent Diffusion for 3D Human Generation ECCV 2024
Recent 3D human generative models have achieved remarkable progress by learning 3D-aware GANs from 2D images. However, existing 3D human generative methods model humans in a compact 1D latent space, ignoring the articulated structure and semantics of human body topology. In this paper, we explore more expressive and higher-dimensional latent space for 3D human modeling and propose StructLDM, a diffusion-based unconditional 3D human generative model, which is learned from 2D images. StructLDM solves the challenges imposed due to the high-dimensional growth of latent space with three key designs: 1) A semantic structured latent space defined on the dense surface manifold of a statistical human body template. 2) A structured 3D-aware auto-decoder that factorizes the global latent space into several semantic body parts parameterized by a set of conditional structured local NeRFs anchored to the body template, which embeds the properties learned from the 2D training data and can be decoded to render view-consistent humans under different poses and clothing styles. 3) A structured latent diffusion model for generative human appearance sampling. Extensive experiments validate StructLDM's state-of-the-art generation performance and illustrate the expressiveness of the structured latent space over the well-adopted 1D latent space. Notably, StructLDM enables different levels of controllable 3D human generation and editing, including pose/view/shape control, and high-level tasks including compositional generations, part-aware clothing editing, 3D virtual try-on, etc. Our project page is at: https://taohuumd.github.io/projects/StructLDM/.
comment: Accepted to ECCV 2024. Project page: https://taohuumd.github.io/projects/StructLDM/
♻ ☆ Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs
Morphing attacks are an emerging threat to state-of-the-art Face Recognition (FR) systems, which aim to create a single image that contains the biometric information of multiple identities. Diffusion Morphs (DiM) are a recently proposed morphing attack that has achieved state-of-the-art performance for representation-based morphing attacks. However, none of the existing research on DiMs have leveraged the iterative nature of DiMs and left the DiM model as a black box, treating it no differently than one would a Generative Adversarial Network (GAN) or Varational AutoEncoder (VAE). We propose a greedy strategy on the iterative sampling process of DiM models which searches for an optimal step guided by an identity-based heuristic function. We compare our proposed algorithm against ten other state-of-the-art morphing algorithms using the open-source SYN-MAD 2022 competition dataset. We find that our proposed algorithm is unreasonably effective, fooling all of the tested FR systems with an MMPMR of 100%, outperforming all other morphing algorithms compared.
comment: Accepted as a conference paper at IJCB 2024
♻ ☆ SERNet-Former: Semantic Segmentation by Efficient Residual Network with Attention-Boosting Gates and Attention-Fusion Networks
Improving the efficiency of state-of-the-art methods in semantic segmentation requires overcoming the increasing computational cost as well as issues such as fusing semantic information from global and local contexts. Based on the recent success and problems that convolutional neural networks (CNNs) encounter in semantic segmentation, this research proposes an encoder-decoder architecture with a unique efficient residual network, Efficient-ResNet. Attention-boosting gates (AbGs) and attention-boosting modules (AbMs) are deployed by aiming to fuse the equivariant and feature-based semantic information with the equivalent sizes of the output of global context of the efficient residual network in the encoder. Respectively, the decoder network is developed with the additional attention-fusion networks (AfNs) inspired by AbM. AfNs are designed to improve the efficiency in the one-to-one conversion of the semantic information by deploying additional convolution layers in the decoder part. Our network is tested on the challenging CamVid and Cityscapes datasets, and the proposed methods reveal significant improvements on the residual networks. To the best of our knowledge, the developed network, SERNet-Former, achieves state-of-the-art results (84.62 % mean IoU) on CamVid dataset and challenging results (87.35 % mean IoU) on Cityscapes validation dataset.
♻ ☆ xLSTM-UNet can be an Effective 2D & 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart
Convolutional Neural Networks (CNNs) and Vision Transformers (ViT) have been pivotal in biomedical image segmentation, yet their ability to manage long-range dependencies remains constrained by inherent locality and computational overhead. To overcome these challenges, in this technical report, we first propose xLSTM-UNet, a UNet structured deep learning neural network that leverages Vision-LSTM (xLSTM) as its backbone for medical image segmentation. xLSTM is a recently proposed as the successor of Long Short-Term Memory (LSTM) networks and have demonstrated superior performance compared to Transformers and State Space Models (SSMs) like Mamba in Neural Language Processing (NLP) and image classification (as demonstrated in Vision-LSTM, or ViL implementation). Here, xLSTM-UNet we designed extend the success in biomedical image segmentation domain. By integrating the local feature extraction strengths of convolutional layers with the long-range dependency capturing abilities of xLSTM, xLSTM-UNet offers a robust solution for comprehensive image analysis. We validate the efficacy of xLSTM-UNet through experiments. Our findings demonstrate that xLSTM-UNet consistently surpasses the performance of leading CNN-based, Transformer-based, and Mamba-based segmentation networks in multiple datasets in biomedical segmentation including organs in abdomen MRI, instruments in endoscopic images, and cells in microscopic images. With comprehensive experiments performed, this technical report highlights the potential of xLSTM-based architectures in advancing biomedical image analysis in both 2D and 3D. The code, models, and datasets are publicly available at http://tianrun-chen.github.io/xLSTM-UNet/
♻ ☆ Steerable Pyramid Transform Enables Robust Left Ventricle Quantification
Predicting cardiac indices has long been a focal point in the medical imaging community. While various deep learning models have demonstrated success in quantifying cardiac indices, they remain susceptible to mild input perturbations, e.g., spatial transformations, image distortions, and adversarial attacks. This vulnerability undermines confidence in using learning-based automated systems for diagnosing cardiovascular diseases. In this work, we describe a simple yet effective method to learn robust models for left ventricle (LV) quantification, encompassing cavity and myocardium areas, directional dimensions, and regional wall thicknesses. Our success hinges on employing the biologically inspired steerable pyramid transform (SPT) for fixed front-end processing, which offers three main benefits. First, the basis functions of SPT align with the anatomical structure of LV and the geometric features of the measured indices. Second, SPT facilitates weight sharing across different orientations as a form of parameter regularization and naturally captures the scale variations of LV. Third, the residual highpass subband can be conveniently discarded, promoting robust feature learning. Extensive experiments on the Cardiac-Dig benchmark show that our SPT-augmented model not only achieves reasonable prediction accuracy compared to state-of-the-art methods, but also exhibits significantly improved robustness against input perturbations.
comment: Code is available at https://github.com/yangyangyang127/RobustLV
♻ ☆ Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. Project website: https://boyuan.space/diffusion-forcing/
comment: Project website: https://boyuan.space/diffusion-forcing/
♻ ☆ ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos
We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events. Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.
comment: Project page: https://rextime.github.io/
♻ ☆ SMERF: Streamable Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration
Recent techniques for real-time view synthesis have rapidly advanced in fidelity and speed, and modern methods are capable of rendering near-photorealistic scenes at interactive frame rates. At the same time, a tension has arisen between explicit scene representations amenable to rasterization and neural fields built on ray marching, with state-of-the-art instances of the latter surpassing the former in quality while being prohibitively expensive for real-time applications. In this work, we introduce SMERF, a view synthesis approach that achieves state-of-the-art accuracy among real-time methods on large scenes with footprints up to 300 m$^2$ at a volumetric resolution of 3.5 mm$^3$. Our method is built upon two primary contributions: a hierarchical model partitioning scheme, which increases model capacity while constraining compute and memory consumption, and a distillation training strategy that simultaneously yields high fidelity and internal consistency. Our approach enables full six degrees of freedom (6DOF) navigation within a web browser and renders in real-time on commodity smartphones and laptops. Extensive experiments show that our method exceeds the current state-of-the-art in real-time novel view synthesis by 0.78 dB on standard benchmarks and 1.78 dB on large scenes, renders frames three orders of magnitude faster than state-of-the-art radiance field models, and achieves real-time performance across a wide variety of commodity devices, including smartphones. We encourage readers to explore these models interactively at our project website: https://smerf-3d.github.io.
comment: Camera Ready. Project website: https://smerf-3d.github.io
♻ ☆ SignAvatars: A Large-scale 3D Sign Language Holistic Motion Dataset and Benchmark ECCV2024
We present SignAvatars, the first large-scale, multi-prompt 3D sign language (SL) motion dataset designed to bridge the communication gap for Deaf and hard-of-hearing individuals. While there has been an exponentially growing number of research regarding digital communication, the majority of existing communication technologies primarily cater to spoken or written languages, instead of SL, the essential communication method for Deaf and hard-of-hearing communities. Existing SL datasets, dictionaries, and sign language production (SLP) methods are typically limited to 2D as annotating 3D models and avatars for SL is usually an entirely manual and labor-intensive process conducted by SL experts, often resulting in unnatural avatars. In response to these challenges, we compile and curate the SignAvatars dataset, which comprises 70,000 videos from 153 signers, totaling 8.34 million frames, covering both isolated signs and continuous, co-articulated signs, with multiple prompts including HamNoSys, spoken language, and words. To yield 3D holistic annotations, including meshes and biomechanically-valid poses of body, hands, and face, as well as 2D and 3D keypoints, we introduce an automated annotation pipeline operating on our large corpus of SL videos. SignAvatars facilitates various tasks such as 3D sign language recognition (SLR) and the novel 3D SL production (SLP) from diverse inputs like text scripts, individual words, and HamNoSys notation. Hence, to evaluate the potential of SignAvatars, we further propose a unified benchmark of 3D SL holistic motion production. We believe that this work is a significant step forward towards bringing the digital world to the Deaf and hard-of-hearing communities as well as people interacting with them.
comment: ECCV2024 14 pages; Project page available at https://signavatars.github.io/
♻ ☆ SlideAVSR: A Dataset of Paper Explanation Videos for Audio-Visual Speech Recognition
Audio-visual speech recognition (AVSR) is a multimodal extension of automatic speech recognition (ASR), using video as a complement to audio. In AVSR, considerable efforts have been directed at datasets for facial features such as lip-readings, while they often fall short in evaluating the image comprehension capabilities in broader contexts. In this paper, we construct SlideAVSR, an AVSR dataset using scientific paper explanation videos. SlideAVSR provides a new benchmark where models transcribe speech utterances with texts on the slides on the presentation recordings. As technical terminologies that are frequent in paper explanations are notoriously challenging to transcribe without reference texts, our SlideAVSR dataset spotlights a new aspect of AVSR problems. As a simple yet effective baseline, we propose DocWhisper, an AVSR model that can refer to textual information from slides, and confirm its effectiveness on SlideAVSR.
comment: 3rd Workshop on Advances in Language and Vision Research (ALVR 2024)
♻ ☆ ColPali: Efficient Document Retrieval with Vision Language Models
Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.
comment: Under Review
♻ ☆ AI Age Discrepancy: A Novel Parameter for Frailty Assessment in Kidney Tumor Patients
Kidney cancer is a global health concern, and accurate assessment of patient frailty is crucial for optimizing surgical outcomes. This paper introduces AI Age Discrepancy, a novel metric derived from machine learning analysis of preoperative abdominal CT scans, as a potential indicator of frailty and postoperative risk in kidney cancer patients. This retrospective study of 599 patients from the 2023 Kidney Tumor Segmentation (KiTS) challenge dataset found that a higher AI Age Discrepancy is significantly associated with longer hospital stays and lower overall survival rates, independent of established factors. This suggests that AI Age Discrepancy may provide valuable insights into patient frailty and could thus inform clinical decision-making in kidney cancer treatment.
comment: 10 pages, 3 figures, 2 tables
♻ ☆ Vision-LSTM: xLSTM as Generic Vision Backbone
Transformers are widely used as generic backbones in computer vision, despite initially introduced for natural language processing. Recently, the Long Short-Term Memory (LSTM) has been extended to a scalable and performant architecture - the xLSTM - which overcomes long-standing LSTM limitations via exponential gating and parallelizable matrix memory structure. In this report, we introduce Vision-LSTM (ViL), an adaption of the xLSTM building blocks to computer vision. ViL comprises a stack of xLSTM blocks where odd blocks process the sequence of patch tokens from top to bottom while even blocks go from bottom to top. Experiments show that ViL holds promise to be further deployed as new generic backbone for computer vision architectures.
♻ ☆ Universal Semi-Supervised Learning for Medical Image Classification
Semi-supervised learning (SSL) has attracted much attention since it reduces the expensive costs of collecting adequate well-labeled training data, especially for deep learning methods. However, traditional SSL is built upon an assumption that labeled and unlabeled data should be from the same distribution \textit{e.g.,} classes and domains. However, in practical scenarios, unlabeled data would be from unseen classes or unseen domains, and it is still challenging to exploit them by existing SSL methods. Therefore, in this paper, we proposed a unified framework to leverage these unseen unlabeled data for open-scenario semi-supervised medical image classification. We first design a novel scoring mechanism, called dual-path outliers estimation, to identify samples from unseen classes. Meanwhile, to extract unseen-domain samples, we then apply an effective variational autoencoder (VAE) pre-training. After that, we conduct domain adaptation to fully exploit the value of the detected unseen-domain samples to boost semi-supervised training. We evaluated our proposed framework on dermatology and ophthalmology tasks. Extensive experiments demonstrate our model can achieve superior classification performance in various medical SSL scenarios. The code implementations are accessible at: https://github.com/PyJulie/USSL4MIC.
♻ ☆ GraphBEV: Towards Robust BEV Feature Alignment for Multi-Modal 3D Object Detection
Integrating LiDAR and camera information into Bird's-Eye-View (BEV) representation has emerged as a crucial aspect of 3D object detection in autonomous driving. However, existing methods are susceptible to the inaccurate calibration relationship between LiDAR and the camera sensor. Such inaccuracies result in errors in depth estimation for the camera branch, ultimately causing misalignment between LiDAR and camera BEV features. In this work, we propose a robust fusion framework called Graph BEV. Addressing errors caused by inaccurate point cloud projection, we introduce a Local Align module that employs neighbor-aware depth features via Graph matching. Additionally, we propose a Global Align module to rectify the misalignment between LiDAR and camera BEV features. Our Graph BEV framework achieves state-of-the-art performance, with an mAP of 70.1\%, surpassing BEV Fusion by 1.6\% on the nuscenes validation set. Importantly, our Graph BEV outperforms BEV Fusion by 8.3\% under conditions with misalignment noise.
♻ ☆ Weighted Intersection over Union (wIoU) for Evaluating Image Segmentation
In recent years, many semantic segmentation methods have been proposed to predict label of pixels in the scene. In general, we measure area prediction errors or boundary prediction errors for comparing methods. However, there is no intuitive evaluation metric that evaluates both aspects. In this work, we propose a new evaluation measure called weighted Intersection over Union (wIoU) for semantic segmentation. First, it builds a weight map generated from a boundary distance map, allowing weighted evaluation for each pixel based on a boundary importance factor. The proposed wIoU can evaluate both contour and region by setting a boundary importance factor. We validated the effectiveness of wIoU on a dataset of 33 scenes and demonstrated its flexibility. Using the proposed metric, we expect more flexible and intuitive evaluation in semantic segmentation field are possible.
comment: 9 pages, 11 figures
♻ ☆ A reproducible 3D convolutional neural network with dual attention module (3D-DAM) for Alzheimer's disease classification
Alzheimer's disease is one of the most common types of neurodegenerative disease, characterized by the accumulation of amyloid-beta plaque and tau tangles. Recently, deep learning approaches have shown promise in Alzheimer's disease diagnosis. In this study, we propose a reproducible model that utilizes a 3D convolutional neural network with a dual attention module for Alzheimer's disease classification. We trained the model in the ADNI database and verified the generalizability of our method in two independent datasets (AIBL and OASIS1). Our method achieved state-of-the-art classification performance, with an accuracy of 91.94% for MCI progression classification and 96.30% for Alzheimer's disease classification on the ADNI dataset. Furthermore, the model demonstrated good generalizability, achieving an accuracy of 86.37% on the AIBL dataset and 83.42% on the OASIS1 dataset. These results indicate that our proposed approach has competitive performance and generalizability when compared to recent studies in the field.
♻ ☆ Deep Imbalanced Regression to Estimate Vascular Age from PPG Data: a Novel Digital Biomarker for Cardiovascular Health
Photoplethysmography (PPG) is emerging as a crucial tool for monitoring human hemodynamics, with recent studies highlighting its potential in assessing vascular aging through deep learning. However, real-world age distributions are often imbalanced, posing significant challenges for deep learning models. In this paper, we introduce a novel, simple, and effective loss function named the Dist Loss to address deep imbalanced regression tasks. We trained a one-dimensional convolutional neural network (Net1D) incorporating the Dist Loss on the extensive UK Biobank dataset (n=502,389) to estimate vascular age from PPG signals and validate its efficacy in characterizing cardiovascular health. The model's performance was validated on a 40% held-out test set, achieving state-of-the-art results, especially in regions with small sample sizes. Furthermore, we divided the population into three subgroups based on the difference between predicted vascular age and chronological age: less than -10 years, between -10 and 10 years, and greater than 10 years. We analyzed the relationship between predicted vascular age and several cardiovascular events over a follow-up period of up to 10 years, including death, coronary heart disease, and heart failure. Our results indicate that the predicted vascular age has significant potential to reflect an individual's cardiovascular health status. Our code will be available at https://github.com/Ngk03/AI-vascular-age.
♻ ☆ Reconstruction of Cardiac Cine MRI Using Motion-Guided Deformable Alignment and Multi-Resolution Fusion
Cardiac cine magnetic resonance imaging (MRI) is one of the important means to assess cardiac functions and vascular abnormalities. Mitigating artifacts arising during image reconstruction and accelerating cardiac cine MRI acquisition to obtain high-quality images is important. A novel end-to-end deep learning network is developed to improve cardiac cine MRI reconstruction. First, a U-Net is adopted to obtain the initial reconstructed images in k-space. Further to remove the motion artifacts, the motion-guided deformable alignment (MGDA) module with second-order bidirectional propagation is introduced to align the adjacent cine MRI frames by maximizing spatial-temporal information to alleviate motion artifacts. Finally, the multi-resolution fusion (MRF) module is designed to correct the blur and artifacts generated from alignment operation and obtain the last high-quality reconstructed cardiac images. At an 8$\times$ acceleration rate, the numerical measurements on the ACDC dataset are structural similarity index (SSIM) of 78.40%$\pm$.57%, peak signal-to-noise ratio (PSNR) of 30.46$\pm$1.22dB, and normalized mean squared error (NMSE) of 0.0468$\pm$0.0075. On the ACMRI dataset, the results are SSIM of 87.65%$\pm$4.20%, PSNR of 30.04$\pm$1.18dB, and NMSE of 0.0473$\pm$0.0072. The proposed method exhibits high-quality results with richer details and fewer artifacts for cardiac cine MRI reconstruction on different accelerations.
comment: 28 pages, 5 tables, 11 figures
♻ ☆ Instant Photorealistic Neural Radiance Fields Stylization ICASSP2024
We present Instant Neural Radiance Fields Stylization, a novel approach for multi-view image stylization for the 3D scene. Our approach models a neural radiance field based on neural graphics primitives, which use a hash table-based position encoder for position embedding. We split the position encoder into two parts, the content and style sub-branches, and train the network for normal novel view image synthesis with the content and style targets. In the inference stage, we execute AdaIN to the output features of the position encoder, with content and style voxel grid features as reference. With the adjusted features, the stylization of novel view images could be obtained. Our method extends the style target from style images to image sets of scenes and does not require additional network training for stylization. Given a set of images of 3D scenes and a style target(a style image or another set of 3D scenes), our method can generate stylized novel views with a consistent appearance at various view angles in less than 10 minutes on modern GPU hardware. Extensive experimental results demonstrate the validity and superiority of our method.
comment: Accepted by ICASSP2024. Code: https://github.com/lishaoxu1994/Instant-NeRF-Stylization
♻ ☆ Masked Attribute Description Embedding for Cloth-Changing Person Re-identification
Cloth-changing person re-identification (CC-ReID) aims to match persons who change clothes over long periods. The key challenge in CC-ReID is to extract clothing-independent features, such as face, hairstyle, body shape, and gait. Current research mainly focuses on modeling body shape using multi-modal biological features (such as silhouettes and sketches). However, it does not fully leverage the personal description information hidden in the original RGB image. Considering that there are certain attribute descriptions which remain unchanged after the changing of cloth, we propose a Masked Attribute Description Embedding (MADE) method that unifies personal visual appearance and attribute description for CC-ReID. Specifically, handling variable clothing-sensitive information, such as color and type, is challenging for effective modeling. To address this, we mask the clothing and color information in the personal attribute description extracted through an attribute detection model. The masked attribute description is then connected and embedded into Transformer blocks at various levels, fusing it with the low-level to high-level features of the image. This approach compels the model to discard clothing information. Experiments are conducted on several CC-ReID benchmarks, including PRCC, LTCC, Celeb-reID-light, and LaST. Results demonstrate that MADE effectively utilizes attribute description, enhancing cloth-changing person re-identification performance, and compares favorably with state-of-the-art methods. The code is available at https://github.com/moon-wh/MADE.
GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection ECCV 2024
Diffusion models have shown superior performance on unsupervised anomaly detection tasks. Since trained with normal data only, diffusion models tend to reconstruct normal counterparts of test images with certain noises added. However, these methods treat all potential anomalies equally, which may cause two main problems. From the global perspective, the difficulty of reconstructing images with different anomalies is uneven. Therefore, instead of utilizing the same setting for all samples, we propose to predict a particular denoising step for each sample by evaluating the difference between image contents and the priors extracted from diffusion models. From the local perspective, reconstructing abnormal regions differs from normal areas even in the same image. Theoretically, the diffusion model predicts a noise for each step, typically following a standard Gaussian distribution. However, due to the difference between the anomaly and its potential normal counterpart, the predicted noise in abnormal regions will inevitably deviate from the standard Gaussian distribution. To this end, we propose introducing synthetic abnormal samples in training to encourage the diffusion models to break through the limitation of standard Gaussian distribution, and a spatial-adaptive feature fusion scheme is utilized during inference. With the above modifications, we propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection, which introduces appealing flexibility and achieves anomaly-free reconstruction while retaining as much normal information as possible. Extensive experiments are conducted on three commonly used anomaly detection datasets (MVTec-AD, MPDD, and VisA) and a printed circuit board dataset (PCB-Bank) we integrated, showing the effectiveness of the proposed method.
comment: Accepted by ECCV 2024, code and models: https://github.com/hyao1/GLAD. Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
♻ ☆ Multi-level Reliable Guidance for Unpaired Multi-view Clustering
In this paper, we address the challenging problem of unpaired multi-view clustering (UMC), aiming to perform effective joint clustering using unpaired observed samples across multiple views. Commonly, traditional incomplete multi-view clustering (IMC) methods often depend on paired samples to capture complementary information between views. However, the strategy becomes impractical in UMC due to the absence of paired samples. Although some researchers have attempted to tackle the issue by preserving consistent cluster structures across views, they frequently neglect the confidence of these cluster structures, especially for boundary samples and uncertain cluster structures during the initial training. Therefore, we propose a method called Multi-level Reliable Guidance for UMC (MRG-UMC), which leverages multi-level clustering to aid in learning a trustworthy cluster structure across inner-view, cross-view, and common-view, respectively. Specifically, within each view, multi-level clustering fosters a trustworthy cluster structure across different levels and reduces clustering error. In cross-view learning, reliable view guidance enhances the confidence of the cluster structures in other views. Similarly, within the multi-level framework, the incorporation of a common view aids in aligning different views, thereby reducing the clustering error and uncertainty of cluster structure. Finally, as evidenced by extensive experiments, our method for UMC demonstrates significant efficiency improvements compared to 20 state-of-the-art methods.
♻ ☆ DiffStyler: Diffusion-based Localized Image Style Transfer
Image style transfer aims to imbue digital imagery with the distinctive attributes of style targets, such as colors, brushstrokes, shapes, whilst concurrently preserving the semantic integrity of the content. Despite the advancements in arbitrary style transfer methods, a prevalent challenge remains the delicate equilibrium between content semantics and style attributes. Recent developments in large-scale text-to-image diffusion models have heralded unprecedented synthesis capabilities, albeit at the expense of relying on extensive and often imprecise textual descriptions to delineate artistic styles. Addressing these limitations, this paper introduces DiffStyler, a novel approach that facilitates efficient and precise arbitrary image style transfer. DiffStyler lies the utilization of a text-to-image Stable Diffusion model-based LoRA to encapsulate the essence of style targets. This approach, coupled with strategic cross-LoRA feature and attention injection, guides the style transfer process. The foundation of our methodology is rooted in the observation that LoRA maintains the spatial feature consistency of UNet, a discovery that further inspired the development of a mask-wise style transfer technique. This technique employs masks extracted through a pre-trained FastSAM model, utilizing mask prompts to facilitate feature fusion during the denoising process, thereby enabling localized style transfer that preserves the original image's unaffected regions. Moreover, our approach accommodates multiple style targets through the use of corresponding masks. Through extensive experimentation, we demonstrate that DiffStyler surpasses previous methods in achieving a more harmonious balance between content preservation and style integration.
comment: https://github.com/lishaoxu1994/DiffStyler
♻ ☆ Towards Robust Cardiac Segmentation using Graph Convolutional Networks
Fully automatic cardiac segmentation can be a fast and reproducible method to extract clinical measurements from an echocardiography examination. The U-Net architecture is the current state-of-the-art deep learning architecture for medical segmentation and can segment cardiac structures in real-time with average errors comparable to inter-observer variability. However, this architecture still generates large outliers that are often anatomically incorrect. This work uses the concept of graph convolutional neural networks that predict the contour points of the structures of interest instead of labeling each pixel. We propose a graph architecture that uses two convolutional rings based on cardiac anatomy and show that this eliminates anatomical incorrect multi-structure segmentations on the publicly available CAMUS dataset. Additionally, this work contributes with an ablation study on the graph convolutional architecture and an evaluation of clinical measurements on the clinical HUNT4 dataset. Finally, we propose to use the inter-model agreement of the U-Net and the graph network as a predictor of both the input and segmentation quality. We show this predictor can detect out-of-distribution and unsuitable input images in real-time. Source code is available online: https://github.com/gillesvntnu/GCN_multistructure
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Tracking Object Positions in Reinforcement Learning: A Metric for Keypoint Detection (extended version)
Reinforcement learning (RL) for robot control typically requires a detailed representation of the environment state, including information about task-relevant objects not directly measurable. Keypoint detectors, such as spatial autoencoders (SAEs), are a common approach to extracting a low-dimensional representation from high-dimensional image data. SAEs aim at spatial features such as object positions, which are often useful representations in robotic RL. However, whether an SAE is actually able to track objects in the scene and thus yields a spatial state representation well suited for RL tasks has rarely been examined due to a lack of established metrics. In this paper, we propose to assess the performance of an SAE instance by measuring how well keypoints track ground truth objects in images. We present a computationally lightweight metric and use it to evaluate common baseline SAE architectures on image data from a simulated robot task. We find that common SAEs differ substantially in their spatial extraction capability. Furthermore, we validate that SAEs that perform well in our metric achieve superior performance when used in downstream RL. Thus, our metric is an effective and lightweight indicator of RL performance before executing expensive RL training. Building on these insights, we identify three key modifications of SAE architectures to improve tracking performance.
comment: 19 pages, 12 figures
♻ ☆ Fixed-length Dense Descriptor for Efficient Fingerprint Matching
In fingerprint matching, fixed-length descriptors generally offer greater efficiency compared to minutiae set, but the recognition accuracy is not as good as that of the latter. Although much progress has been made in deep learning based fixed-length descriptors recently, they often fall short when dealing with incomplete or partial fingerprints, diverse fingerprint poses, and significant background noise. In this paper, we propose a three-dimensional representation called Fixed-length Dense Descriptor (FDD) for efficient fingerprint matching. FDD features great spatial properties, enabling it to capture the spatial relationships of the original fingerprints, thereby enhancing interpretability and robustness. Our experiments on various fingerprint datasets reveal that FDD outperforms other fixed-length descriptors, especially in matching fingerprints of different areas, cross-modal fingerprint matching, and fingerprint matching with background noise.
comment: 6 pages, 5 figures
♻ ☆ Preserving Full Degradation Details for Blind Image Super-Resolution
The performance of image super-resolution relies heavily on the accuracy of degradation information, especially under blind settings. Due to absence of true degradation models in real-world scenarios, previous methods learn distinct representations by distinguishing different degradations in a batch. However, the most significant degradation differences may provide shortcuts for the learning of representations such that subtle difference may be discarded. In this paper, we propose an alternative to learn degradation representations through reproducing degraded low-resolution (LR) images. By guiding the degrader to reconstruct input LR images, full degradation information can be encoded into the representations. In addition, we develop an energy distance loss to facilitate the learning of the degradation representations by introducing a bounded constraint. Experiments show that our representations can extract accurate and highly robust degradation information. Moreover, evaluations on both synthetic and real images demonstrate that our ReDSR achieves state-of-the-art performance for the blind SR tasks.
comment: 18 pages, 11 figures, 4 tables
♻ ☆ Learning Neural Volumetric Pose Features for Camera Localization ECCV 2024
We introduce a novel neural volumetric pose feature, termed PoseMap, designed to enhance camera localization by encapsulating the information between images and the associated camera poses. Our framework leverages an Absolute Pose Regression (APR) architecture, together with an augmented NeRF module. This integration not only facilitates the generation of novel views to enrich the training dataset but also enables the learning of effective pose features. Additionally, we extend our architecture for self-supervised online alignment, allowing our method to be used and fine-tuned for unlabelled images within a unified framework. Experiments demonstrate that our method achieves 14.28% and 20.51% performance gain on average in indoor and outdoor benchmark scenes, outperforming existing APR methods with state-of-the-art accuracy.
comment: 14 pages, 9 figures. Accepted at ECCV 2024. Project page are coming soon
♻ ☆ 4D-Rotor Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes SIGGRAPH
We consider the problem of novel-view synthesis (NVS) for dynamic scenes. Recent neural approaches have accomplished exceptional NVS results for static 3D scenes, but extensions to 4D time-varying scenes remain non-trivial. Prior efforts often encode dynamics by learning a canonical space plus implicit or explicit deformation fields, which struggle in challenging scenarios like sudden movements or generating high-fidelity renderings. In this paper, we introduce 4D Gaussian Splatting (4DRotorGS), a novel method that represents dynamic scenes with anisotropic 4D XYZT Gaussians, inspired by the success of 3D Gaussian Splatting in static scenes. We model dynamics at each timestamp by temporally slicing the 4D Gaussians, which naturally compose dynamic 3D Gaussians and can be seamlessly projected into images. As an explicit spatial-temporal representation, 4DRotorGS demonstrates powerful capabilities for modeling complicated dynamics and fine details--especially for scenes with abrupt motions. We further implement our temporal slicing and splatting techniques in a highly optimized CUDA acceleration framework, achieving real-time inference rendering speeds of up to 277 FPS on an RTX 3090 GPU and 583 FPS on an RTX 4090 GPU. Rigorous evaluations on scenes with diverse motions showcase the superior efficiency and effectiveness of 4DRotorGS, which consistently outperforms existing methods both quantitatively and qualitatively.
comment: Proc. SIGGRAPH, 2024
♻ ☆ PIN-SLAM: LiDAR SLAM Using a Point-Based Implicit Neural Representation for Achieving Global Map Consistency
Accurate and robust localization and mapping are essential components for most autonomous robots. In this paper, we propose a SLAM system for building globally consistent maps, called PIN-SLAM, that is based on an elastic and compact point-based implicit neural map representation. Taking range measurements as input, our approach alternates between incremental learning of the local implicit signed distance field and the pose estimation given the current local map using a correspondence-free, point-to-implicit model registration. Our implicit map is based on sparse optimizable neural points, which are inherently elastic and deformable with the global pose adjustment when closing a loop. Loops are also detected using the neural point features. Extensive experiments validate that PIN-SLAM is robust to various environments and versatile to different range sensors such as LiDAR and RGB-D cameras. PIN-SLAM achieves pose estimation accuracy better or on par with the state-of-the-art LiDAR odometry or SLAM systems and outperforms the recent neural implicit SLAM approaches while maintaining a more consistent, and highly compact implicit map that can be reconstructed as accurate and complete meshes. Finally, thanks to the voxel hashing for efficient neural points indexing and the fast implicit map-based registration without closest point association, PIN-SLAM can run at the sensor frame rate on a moderate GPU. Codes will be available at: https://github.com/PRBonn/PIN_SLAM.
comment: 20 pages
♻ ☆ Empowering 3D Visual Grounding with Reasoning Capabilities ECCV 2024
Although great progress has been made in 3D visual grounding, current models still rely on explicit textual descriptions for grounding and lack the ability to reason human intentions from implicit instructions. We propose a new task called 3D reasoning grounding and introduce a new benchmark ScanReason which provides over 10K question-answer-location pairs from five reasoning types that require the synerization of reasoning and grounding. We further design our approach, ReGround3D, composed of the visual-centric reasoning module empowered by Multi-modal Large Language Model (MLLM) and the 3D grounding module to obtain accurate object locations by looking back to the enhanced geometry and fine-grained details from the 3D scenes. A chain-of-grounding mechanism is proposed to further boost the performance with interleaved reasoning and grounding steps during inference. Extensive experiments on the proposed benchmark validate the effectiveness of our proposed approach.
comment: Accepted by ECCV 2024. A comprehensive and hierarchical 3D reasoning grounding benchmark in the era of foundation models. Project page: https://zcmax.github.io/projects/ScanReason
♻ ☆ Natural Language Can Help Bridge the Sim2Real Gap
The main challenge in learning image-conditioned robotic policies is acquiring a visual representation conducive to low-level control. Due to the high dimensionality of the image space, learning a good visual representation requires a considerable amount of visual data. However, when learning in the real world, data is expensive. Sim2Real is a promising paradigm for overcoming data scarcity in the real-world target domain by using a simulator to collect large amounts of cheap data closely related to the target task. However, it is difficult to transfer an image-conditioned policy from sim to real when the domains are very visually dissimilar. To bridge the sim2real visual gap, we propose using natural language descriptions of images as a unifying signal across domains that captures the underlying task-relevant semantics. Our key insight is that if two image observations from different domains are labeled with similar language, the policy should predict similar action distributions for both images. We demonstrate that training the image encoder to predict the language description or the distance between descriptions of a sim or real image serves as a useful, data-efficient pretraining step that helps learn a domain-invariant image representation. We can then use this image encoder as the backbone of an IL policy trained simultaneously on a large amount of simulated and a handful of real demonstrations. Our approach outperforms widely used prior sim2real methods and strong vision-language pretraining baselines like CLIP and R3M by 25 to 40%. See additional videos and materials at https://robin-lab.cs.utexas.edu/lang4sim2real/.
comment: To appear in RSS 2024. Project website at https://robin-lab.cs.utexas.edu/lang4sim2real/
♻ ☆ Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning CVPR 2024
In noisy label learning, estimating noisy class posteriors plays a fundamental role for developing consistent classifiers, as it forms the basis for estimating clean class posteriors and the transition matrix. Existing methods typically learn noisy class posteriors by training a classification model with noisy labels. However, when labels are incorrect, these models may be misled to overemphasize the feature parts that do not reflect the instance characteristics, resulting in significant errors in estimating noisy class posteriors. To address this issue, this paper proposes to augment the supervised information with part-level labels, encouraging the model to focus on and integrate richer information from various parts. Specifically, our method first partitions features into distinct parts by cropping instances, yielding part-level labels associated with these various parts. Subsequently, we introduce a novel single-to-multiple transition matrix to model the relationship between the noisy and part-level labels, which incorporates part-level labels into a classifier-consistent framework. Utilizing this framework with part-level labels, we can learn the noisy class posteriors more precisely by guiding the model to integrate information from various parts, ultimately improving the classification performance. Our method is theoretically sound, while experiments show that it is empirically effective in synthetic and real-world noisy benchmarks.
comment: CVPR 2024
♻ ☆ VDD: Varied Drone Dataset for Semantic Segmentation
Semantic segmentation of drone images is critical for various aerial vision tasks as it provides essential semantic details to understand scenes on the ground. Ensuring high accuracy of semantic segmentation models for drones requires access to diverse, large-scale, and high-resolution datasets, which are often scarce in the field of aerial image processing. While existing datasets typically focus on urban scenes and are relatively small, our Varied Drone Dataset (VDD) addresses these limitations by offering a large-scale, densely labeled collection of 400 high-resolution images spanning 7 classes. This dataset features various scenes in urban, industrial, rural, and natural areas, captured from different camera angles and under diverse lighting conditions. We also make new annotations to UDD and UAVid, integrating them under VDD annotation standards, to create the Integrated Drone Dataset (IDD). We train seven state-of-the-art models on drone datasets as baselines. It's expected that our dataset will generate considerable interest in drone image segmentation and serve as a foundation for other drone vision tasks. Datasets are publicly available at \href{our website}{https://github.com/RussRobin/VDD}.
♻ ☆ Embedded Prompt Tuning: Towards Enhanced Calibration of Pretrained Models for Medical Images
Foundation models pre-trained on large-scale data have been widely witnessed to achieve success in various natural imaging downstream tasks. Parameter-efficient fine-tuning (PEFT) methods aim to adapt foundation models to new domains by updating only a small portion of parameters in order to reduce computational overhead. However, the effectiveness of these PEFT methods, especially in cross-domain few-shot scenarios, e.g., medical image analysis, has not been fully explored. In this work, we facilitate the study of the performance of PEFT when adapting foundation models to medical image classification tasks. Furthermore, to alleviate the limitations of prompt introducing ways and approximation capabilities on Transformer architectures of mainstream prompt tuning methods, we propose the Embedded Prompt Tuning (EPT) method by embedding prompt tokens into the expanded channels. We also find that there are anomalies in the feature space distribution of foundation models during pre-training process, and prompt tuning can help mitigate this negative impact. To explain this phenomenon, we also introduce a novel perspective to understand prompt tuning: Prompt tuning is a distribution calibrator. And we support it by analyzing patch-wise scaling and feature separation operations contained in EPT. Our experiments show that EPT outperforms several state-of-the-art fine-tuning methods by a significant margin on few-shot medical image classification tasks, and completes the fine-tuning process within highly competitive time, indicating EPT is an effective PEFT method. The source code is available at github.com/zuwenqiang/EPT.
comment: 16 pages, 7 figures. arXiv admin note: text overlap with arXiv:2306.09579, arXiv:2203.12119 by other authors
♻ ☆ C3L: Content Correlated Vision-Language Instruction Tuning Data Generation via Contrastive Learning IJCAI-24
Vision-Language Instruction Tuning (VLIT) is a critical training phase for Large Vision-Language Models (LVLMs). With the improving capabilities of open-source LVLMs, researchers have increasingly turned to generate VLIT data by using open-source LVLMs and achieved significant progress. However, such data generation approaches are bottlenecked by the following challenges: 1) Since multi-modal models tend to be influenced by prior language knowledge, directly using LVLMs to generate VLIT data would inevitably lead to low content relevance between generated data and images. 2) To improve the ability of the models to generate VLIT data, previous methods have incorporated an additional training phase to boost the generative capacity. This process hurts the generalization of the models to unseen inputs (i.e., "exposure bias" problem). In this paper, we propose a new Content Correlated VLIT data generation via Contrastive Learning (C3L). Specifically, we design a new content relevance module which enhances the content relevance between VLIT data and images by computing Image Instruction Correspondence Scores S(I2C). Moreover, a contrastive learning module is introduced to further boost the VLIT data generation capability of the LVLMs. A large number of automatic measures on four benchmarks show the effectiveness of our method.
comment: Accepted by IJCAI-24
♻ ☆ Coding for Intelligence from the Perspective of Category
Coding, which targets compressing and reconstructing data, and intelligence, often regarded at an abstract computational level as being centered around model learning and prediction, interweave recently to give birth to a series of significant progress. The recent trends demonstrate the potential homogeneity of these two fields, especially when deep-learning models aid these two categories for better probability modeling. For better understanding and describing from a unified perspective, inspired by the basic generally recognized principles in cognitive psychology, we formulate a novel problem of Coding for Intelligence from the category theory view. Based on the three axioms: existence of ideal coding, existence of practical coding, and compactness promoting generalization, we derive a general framework to understand existing methodologies, namely that, coding captures the intrinsic relationships of objects as much as possible, while ignoring information irrelevant to downstream tasks. This framework helps identify the challenges and essential elements in solving the specific derived Minimal Description Length (MDL) optimization problem from a broader range, providing opportunities to build a more intelligent system for handling multiple tasks/applications with coding ideas/tools. Centering on those elements, we systematically review recent processes of towards optimizing the MDL problem in more comprehensive ways from data, model, and task perspectives, and reveal their impacts on the potential CfI technical routes. After that, we also present new technique paths to fulfill CfI and provide potential solutions with preliminary experimental evidence. Last, further directions and remaining issues are discussed as well. The discussion shows our theory can reveal many phenomena and insights about large foundation models, which mutually corroborate with recent practices in feature learning.
♻ ☆ Fine-grained Prompt Tuning: A Parameter and Memory Efficient Transfer Learning Method for High-resolution Medical Image Classification MICCAI 2024
Parameter-efficient transfer learning (PETL) is proposed as a cost-effective way to transfer pre-trained models to downstream tasks, avoiding the high cost of updating entire large-scale pre-trained models (LPMs). In this work, we present Fine-grained Prompt Tuning (FPT), a novel PETL method for medical image classification. FPT significantly reduces memory consumption compared to other PETL methods, especially in high-resolution input contexts. To achieve this, we first freeze the weights of the LPM and construct a learnable lightweight side network. The frozen LPM takes high-resolution images as input to extract fine-grained features, while the side network is fed low-resolution images to reduce memory usage. To allow the side network to access pre-trained knowledge, we introduce fine-grained prompts that summarize information from the LPM through a fusion module. Important tokens selection and preloading techniques are employed to further reduce training cost and memory requirements. We evaluate FPT on four medical datasets with varying sizes, modalities, and complexities. Experimental results demonstrate that FPT achieves comparable performance to fine-tuning the entire LPM while using only 1.8% of the learnable parameters and 13% of the memory costs of an encoder ViT-B model with a 512 x 512 input resolution.
comment: MICCAI 2024
♻ ☆ Rectified Iterative Disparity for Stereo Matching
Both uncertainty-assisted and iteration-based methods have achieved great success in stereo matching. However, existing uncertainty estimation methods take a single image and the corresponding disparity as input, which imposes higher demands on the estimation network. In this paper, we propose Cost volume-based disparity Uncertainty Estimation (UEC). Based on the rich similarity information in the cost volume coming from the image pairs, the proposed UEC can achieve competitive performance with low computational cost. Secondly, we propose two methods of uncertainty-assisted disparity estimation, Uncertainty-based Disparity Rectification (UDR) and Uncertainty-based Disparity update Conditioning (UDC). These two methods optimise the disparity update process of the iterative-based approach without adding extra parameters. In addition, we propose Disparity Rectification loss that significantly improves the accuracy of small amount of disparity updates. We present a high-performance stereo architecture, DR Stereo, which is a combination of the proposed methods. Experimental results from SceneFlow, KITTI, Middlebury 2014, and ETH3D show that DR-Stereo achieves very competitive disparity estimation performance.
♻ ☆ Swish-T : Enhancing Swish Activation with Tanh Bias for Improved Neural Network Performance
We propose the Swish-T family, an enhancement of the existing non-monotonic activation function Swish. Swish-T is defined by adding a Tanh bias to the original Swish function. This modification creates a family of Swish-T variants, each designed to excel in different tasks, showcasing specific advantages depending on the application context. The Tanh bias allows for broader acceptance of negative values during initial training stages, offering a smoother non-monotonic curve than the original Swish. We ultimately propose the Swish-T$_{\textbf{C}}$ function, while Swish-T and Swish-T$_{\textbf{B}}$, byproducts of Swish-T$_{\textbf{C}}$, also demonstrate satisfactory performance. Furthermore, our ablation study shows that using Swish-T$_{\textbf{C}}$ as a non-parametric function can still achieve high performance. The superiority of the Swish-T family has been empirically demonstrated across various models and benchmark datasets, including MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. The code is publicly available at "https://github.com/ictseoyoungmin/Swish-T-pytorch".
comment: 11 pages, 6 figures Revised the derivative of the sigmoid function from 1-sigmoid to sigmoid(1-sigmoid) for correctness.Updated related equations in Section 3.2 Conclusions to Conclusion in Section 6
♻ ☆ Augmenting Efficient Real-time Surgical Instrument Segmentation in Video with Point Tracking and Segment Anything
The Segment Anything Model (SAM) is a powerful vision foundation model that is revolutionizing the traditional paradigm of segmentation. Despite this, a reliance on prompting each frame and large computational cost limit its usage in robotically assisted surgery. Applications, such as augmented reality guidance, require little user intervention along with efficient inference to be usable clinically. In this study, we address these limitations by adopting lightweight SAM variants to meet the efficiency requirement and employing fine-tuning techniques to enhance their generalization in surgical scenes. Recent advancements in Tracking Any Point (TAP) have shown promising results in both accuracy and efficiency, particularly when points are occluded or leave the field of view. Inspired by this progress, we present a novel framework that combines an online point tracker with a lightweight SAM model that is fine-tuned for surgical instrument segmentation. Sparse points within the region of interest are tracked and used to prompt SAM throughout the video sequence, providing temporal consistency. The quantitative results surpass the state-of-the-art semi-supervised video object segmentation method XMem on the EndoVis 2015 dataset with 84.8 IoU and 91.0 Dice. Our method achieves promising performance that is comparable to XMem and transformer-based fully supervised segmentation methods on ex vivo UCL dVRK and in vivo CholecSeg8k datasets. In addition, the proposed method shows promising zero-shot generalization ability on the label-free STIR dataset. In terms of efficiency, we tested our method on a single GeForce RTX 4060/4090 GPU respectively, achieving an over 25/90 FPS inference speed. Code is available at: https://github.com/wuzijian1997/SIS-PT-SAM
comment: 6 pages, 9 figures
♻ ☆ Metric-guided Image Reconstruction Bounds via Conformal Prediction
Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric
♻ ☆ Min-Max-Jump distance and its applications
We explore three applications of Min-Max-Jump distance (MMJ distance). MMJ-based K-means revises K-means with MMJ distance. MMJ-based Silhouette coefficient revises Silhouette coefficient with MMJ distance. We also tested the Clustering with Neural Network and Index (CNNI) model with MMJ-based Silhouette coefficient. In the last application, we tested using Min-Max-Jump distance for predicting labels of new points, after a clustering analysis of data. Result shows Min-Max-Jump distance achieves good performances in all the three proposed applications. In addition, we devise several algorithms for calculating or estimating the distance.
♻ ☆ Slim-neck by GSConv: A lightweight-design for real-time detector architectures
Real-time object detection is significant for industrial and research fields. On edge devices, a giant model is difficult to achieve the real-time detecting requirement and a lightweight model built from a large number of the depth-wise separable convolutional could not achieve the sufficient accuracy. We introduce a new lightweight convolutional technique, GSConv, to lighten the model but maintain the accuracy. The GSConv accomplishes an excellent trade-off between the accuracy and speed. Furthermore, we provide a design suggestion based on the GSConv, Slim-Neck (SNs), to achieve a higher computational cost-effectiveness of the real-time detectors. The effectiveness of the SNs was robustly demonstrated in over twenty sets comparative experiments. In particular, the real-time detectors of ameliorated by the SNs obtain the state-of-the-art (70.9% AP50 for the SODA10M at a speed of ~ 100FPS on a Tesla T4) compared with the baselines. Code is available at https://github.com/alanli1997/slim-neck-by-gsconv
♻ ☆ Evidential Uncertainty Sets in Deep Classifiers Using Conformal Prediction
In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.
comment: Accepted in 13th Symposium on Conformal and Probabilistic Prediction with Applications (COPA2024). To be published in the Proceedings of Machine Learning Research (PMLR), vol. 230, 2024 (24 Pages)
♻ ☆ Revisiting Backdoor Attacks against Large Vision-Language Models
Instruction tuning enhances large vision-language models (LVLMs) but raises security risks through potential backdoor attacks due to their openness. Previous backdoor studies focus on enclosed scenarios with consistent training and testing instructions, neglecting the practical domain gaps that could affect attack effectiveness. This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs for the first time, revealing certain limitations of most backdoor strategies in practical scenarios. We quantitatively evaluate the generalizability of six typical backdoor attacks on image caption benchmarks across multiple LVLMs, considering both visual and textual domain offsets. Our findings indicate that attack generalizability is positively correlated with the backdoor trigger's irrelevance to specific images/models and the preferential correlation of the trigger pattern. Additionally, we modify existing backdoor attacks based on the above key observations, demonstrating significant improvements in cross-domain scenario generalizability (+86% attack success rate). Notably, even without access to the instruction datasets, a multimodal instruction set can be successfully poisoned with a very low poisoning rate (0.2%), achieving an attack success rate of over 97%. This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs, necessitating more attention and in-depth research.
comment: 24 pages, 8 figures
♻ ☆ Uformer-ICS: A U-Shaped Transformer for Image Compressive Sensing Service
Many service computing applications require real-time dataset collection from multiple devices, necessitating efficient sampling techniques to reduce bandwidth and storage pressure. Compressive sensing (CS) has found wide-ranging applications in image acquisition and reconstruction. Recently, numerous deep-learning methods have been introduced for CS tasks. However, the accurate reconstruction of images from measurements remains a significant challenge, especially at low sampling rates. In this paper, we propose Uformer-ICS as a novel U-shaped transformer for image CS tasks by introducing inner characteristics of CS into transformer architecture. To utilize the uneven sparsity distribution of image blocks, we design an adaptive sampling architecture that allocates measurement resources based on the estimated block sparsity, allowing the compressed results to retain maximum information from the original image. Additionally, we introduce a multi-channel projection (MCP) module inspired by traditional CS optimization methods. By integrating the MCP module into the transformer blocks, we construct projection-based transformer blocks, and then form a symmetrical reconstruction model using these blocks and residual convolutional blocks. Therefore, our reconstruction model can simultaneously utilize the local features and long-range dependencies of image, and the prior projection knowledge of CS theory. Experimental results demonstrate its significantly better reconstruction performance than state-of-the-art deep learning-based CS methods.
♻ ☆ PYRA: Parallel Yielding Re-Activation for Training-Inference Efficient Task Adaptation ECCV 2024
Recently, the scale of transformers has grown rapidly, which introduces considerable challenges in terms of training overhead and inference efficiency in the scope of task adaptation. Existing works, namely Parameter-Efficient Fine-Tuning (PEFT) and model compression, have separately investigated the challenges. However, PEFT cannot guarantee the inference efficiency of the original backbone, especially for large-scale models. Model compression requires significant training costs for structure searching and re-training. Consequently, a simple combination of them cannot guarantee accomplishing both training efficiency and inference efficiency with minimal costs. In this paper, we propose a novel Parallel Yielding Re-Activation (PYRA) method for such a challenge of training-inference efficient task adaptation. PYRA first utilizes parallel yielding adaptive weights to comprehensively perceive the data distribution in downstream tasks. A re-activation strategy for token modulation is then applied for tokens to be merged, leading to calibrated token features. Extensive experiments demonstrate that PYRA outperforms all competing methods under both low compression rate and high compression rate, demonstrating its effectiveness and superiority in maintaining both training efficiency and inference efficiency for large-scale foundation models. Our code will be released to the public.
comment: 15 pages, 5 figures, Accepted by ECCV 2024
♻ ☆ MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding
We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements.
comment: typos corrected, references added, Project Page: https://muirbench.github.io/
♻ ☆ AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents ICRA 2024
Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
comment: 26 pages, 9 figures, ICRA 2024 VLMNM Workshop
Machine Learning 147
☆ MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention
The computational challenges of Large Language Model (LLM) inference remain a significant barrier to their widespread deployment, especially as prompt lengths continue to increase. Due to the quadratic complexity of the attention computation, it takes 30 minutes for an 8B LLM to process a prompt of 1M tokens (i.e., the pre-filling stage) on a single A100 GPU. Existing methods for speeding up prefilling often fail to maintain acceptable accuracy or efficiency when applied to long-context LLMs. To address this gap, we introduce MInference (Milliontokens Inference), a sparse calculation method designed to accelerate pre-filling of long-sequence processing. Specifically, we identify three unique patterns in long-context attention matrices-the A-shape, Vertical-Slash, and Block-Sparsethat can be leveraged for efficient sparse computation on GPUs. We determine the optimal pattern for each attention head offline and dynamically build sparse indices based on the assigned pattern during inference. With the pattern and sparse indices, we perform efficient sparse attention calculations via our optimized GPU kernels to significantly reduce the latency in the pre-filling stage of long-context LLMs. Our proposed technique can be directly applied to existing LLMs without any modifications to the pre-training setup or additional fine-tuning. By evaluating on a wide range of downstream tasks, including InfiniteBench, RULER, PG-19, and Needle In A Haystack, and models including LLaMA-3-1M, GLM4-1M, Yi-200K, Phi-3-128K, and Qwen2-128K, we demonstrate that MInference effectively reduces inference latency by up to 10x for pre-filling on an A100, while maintaining accuracy. Our code is available at https://aka.ms/MInference.
☆ Magic Insert: Style-Aware Drag-and-Drop
We present Magic Insert, a method for dragging-and-dropping subjects from a user-provided image into a target image of a different style in a physically plausible manner while matching the style of the target image. This work formalizes the problem of style-aware drag-and-drop and presents a method for tackling it by addressing two sub-problems: style-aware personalization and realistic object insertion in stylized images. For style-aware personalization, our method first fine-tunes a pretrained text-to-image diffusion model using LoRA and learned text tokens on the subject image, and then infuses it with a CLIP representation of the target style. For object insertion, we use Bootstrapped Domain Adaption to adapt a domain-specific photorealistic object insertion model to the domain of diverse artistic styles. Overall, the method significantly outperforms traditional approaches such as inpainting. Finally, we present a dataset, SubjectPlop, to facilitate evaluation and future progress in this area. Project page: https://magicinsert.github.io/
comment: Project page: https://magicinsert.github.io/
☆ Neurocache: Efficient Vector Retrieval for Long-range Language Modeling NAACL'24
This paper introduces Neurocache, an approach to extend the effective context size of large language models (LLMs) using an external vector cache to store its past states. Like recent vector retrieval approaches, Neurocache uses an efficient k-nearest-neighbor (kNN) algorithm to retrieve relevant past states and incorporate them into the attention process. Neurocache improves upon previous methods by (1) storing compressed states, which reduces cache size; (2) performing a single retrieval operation per token which increases inference speed; and (3) extending the retrieval window to neighboring states, which improves both language modeling and downstream task accuracy. Our experiments show the effectiveness of Neurocache both for models trained from scratch and for pre-trained models such as Llama2-7B and Mistral-7B when enhanced with the cache mechanism. We also compare Neurocache with text retrieval methods and show improvements in single-document question-answering and few-shot learning tasks. We made the source code available under: https://github.com/alisafaya/neurocache
comment: Long paper, published at the main conference NAACL'24
☆ RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
☆ Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
The Multi-Output Gaussian Process is is a popular tool for modelling data from multiple sources. A typical choice to build a covariance function for a MOGP is the Linear Model of Coregionalization (LMC) which parametrically models the covariance between outputs. The Latent Variable MOGP (LV-MOGP) generalises this idea by modelling the covariance between outputs using a kernel applied to latent variables, one per output, leading to a flexible MOGP model that allows efficient generalization to new outputs with few data points. Computational complexity in LV-MOGP grows linearly with the number of outputs, which makes it unsuitable for problems with a large number of outputs. In this paper, we propose a stochastic variational inference approach for the LV-MOGP that allows mini-batches for both inputs and outputs, making computational complexity per training iteration independent of the number of outputs.
comment: none
☆ PWM: Policy Learning with Large World Models
Reinforcement Learning (RL) has achieved impressive results on complex tasks but struggles in multi-task settings with different embodiments. World models offer scalability by learning a simulation of the environment, yet they often rely on inefficient gradient-free optimization methods. We introduce Policy learning with large World Models (PWM), a novel model-based RL algorithm that learns continuous control policies from large multi-task world models. By pre-training the world model on offline data and using it for first-order gradient policy learning, PWM effectively solves tasks with up to 152 action dimensions and outperforms methods using ground-truth dynamics. Additionally, PWM scales to an 80-task setting, achieving up to 27% higher rewards than existing baselines without the need for expensive online planning. Visualizations and code available at https://policy-world-model.github.io
comment: Visualizations and code available at https://policy-world-model.github.io
☆ Decentralized Intelligence Network (DIN)
Decentralized Intelligence Network (DIN) addresses the significant challenges of data sovereignty and AI utilization caused by the fragmentation and siloing of data across providers and institutions. This comprehensive framework overcomes access barriers to scalable data sources previously hindered by silos by leveraging: 1) personal data stores as a prerequisite for data sovereignty; 2) a scalable federated learning protocol implemented on a public blockchain for decentralized AI training, where data remains with participants and only model parameter updates are shared; and 3) a scalable, trustless rewards mechanism to incentivize participation and ensure fair reward distribution. This framework ensures that no entity can prevent or control access to training on data offered by participants or determine financial benefits, as these processes operate on a public blockchain with an immutable record and without a third party. It supports effective AI training, allowing participants to maintain control over their data, benefit financially, and contribute to a decentralized, scalable ecosystem that leverages collective AI to develop beneficial algorithms.
comment: 10 pages, 1 figure
☆ PLeaS -- Merging Models with Permutations and Least Squares
The democratization of machine learning systems has made the process of fine-tuning accessible to a large number of practitioners, leading to a wide range of open-source models fine-tuned on specialized tasks and datasets. Recent work has proposed to merge such models to combine their functionalities. However, prior approaches are restricted to models that are fine-tuned from the same base model. Furthermore, the final merged model is typically restricted to be of the same size as the original models. In this work, we propose a new two-step algorithm to merge models-termed PLeaS-which relaxes these constraints. First, leveraging the Permutation symmetries inherent in the two models, PLeaS partially matches nodes in each layer by maximizing alignment. Next, PLeaS computes the weights of the merged model as a layer-wise Least Squares solution to minimize the approximation error between the features of the merged model and the permuted features of the original models. into a single model of a desired size, even when the two original models are fine-tuned from different base models. We also present a variant of our method which can merge models without using data from the fine-tuning domains. We demonstrate our method to merge ResNet models trained with shared and different label spaces, and show that we can perform better than the state-of-the-art merging methods by 8 to 15 percentage points for the same target compute while merging models trained on DomainNet and on fine-grained classification tasks.
☆ Parameter Matching Attack: Enhancing Practical Applicability of Availability Attacks
The widespread use of personal data for training machine learning models raises significant privacy concerns, as individuals have limited control over how their public data is subsequently utilized. Availability attacks have emerged as a means for data owners to safeguard their data by desning imperceptible perturbations that degrade model performance when incorporated into training datasets. However, existing availability attacks exhibit limitations in practical applicability, particularly when only a portion of the data can be perturbed. To address this challenge, we propose a novel availability attack approach termed Parameter Matching Attack (PMA). PMA is the first availability attack that works when only a portion of data can be perturbed. PMA optimizes perturbations so that when the model is trained on a mixture of clean and perturbed data, the resulting model will approach a model designed to perform poorly. Experimental results across four datasets demonstrate that PMA outperforms existing methods, achieving significant model performance degradation when a part of the training data is perturbed. Our code is available in the supplementary.
comment: 10 pages
☆ Evaluating the Robustness of Adverse Drug Event Classification Models Using Templates ACL
An adverse drug effect (ADE) is any harmful event resulting from medical drug treatment. Despite their importance, ADEs are often under-reported in official channels. Some research has therefore turned to detecting discussions of ADEs in social media. Impressive results have been achieved in various attempts to detect ADEs. In a high-stakes domain such as medicine, however, an in-depth evaluation of a model's abilities is crucial. We address the issue of thorough performance evaluation in English-language ADE detection with hand-crafted templates for four capabilities: Temporal order, negation, sentiment, and beneficial effect. We find that models with similar performance on held-out test sets have varying results on these capabilities.
comment: Accepted at BioNLP 2024 and Shared Tasks (ACL Workshop)
☆ On the Robustness of Graph Reduction Against GNN Backdoor
Graph Neural Networks (GNNs) are gaining popularity across various domains due to their effectiveness in learning graph-structured data. Nevertheless, they have been shown to be susceptible to backdoor poisoning attacks, which pose serious threats to real-world applications. Meanwhile, graph reduction techniques, including coarsening and sparsification, which have long been employed to improve the scalability of large graph computational tasks, have recently emerged as effective methods for accelerating GNN training on large-scale graphs. However, the current development and deployment of graph reduction techniques for large graphs overlook the potential risks of data poisoning attacks against GNNs. It is not yet clear how graph reduction interacts with existing backdoor attacks. This paper conducts a thorough examination of the robustness of graph reduction methods in scalable GNN training in the presence of state-of-the-art backdoor attacks. We performed a comprehensive robustness analysis across six coarsening methods and six sparsification methods for graph reduction, under three GNN backdoor attacks against three GNN architectures. Our findings indicate that the effectiveness of graph reduction methods in mitigating attack success rates varies significantly, with some methods even exacerbating the attacks. Through detailed analyses of triggers and poisoned nodes, we interpret our findings and enhance our understanding of how graph reduction interacts with backdoor attacks. These results highlight the critical need for incorporating robustness considerations in graph reduction for GNN training, ensuring that enhancements in computational efficiency do not compromise the security of GNN systems.
☆ Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects
The recent availability and adaptability of text-to-image models has sparked a new era in many related domains that benefit from the learned text priors as well as high-quality and fast generation capabilities, one of which is texture generation for 3D objects. Although recent texture generation methods achieve impressive results by using text-to-image networks, the combination of global consistency, quality, and speed, which is crucial for advancing texture generation to real-world applications, remains elusive. To that end, we introduce Meta 3D TextureGen: a new feedforward method comprised of two sequential networks aimed at generating high-quality and globally consistent textures for arbitrary geometries of any complexity degree in less than 20 seconds. Our method achieves state-of-the-art results in quality and speed by conditioning a text-to-image model on 3D semantics in 2D space and fusing them into a complete and high-resolution UV texture map, as demonstrated by extensive qualitative and quantitative evaluations. In addition, we introduce a texture enhancement network that is capable of up-scaling any texture by an arbitrary ratio, producing 4k pixel resolution textures.
☆ A Pattern Language for Machine Learning Tasks
Idealised as universal approximators, learners such as neural networks can be viewed as "variable functions" that may become one of a range of concrete functions after training. In the same way that equations constrain the possible values of variables in algebra, we may view objective functions as constraints on the behaviour of learners. We extract the equivalences perfectly optimised objective functions impose, calling them "tasks". For these tasks, we develop a formal graphical language that allows us to: (1) separate the core tasks of a behaviour from its implementation details; (2) reason about and design behaviours model-agnostically; and (3) simply describe and unify approaches in machine learning across domains. As proof-of-concept, we design a novel task that enables converting classifiers into generative models we call "manipulators", which we implement by directly translating task specifications into code. The resulting models exhibit capabilities such as style transfer and interpretable latent-space editing, without the need for custom architectures, adversarial training or random sampling. We formally relate the behaviour of manipulators to GANs, and empirically demonstrate their competitive performance with VAEs. We report on experiments across vision and language domains aiming to characterise manipulators as approximate Bayesian inversions of discriminative classifiers.
☆ On the Anatomy of Attention
We introduce a category-theoretic diagrammatic formalism in order to systematically relate and reason about machine learning models. Our diagrams present architectures intuitively but without loss of essential detail, where natural relationships between models are captured by graphical transformations, and important differences and similarities can be identified at a glance. In this paper, we focus on attention mechanisms: translating folklore into mathematical derivations, and constructing a taxonomy of attention variants in the literature. As a first example of an empirical investigation underpinned by our formalism, we identify recurring anatomical components of attention, which we exhaustively recombine to explore a space of variations on the attention mechanism.
☆ Quantum Curriculum Learning
Quantum machine learning (QML) requires significant quantum resources to achieve quantum advantage. Research should prioritize both the efficient design of quantum architectures and the development of learning strategies to optimize resource usage. We propose a framework called quantum curriculum learning (Q-CurL) for quantum data, where the curriculum introduces simpler tasks or data to the learning model before progressing to more challenging ones. We define the curriculum criteria based on the data density ratio between tasks to determine the curriculum order. We also implement a dynamic learning schedule to emphasize the significance of quantum data in optimizing the loss function. Empirical evidence shows that Q-CurL enhances the training convergence and the generalization for unitary learning tasks and improves the robustness of quantum phase recognition tasks. Our framework provides a general learning strategy, bringing QML closer to realizing practical advantages.
comment: main 5 pages, supplementary materials 6 pages
☆ CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models
As Large Language Models (LLMs) are increasingly deployed to handle various natural language processing (NLP) tasks, concerns regarding the potential negative societal impacts of LLM-generated content have also arisen. To evaluate the biases exhibited by LLMs, researchers have recently proposed a variety of datasets. However, existing bias evaluation efforts often focus on only a particular type of bias and employ inconsistent evaluation metrics, leading to difficulties in comparison across different datasets and LLMs. To address these limitations, we collect a variety of datasets designed for the bias evaluation of LLMs, and further propose CEB, a Compositional Evaluation Benchmark that covers different types of bias across different social groups and tasks. The curation of CEB is based on our newly proposed compositional taxonomy, which characterizes each dataset from three dimensions: bias types, social groups, and tasks. By combining the three dimensions, we develop a comprehensive evaluation strategy for the bias in LLMs. Our experiments demonstrate that the levels of bias vary across these dimensions, thereby providing guidance for the development of specific bias mitigation methods.
comment: 37 pages, 32 figures
☆ Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones
Pocket-sized autonomous nano-drones can revolutionize many robotic use cases, such as visual inspection in narrow, constrained spaces, and ensure safer human-robot interaction due to their tiny form factor and weight -- i.e., tens of grams. This compelling vision is challenged by the high level of intelligence needed aboard, which clashes against the limited computational and storage resources available on PULP (parallel-ultra-low-power) MCU class navigation and mission controllers that can be hosted aboard. This work moves from PULP-Dronet, a State-of-the-Art convolutional neural network for autonomous navigation on nano-drones. We introduce Tiny-PULP-Dronet: a novel methodology to squeeze by more than one order of magnitude model size (50x fewer parameters), and number of operations (27x less multiply-and-accumulate) required to run inference with similar flight performance as PULP-Dronet. This massive reduction paves the way towards affordable multi-tasking on nano-drones, a fundamental requirement for achieving high-level intelligence.
comment: 3 Figures, 1 table. Accepted for publication at IEEE Artificial Intelligence Circuits and Systems (AICAS), 2022
☆ Uncertainty-Aware Decarbonization for Datacenters
This paper represents the first effort to quantify uncertainty in carbon intensity forecasting for datacenter decarbonization. We identify and analyze two types of uncertainty -- temporal and spatial -- and discuss their system implications. To address the temporal dynamics in quantifying uncertainty for carbon intensity forecasting, we introduce a conformal prediction-based framework. Evaluation results show that our technique robustly achieves target coverages in uncertainty quantification across various significance levels. We conduct two case studies using production power traces, focusing on temporal and spatial load shifting respectively. The results show that incorporating uncertainty into scheduling decisions can prevent a 5% and 14% increase in carbon emissions, respectively. These percentages translate to an absolute reduction of 2.1 and 10.4 tons of carbon emissions in a 20 MW datacenter cluster.
☆ SafaRi:Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation ECCV 2024
Referring Expression Segmentation (RES) aims to provide a segmentation mask of the target object in an image referred to by the text (i.e., referring expression). Existing methods require large-scale mask annotations. Moreover, such approaches do not generalize well to unseen/zero-shot scenarios. To address the aforementioned issues, we propose a weakly-supervised bootstrapping architecture for RES with several new algorithmic innovations. To the best of our knowledge, ours is the first approach that considers only a fraction of both mask and box annotations (shown in Figure 1 and Table 1) for training. To enable principled training of models in such low-annotation settings, improve image-text region-level alignment, and further enhance spatial localization of the target object in the image, we propose Cross-modal Fusion with Attention Consistency module. For automatic pseudo-labeling of unlabeled samples, we introduce a novel Mask Validity Filtering routine based on a spatially aware zero-shot proposal scoring approach. Extensive experiments show that with just 30% annotations, our model SafaRi achieves 59.31 and 48.26 mIoUs as compared to 58.93 and 48.19 mIoUs obtained by the fully-supervised SOTA method SeqTR respectively on RefCOCO+@testA and RefCOCO+testB datasets. SafaRi also outperforms SeqTR by 11.7% (on RefCOCO+testA) and 19.6% (on RefCOCO+testB) in a fully-supervised setting and demonstrates strong generalization capabilities in unseen/zero-shot tasks.
comment: Accepted at ECCV 2024
☆ Two-Step Q-Learning
Q-learning is a stochastic approximation version of the classic value iteration. The literature has established that Q-learning suffers from both maximization bias and slower convergence. Recently, multi-step algorithms have shown practical advantages over existing methods. This paper proposes a novel off-policy two-step Q-learning algorithms, without importance sampling. With suitable assumption it was shown that, iterates in the proposed two-step Q-learning is bounded and converges almost surely to the optimal Q-values. This study also address the convergence analysis of the smooth version of two-step Q-learning, i.e., by replacing max function with the log-sum-exp function. The proposed algorithms are robust and easy to implement. Finally, we test the proposed algorithms on benchmark problems such as the roulette problem, maximization bias problem, and randomly generated Markov decision processes and compare it with the existing methods available in literature. Numerical experiments demonstrate the superior performance of both the two-step Q-learning and its smooth variants.
☆ Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA
Modern Neural Network (NN) architectures heavily rely on vast numbers of multiply-accumulate arithmetic operations, constituting the predominant computational cost. Therefore, this paper proposes a high-throughput, scalable and energy efficient non-element-wise matrix multiplication unit on FPGAs as a basic component of the NNs. We firstly streamline inter-layer and intra-layer redundancies of MADDNESS algorithm, a LUT-based approximate matrix multiplication, to design a fast, efficient scalable approximate matrix multiplication module termed "Approximate Multiplication Unit (AMU)". The AMU optimizes LUT-based matrix multiplications further through dedicated memory management and access design, decoupling computational overhead from input resolution and boosting FPGA-based NN accelerator efficiency significantly. The experimental results show that using our AMU achieves up to 9x higher throughput and 112x higher energy efficiency over the state-of-the-art solutions for the FPGA-based Quantised Neural Network (QNN) accelerators.
☆ Enable the Right to be Forgotten with Federated Client Unlearning in Medical Imaging
The right to be forgotten, as stated in most data regulations, poses an underexplored challenge in federated learning (FL), leading to the development of federated unlearning (FU). However, current FU approaches often face trade-offs between efficiency, model performance, forgetting efficacy, and privacy preservation. In this paper, we delve into the paradigm of Federated Client Unlearning (FCU) to guarantee a client the right to erase the contribution or the influence, introducing the first FU framework in medical imaging. In the unlearning process of a client, the proposed model-contrastive unlearning marks a pioneering step towards feature-level unlearning, and frequency-guided memory preservation ensures smooth forgetting of local knowledge while maintaining the generalizability of the trained global model, thus avoiding performance compromises and guaranteeing rapid post-training. We evaluated our FCU framework on two public medical image datasets, including Intracranial hemorrhage diagnosis and skin lesion diagnosis, demonstrating that our framework outperformed other state-of-the-art FU frameworks, with an expected speed-up of 10-15 times compared with retraining from scratch. The code and the organized datasets can be found at: https://github.com/dzp2095/FCU.
☆ Revisiting Cascaded Ensembles for Efficient Inference ICML 2024
A common approach to make machine learning inference more efficient is to use example-specific adaptive schemes, which route or select models for each example at inference time. In this work we study a simple scheme for adaptive inference. We build a cascade of ensembles (CoE), beginning with resource-efficient models and growing to larger, more expressive models, where ensemble agreement serves as a data-dependent routing criterion. This scheme is easy to incorporate into existing inference pipelines, requires no additional training, and can be used to place models across multiple resource tiers--for instance, serving efficient models at the edge and invoking larger models in the cloud only when necessary. In cases where parallel inference is feasible, we show that CoE can improve accuracy relative to the single best model while reducing the average cost of inference by up to 7x, and provides Pareto-dominate solutions in accuracy and efficiency relative to existing adaptive inference baselines. These savings translate to an over 3x-reduction in total monetary cost when performing inference using a heterogeneous cluster of GPUs. Finally, for edge inference scenarios where portions of the cascade reside at the edge vs. in the cloud, CoE can provide a 14x reduction in communication cost and inference latency without sacrificing accuracy.
comment: ES-FOMO, ICML 2024
☆ CALICO: Confident Active Learning with Integrated Calibration ICANN2024
The growing use of deep learning in safety-critical applications, such as medical imaging, has raised concerns about limited labeled data, where this demand is amplified as model complexity increases, posing hurdles for domain experts to annotate data. In response to this, active learning (AL) is used to efficiently train models with limited annotation costs. In the context of deep neural networks (DNNs), AL often uses confidence or probability outputs as a score for selecting the most informative samples. However, modern DNNs exhibit unreliable confidence outputs, making calibration essential. We propose an AL framework that self-calibrates the confidence used for sample selection during the training process, referred to as Confident Active Learning with Integrated CalibratiOn (CALICO). CALICO incorporates the joint training of a classifier and an energy-based model, instead of the standard softmax-based classifier. This approach allows for simultaneous estimation of the input data distribution and the class probabilities during training, improving calibration without needing an additional labeled dataset. Experimental results showcase improved classification performance compared to a softmax-based classifier with fewer labeled samples. Furthermore, the calibration stability of the model is observed to depend on the prior class distribution of the data.
comment: Accepted to ICANN2024
☆ QSync: Quantization-Minimized Synchronous Distributed Training Across Hybrid Devices
A number of production deep learning clusters have attempted to explore inference hardware for DNN training, at the off-peak serving hours with many inference GPUs idling. Conducting DNN training with a combination of heterogeneous training and inference GPUs, known as hybrid device training, presents considerable challenges due to disparities in compute capability and significant differences in memory capacity. We propose QSync, a training system that enables efficient synchronous data-parallel DNN training over hybrid devices by strategically exploiting quantized operators. According to each device's available resource capacity, QSync selects a quantization-minimized setting for operators in the distributed DNN training graph, minimizing model accuracy degradation but keeping the training efficiency brought by quantization. We carefully design a predictor with a bi-directional mixed-precision indicator to reflect the sensitivity of DNN layers on fixed-point and floating-point low-precision operators, a replayer with a neighborhood-aware cost mapper to accurately estimate the latency of distributed hybrid mixed-precision training, and then an allocator that efficiently synchronizes workers with minimized model accuracy degradation. QSync bridges the computational graph on PyTorch to an optimized backend for quantization kernel performance and flexible support for various GPU architectures. Extensive experiments show that QSync's predictor can accurately simulate distributed mixed-precision training with <5% error, with a consistent 0.27-1.03% accuracy improvement over the from-scratch training tasks compared to uniform precision.
comment: IPDPS 24
☆ Stochastic Differential Equations models for Least-Squares Stochastic Gradient Descent
We study the dynamics of a continuous-time model of the Stochastic Gradient Descent (SGD) for the least-square problem. Indeed, pursuing the work of Li et al. (2019), we analyze Stochastic Differential Equations (SDEs) that model SGD either in the case of the training loss (finite samples) or the population one (online setting). A key qualitative feature of the dynamics is the existence of a perfect interpolator of the data, irrespective of the sample size. In both scenarios, we provide precise, non-asymptotic rates of convergence to the (possibly degenerate) stationary distribution. Additionally, we describe this asymptotic distribution, offering estimates of its mean, deviations from it, and a proof of the emergence of heavy-tails related to the step-size magnitude. Numerical simulations supporting our findings are also presented.
☆ Semantically Guided Representation Learning For Action Anticipation ECCV'24
Action anticipation is the task of forecasting future activity from a partially observed sequence of events. However, this task is exposed to intrinsic future uncertainty and the difficulty of reasoning upon interconnected actions. Unlike previous works that focus on extrapolating better visual and temporal information, we concentrate on learning action representations that are aware of their semantic interconnectivity based on prototypical action patterns and contextual co-occurrences. To this end, we propose the novel Semantically Guided Representation Learning (S-GEAR) framework. S-GEAR learns visual action prototypes and leverages language models to structure their relationship, inducing semanticity. To gather insights on S-GEAR's effectiveness, we test it on four action anticipation benchmarks, obtaining improved results compared to previous works: +3.5, +2.7, and +3.5 absolute points on Top-1 Accuracy on Epic-Kitchen 55, EGTEA Gaze+ and 50 Salads, respectively, and +0.8 on Top-5 Recall on Epic-Kitchens 100. We further observe that S-GEAR effectively transfers the geometric associations between actions from language to visual prototypes. Finally, S-GEAR opens new research frontiers in anticipation tasks by demonstrating the intricate impact of action semantic interconnectivity.
comment: Accepted as a full paper at ECCV'24 with Paper ID #4140
☆ How to Boost Any Loss Function
Boosting is a highly successful ML-born optimization setting in which one is required to computationally efficiently learn arbitrarily good models based on the access to a weak learner oracle, providing classifiers performing at least slightly differently from random guessing. A key difference with gradient-based optimization is that boosting's original model does not requires access to first order information about a loss, yet the decades long history of boosting has quickly evolved it into a first order optimization setting -- sometimes even wrongfully \textit{defining} it as such. Owing to recent progress extending gradient-based optimization to use only a loss' zeroth ($0^{th}$) order information to learn, this begs the question: what loss functions can be efficiently optimized with boosting and what is the information really needed for boosting to meet the \textit{original} boosting blueprint's requirements? We provide a constructive formal answer essentially showing that \textit{any} loss function can be optimized with boosting and thus boosting can achieve a feat not yet known to be possible in the classical $0^{th}$ order setting, since loss functions are not required to be be convex, nor differentiable or Lipschitz -- and in fact not required to be continuous either. Some tools we use are rooted in quantum calculus, the mathematical field -- not to be confounded with quantum computation -- that studies calculus without passing to the limit, and thus without using first order information.
☆ Learning Paradigms and Modelling Methodologies for Digital Twins in Process Industry
Central to the digital transformation of the process industry are Digital Twins (DTs), virtual replicas of physical manufacturing systems that combine sensor data with sophisticated data-based or physics-based models, or a combination thereof, to tackle a variety of industrial-relevant tasks like process monitoring, predictive control or decision support. The backbone of a DT, i.e. the concrete modelling methodologies and architectural frameworks supporting these models, are complex, diverse and evolve fast, necessitating a thorough understanding of the latest state-of-the-art methods and trends to stay on top of a highly competitive market. From a research perspective, despite the high research interest in reviewing various aspects of DTs, structured literature reports specifically focusing on unravelling the utilized learning paradigms (e.g. self-supervised learning) for DT-creation in the process industry are a novel contribution in this field. This study aims to address these gaps by (1) systematically analyzing the modelling methodologies (e.g. Convolutional Neural Network, Encoder-Decoder, Hidden Markov Model) and paradigms (e.g. data-driven, physics-based, hybrid) used for DT-creation; (2) assessing the utilized learning strategies (e.g. supervised, unsupervised, self-supervised); (3) analyzing the type of modelling task (e.g. regression, classification, clustering); and (4) identifying the challenges and research gaps, as well as, discuss potential resolutions provided.
☆ Improving Explainability of Softmax Classifiers Using a Prototype-Based Joint Embedding Method
We propose a prototype-based approach for improving explainability of softmax classifiers that provides an understandable prediction confidence, generated through stochastic sampling of prototypes, and demonstrates potential for out of distribution detection (OOD). By modifying the model architecture and training to make predictions using similarities to any set of class examples from the training dataset, we acquire the ability to sample for prototypical examples that contributed to the prediction, which provide an instance-based explanation for the model's decision. Furthermore, by learning relationships between images from the training dataset through relative distances within the model's latent space, we obtain a metric for uncertainty that is better able to detect out of distribution data than softmax confidence.
comment: 8 pages, 8 figures
☆ IFTT-PIN: A Self-Calibrating PIN-Entry Method
Personalising an interface to the needs and preferences of a user often incurs additional interaction steps. In this paper, we demonstrate a novel method that enables the personalising of an interface without the need for explicit calibration procedures, via a process we call self-calibration. A second-order effect of self-calibration is that an outside observer cannot easily infer what a user is trying to achieve because they cannot interpret the user's actions. To explore this security angle, we developed IFTT-PIN (If This Then PIN) as the first self-calibrating PIN-entry method. When using IFTT-PIN, users are free to choose any button for any meaning without ever explicitly communicating their choice to the machine. IFTT-PIN infers both the user's PIN and their preferred button mapping at the same time. This paper presents the concept, implementation, and interactive demonstrations of IFTT-PIN, as well as an evaluation against shoulder surfing attacks. Our study (N=24) shows that by adding self-calibration to an existing PIN entry method, IFTT-PIN statistically significantly decreased PIN attack decoding rate by ca. 8.5 times (p=1.1e-9), while only decreasing the PIN entry encoding rate by ca. 1.4 times (p=0.02), leading to a positive security-usability trade-off. IFTT-PIN's entry rate significantly improved 21 days after first exposure (p=3.6e-6) to the method, suggesting self-calibrating interfaces are memorable despite using an initially undefined user interface. Self-calibration methods might lead to novel opportunities for interaction that are more inclusive and versatile, a potentially interesting challenge for the community. A short introductory video is available at https://youtu.be/pP5sfniNRns.
comment: arXiv admin note: text overlap with arXiv:2205.09534
☆ DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing
Bringing a novel drug from the original idea to market typically requires more than ten years and billions of dollars. To alleviate the heavy burden, a natural idea is to reuse the approved drug to treat new diseases. The process is also known as drug repurposing or drug repositioning. Machine learning methods exhibited huge potential in automating drug repurposing. However, it still encounter some challenges, such as lack of labels and multimodal feature representation. To address these issues, we design DrugCLIP, a cutting-edge contrastive learning method, to learn drug and disease's interaction without negative labels. Additionally, we have curated a drug repurposing dataset based on real-world clinical trial records. Thorough empirical studies are conducted to validate the effectiveness of the proposed DrugCLIP method.
☆ FreeCG: Free the Design Space of Clebsch-Gordan Transform for machine learning force field
The Clebsch-Gordan Transform (CG transform) effectively encodes many-body interactions. Many studies have proven its accuracy in depicting atomic environments, although this comes with high computational needs. The computational burden of this challenge is hard to reduce due to the need for permutation equivariance, which limits the design space of the CG transform layer. We show that, implementing the CG transform layer on permutation-invariant inputs allows complete freedom in the design of this layer without affecting symmetry. Developing further on this premise, our idea is to create a CG transform layer that operates on permutation-invariant abstract edges generated from real edge information. We bring in group CG transform with sparse path, abstract edges shuffling, and attention enhancer to form a powerful and efficient CG transform layer. Our method, known as FreeCG, achieves State-of-The-Art (SoTA) results in force prediction for MD17, rMD17, MD22, and property prediction in QM9 datasets with notable enhancement. It introduces a novel paradigm for carrying out efficient and expressive CG transform in future geometric neural network designs.
☆ SiamTST: A Novel Representation Learning Framework for Enhanced Multivariate Time Series Forecasting applied to Telco Networks
We introduce SiamTST, a novel representation learning framework for multivariate time series. SiamTST integrates a Siamese network with attention, channel-independent patching, and normalization techniques to achieve superior performance. Evaluated on a real-world industrial telecommunication dataset, SiamTST demonstrates significant improvements in forecasting accuracy over existing methods. Notably, a simple linear network also shows competitive performance, achieving the second-best results, just behind SiamTST. The code is available at https://github.com/simenkristoff/SiamTST.
comment: 14 pages, 3 figures, public codebase
☆ Parameter-Selective Continual Test-Time Adaptation
Continual Test-Time Adaptation (CTTA) aims to adapt a pretrained model to ever-changing environments during the test time under continuous domain shifts. Most existing CTTA approaches are based on the Mean Teacher (MT) structure, which contains a student and a teacher model, where the student is updated using the pseudo-labels from the teacher model, and the teacher is then updated by exponential moving average strategy. However, these methods update the MT model indiscriminately on all parameters of the model. That is, some critical parameters involving sharing knowledge across different domains may be erased, intensifying error accumulation and catastrophic forgetting. In this paper, we introduce Parameter-Selective Mean Teacher (PSMT) method, which is capable of effectively updating the critical parameters within the MT network under domain shifts. First, we introduce a selective distillation mechanism in the student model, which utilizes past knowledge to regularize novel knowledge, thereby mitigating the impact of error accumulation. Second, to avoid catastrophic forgetting, in the teacher model, we create a mask through Fisher information to selectively update parameters via exponential moving average, with preservation measures applied to crucial parameters. Extensive experimental results verify that PSMT outperforms state-of-the-art methods across multiple benchmark datasets. Our code is available at \url{https://github.com/JiaxuTian/PSMT}.
comment: 17pages, 4 figures
☆ MALT Powers Up Adversarial Attacks
Current adversarial attacks for multi-class classifiers choose the target class for a given input naively, based on the classifier's confidence levels for various target classes. We present a novel adversarial targeting method, \textit{MALT - Mesoscopic Almost Linearity Targeting}, based on medium-scale almost linearity assumptions. Our attack wins over the current state of the art AutoAttack on the standard benchmark datasets CIFAR-100 and ImageNet and for a variety of robust models. In particular, our attack is \emph{five times faster} than AutoAttack, while successfully matching all of AutoAttack's successes and attacking additional samples that were previously out of reach. We then prove formally and demonstrate empirically that our targeting method, although inspired by linear predictors, also applies to standard non-linear models.
☆ MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations
One of the primary areas of interest in High Performance Computing is the improvement of performance of parallel workloads. Nowadays, compilable source code-based optimization tasks that employ deep learning often exploit LLVM Intermediate Representations (IRs) for extracting features from source code. Most such works target specific tasks, or are designed with a pre-defined set of heuristics. So far, pre-trained models are rare in this domain, but the possibilities have been widely discussed. Especially approaches mimicking large-language models (LLMs) have been proposed. But these have prohibitively large training costs. In this paper, we propose MIREncoder, a M}ulti-modal IR-based Auto-Encoder that can be pre-trained to generate a learned embedding space to be used for downstream tasks by machine learning-based approaches. A multi-modal approach enables us to better extract features from compilable programs. It allows us to better model code syntax, semantics and structure. For code-based performance optimizations, these features are very important while making optimization decisions. A pre-trained model/embedding implicitly enables the usage of transfer learning, and helps move away from task-specific trained models. Additionally, a pre-trained model used for downstream performance optimization should itself have reduced overhead, and be easily usable. These considerations have led us to propose a modeling approach that i) understands code semantics and structure, ii) enables use of transfer learning, and iii) is small and simple enough to be easily re-purposed or reused even with low resource availability. Our evaluations will show that our proposed approach can outperform the state of the art while reducing overhead.
comment: 12 pages, 6 figures, 9 tables, PACT '24 conference
☆ Synthetic Multimodal Question Generation
Multimodal Retrieval Augmented Generation (MMRAG) is a powerful approach to question-answering over multimodal documents. A key challenge with evaluating MMRAG is the paucity of high-quality datasets matching the question styles and modalities of interest. In light of this, we propose SMMQG, a synthetic data generation framework. SMMQG leverages interplay between a retriever, large language model (LLM) and large multimodal model (LMM) to generate question and answer pairs directly from multimodal documents, with the questions conforming to specified styles and modalities. We use SMMQG to generate an MMRAG dataset of 1024 questions over Wikipedia documents and evaluate state-of-the-art models using it, revealing insights into model performance that are attainable only through style- and modality-specific evaluation data. Next, we measure the quality of data produced by SMMQG via a human study. We find that the quality of our synthetic data is on par with the quality of the crowdsourced benchmark MMQA and that downstream evaluation results using both datasets strongly concur.
comment: Submitted to ARR June 2024
☆ Safety-Driven Deep Reinforcement Learning Framework for Cobots: A Sim2Real Approach
This study presents a novel methodology incorporating safety constraints into a robotic simulation during the training of deep reinforcement learning (DRL). The framework integrates specific parts of the safety requirements, such as velocity constraints, as specified by ISO 10218, directly within the DRL model that becomes a part of the robot's learning algorithm. The study then evaluated the efficiency of these safety constraints by subjecting the DRL model to various scenarios, including grasping tasks with and without obstacle avoidance. The validation process involved comprehensive simulation-based testing of the DRL model's responses to potential hazards and its compliance. Also, the performance of the system is carried out by the functional safety standards IEC 61508 to determine the safety integrity level. The study indicated a significant improvement in the safety performance of the robotic system. The proposed DRL model anticipates and mitigates hazards while maintaining operational efficiency. This study was validated in a testbed with a collaborative robotic arm with safety sensors and assessed with metrics such as the average number of safety violations, obstacle avoidance, and the number of successful grasps. The proposed approach outperforms the conventional method by a 16.5% average success rate on the tested scenarios in the simulations and 2.5% in the testbed without safety violations. The project repository is available at https://github.com/ammar-n-abbas/sim2real-ur-gym-gazebo.
comment: This paper has been accepted for publication in the proceedings of the IEEE/IFAC International Conference on Control, Decision, and Information Technologies (CoDIT), 2024
☆ Physics-Informed Model and Hybrid Planning for Efficient Dyna-Style Reinforcement Learning
Applying reinforcement learning (RL) to real-world applications requires addressing a trade-off between asymptotic performance, sample efficiency, and inference time. In this work, we demonstrate how to address this triple challenge by leveraging partial physical knowledge about the system dynamics. Our approach involves learning a physics-informed model to boost sample efficiency and generating imaginary trajectories from this model to learn a model-free policy and Q-function. Furthermore, we propose a hybrid planning strategy, combining the learned policy and Q-function with the learned model to enhance time efficiency in planning. Through practical demonstrations, we illustrate that our method improves the compromise between sample efficiency, time efficiency, and performance over state-of-the-art methods.
☆ PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning
Large language models (LLMs) have played a fundamental role in various natural language processing tasks with powerful prompt techniques. However, in real-world applications, there are often similar prompt components for repeated queries, which causes significant computational burdens during inference. Existing prompt compression and direct fine-tuning methods aim to tackle these challenges, yet they frequently struggle to strike an optimal balance between cost-efficiency and performance effectiveness, especially in complex tasks such as NL2Code. In this paper, we propose a novel method namely PromptIntern to internalize the prompt knowledge into model parameters via progressive fine-tuning. Our method enables LLMs to emulate the human learning process for a new task, where detailed templates and examples in a prompt are gradually internalized and phased out progressively as the model grows accustomed to the task. Extensive experiments demonstrate that our method reduces inference tokens over 90%, speedups inference by 4.2 times, and saves 88.3% monetary cost.
☆ Attack-Aware Noise Calibration for Differential Privacy
Differential privacy (DP) is a widely used approach for mitigating privacy risks when training machine learning models on sensitive data. DP mechanisms add noise during training to limit the risk of information leakage. The scale of the added noise is critical, as it determines the trade-off between privacy and utility. The standard practice is to select the noise scale in terms of a privacy budget parameter $\epsilon$. This parameter is in turn interpreted in terms of operational attack risk, such as accuracy, or sensitivity and specificity of inference attacks against the privacy of the data. We demonstrate that this two-step procedure of first calibrating the noise scale to a privacy budget $\epsilon$, and then translating $\epsilon$ to attack risk leads to overly conservative risk assessments and unnecessarily low utility. We propose methods to directly calibrate the noise scale to a desired attack risk level, bypassing the intermediate step of choosing $\epsilon$. For a target attack risk, our approach significantly decreases noise scale, leading to increased utility at the same level of privacy. We empirically demonstrate that calibrating noise to attack sensitivity/specificity, rather than $\epsilon$, when training privacy-preserving ML models substantially improves model accuracy for the same risk level. Our work provides a principled and practical way to improve the utility of privacy-preserving ML without compromising on privacy.
☆ Structure-Aware Consensus Network on Graphs with Few Labeled Nodes
Graph node classification with few labeled nodes presents significant challenges due to limited supervision. Conventional methods often exploit the graph in a transductive learning manner. They fail to effectively utilize the abundant unlabeled data and the structural information inherent in graphs. To address these issues, we introduce a Structure-Aware Consensus Network (SACN) from three perspectives. Firstly, SACN leverages a novel structure-aware consensus learning strategy between two strongly augmented views. The proposed strategy can fully exploit the potentially useful information of the unlabeled nodes and the structural information of the entire graph. Secondly, SACN uniquely integrates the graph's structural information to achieve strong-to-strong consensus learning, improving the utilization of unlabeled data while maintaining multiview learning. Thirdly, unlike two-branch graph neural network-based methods, SACN is designed for multiview feature learning within a single-branch architecture. Furthermore, a class-aware pseudolabel selection strategy helps address class imbalance and achieve effective weak-to-strong supervision. Extensive experiments on three benchmark datasets demonstrate SACN's superior performance in node classification tasks, particularly at very low label rates, outperforming state-of-the-art methods while maintaining computational simplicity.The source code is available at https://github.com/kunzhan/SACN
comment: under review
☆ Towards Training Music Taggers on Synthetic Data
Most contemporary music tagging systems rely on large volumes of annotated data. As an alternative, we investigate the extent to which synthetically generated music excerpts can improve tagging systems when only small annotated collections are available. To this end, we release GTZAN-synth, a synthetic dataset that follows the taxonomy of the well-known GTZAN dataset while being ten times larger in data volume. We first observe that simply adding this synthetic dataset to the training split of GTZAN does not result into performance improvements. We then proceed to investigating domain adaptation, transfer learning and fine-tuning strategies for the task at hand and draw the conclusion that the last two options yield an increase in accuracy. Overall, the proposed approach can be considered as a first guide in a promising field for future research.
comment: 6 pages, 3 figures, accepted to 21st International Conference on Content-based Multimedia Indexing (CBMI) 2024, code available https://github.com/NadineKroher/music-tagging-synthetic-data-cbmi-2024
☆ Equidistribution-based training of Free Knot Splines and ReLU Neural Networks
We consider the problem of one-dimensional function approximation using shallow neural networks (NN) with a rectified linear unit (ReLU) activation function and compare their training with traditional methods such as univariate Free Knot Splines (FKS). ReLU NNs and FKS span the same function space, and thus have the same theoretical expressivity. In the case of ReLU NNs, we show that their ill-conditioning degrades rapidly as the width of the network increases. This often leads to significantly poorer approximation in contrast to the FKS representation, which remains well-conditioned as the number of knots increases. We leverage the theory of optimal piecewise linear interpolants to improve the training procedure for a ReLU NN. Using the equidistribution principle, we propose a two-level procedure for training the FKS by first solving the nonlinear problem of finding the optimal knot locations of the interpolating FKS. Determining the optimal knots then acts as a good starting point for training the weights of the FKS. The training of the FKS gives insights into how we can train a ReLU NN effectively to give an equally accurate approximation. More precisely, we combine the training of the ReLU NN with an equidistribution based loss to find the breakpoints of the ReLU functions, combined with preconditioning the ReLU NN approximation (to take an FKS form) to find the scalings of the ReLU functions, leads to a well-conditioned and reliable method of finding an accurate ReLU NN approximation to a target function. We test this method on a series or regular, singular, and rapidly varying target functions and obtain good results realising the expressivity of the network in this case.
☆ Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
A critical aspect of Graph Neural Networks (GNNs) is to enhance the node representations by aggregating node neighborhood information. However, when detecting anomalies, the representations of abnormal nodes are prone to be averaged by normal neighbors, making the learned anomaly representations less distinguishable. To tackle this issue, we propose CAGAD -- an unsupervised Counterfactual data Augmentation method for Graph Anomaly Detection -- which introduces a graph pointer neural network as the heterophilic node detector to identify potential anomalies whose neighborhoods are normal-node-dominant. For each identified potential anomaly, we design a graph-specific diffusion model to translate a part of its neighbors, which are probably normal, into anomalous ones. At last, we involve these translated neighbors in GNN neighborhood aggregation to produce counterfactual representations of anomalies. Through aggregating the translated anomalous neighbors, counterfactual representations become more distinguishable and further advocate detection performance. The experimental results on four datasets demonstrate that CAGAD significantly outperforms strong baselines, with an average improvement of 2.35% on F1, 2.53% on AUC-ROC, and 2.79% on AUC-PR.
comment: Accepted by IEEE Transactions on Computational Social Systems(TCSS). DOI: https://doi.org/10.1109/TCSS.2024.3403503
☆ Efficient Nearest Neighbor based Uncertainty Estimation for Natural Language Processing Tasks
Trustworthy prediction in Deep Neural Networks (DNNs), including Pre-trained Language Models (PLMs) is important for safety-critical applications in the real world. However, DNNs often suffer from uncertainty estimation, such as miscalibration. In particular, approaches that require multiple stochastic inference can mitigate this problem, but the expensive cost of inference makes them impractical. In this study, we propose $k$-Nearest Neighbor Uncertainty Estimation ($k$NN-UE), which is an uncertainty estimation method that uses the distances from the neighbors and label-existence ratio of neighbors. Experiments on sentiment analysis, natural language inference, and named entity recognition show that our proposed method outperforms the baselines or recent density-based methods in confidence calibration, selective prediction, and out-of-distribution detection. Moreover, our analyses indicate that introducing dimension reduction or approximate nearest neighbor search inspired by recent $k$NN-LM studies reduces the inference overhead without significantly degrading estimation performance when combined them appropriately.
☆ Distributional Regression U-Nets for the Postprocessing of Precipitation Ensemble Forecasts
Accurate precipitation forecasts have a high socio-economic value due to their role in decision-making in various fields such as transport networks and farming. We propose a global statistical postprocessing method for grid-based precipitation ensemble forecasts. This U-Net-based distributional regression method predicts marginal distributions in the form of parametric distributions inferred by scoring rule minimization. Distributional regression U-Nets are compared to state-of-the-art postprocessing methods for daily 21-h forecasts of 3-h accumulated precipitation over the South of France. Training data comes from the M\'et\'eo-France weather model AROME-EPS and spans 3 years. A practical challenge appears when consistent data or reforecasts are not available. Distributional regression U-Nets compete favorably with the raw ensemble. In terms of continuous ranked probability score, they reach a performance comparable to quantile regression forests (QRF). However, they are unable to provide calibrated forecasts in areas associated with high climatological precipitation. In terms of predictive power for heavy precipitation events, they outperform both QRF and semi-parametric QRF with tail extensions.
comment: for associated code, see https://github.com/pic-romain/unet-pp
☆ Cost-Effective Proxy Reward Model Construction with On-Policy and Active Learning
Reinforcement learning with human feedback (RLHF), as a widely adopted approach in current large language model pipelines, is \textit{bottlenecked by the size of human preference data}. While traditional methods rely on offline preference dataset constructions, recent approaches have shifted towards online settings, where a learner uses a small amount of labeled seed data and a large pool of unlabeled prompts to iteratively construct new preference data through self-generated responses and high-quality reward/preference feedback. However, most current online algorithms still focus on preference labeling during policy model updating with given feedback oracles, which incurs significant expert query costs. \textit{We are the first to explore cost-effective proxy reward oracles construction strategies for further labeling preferences or rewards with extremely limited labeled data and expert query budgets}. Our approach introduces two key innovations: (1) on-policy query to avoid OOD and imbalance issues in seed data, and (2) active learning to select the most informative data for preference queries. Using these methods, we train a evaluation model with minimal expert-labeled data, which then effectively labels nine times more preference pairs for further RLHF training. For instance, our model using Direct Preference Optimization (DPO) gains around over 1% average improvement on AlpacaEval2, MMLU-5shot and MMLU-0shot, with only 1.7K query cost. Our methodology is orthogonal to other direct expert query-based strategies and therefore might be integrated with them to further reduce query costs.
☆ A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data
Tabular data is prevalent in real-world machine learning applications, and new models for supervised learning of tabular data are frequently proposed. Comparative studies assessing the performance of models typically consist of model-centric evaluation setups with overly standardized data preprocessing. This paper demonstrates that such model-centric evaluations are biased, as real-world modeling pipelines often require dataset-specific preprocessing and feature engineering. Therefore, we propose a data-centric evaluation framework. We select 10 relevant datasets from Kaggle competitions and implement expert-level preprocessing pipelines for each dataset. We conduct experiments with different preprocessing pipelines and hyperparameter optimization (HPO) regimes to quantify the impact of model selection, HPO, feature engineering, and test-time adaptation. Our main findings are: 1. After dataset-specific feature engineering, model rankings change considerably, performance differences decrease, and the importance of model selection reduces. 2. Recent models, despite their measurable progress, still significantly benefit from manual feature engineering. This holds true for both tree-based models and neural networks. 3. While tabular data is typically considered static, samples are often collected over time, and adapting to distribution shifts can be important even in supposedly static data. These insights suggest that research efforts should be directed toward a data-centric perspective, acknowledging that tabular data requires feature engineering and often exhibits temporal characteristics.
☆ Automated Knowledge Graph Learning in Industrial Processes
Industrial processes generate vast amounts of time series data, yet extracting meaningful relationships and insights remains challenging. This paper introduces a framework for automated knowledge graph learning from time series data, specifically tailored for industrial applications. Our framework addresses the complexities inherent in industrial datasets, transforming them into knowledge graphs that improve decision-making, process optimization, and knowledge discovery. Additionally, it employs Granger causality to identify key attributes that can inform the design of predictive models. To illustrate the practical utility of our approach, we also present a motivating use case demonstrating the benefits of our framework in a real-world industrial scenario. Further, we demonstrate how the automated conversion of time series data into knowledge graphs can identify causal influences or dependencies between important process parameters.
☆ Efficient Bit Labeling in Factorization Machines with Annealing for Traveling Salesman Problem
To efficiently find an optimum parameter combination in a large-scale problem, it is a key to convert the parameters into available variables in actual machines. Specifically, quadratic unconstrained binary optimization problems are solved with the help of machine learning, e.g., factorization machines with annealing, which convert a raw parameter to binary variables. This work investigates the dependence of the convergence speed and the accuracy on binary labeling method, which can influence the cost function shape and thus the probability of being captured at a local minimum solution. By exemplifying traveling salesman problem, we propose and evaluate Gray labeling, which correlates the Hamming distance in binary labels with the traveling distance. Through numerical simulation of traveling salesman problem up to 15 cities at a limited number of iterations, the Gray labeling shows less local minima percentages and shorter traveling distances compared with natural labeling.
☆ GPTCast: a weather language model for precipitation nowcasting
This work introduces GPTCast, a generative deep-learning method for ensemble nowcast of radar-based precipitation, inspired by advancements in large language models (LLMs). We employ a GPT model as a forecaster to learn spatiotemporal precipitation dynamics using tokenized radar images. The tokenizer is based on a Quantized Variational Autoencoder featuring a novel reconstruction loss tailored for the skewed distribution of precipitation that promotes faithful reconstruction of high rainfall rates. The approach produces realistic ensemble forecasts and provides probabilistic outputs with accurate uncertainty estimation. The model is trained without resorting to randomness, all variability is learned solely from the data and exposed by model at inference for ensemble generation. We train and test GPTCast using a 6-year radar dataset over the Emilia-Romagna region in Northern Italy, showing superior results compared to state-of-the-art ensemble extrapolation methods.
comment: 16 pages, 10 figures
☆ Contribution Evaluation of Heterogeneous Participants in Federated Learning via Prototypical Representations
Contribution evaluation in federated learning (FL) has become a pivotal research area due to its applicability across various domains, such as detecting low-quality datasets, enhancing model robustness, and designing incentive mechanisms. Existing contribution evaluation methods, which primarily rely on data volume, model similarity, and auxiliary test datasets, have shown success in diverse scenarios. However, their effectiveness often diminishes due to the heterogeneity of data distributions, presenting a significant challenge to their applicability. In response, this paper explores contribution evaluation in FL from an entirely new perspective of representation. In this work, we propose a new method for the contribution evaluation of heterogeneous participants in federated learning (FLCE), which introduces a novel indicator \emph{class contribution momentum} to conduct refined contribution evaluation. Our core idea is the construction and application of the class contribution momentum indicator from individual, relative, and holistic perspectives, thereby achieving an effective and efficient contribution evaluation of heterogeneous participants without relying on an auxiliary test dataset. Extensive experimental results demonstrate the superiority of our method in terms of fidelity, effectiveness, efficiency, and heterogeneity across various scenarios.
☆ Latent Diffusion Model for Generating Ensembles of Climate Simulations ICML 2024
Obtaining accurate estimates of uncertainty in climate scenarios often requires generating large ensembles of high-resolution climate simulations, a computationally expensive and memory intensive process. To address this challenge, we train a novel generative deep learning approach on extensive sets of climate simulations. The model consists of two components: a variational autoencoder for dimensionality reduction and a denoising diffusion probabilistic model that generates multiple ensemble members. We validate our model on the Max Planck Institute Grand Ensemble and show that it achieves good agreement with the original ensemble in terms of variability. By leveraging the latent space representation, our model can rapidly generate large ensembles on-the-fly with minimal memory requirements, which can significantly improve the efficiency of uncertainty quantification in climate simulations.
comment: 8 pages, 7 figures, Accepted at the ICML 2024 Machine Learning for Earth System Modeling workshop
☆ Are Data Augmentation Methods in Named Entity Recognition Applicable for Uncertainty Estimation?
This work investigates the impact of data augmentation on confidence calibration and uncertainty estimation in Named Entity Recognition (NER) tasks. For the future advance of NER in safety-critical fields like healthcare and finance, it is essential to achieve accurate predictions with calibrated confidence when applying Deep Neural Networks (DNNs), including Pre-trained Language Models (PLMs), as a real-world application. However, DNNs are prone to miscalibration, which limits their applicability. Moreover, existing methods for calibration and uncertainty estimation are computational expensive. Our investigation in NER found that data augmentation improves calibration and uncertainty in cross-genre and cross-lingual setting, especially in-domain setting. Furthermore, we showed that the calibration for NER tends to be more effective when the perplexity of the sentences generated by data augmentation is lower, and that increasing the size of the augmentation further improves calibration and uncertainty.
☆ Terminating Differentiable Tree Experts
We advance the recently proposed neuro-symbolic Differentiable Tree Machine, which learns tree operations using a combination of transformers and Tensor Product Representations. We investigate the architecture and propose two key components. We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts. This results in a Differentiable Tree Experts model with a constant number of parameters for any arbitrary number of steps in the computation, compared to the previous method in the Differentiable Tree Machine with a linear growth. Given this flexibility in the number of steps, we additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically. The resulting Terminating Differentiable Tree Experts model sluggishly learns to predict the number of steps without an oracle. It can do so while maintaining the learning capabilities of the model, converging to the optimal amount of steps.
comment: Accepted at the 18th International Conference on Neural-Symbolic Learning and Reasoning (NeSy) 2024
☆ HC-GLAD: Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection
Unsupervised graph-level anomaly detection (UGAD) has garnered increasing attention in recent years due to its significance. However, most existing methods only rely on traditional graph neural networks to explore pairwise relationships but such kind of pairwise edges are not enough to describe multifaceted relationships involving anomaly. There is an emergency need to exploit node group information which plays a crucial role in UGAD. In addition, most previous works ignore the global underlying properties (e.g., hierarchy and power-law structure) which are common in real-world graph datasets and therefore are indispensable factors on UGAD task. In this paper, we propose a novel Dual Hyperbolic Contrastive Learning for Unsupervised Graph-Level Anomaly Detection (HC-GLAD in short). To exploit node group connections, we construct hypergraphs based on gold motifs and subsequently perform hypergraph convolution. Furthermore, to preserve the hierarchy of real-world graphs, we introduce hyperbolic geometry into this field and conduct both graph and hypergraph embedding learning in hyperbolic space with hyperboloid model. To the best of our knowledge, this is the first work to simultaneously apply hypergraph with node group connections and hyperbolic geometry into this field. Extensive experiments on several real world datasets of different fields demonstrate the superiority of HC-GLAD on UGAD task. The code is available at https://github.com/Yali-F/HC-GLAD.
☆ SwiftDiffusion: Efficient Diffusion Model Serving with Add-on Modules
This paper documents our characterization study and practices for serving text-to-image requests with stable diffusion models in production. We first comprehensively analyze inference request traces for commercial text-to-image applications. It commences with our observation that add-on modules, i.e., ControlNets and LoRAs, that augment the base stable diffusion models, are ubiquitous in generating images for commercial applications. Despite their efficacy, these add-on modules incur high loading overhead, prolong the serving latency, and swallow up expensive GPU resources. Driven by our characterization study, we present SwiftDiffusion, a system that efficiently generates high-quality images using stable diffusion models and add-on modules. To achieve this, SwiftDiffusion reconstructs the existing text-to-image serving workflow by identifying the opportunities for parallel computation and distributing ControlNet computations across multiple GPUs. Further, SwiftDiffusion thoroughly analyzes the dynamics of image generation and develops techniques to eliminate the overhead associated with LoRA loading and patching while preserving the image quality. Last, SwiftDiffusion proposes specialized optimizations in the backbone architecture of the stable diffusion models, which are also compatible with the efficient serving of add-on modules. Compared to state-of-the-art text-to-image serving systems, SwiftDiffusion reduces serving latency by up to 5x and improves serving throughput by up to 2x without compromising image quality.
☆ Why does in-context learning fail sometimes? Evaluating in-context learning on open and closed questions
We measure the performance of in-context learning as a function of task novelty and difficulty for open and closed questions. For that purpose, we created a novel benchmark consisting of hard scientific questions, each paired with a context of various relevancy. We show that counter-intuitively, a context that is more aligned with the topic does not always help more than a less relevant context. This effect is especially visible for open questions and questions of high difficulty or novelty. This result reveals a fundamental difference between the treatment of close-form and open-form questions by large-language models and shows a need for a more robust evaluation of in-context learning on the variety of different types of questions. It also poses a new question of how to optimally select a context for large language models, especially in the context of Retrieval Augmented Generation (RAG) systems. Our results suggest that the answer to this question can be highly application-dependent and might be contingent on factors including the format of the question, the perceived difficulty level of the questions, and the novelty or popularity of the information we seek.
comment: 8 pages plus references, 4 main figures, 6 pages of supplementary material
☆ On the Expressive Power of Sparse Geometric MPNNs
Motivated by applications in chemistry and other sciences, we study the expressive power of message-passing neural networks for geometric graphs, whose node features correspond to 3-dimensional positions. Recent work has shown that such models can separate generic pairs of non-equivalent geometric graphs, though they may fail to separate some rare and complicated instances. However, these results assume a fully connected graph, where each node possesses complete knowledge of all other nodes. In contrast, often, in application, every node only possesses knowledge of a small number of nearest neighbors. This paper shows that generic pairs of non-equivalent geometric graphs can be separated by message-passing networks with rotation equivariant features as long as the underlying graph is connected. When only invariant intermediate features are allowed, generic separation is guaranteed for generically globally rigid graphs. We introduce a simple architecture, EGENNET, which achieves our theoretical guarantees and compares favorably with alternative architecture on synthetic and chemical benchmarks.
☆ DiGRAF: Diffeomorphic Graph-Adaptive Activation Function
In this paper, we propose a novel activation function tailored specifically for graph data in Graph Neural Networks (GNNs). Motivated by the need for graph-adaptive and flexible activation functions, we introduce DiGRAF, leveraging Continuous Piecewise-Affine Based (CPAB) transformations, which we augment with an additional GNN to learn a graph-adaptive diffeomorphic activation function in an end-to-end manner. In addition to its graph-adaptivity and flexibility, DiGRAF also possesses properties that are widely recognized as desirable for activation functions, such as differentiability, boundness within the domain and computational efficiency. We conduct an extensive set of experiments across diverse datasets and tasks, demonstrating a consistent and superior performance of DiGRAF compared to traditional and graph-specific activation functions, highlighting its effectiveness as an activation function for GNNs.
☆ Feynman-Kac Operator Expectation Estimator
The Feynman-Kac Operator Expectation Estimator (FKEE) is an innovative method for estimating the target Mathematical Expectation $\mathbb{E}_{X\sim P}[f(X)]$ without relying on a large number of samples, in contrast to the commonly used Markov Chain Monte Carlo (MCMC) Expectation Estimator. FKEE comprises diffusion bridge models and approximation of the Feynman-Kac operator. The key idea is to use the solution to the Feynmann-Kac equation at the initial time $u(x_0,0)=\mathbb{E}[f(X_T)|X_0=x_0]$. We use Physically Informed Neural Networks (PINN) to approximate the Feynman-Kac operator, which enables the incorporation of diffusion bridge models into the expectation estimator and significantly improves the efficiency of using data while substantially reducing the variance. Diffusion Bridge Model is a more general MCMC method. In order to incorporate extensive MCMC algorithms, we propose a new diffusion bridge model based on the Minimum Wasserstein distance. This diffusion bridge model is universal and reduces the training time of the PINN. FKEE also reduces the adverse impact of the curse of dimensionality and weakens the assumptions on the distribution of $X$ and performance function $f$ in the general MCMC expectation estimator. The theoretical properties of this universal diffusion bridge model are also shown. Finally, we demonstrate the advantages and potential applications of this method through various concrete experiments, including the challenging task of approximating the partition function in the random graph model such as the Ising model.
☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on continuous manifolds with infinitesimally defined metrics, we propose to generate them by predicting midpoints recursively and an actor-critic method to learn midpoint prediction. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on both local and global path planning tasks.
comment: 15 pages with 6 pages of appendices and references, 8 figures
☆ The Epistemic Uncertainty Hole: an issue of Bayesian Neural Networks
Bayesian Deep Learning (BDL) gives access not only to aleatoric uncertainty, as standard neural networks already do, but also to epistemic uncertainty, a measure of confidence a model has in its own predictions. In this article, we show through experiments that the evolution of epistemic uncertainty metrics regarding the model size and the size of the training set, goes against theoretical expectations. More precisely, we observe that the epistemic uncertainty collapses literally in the presence of large models and sometimes also of little training data, while we expect the exact opposite behaviour. This phenomenon, which we call "epistemic uncertainty hole", is all the more problematic as it undermines the entire applicative potential of BDL, which is based precisely on the use of epistemic uncertainty. As an example, we evaluate the practical consequences of this uncertainty hole on one of the main applications of BDL, namely the detection of out-of-distribution samples
☆ Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks KDD2024
Graph Neural Networks (GNNs) have emerged as a prominent framework for graph mining, leading to significant advances across various domains. Stemmed from the node-wise representations of GNNs, existing explanation studies have embraced the subgraph-specific viewpoint that attributes the decision results to the salient features and local structures of nodes. However, graph-level tasks necessitate long-range dependencies and global interactions for advanced GNNs, deviating significantly from subgraph-specific explanations. To bridge this gap, this paper proposes a novel intrinsically interpretable scheme for graph classification, termed as Global Interactive Pattern (GIP) learning, which introduces learnable global interactive patterns to explicitly interpret decisions. GIP first tackles the complexity of interpretation by clustering numerous nodes using a constrained graph clustering module. Then, it matches the coarsened global interactive instance with a batch of self-interpretable graph prototypes, thereby facilitating a transparent graph-level reasoning process. Extensive experiments conducted on both synthetic and real-world benchmarks demonstrate that the proposed GIP yields significantly superior interpretability and competitive performance to~the state-of-the-art counterparts. Our code will be made publicly available.
comment: Accepted in KDD2024
☆ MeMemo: On-device Retrieval Augmentation for Private and Personalized Text Generation SIGIR 2024
Retrieval-augmented text generation (RAG) addresses the common limitations of large language models (LLMs), such as hallucination, by retrieving information from an updatable external knowledge base. However, existing approaches often require dedicated backend servers for data storage and retrieval, thereby limiting their applicability in use cases that require strict data privacy, such as personal finance, education, and medicine. To address the pressing need for client-side dense retrieval, we introduce MeMemo, the first open-source JavaScript toolkit that adapts the state-of-the-art approximate nearest neighbor search technique HNSW to browser environments. Developed with modern and native Web technologies, such as IndexedDB and Web Workers, our toolkit leverages client-side hardware capabilities to enable researchers and developers to efficiently search through millions of high-dimensional vectors in the browser. MeMemo enables exciting new design and research opportunities, such as private and personalized content creation and interactive prototyping, as demonstrated in our example application RAG Playground. Reflecting on our work, we discuss the opportunities and challenges for on-device dense retrieval. MeMemo is available at https://github.com/poloclub/mememo.
comment: Accepted to SIGIR 2024. 6 pages, 2 figures. For a live demo, visit https://poloclub.github.io/mememo/. Code is open-source at https://github.com/poloclub/mememo
☆ Zero-shot Video Restoration and Enhancement Using Pre-Trained Image Diffusion Model
Diffusion-based zero-shot image restoration and enhancement models have achieved great success in various image restoration and enhancement tasks without training. However, directly applying them to video restoration and enhancement results in severe temporal flickering artifacts. In this paper, we propose the first framework for zero-shot video restoration and enhancement based on a pre-trained image diffusion model. By replacing the self-attention layer with the proposed cross-previous-frame attention layer, the pre-trained image diffusion model can take advantage of the temporal correlation between neighboring frames. We further propose temporal consistency guidance, spatial-temporal noise sharing, and an early stopping sampling strategy for better temporally consistent sampling. Our method is a plug-and-play module that can be inserted into any diffusion-based zero-shot image restoration or enhancement methods to further improve their performance. Experimental results demonstrate the superiority of our proposed method in producing temporally consistent videos with better fidelity.
comment: 19 pages
☆ CatMemo at the FinLLM Challenge Task: Fine-Tuning Large Language Models using Data Fusion in Financial Applications
The integration of Large Language Models (LLMs) into financial analysis has garnered significant attention in the NLP community. This paper presents our solution to IJCAI-2024 FinLLM challenge, investigating the capabilities of LLMs within three critical areas of financial tasks: financial classification, financial text summarization, and single stock trading. We adopted Llama3-8B and Mistral-7B as base models, fine-tuning them through Parameter Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA) approaches. To enhance model performance, we combine datasets from task 1 and task 2 for data fusion. Our approach aims to tackle these diverse tasks in a comprehensive and integrated manner, showcasing LLMs' capacity to address diverse and complex financial tasks with improved accuracy and decision-making capabilities.
☆ Extracting and Encoding: Leveraging Large Language Models and Medical Knowledge to Enhance Radiological Text Representation ACL 2024
Advancing representation learning in specialized fields like medicine remains challenging due to the scarcity of expert annotations for text and images. To tackle this issue, we present a novel two-stage framework designed to extract high-quality factual statements from free-text radiology reports in order to improve the representations of text encoders and, consequently, their performance on various downstream tasks. In the first stage, we propose a \textit{Fact Extractor} that leverages large language models (LLMs) to identify factual statements from well-curated domain-specific datasets. In the second stage, we introduce a \textit{Fact Encoder} (CXRFE) based on a BERT model fine-tuned with objective functions designed to improve its representations using the extracted factual data. Our framework also includes a new embedding-based metric (CXRFEScore) for evaluating chest X-ray text generation systems, leveraging both stages of our approach. Extensive evaluations show that our fact extractor and encoder outperform current state-of-the-art methods in tasks such as sentence ranking, natural language inference, and label extraction from radiology reports. Additionally, our metric proves to be more robust and effective than existing metrics commonly used in the radiology report generation literature. The code of this project is available at \url{https://github.com/PabloMessina/CXR-Fact-Encoder}.
comment: Accepted to ACL 2024 (Findings)
☆ To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models
Large Language Models (LLMs) trained on extensive corpora inevitably retain sensitive data, such as personal privacy information and copyrighted material. Recent advancements in knowledge unlearning involve updating LLM parameters to erase specific knowledge. However, current unlearning paradigms are mired in vague forgetting boundaries, often erasing knowledge indiscriminately. In this work, we introduce KnowUnDo, a benchmark containing copyrighted content and user privacy domains to evaluate if the unlearning process inadvertently erases essential knowledge. Our findings indicate that existing unlearning methods often suffer from excessive unlearning. To address this, we propose a simple yet effective method, MemFlex, which utilizes gradient information to precisely target and unlearn sensitive parameters. Experimental results show that MemFlex is superior to existing methods in both precise knowledge unlearning and general knowledge retaining of LLMs. Code and dataset will be released at https://github.com/zjunlp/KnowUnDo.
comment: Work in progress
☆ MG-Verilog: Multi-grained Dataset Towards Enhanced LLM-assisted Verilog Generation
Large Language Models (LLMs) have recently shown promise in streamlining hardware design processes by encapsulating vast amounts of domain-specific data. In addition, they allow users to interact with the design processes through natural language instructions, thus making hardware design more accessible to developers. However, effectively leveraging LLMs in hardware design necessitates providing domain-specific data during inference (e.g., through in-context learning), fine-tuning, or pre-training. Unfortunately, existing publicly available hardware datasets are often limited in size, complexity, or detail, which hinders the effectiveness of LLMs in hardware design tasks. To address this issue, we first propose a set of criteria for creating high-quality hardware datasets that can effectively enhance LLM-assisted hardware design. Based on these criteria, we propose a Multi-Grained-Verilog (MG-Verilog) dataset, which encompasses descriptions at various levels of detail and corresponding code samples. To benefit the broader hardware design community, we have developed an open-source infrastructure that facilitates easy access, integration, and extension of the dataset to meet specific project needs. Furthermore, to fully exploit the potential of the MG-Verilog dataset, which varies in complexity and detail, we introduce a balanced fine-tuning scheme. This scheme serves as a unique use case to leverage the diverse levels of detail provided by the dataset. Extensive experiments demonstrate that the proposed dataset and fine-tuning scheme consistently improve the performance of LLMs in hardware design tasks.
comment: Accepted in ISLAD 2024
☆ The Solution for the ICCV 2023 Perception Test Challenge 2023 -- Task 6 -- Grounded videoQA
In this paper, we introduce a grounded video question-answering solution. Our research reveals that the fixed official baseline method for video question answering involves two main steps: visual grounding and object tracking. However, a significant challenge emerges during the initial step, where selected frames may lack clearly identifiable target objects. Furthermore, single images cannot address questions like "Track the container from which the person pours the first time." To tackle this issue, we propose an alternative two-stage approach:(1) First, we leverage the VALOR model to answer questions based on video information.(2) concatenate the answered questions with their respective answers. Finally, we employ TubeDETR to generate bounding boxes for the targets.
☆ Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models
Parameter-efficient fine-tuning (PEFT) is crucial for customizing Large Language Models (LLMs) with constrained resources. Although there have been various PEFT methods for dense-architecture LLMs, PEFT for sparse-architecture LLMs is still underexplored. In this work, we study the PEFT method for LLMs with the Mixture-of-Experts (MoE) architecture and the contents of this work are mainly threefold: (1) We investigate the dispersion degree of the activated experts in customized tasks, and found that the routing distribution for a specific task tends to be highly concentrated, while the distribution of activated experts varies significantly across different tasks. (2) We propose Expert-Specialized Fine-Tuning, or ESFT, which tunes the experts most relevant to downstream tasks while freezing the other experts and modules; experimental results demonstrate that our method not only improves the tuning efficiency, but also matches or even surpasses the performance of full-parameter fine-tuning. (3) We further analyze the impact of the MoE architecture on expert-specialized fine-tuning. We find that MoE models with finer-grained experts are more advantageous in selecting the combination of experts that are most relevant to downstream tasks, thereby enhancing both the training efficiency and effectiveness.
☆ Text-Aware Diffusion for Policy Learning
Training an agent to achieve particular goals or perform desired behaviors is often accomplished through reinforcement learning, especially in the absence of expert demonstrations. However, supporting novel goals or behaviors through reinforcement learning requires the ad-hoc design of appropriate reward functions, which quickly becomes intractable. To address this challenge, we propose Text-Aware Diffusion for Policy Learning (TADPoLe), which uses a pretrained, frozen text-conditioned diffusion model to compute dense zero-shot reward signals for text-aligned policy learning. We hypothesize that large-scale pretrained generative models encode rich priors that can supervise a policy to behave not only in a text-aligned manner, but also in alignment with a notion of naturalness summarized from internet-scale training data. In our experiments, we demonstrate that TADPoLe is able to learn policies for novel goal-achievement and continuous locomotion behaviors specified by natural language, in both Humanoid and Dog environments. The behaviors are learned zero-shot without ground-truth rewards or expert demonstrations, and are qualitatively more natural according to human evaluation. We further show that TADPoLe performs competitively when applied to robotic manipulation tasks in the Meta-World environment.
☆ Beyond Numeric Awards: In-Context Dueling Bandits with LLM Agents
In-context decision-making is an important capability of artificial general intelligence, which Large Language Models (LLMs) have effectively demonstrated in various scenarios. However, LLMs often face challenges when dealing with numerical contexts, and limited attention has been paid to evaluating their performance through preference feedback generated by the environment. This paper investigates the performance of LLMs as decision-makers in the context of Dueling Bandits (DB). We first evaluate the performance of LLMs by comparing GPT-3.5-Turbo, GPT-4, and GPT-4-Turbo against established DB algorithms. Our results reveal that LLMs, particularly GPT-4 Turbo, quickly identify the Condorcet winner, thus outperforming existing state-of-the-art algorithms in terms of weak regret. Nevertheless, LLMs struggle to converge even when explicitly prompted to do so, and are sensitive to prompt variations. To overcome these issues, we introduce an LLM-augmented algorithm, IF-Enhanced LLM, which takes advantage of both in-context decision-making capabilities of LLMs and theoretical guarantees inherited from classic DB algorithms. The design of such an algorithm sheds light on how to enhance trustworthiness for LLMs used in decision-making tasks where performance robustness matters. We show that IF-Enhanced LLM has theoretical guarantees on both weak and strong regret. Our experimental results validate that IF-Enhanced LLM is robust even with noisy and adversarial prompts.
☆ Core Knowledge Learning Framework for Graph Adaptation and Scalability Learning
Graph classification is a pivotal challenge in machine learning, especially within the realm of graph-based data, given its importance in numerous real-world applications such as social network analysis, recommendation systems, and bioinformatics. Despite its significance, graph classification faces several hurdles, including adapting to diverse prediction tasks, training across multiple target domains, and handling small-sample prediction scenarios. Current methods often tackle these challenges individually, leading to fragmented solutions that lack a holistic approach to the overarching problem. In this paper, we propose an algorithm aimed at addressing the aforementioned challenges. By incorporating insights from various types of tasks, our method aims to enhance adaptability, scalability, and generalizability in graph classification. Motivated by the recognition that the underlying subgraph plays a crucial role in GNN prediction, while the remainder is task-irrelevant, we introduce the Core Knowledge Learning (\method{}) framework for graph adaptation and scalability learning. \method{} comprises several key modules, including the core subgraph knowledge submodule, graph domain adaptation module, and few-shot learning module for downstream tasks. Each module is tailored to tackle specific challenges in graph classification, such as domain shift, label inconsistencies, and data scarcity. By learning the core subgraph of the entire graph, we focus on the most pertinent features for task relevance. Consequently, our method offers benefits such as improved model performance, increased domain adaptability, and enhanced robustness to domain variations. Experimental results demonstrate significant performance enhancements achieved by our method compared to state-of-the-art approaches.
☆ Automated Text Scoring in the Age of Generative AI for the GPU-poor
Current research on generative language models (GLMs) for automated text scoring (ATS) has focused almost exclusively on querying proprietary models via Application Programming Interfaces (APIs). Yet such practices raise issues around transparency and security, and these methods offer little in the way of efficiency or customizability. With the recent proliferation of smaller, open-source models, there is the option to explore GLMs with computers equipped with modest, consumer-grade hardware, that is, for the "GPU poor." In this study, we analyze the performance and efficiency of open-source, small-scale GLMs for ATS. Results show that GLMs can be fine-tuned to achieve adequate, though not state-of-the-art, performance. In addition to ATS, we take small steps towards analyzing models' capacity for generating feedback by prompting GLMs to explain their scores. Model-generated feedback shows promise, but requires more rigorous evaluation focused on targeted use cases.
comment: 21 pages, 1 figure
☆ Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection
Oral cancer is a global health challenge. It is treatable if detected early, but it is often fatal in late stages. There is a shift from the invasive and time-consuming tissue sampling and histological examination, toward non-invasive brush biopsies and cytological examination. Reliable computer-assisted methods are essential for cost-effective and accurate cytological analysis, but the lack of detailed cell-level annotations impairs model effectiveness. This study aims to improve AI-based oral cancer detection using multimodal imaging and deep fusion. We combine brightfield and fluorescence whole slide microscopy imaging to analyze Papanicolaou-stained liquid-based cytology slides of brush biopsies collected from both healthy and cancer patients. Due to limited cytological annotations, we utilize a weakly supervised deep learning approach using only patient-level labels. We evaluate various multimodal fusion strategies, including early, late, and three recent intermediate fusion methods. Our results show: (i) fluorescence imaging of Papanicolaou-stained samples provides substantial diagnostic information; (ii) multimodal fusion enhances classification and cancer detection accuracy over single-modality methods. Intermediate fusion is the leading method among the studied approaches. Specifically, the Co-Attention Fusion Network (CAFNet) model excels with an F1 score of 83.34% and accuracy of 91.79%, surpassing human performance on the task. Additional tests highlight the need for precise image registration to optimize multimodal analysis benefits. This study advances cytopathology by combining deep learning and multimodal imaging to enhance early, non-invasive detection of oral cancer, improving diagnostic accuracy and streamlining clinical workflows. The developed pipeline is also applicable in other cytological settings. Our codes and dataset are available online for further research.
comment: 16 pages, 12 figures, 11 tables
☆ Research on target detection method of distracted driving behavior based on improved YOLOv8
With the development of deep learning technology, the detection and classification of distracted driving behaviour requires higher accuracy. Existing deep learning-based methods are computationally intensive and parameter redundant, limiting the efficiency and accuracy in practical applications. To solve this problem, this study proposes an improved YOLOv8 detection method based on the original YOLOv8 model by integrating the BoTNet module, GAM attention mechanism and EIoU loss function. By optimising the feature extraction and multi-scale feature fusion strategies, the training and inference processes are simplified, and the detection accuracy and efficiency are significantly improved. Experimental results show that the improved model performs well in both detection speed and accuracy, with an accuracy rate of 99.4%, and the model is smaller and easy to deploy, which is able to identify and classify distracted driving behaviours in real time, provide timely warnings, and enhance driving safety.
♻ ☆ ImageFlowNet: Forecasting Multiscale Trajectories of Disease Progression with Irregularly-Sampled Longitudinal Medical Images
The forecasting of disease progression from images is a holy grail for clinical decision making. However, this task is complicated by the inherent high dimensionality, temporal sparsity and sampling irregularity in longitudinal image acquisitions. Existing methods often rely on extracting hand-crafted features and performing time-series analysis in this vector space, leading to a loss of rich spatial information within the images. To overcome these challenges, we introduce ImageFlowNet, a novel framework that learns latent-space flow fields that evolve multiscale representations in joint embedding spaces using neural ODEs and SDEs to model disease progression in the image domain. Notably, ImageFlowNet learns multiscale joint representation spaces by combining cohorts of patients together so that information can be transferred between the patient samples. The dynamics then provide plausible trajectories of progression, with the SDE providing alternative trajectories from the same starting point. We provide theoretical insights that support our formulation of ODEs, and motivate our regularizations involving high-level visual features, latent space organization, and trajectory smoothness. We then demonstrate ImageFlowNet's effectiveness through empirical evaluations on three longitudinal medical image datasets depicting progression in retinal geographic atrophy, multiple sclerosis, and glioblastoma.
comment: Included reference to codebase. Added acknowledgements
♻ ☆ LtU-ILI: An All-in-One Framework for Implicit Inference in Astrophysics and Cosmology
This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline, a codebase for rapid, user-friendly, and cutting-edge machine learning (ML) inference in astrophysics and cosmology. The pipeline includes software for implementing various neural architectures, training schemata, priors, and density estimators in a manner easily adaptable to any research workflow. It includes comprehensive validation metrics to assess posterior estimate coverage, enhancing the reliability of inferred results. Additionally, the pipeline is easily parallelizable and is designed for efficient exploration of modeling hyperparameters. To demonstrate its capabilities, we present real applications across a range of astrophysics and cosmology problems, such as: estimating galaxy cluster masses from X-ray photometry; inferring cosmology from matter power spectra and halo point clouds; characterizing progenitors in gravitational wave signals; capturing physical dust parameters from galaxy colors and luminosities; and establishing properties of semi-analytic models of galaxy formation. We also include exhaustive benchmarking and comparisons of all implemented methods as well as discussions about the challenges and pitfalls of ML inference in astronomical sciences. All code and examples are made publicly available at https://github.com/maho3/ltu-ili.
comment: 22 pages, 10 figures, accepted in the Open Journal of Astrophysics. Code available at https://github.com/maho3/ltu-ili
♻ ☆ Sparse Variational Contaminated Noise Gaussian Process Regression with Applications in Geomagnetic Perturbations Forecasting
Gaussian Processes (GP) have become popular machine-learning methods for kernel-based learning on datasets with complicated covariance structures. In this paper, we present a novel extension to the GP framework using a contaminated normal likelihood function to better account for heteroscedastic variance and outlier noise. We propose a scalable inference algorithm based on the Sparse Variational Gaussian Process (SVGP) method for fitting sparse Gaussian process regression models with contaminated normal noise on large datasets. We examine an application to geomagnetic ground perturbations, where the state-of-the-art prediction model is based on neural networks. We show that our approach yields shorter prediction intervals for similar coverage and accuracy when compared to an artificial dense neural network baseline.
♻ ☆ Analytics of Longitudinal System Monitoring Data for Performance Prediction
In recent years, several HPC facilities have started continuous monitoring of their systems and jobs to collect performance-related data for understanding performance and operational efficiency. Such data can be used to optimize the performance of individual jobs and the overall system by creating data-driven models that can predict the performance of jobs waiting in the scheduler queue. In this paper, we model the performance of representative control jobs using longitudinal system-wide monitoring data and machine learning to explore the causes of performance variability. We analyze these prediction models in great detail to identify the features that are dominant predictors of performance. We demonstrate that such models can be application-agnostic and can be used for predicting performance of applications that are not included in training.
♻ ☆ Naturalistic Music Decoding from EEG Data via Latent Diffusion Models
In this article, we explore the potential of using latent diffusion models, a family of powerful generative models, for the task of reconstructing naturalistic music from electroencephalogram (EEG) recordings. Unlike simpler music with limited timbres, such as MIDI-generated tunes or monophonic pieces, the focus here is on intricate music featuring a diverse array of instruments, voices, and effects, rich in harmonics and timbre. This study represents an initial foray into achieving general music reconstruction of high-quality using non-invasive EEG data, employing an end-to-end training approach directly on raw data without the need for manual pre-processing and channel selection. We train our models on the public NMED-T dataset and perform quantitative evaluation proposing neural embedding-based metrics. We additionally perform song classification based on the generated tracks. Our work contributes to the ongoing research in neural decoding and brain-computer interfaces, offering insights into the feasibility of using EEG data for complex auditory information reconstruction.
♻ ☆ Enhancing Deep Neural Network Training Efficiency and Performance through Linear Prediction
Deep neural networks (DNN) have achieved remarkable success in various fields, including computer vision and natural language processing. However, training an effective DNN model still poses challenges. This paper aims to propose a method to optimize the training effectiveness of DNN, with the goal of improving model performance. Firstly, based on the observation that the DNN parameters change in certain laws during training process, the potential of parameter prediction for improving model training efficiency and performance is discovered. Secondly, considering the magnitude of DNN model parameters, hardware limitations and characteristics of Stochastic Gradient Descent (SGD) for noise tolerance, a Parameter Linear Prediction (PLP) method is exploit to perform DNN parameter prediction. Finally, validations are carried out on some representative backbones. Experiment results show that compare to the normal training ways, under the same training conditions and epochs, by employing proposed PLP method, the optimal model is able to obtain average about 1% accuracy improvement and 0.01 top-1/top-5 error reduction for Vgg16, Resnet18 and GoogLeNet based on CIFAR-100 dataset, which shown the effectiveness of the proposed method on different DNN structures, and validated its capacity in enhancing DNN training efficiency and performance.
♻ ☆ Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement ICML2024
Electrocardiograms (ECGs) are non-invasive diagnostic tools crucial for detecting cardiac arrhythmic diseases in clinical practice. While ECG Self-supervised Learning (eSSL) methods show promise in representation learning from unannotated ECG data, they often overlook the clinical knowledge that can be found in reports. This oversight and the requirement for annotated samples for downstream tasks limit eSSL's versatility. In this work, we address these issues with the Multimodal ECG Representation Learning (MERL}) framework. Through multimodal learning on ECG records and associated reports, MERL is capable of performing zero-shot ECG classification with text prompts, eliminating the need for training data in downstream tasks. At test time, we propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach, which uses Large Language Models (LLMs) to exploit external expert-verified clinical knowledge databases, generating more descriptive prompts and reducing hallucinations in LLM-generated content to boost zero-shot classification. Based on MERL, we perform the first benchmark across six public ECG datasets, showing the superior performance of MERL compared against eSSL methods. Notably, MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10\% annotated training data, averaged across all six datasets. Code and models are available at https://github.com/cheliu-computation/MERL
comment: Accepted by ICML2024
♻ ☆ On the consistency of hyper-parameter selection in value-based deep reinforcement learning
Deep reinforcement learning (deep RL) has achieved tremendous success on various domains through a combination of algorithmic design and careful selection of hyper-parameters. Algorithmic improvements are often the result of iterative enhancements built upon prior approaches, while hyper-parameter choices are typically inherited from previous methods or fine-tuned specifically for the proposed technique. Despite their crucial impact on performance, hyper-parameter choices are frequently overshadowed by algorithmic advancements. This paper conducts an extensive empirical study focusing on the reliability of hyper-parameter selection for value-based deep reinforcement learning agents, including the introduction of a new score to quantify the consistency and reliability of various hyper-parameters. Our findings not only help establish which hyper-parameters are most critical to tune, but also help clarify which tunings remain consistent across different training regimes.
♻ ☆ Efficient Evolutionary Search Over Chemical Space with Large Language Models
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
♻ ☆ SINCERE: Supervised Information Noise-Contrastive Estimation REvisited
The information noise-contrastive estimation (InfoNCE) loss function provides the basis of many self-supervised deep learning methods due to its strong empirical results and theoretic motivation. Previous work suggests a supervised contrastive (SupCon) loss to extend InfoNCE to learn from available class labels. This SupCon loss has been widely-used due to reports of good empirical performance. However, in this work we find that the prior SupCon loss formulation has questionable justification because it can encourage some images from the same class to repel one another in the learned embedding space. This problematic intra-class repulsion gets worse as the number of images sharing one class label increases. We propose the Supervised InfoNCE REvisited (SINCERE) loss as a theoretically-justified supervised extension of InfoNCE that eliminates intra-class repulsion. Experiments show that SINCERE leads to better separation of embeddings from different classes and improves transfer learning classification accuracy. We additionally utilize probabilistic modeling to derive an information-theoretic bound that relates SINCERE loss to the symmeterized KL divergence between data-generating distributions for a target class and all other classes.
♻ ☆ Homomorphism Autoencoder -- Learning Group Structured Representations from Observed Transitions ICML2023
How can agents learn internal models that veridically represent interactions with the real world is a largely open question. As machine learning is moving towards representations containing not just observational but also interventional knowledge, we study this problem using tools from representation learning and group theory. We propose methods enabling an agent acting upon the world to learn internal representations of sensory information that are consistent with actions that modify it. We use an autoencoder equipped with a group representation acting on its latent space, trained using an equivariance-derived loss in order to enforce a suitable homomorphism property on the group representation. In contrast to existing work, our approach does not require prior knowledge of the group and does not restrict the set of actions the agent can perform. We motivate our method theoretically, and show empirically that it can learn a group representation of the actions, thereby capturing the structure of the set of transformations applied to the environment. We further show that this allows agents to predict the effect of sequences of future actions with improved accuracy.
comment: Accepted at ICML2023, Presented at the Symmetry and Geometry in Neural Representations Workshop (NeurReps) @ NeurIPS2022, 26 pages, 17 figures
♻ ☆ Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion
This paper presents Diffusion Forcing, a new training paradigm where a diffusion model is trained to denoise a set of tokens with independent per-token noise levels. We apply Diffusion Forcing to sequence generative modeling by training a causal next-token prediction model to generate one or several future tokens without fully diffusing past ones. Our approach is shown to combine the strengths of next-token prediction models, such as variable-length generation, with the strengths of full-sequence diffusion models, such as the ability to guide sampling to desirable trajectories. Our method offers a range of additional capabilities, such as (1) rolling-out sequences of continuous tokens, such as video, with lengths past the training horizon, where baselines diverge and (2) new sampling and guiding schemes that uniquely profit from Diffusion Forcing's variable-horizon and causal architecture, and which lead to marked performance gains in decision-making and planning tasks. In addition to its empirical success, our method is proven to optimize a variational lower bound on the likelihoods of all subsequences of tokens drawn from the true joint distribution. Project website: https://boyuan.space/diffusion-forcing/
comment: Project website: https://boyuan.space/diffusion-forcing/
♻ ☆ Reproducibility in Machine Learning-based Research: Overview, Barriers and Drivers
Research in various fields is currently experiencing challenges regarding the reproducibility of results. This problem is also prevalent in machine learning (ML) research. The issue arises, for example, due to unpublished data and/or source code and the sensitivity of ML training conditions. Although different solutions have been proposed to address this issue, such as using ML platforms, the level of reproducibility in ML-driven research remains unsatisfactory. Therefore, in this article, we discuss the reproducibility of ML-driven research with three main aims: (i) identifying the barriers to reproducibility when applying ML in research as well as categorize the barriers to different types of reproducibility (description, code, data, and experiment reproducibility), (ii) discussing potential drivers such as tools, practices, and interventions that support ML reproducibility, as well as distinguish between technology-driven drivers, procedural drivers, and drivers related to awareness and education, and (iii) mapping the drivers to the barriers. With this work, we hope to provide insights and to contribute to the decision-making process regarding the adoption of different solutions to support ML reproducibility.
comment: Pre-print of submission for the AI Magazine - comments to this pre-print are very welcome
♻ ☆ Contractual Reinforcement Learning: Pulling Arms with Invisible Hands
The agency problem emerges in today's large scale machine learning tasks, where the learners are unable to direct content creation or enforce data collection. In this work, we propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design. The problem, termed \emph{contractual reinforcement learning}, naturally arises from the classic model of Markov decision processes, where a learning principal seeks to optimally influence the agent's action policy for their common interests through a set of payment rules contingent on the realization of next state. For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent. For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation, reducing the complexity analysis to the construction of efficient search algorithms. For several natural classes of problems, we design tailored search algorithms that provably achieve $\tilde{O}(\sqrt{T})$ regret. We also present an algorithm with $\tilde{O}(T^{2/3})$ for the general problem that improves the existing analysis in online contract design with mild technical assumptions.
♻ ☆ Observational Scaling Laws and the Predictability of Language Model Performance
Understanding how language model performance varies with scale is critical to benchmark and algorithm development. Scaling laws are one approach to building this understanding, but the requirement of training models across many different scales has limited their use. We propose an alternative, observational approach that bypasses model training and instead builds scaling laws from ~80 publically available models. Building a single scaling law from multiple model families is challenging due to large variations in their training compute efficiencies and capabilities. However, we show that these variations are consistent with a simple, generalized scaling law where language model performance is a function of a low-dimensional capability space, and model families only vary in their efficiency in converting training compute to capabilities. Using this approach, we show the surprising predictability of complex scaling phenomena: we show that several emergent phenomena follow a smooth, sigmoidal behavior and are predictable from small models; we show that the agent performance of models such as GPT-4 can be precisely predicted from simpler non-agentic benchmarks; and we show how to predict the impact of post-training interventions like Chain-of-Thought and Self-Consistency as language model capabilities continue to improve.
♻ ☆ Characteristic Learning for Provable One Step Generation
We propose the characteristic generator, a novel one-step generative model that combines the efficiency of sampling in Generative Adversarial Networks (GANs) with the stable performance of flow-based models. Our model is driven by characteristics, along which the probability density transport can be described by ordinary differential equations (ODEs). Specifically, We estimate the velocity field through nonparametric regression and utilize Euler method to solve the probability flow ODE, generating a series of discrete approximations to the characteristics. We then use a deep neural network to fit these characteristics, ensuring a one-step mapping that effectively pushes the prior distribution towards the target distribution. In the theoretical aspect, we analyze the errors in velocity matching, Euler discretization, and characteristic fitting to establish a non-asymptotic convergence rate for the characteristic generator in 2-Wasserstein distance. To the best of our knowledge, this is the first thorough analysis for simulation-free one step generative models. Additionally, our analysis refines the error analysis of flow-based generative models in prior works. We apply our method on both synthetic and real datasets, and the results demonstrate that the characteristic generator achieves high generation quality with just a single evaluation of neural network.
♻ ☆ Enabling Large Batch Size Training for DNN Models Beyond the Memory Limit While Maintaining Performance
Recent deep learning models are difficult to train using a large batch size, because commodity machines may not have enough memory to accommodate both the model and a large data batch size. The batch size is one of the hyper-parameters used in the training model, and it is dependent on and is limited by the target machine memory capacity because the batch size can only fit into the remaining memory after the model is uploaded. Moreover, the data item size is also an important factor because if each data item size is larger then the batch size that can fit into the remaining memory becomes smaller. This paper proposes a method called Micro-Batch Processing (MBP) to address this problem. This method helps deep learning models to train by providing a batch processing method that splits a batch into a size that can fit in the remaining memory and processes them sequentially. After processing the small batches individually, a loss normalization algorithm based on the gradient accumulation is used to maintain the performance. The purpose of our method is to allow deep learning models to train using larger batch sizes that exceed the memory capacity of a system without increasing the memory size or using multiple devices (GPUs).
comment: Published in IEEE Access
♻ ☆ Structure-based drug design by denoising voxel grids
We present VoxBind, a new score-based generative model for 3D molecules conditioned on protein structures. Our approach represents molecules as 3D atomic density grids and leverages a 3D voxel-denoising network for learning and generation. We extend the neural empirical Bayes formalism (Saremi & Hyvarinen, 2019) to the conditional setting and generate structure-conditioned molecules with a two-step procedure: (i) sample noisy molecules from the Gaussian-smoothed conditional distribution with underdamped Langevin MCMC using the learned score function and (ii) estimate clean molecules from the noisy samples with single-step denoising. Compared to the current state of the art, our model is simpler to train, significantly faster to sample from, and achieves better results on extensive in silico benchmarks -- the generated molecules are more diverse, exhibit fewer steric clashes, and bind with higher affinity to protein pockets. The code is available at https://github.com/genentech/voxbind/.
♻ ☆ Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout
Embedded field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC). This approach offers the low power and efficiency of an ASIC along with the ease of FPGA configuration, particularly beneficial for the use case of machine learning in the data pipeline of next-generation collider experiments. An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes, which were subsequently fabricated and verified through testing. The capability of an eFPGA to act as a front-end readout chip was assessed using simulation of high energy particles passing through a silicon pixel sensor. A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA. A successful proof-of-concept was demonstrated through reproduction of the expected algorithm result on the eFPGA with perfect accuracy. Further development of the eFPGA technology and its application to collider detector readout is discussed.
comment: 16 pages, 12 figures
♻ ☆ Type-II Saddles and Probabilistic Stability of Stochastic Gradient Descent
Characterizing and understanding the dynamics of stochastic gradient descent (SGD) around saddle points remains an open problem. We first show that saddle points in neural networks can be divided into two types, among which the Type-II saddles are especially difficult to escape from because the gradient noise vanishes at the saddle. The dynamics of SGD around these saddles are thus to leading order described by a random matrix product process, and it is thus natural to study the dynamics of SGD around these saddles using the notion of probabilistic stability and the related Lyapunov exponent. Theoretically, we link the study of SGD dynamics to well-known concepts in ergodic theory, which we leverage to show that saddle points can be either attractive or repulsive for SGD, and its dynamics can be classified into four different phases, depending on the signal-to-noise ratio in the gradient close to the saddle.
comment: preprint
♻ ☆ Structured Partial Stochasticity in Bayesian Neural Networks
Bayesian neural network posterior distributions have a great number of modes that correspond to the same network function. The abundance of such modes can make it difficult for approximate inference methods to do their job. Recent work has demonstrated the benefits of partial stochasticity for approximate inference in Bayesian neural networks; inference can be less costly and performance can sometimes be improved. I propose a structured way to select the deterministic subset of weights that removes neuron permutation symmetries, and therefore the corresponding redundant posterior modes. With a drastically simplified posterior distribution, the performance of existing approximate inference schemes is found to be greatly improved.
comment: Accepted at 6th Symposium on Advances in Approximate Bayesian Inference (non-archival track)
♻ ☆ Open-Source Conversational AI with SpeechBrain 1.0
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech recognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete "recipes" of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks
comment: Submitted to JMLR (Machine Learning Open Source Software)
♻ ☆ Logistics Hub Location Optimization: A K-Means and P-Median Model Hybrid Approach Using Road Network Distances
Logistic hubs play a pivotal role in the last-mile delivery distance; even a slight increment in distance negatively impacts the business of the e-commerce industry while also increasing its carbon footprint. The growth of this industry, particularly after Covid-19, has further intensified the need for optimized allocation of resources in an urban environment. In this study, we use a hybrid approach to optimize the placement of logistic hubs. The approach sequentially employs different techniques. Initially, delivery points are clustered using K-Means in relation to their spatial locations. The clustering method utilizes road network distances as opposed to Euclidean distances. Non-road network-based approaches have been avoided since they lead to erroneous and misleading results. Finally, hubs are located using the P-Median method. The P-Median method also incorporates the number of deliveries and population as weights. Real-world delivery data from Muller and Phipps (M&P) is used to demonstrate the effectiveness of the approach. Serving deliveries from the optimal hub locations results in the saving of 815 (10%) meters per delivery.
♻ ☆ Vision-LSTM: xLSTM as Generic Vision Backbone
Transformers are widely used as generic backbones in computer vision, despite initially introduced for natural language processing. Recently, the Long Short-Term Memory (LSTM) has been extended to a scalable and performant architecture - the xLSTM - which overcomes long-standing LSTM limitations via exponential gating and parallelizable matrix memory structure. In this report, we introduce Vision-LSTM (ViL), an adaption of the xLSTM building blocks to computer vision. ViL comprises a stack of xLSTM blocks where odd blocks process the sequence of patch tokens from top to bottom while even blocks go from bottom to top. Experiments show that ViL holds promise to be further deployed as new generic backbone for computer vision architectures.
♻ ☆ A Survey on Popularity Bias in Recommender Systems
Recommender systems help people find relevant content in a personalized way. One main promise of such systems is that they are able to increase the visibility of items in the long tail, i.e., the lesser-known items in a catalogue. Existing research, however, suggests that in many situations todays recommendation algorithms instead exhibit a popularity bias, meaning that they often focus on rather popular items in their recommendations. Such a bias may not only lead to the limited value of the recommendations for consumers and providers in the short run, but it may also cause undesired reinforcement effects over time. In this paper, we discuss the potential reasons for popularity bias and review existing approaches to detect, quantify and mitigate popularity bias in recommender systems. Our survey, therefore, includes both an overview of the computational metrics used in the literature as well as a review of the main technical approaches to reduce the bias. Furthermore, we critically discuss todays literature, where we observe that the research is almost entirely based on computational experiments and on certain assumptions regarding the practical effects of including long-tail items in the recommendations.
♻ ☆ Fusing Audio and Metadata Embeddings Improves Language-based Audio Retrieval
Matching raw audio signals with textual descriptions requires understanding the audio's content and the description's semantics and then drawing connections between the two modalities. This paper investigates a hybrid retrieval system that utilizes audio metadata as an additional clue to understand the content of audio signals before matching them with textual queries. We experimented with metadata often attached to audio recordings, such as keywords and natural-language descriptions, and we investigated late and mid-level fusion strategies to merge audio and metadata. Our hybrid approach with keyword metadata and late fusion improved the retrieval performance over a content-based baseline by 2.36 and 3.69 pp. mAP@10 on the ClothoV2 and AudioCaps benchmarks, respectively.
comment: In Proceedings of the 32nd European Signal Processing Conference, EUSIPCO 2024
♻ ☆ Selective Pre-training for Private Fine-tuning
Text prediction models, when used in applications like email clients or word processors, must protect user data privacy and adhere to model size constraints. These constraints are crucial to meet memory and inference time requirements, as well as to reduce inference costs. Building small, fast, and private domain-specific language models is a thriving area of research. In this work, we show that a careful pre-training on a \emph{subset} of the public dataset that is guided by the private dataset is crucial to train small language models with differential privacy. On standard benchmarks, small models trained with our new framework achieve state-of-the-art performance. In addition to performance improvements, our results demonstrate that smaller models, through careful pre-training and private fine-tuning, can match the performance of much larger models that do not have access to private data. This underscores the potential of private learning for model compression and enhanced efficiency.
comment: Transactions on Machine Learning Research. Code available at https://github.com/dayu11/selective_pretraining_for_private_finetuning
♻ ☆ Deep Imbalanced Regression to Estimate Vascular Age from PPG Data: a Novel Digital Biomarker for Cardiovascular Health
Photoplethysmography (PPG) is emerging as a crucial tool for monitoring human hemodynamics, with recent studies highlighting its potential in assessing vascular aging through deep learning. However, real-world age distributions are often imbalanced, posing significant challenges for deep learning models. In this paper, we introduce a novel, simple, and effective loss function named the Dist Loss to address deep imbalanced regression tasks. We trained a one-dimensional convolutional neural network (Net1D) incorporating the Dist Loss on the extensive UK Biobank dataset (n=502,389) to estimate vascular age from PPG signals and validate its efficacy in characterizing cardiovascular health. The model's performance was validated on a 40% held-out test set, achieving state-of-the-art results, especially in regions with small sample sizes. Furthermore, we divided the population into three subgroups based on the difference between predicted vascular age and chronological age: less than -10 years, between -10 and 10 years, and greater than 10 years. We analyzed the relationship between predicted vascular age and several cardiovascular events over a follow-up period of up to 10 years, including death, coronary heart disease, and heart failure. Our results indicate that the predicted vascular age has significant potential to reflect an individual's cardiovascular health status. Our code will be available at https://github.com/Ngk03/AI-vascular-age.
♻ ☆ An Interpretable Alternative to Neural Representation Learning for Rating Prediction -- Transparent Latent Class Modeling of User Reviews
Nowadays, neural network (NN) and deep learning (DL) techniques are widely adopted in many applications, including recommender systems. Given the sparse and stochastic nature of collaborative filtering (CF) data, recent works have critically analyzed the effective improvement of neural-based approaches compared to simpler and often transparent algorithms for recommendation. Previous results showed that NN and DL models can be outperformed by traditional algorithms in many tasks. Moreover, given the largely black-box nature of neural-based methods, interpretable results are not naturally obtained. Following on this debate, we first present a transparent probabilistic model that topologically organizes user and product latent classes based on the review information. In contrast to popular neural techniques for representation learning, we readily obtain a statistical, visualization-friendly tool that can be easily inspected to understand user and product characteristics from a textual-based perspective. Then, given the limitations of common embedding techniques, we investigate the possibility of using the estimated interpretable quantities as model input for a rating prediction task. To contribute to the recent debates, we evaluate our results in terms of both capacity for interpretability and predictive performances in comparison with popular text-based neural approaches. The results demonstrate that the proposed latent class representations can yield competitive predictive performances, compared to popular, but difficult-to-interpret approaches.
♻ ☆ Task-Synchronized Recurrent Neural Networks
Data are often sampled irregularly in time. Dealing with this using Recurrent Neural Networks (RNNs) traditionally involved ignoring the fact, feeding the time differences as additional inputs, or resampling the data. All these methods have their shortcomings. We propose an elegant straightforward alternative approach where instead the RNN is in effect resampled in time to match the time of the data or the task at hand. We use Echo State Network (ESN) and Gated Recurrent Unit (GRU) as the basis for our solution. Such RNNs can be seen as discretizations of continuous-time dynamical systems, which gives a solid theoretical ground to our approach. Our Task-Synchronized ESN (TSESN) and GRU (TSGRU) models allow for a direct model time setting and require no additional training, parameter tuning, or computation (solving differential equations or interpolating data) compared to their regular counterparts, thus retaining their original efficiency. We confirm empirically that our models can effectively compensate for the time-non-uniformity of the data and demonstrate that they compare favorably to data resampling, classical RNN methods, and alternative RNN models proposed to deal with time irregularities on several real-world nonuniform-time datasets. We open-source the code at https://github.com/oshapio/task-synchronized-RNNs .
comment: The 1st version was written in May 2019 and double-blind reviewed for a prominent conference. A major update. We changed the name of the article and methods to an arguably more precise one, and because a very similar title has been published in the meantime. We've rewritten much of the text, connected to the current literature, redone some experiments, figures, discussion, published source code
♻ ☆ Explaining Deep Learning for ECG Analysis: Building Blocks for Auditing and Knowledge Discovery
Deep neural networks have become increasingly popular for analyzing ECG data because of their ability to accurately identify cardiac conditions and hidden clinical factors. However, the lack of transparency due to the black box nature of these models is a common concern. To address this issue, explainable AI (XAI) methods can be employed. In this study, we present a comprehensive analysis of post-hoc XAI methods, investigating the local (attributions per sample) and global (based on domain expert concepts) perspectives. We have established a set of sanity checks to identify sensible attribution methods, and we provide quantitative evidence in accordance with expert rules. This dataset-wide analysis goes beyond anecdotal evidence by aggregating data across patient subgroups. Furthermore, we demonstrate how these XAI techniques can be utilized for knowledge discovery, such as identifying subtypes of myocardial infarction. We believe that these proposed methods can serve as building blocks for a complementary assessment of the internal validity during a certification process, as well as for knowledge discovery in the field of ECG analysis.
♻ ☆ Are There Exceptions to Goodhart's Law? On the Moral Justification of Fairness-Aware Machine Learning
Fairness-aware machine learning (fair-ml) techniques are algorithmic interventions designed to ensure that individuals who are affected by the predictions of a machine learning model are treated fairly. The problem is often posed as an optimization problem, where the objective is to achieve high predictive performance under a quantitative fairness constraint. However, any attempt to design a fair-ml algorithm must assume a world where Goodhart's law has an exception: when a fairness measure becomes an optimization constraint, it does not cease to be a good measure. In this paper, we argue that fairness measures are particularly sensitive to Goodhart's law. Our main contributions are as follows. First, we present a framework for moral reasoning about the justification of fairness metrics. In contrast to existing work, our framework incorporates the belief that whether a distribution of outcomes is fair, depends not only on the cause of inequalities but also on what moral claims decision subjects have to receive a particular benefit or avoid a burden. We use the framework to distil moral and empirical assumptions under which particular fairness metrics correspond to a fair distribution of outcomes. Second, we explore the extent to which employing fairness metrics as a constraint in a fair-ml algorithm is morally justifiable, exemplified by the fair-ml algorithm introduced by Hardt et al. (2016). We illustrate that enforcing a fairness metric through a fair-ml algorithm often does not result in the fair distribution of outcomes that motivated its use and can even harm the individuals the intervention was intended to protect.
♻ ☆ Estimation of AMOC transition probabilities using a machine learning based rare-event algorithm
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the global climate, known to be a tipping element, as it could collapse under global warming. The main objective of this study is to compute the probability that the AMOC collapses within a specified time window, using a rare-event algorithm called Trajectory-Adaptive Multilevel Splitting (TAMS). However, the efficiency and accuracy of TAMS depend on the choice of the score function. Although the definition of the optimal score function, called ``committor function" is known, it is impossible in general to compute it a priori. Here, we combine TAMS with a Next-Generation Reservoir Computing technique that estimates the committor function from the data generated by the rare-event algorithm. We test this technique in a stochastic box model of the AMOC for which two types of transition exist, the so-called F(ast)-transitions and S(low)-transitions. Results for the F-transtions compare favorably with those in the literature where a physically-informed score function was used. We show that coupling a rare-event algorithm with machine learning allows for a correct estimation of transition probabilities, transition times, and even transition paths for a wide range of model parameters. We then extend these results to the more difficult problem of S-transitions in the same model. In both cases of F-transitions and S-transitions, we also show how the Next-Generation Reservoir Computing technique can be interpreted to retrieve an analytical estimate of the committor function.
comment: 15 pages, 9 figures
♻ ☆ Towards Robust Cardiac Segmentation using Graph Convolutional Networks
Fully automatic cardiac segmentation can be a fast and reproducible method to extract clinical measurements from an echocardiography examination. The U-Net architecture is the current state-of-the-art deep learning architecture for medical segmentation and can segment cardiac structures in real-time with average errors comparable to inter-observer variability. However, this architecture still generates large outliers that are often anatomically incorrect. This work uses the concept of graph convolutional neural networks that predict the contour points of the structures of interest instead of labeling each pixel. We propose a graph architecture that uses two convolutional rings based on cardiac anatomy and show that this eliminates anatomical incorrect multi-structure segmentations on the publicly available CAMUS dataset. Additionally, this work contributes with an ablation study on the graph convolutional architecture and an evaluation of clinical measurements on the clinical HUNT4 dataset. Finally, we propose to use the inter-model agreement of the U-Net and the graph network as a predictor of both the input and segmentation quality. We show this predictor can detect out-of-distribution and unsuitable input images in real-time. Source code is available online: https://github.com/gillesvntnu/GCN_multistructure
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ QOG:Question and Options Generation based on Language Model
Question-Options Generation (QOG) is a task that involves generating a set of question-options pairs given context. This task has various applications, including fine-tuning large models, information retrieval, and automated multiple-choice question generation for education. In this paper, we develop QOG models using three different methods based on fine-tuning sequence-to-sequence language models (LMs). Experiments demonstrate that the end-to-end QOG model is computationally efficient and stable during both training and inference, outperforming other methods. Furthermore, our analysis indicates that our QOG models are competitive on the QOG task compared to the large language model Llama 3-8B.
♻ ☆ Tracking Object Positions in Reinforcement Learning: A Metric for Keypoint Detection (extended version)
Reinforcement learning (RL) for robot control typically requires a detailed representation of the environment state, including information about task-relevant objects not directly measurable. Keypoint detectors, such as spatial autoencoders (SAEs), are a common approach to extracting a low-dimensional representation from high-dimensional image data. SAEs aim at spatial features such as object positions, which are often useful representations in robotic RL. However, whether an SAE is actually able to track objects in the scene and thus yields a spatial state representation well suited for RL tasks has rarely been examined due to a lack of established metrics. In this paper, we propose to assess the performance of an SAE instance by measuring how well keypoints track ground truth objects in images. We present a computationally lightweight metric and use it to evaluate common baseline SAE architectures on image data from a simulated robot task. We find that common SAEs differ substantially in their spatial extraction capability. Furthermore, we validate that SAEs that perform well in our metric achieve superior performance when used in downstream RL. Thus, our metric is an effective and lightweight indicator of RL performance before executing expensive RL training. Building on these insights, we identify three key modifications of SAE architectures to improve tracking performance.
comment: 19 pages, 12 figures
♻ ☆ USP: A Unified Sequence Parallelism Approach for Long Context Generative AI
Sequence parallelism (SP), which divides the sequence dimension of input tensors across multiple computational devices, is becoming key to unlocking the long-context capabilities of generative AI models. This paper investigates the state-of-the-art SP approaches, i.e. DeepSpeed-Ulysses and Ring-Attention, and proposes a unified SP approach, which is more robust to transformer model architectures and network hardware topology. This paper compares the communication and memory cost of SP and existing parallelism, including data/tensor/zero/pipeline parallelism, and discusses the best practices for designing hybrid 4D parallelism involving SP. We achieved 47% MFU on two 8xA800 nodes using SP for the LLAMA3-8B model training using sequence length 208K. Our code is publicly available at https://github.com/feifeibear/long-context-attention.
♻ ☆ Adversarial Search Engine Optimization for Large Language Models
Large Language Models (LLMs) are increasingly used in applications where the model selects from competing third-party content, such as in LLM-powered search engines or chatbot plugins. In this paper, we introduce Preference Manipulation Attacks, a new class of attacks that manipulate an LLM's selections to favor the attacker. We demonstrate that carefully crafted website content or plugin documentations can trick an LLM to promote the attacker products and discredit competitors, thereby increasing user traffic and monetization. We show this leads to a prisoner's dilemma, where all parties are incentivized to launch attacks, but the collective effect degrades the LLM's outputs for everyone. We demonstrate our attacks on production LLM search engines (Bing and Perplexity) and plugin APIs (for GPT-4 and Claude). As LLMs are increasingly used to rank third-party content, we expect Preference Manipulation Attacks to emerge as a significant threat.
♻ ☆ A Closer Look at Classification Evaluation Metrics and a Critical Reflection of Common Evaluation Practice ACL
Classification systems are evaluated in a countless number of papers. However, we find that evaluation practice is often nebulous. Frequently, metrics are selected without arguments, and blurry terminology invites misconceptions. For instance, many works use so-called 'macro' metrics to rank systems (e.g., 'macro F1') but do not clearly specify what they would expect from such a `macro' metric. This is problematic, since picking a metric can affect research findings, and thus any clarity in the process should be maximized. Starting from the intuitive concepts of bias and prevalence, we perform an analysis of common evaluation metrics. The analysis helps us understand the metrics' underlying properties, and how they align with expectations as found expressed in papers. Then we reflect on the practical situation in the field, and survey evaluation practice in recent shared tasks. We find that metric selection is often not supported with convincing arguments, an issue that can make a system ranking seem arbitrary. Our work aims at providing overview and guidance for more informed and transparent metric selection, fostering meaningful evaluation.
comment: appeared in TACL journal. MIT press publication available at https://doi.org/10.1162/tacl_a_00675
♻ ☆ Koopman Spectrum Nonlinear Regulators and Efficient Online Learning
Most modern reinforcement learning algorithms optimize a cumulative single-step cost along a trajectory. The optimized motions are often 'unnatural', representing, for example, behaviors with sudden accelerations that waste energy and lack predictability. In this work, we present a novel paradigm of controlling nonlinear systems via the minimization of the Koopman spectrum cost: a cost over the Koopman operator of the controlled dynamics. This induces a broader class of dynamical behaviors that evolve over stable manifolds such as nonlinear oscillators, closed loops, and smooth movements. We demonstrate that some dynamics characterizations that are not possible with a cumulative cost are feasible in this paradigm, which generalizes the classical eigenstructure and pole assignments to nonlinear decision making. Moreover, we present a sample efficient online learning algorithm for our problem that enjoys a sub-linear regret bound under some structural assumptions.
comment: 41 pages, 21 figures
♻ ☆ Systematic Literature Review on Application of Learning-based Approaches in Continuous Integration
Context: Machine learning (ML) and deep learning (DL) analyze raw data to extract valuable insights in specific phases. The rise of continuous practices in software projects emphasizes automating Continuous Integration (CI) with these learning-based methods, while the growing adoption of such approaches underscores the need for systematizing knowledge. Objective: Our objective is to comprehensively review and analyze existing literature concerning learning-based methods within the CI domain. We endeavour to identify and analyse various techniques documented in the literature, emphasizing the fundamental attributes of training phases within learning-based solutions in the context of CI. Method: We conducted a Systematic Literature Review (SLR) involving 52 primary studies. Through statistical and thematic analyses, we explored the correlations between CI tasks and the training phases of learning-based methodologies across the selected studies, encompassing a spectrum from data engineering techniques to evaluation metrics. Results: This paper presents an analysis of the automation of CI tasks utilizing learning-based methods. We identify and analyze nine types of data sources, four steps in data preparation, four feature types, nine subsets of data features, five approaches for hyperparameter selection and tuning, and fifteen evaluation metrics. Furthermore, we discuss the latest techniques employed, existing gaps in CI task automation, and the characteristics of the utilized learning-based techniques. Conclusion: This study provides a comprehensive overview of learning-based methods in CI, offering valuable insights for researchers and practitioners developing CI task automation. It also highlights the need for further research to advance these methods in CI.
comment: This paper has been accepted to be published in IEEE Access
♻ ☆ Light-weight End-to-End Graph Interest Network for CTR Prediction in E-commerce Search
Click-through-rate (CTR) prediction has an essential impact on improving user experience and revenue in e-commerce search. With the development of deep learning, graph-based methods are well exploited to utilize graph structure extracted from user behaviors and other information to help embedding learning. However, most of the previous graph-based methods mainly focus on recommendation scenarios, and therefore their graph structures highly depend on item's sequential information from user behaviors, ignoring query's sequential signal and query-item correlation. In this paper, we propose a new approach named Light-weight End-to-End Graph Interest Network (EGIN) to effectively mine users' search interests and tackle previous challenges. (i) EGIN utilizes query and item's correlation and sequential information from the search system to build a heterogeneous graph for better CTR prediction in e-commerce search. (ii) EGIN's graph embedding learning shares the same training input and is jointly trained with CTR prediction, making the end-to-end framework effortless to deploy in large-scale search systems. The proposed EGIN is composed of three parts: query-item heterogeneous graph, light-weight graph sampling, and multi-interest network. The query-item heterogeneous graph captures correlation and sequential information of query and item efficiently by the proposed light-weight graph sampling. The multi-interest network is well designed to utilize graph embedding to capture various similarity relationships between query and item to enhance the final CTR prediction. We conduct extensive experiments on both public and industrial datasets to demonstrate the effectiveness of the proposed EGIN. At the same time, the training cost of graph learning is relatively low compared with the main CTR prediction task, ensuring efficiency in practical applications.
comment: 8 pages, 4 figures
♻ ☆ Natural Language Can Help Bridge the Sim2Real Gap
The main challenge in learning image-conditioned robotic policies is acquiring a visual representation conducive to low-level control. Due to the high dimensionality of the image space, learning a good visual representation requires a considerable amount of visual data. However, when learning in the real world, data is expensive. Sim2Real is a promising paradigm for overcoming data scarcity in the real-world target domain by using a simulator to collect large amounts of cheap data closely related to the target task. However, it is difficult to transfer an image-conditioned policy from sim to real when the domains are very visually dissimilar. To bridge the sim2real visual gap, we propose using natural language descriptions of images as a unifying signal across domains that captures the underlying task-relevant semantics. Our key insight is that if two image observations from different domains are labeled with similar language, the policy should predict similar action distributions for both images. We demonstrate that training the image encoder to predict the language description or the distance between descriptions of a sim or real image serves as a useful, data-efficient pretraining step that helps learn a domain-invariant image representation. We can then use this image encoder as the backbone of an IL policy trained simultaneously on a large amount of simulated and a handful of real demonstrations. Our approach outperforms widely used prior sim2real methods and strong vision-language pretraining baselines like CLIP and R3M by 25 to 40%. See additional videos and materials at https://robin-lab.cs.utexas.edu/lang4sim2real/.
comment: To appear in RSS 2024. Project website at https://robin-lab.cs.utexas.edu/lang4sim2real/
♻ ☆ Large Skew-t Copula Models and Asymmetric Dependence in Intraday Equity Returns
Skew-t copula models are attractive for the modeling of financial data because they allow for asymmetric and extreme tail dependence. We show that the copula implicit in the skew-t distribution of Azzalini and Capitanio (2003) allows for a higher level of pairwise asymmetric dependence than two popular alternative skew-t copulas. Estimation of this copula in high dimensions is challenging, and we propose a fast and accurate Bayesian variational inference (VI) approach to do so. The method uses a generative representation of the skew-t distribution to define an augmented posterior that can be approximated accurately. A stochastic gradient ascent algorithm is used to solve the variational optimization. The methodology is used to estimate skew-t factor copula models with up to 15 factors for intraday returns from 2017 to 2021 on 93 U.S. equities. The copula captures substantial heterogeneity in asymmetric dependence over equity pairs, in addition to the variability in pairwise correlations. In a moving window study we show that the asymmetric dependencies also vary over time, and that intraday predictive densities from the skew-t copula are more accurate than those from benchmark copula models. Portfolio selection strategies based on the estimated pairwise asymmetric dependencies improve performance relative to the index.
♻ ☆ Estimating Noisy Class Posterior with Part-level Labels for Noisy Label Learning CVPR 2024
In noisy label learning, estimating noisy class posteriors plays a fundamental role for developing consistent classifiers, as it forms the basis for estimating clean class posteriors and the transition matrix. Existing methods typically learn noisy class posteriors by training a classification model with noisy labels. However, when labels are incorrect, these models may be misled to overemphasize the feature parts that do not reflect the instance characteristics, resulting in significant errors in estimating noisy class posteriors. To address this issue, this paper proposes to augment the supervised information with part-level labels, encouraging the model to focus on and integrate richer information from various parts. Specifically, our method first partitions features into distinct parts by cropping instances, yielding part-level labels associated with these various parts. Subsequently, we introduce a novel single-to-multiple transition matrix to model the relationship between the noisy and part-level labels, which incorporates part-level labels into a classifier-consistent framework. Utilizing this framework with part-level labels, we can learn the noisy class posteriors more precisely by guiding the model to integrate information from various parts, ultimately improving the classification performance. Our method is theoretically sound, while experiments show that it is empirically effective in synthetic and real-world noisy benchmarks.
comment: CVPR 2024
♻ ☆ Logarithmic regret bounds for continuous-time average-reward Markov decision processes
We consider reinforcement learning for continuous-time Markov decision processes (MDPs) in the infinite-horizon, average-reward setting. In contrast to discrete-time MDPs, a continuous-time process moves to a state and stays there for a random holding time after an action is taken. With unknown transition probabilities and rates of exponential holding times, we derive instance-dependent regret lower bounds that are logarithmic in the time horizon. Moreover, we design a learning algorithm and establish a finite-time regret bound that achieves the logarithmic growth rate. Our analysis builds upon upper confidence reinforcement learning, a delicate estimation of the mean holding times, and stochastic comparison of point processes.
♻ ☆ DynaSemble: Dynamic Ensembling of Textual and Structure-Based Models for Knowledge Graph Completion ACL 2024
We consider two popular approaches to Knowledge Graph Completion (KGC): textual models that rely on textual entity descriptions, and structure-based models that exploit the connectivity structure of the Knowledge Graph (KG). Preliminary experiments show that these approaches have complementary strengths: structure-based models perform exceptionally well when the gold answer is easily reachable from the query head in the KG, while textual models exploit descriptions to give good performance even when the gold answer is not easily reachable. In response, we propose DynaSemble, a novel method for learning query-dependent ensemble weights to combine these approaches by using the distributions of scores assigned by the models in the ensemble to all candidate entities. DynaSemble achieves state-of-the-art results on three standard KGC datasets, with up to 6.8 pt MRR and 8.3 pt Hits@1 gains over the best baseline model for the WN18RR dataset.
comment: 12 pages, 2 figures, 15 tables Accepted to ACL 2024
♻ ☆ Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges
This paper presents a comprehensive systematic review of generative models (GANs, VAEs, DMs, and LLMs) used to synthesize various medical data types, including imaging (dermoscopic, mammographic, ultrasound, CT, MRI, and X-ray), text, time-series, and tabular data (EHR). Unlike previous narrowly focused reviews, our study encompasses a broad array of medical data modalities and explores various generative models. Our search strategy queries databases such as Scopus, PubMed, and ArXiv, focusing on recent works from January 2021 to November 2023, excluding reviews and perspectives. This period emphasizes recent advancements beyond GANs, which have been extensively covered previously. The survey reveals insights from three key aspects: (1) Synthesis applications and purpose of synthesis, (2) generation techniques, and (3) evaluation methods. It highlights clinically valid synthesis applications, demonstrating the potential of synthetic data to tackle diverse clinical requirements. While conditional models incorporating class labels, segmentation masks and image translations are prevalent, there is a gap in utilizing prior clinical knowledge and patient-specific context, suggesting a need for more personalized synthesis approaches and emphasizing the importance of tailoring generative approaches to the unique characteristics of medical data. Additionally, there is a significant gap in using synthetic data beyond augmentation, such as for validation and evaluation of downstream medical AI models. The survey uncovers that the lack of standardized evaluation methodologies tailored to medical images is a barrier to clinical application, underscoring the need for in-depth evaluation approaches, benchmarking, and comparative studies to promote openness and collaboration.
♻ ☆ Farsight: Fostering Responsible AI Awareness During AI Application Prototyping
Prompt-based interfaces for Large Language Models (LLMs) have made prototyping and building AI-powered applications easier than ever before. However, identifying potential harms that may arise from AI applications remains a challenge, particularly during prompt-based prototyping. To address this, we present Farsight, a novel in situ interactive tool that helps people identify potential harms from the AI applications they are prototyping. Based on a user's prompt, Farsight highlights news articles about relevant AI incidents and allows users to explore and edit LLM-generated use cases, stakeholders, and harms. We report design insights from a co-design study with 10 AI prototypers and findings from a user study with 42 AI prototypers. After using Farsight, AI prototypers in our user study are better able to independently identify potential harms associated with a prompt and find our tool more useful and usable than existing resources. Their qualitative feedback also highlights that Farsight encourages them to focus on end-users and think beyond immediate harms. We discuss these findings and reflect on their implications for designing AI prototyping experiences that meaningfully engage with AI harms. Farsight is publicly accessible at: https://PAIR-code.github.io/farsight.
comment: Accepted to CHI 2024 (Best Paper, Honorable Mention). 40 pages, 19 figures, 5 tables. For a demo video, see https://youtu.be/BlSFbGkOlHk. For a live demo, visit https://PAIR-code.github.io/farsight. The source code is available at https://github.com/PAIR-code/farsight
♻ ☆ Remote sensing framework for geological mapping via stacked autoencoders and clustering
Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.
♻ ☆ A Fixed-Parameter Tractable Algorithm for Counting Markov Equivalence Classes with the same Skeleton
Causal DAGs (also known as Bayesian networks) are a popular tool for encoding conditional dependencies between random variables. In a causal DAG, the random variables are modeled as vertices in the DAG, and it is stipulated that every random variable is independent of its ancestors conditioned on its parents. It is possible, however, for two different causal DAGs on the same set of random variables to encode exactly the same set of conditional dependencies. Such causal DAGs are said to be Markov equivalent, and equivalence classes of Markov equivalent DAGs are known as Markov Equivalent Classes (MECs). Beautiful combinatorial characterizations of MECs have been developed in the past few decades, and it is known, in particular that all DAGs in the same MEC must have the same "skeleton" (underlying undirected graph) and v-structures (induced subgraph of the form $a\rightarrow b \leftarrow c$). These combinatorial characterizations also suggest several natural algorithmic questions. One of these is: given an undirected graph $G$ as input, how many distinct Markov equivalence classes have the skeleton $G$? Much work has been devoted in the last few years to this and other closely related problems. However, to the best of our knowledge, a polynomial time algorithm for the problem remains unknown. In this paper, we make progress towards this goal by giving a fixed parameter tractable algorithm for the above problem, with the parameters being the treewidth and the maximum degree of the input graph $G$. The main technical ingredient in our work is a construction we refer to as shadow, which lets us create a "local description" of long-range constraints imposed by the combinatorial characterizations of MECs.
comment: 75 pages, 2 Figures
♻ ☆ DyGPrompt: Learning Feature and Time Prompts on Dynamic Graphs
Dynamic graphs are pervasive in the real world, modeling dynamic relations between objects across various fields. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique, which are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs. However, existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DyGPrompt, a novel pre-training and prompting framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and dynamic variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DyGPrompt through extensive experiments on three public datasets.
comment: Under review
♻ ☆ ADD 2022: the First Audio Deep Synthesis Detection Challenge ICASSP 2022
Audio deepfake detection is an emerging topic, which was included in the ASVspoof 2021. However, the recent shared tasks have not covered many real-life and challenging scenarios. The first Audio Deep synthesis Detection challenge (ADD) was motivated to fill in the gap. The ADD 2022 includes three tracks: low-quality fake audio detection (LF), partially fake audio detection (PF) and audio fake game (FG). The LF track focuses on dealing with bona fide and fully fake utterances with various real-world noises etc. The PF track aims to distinguish the partially fake audio from the real. The FG track is a rivalry game, which includes two tasks: an audio generation task and an audio fake detection task. In this paper, we describe the datasets, evaluation metrics, and protocols. We also report major findings that reflect the recent advances in audio deepfake detection tasks.
comment: Accepted by ICASSP 2022
♻ ☆ Introducing a Physics-informed Deep Learning Framework for Bridge Scour Prediction
This paper introduces scour physics-informed neural networks (SPINNs), a hybrid physics-data-driven framework for bridge scour prediction using deep learning. SPINNs are developed based on historical scour monitoring data and integrate physics-based empirical equations into neural networks as supplementary loss components. We incorporated three architectures: LSTM, CNN, and NLinear as the base data-driven model. Despite varying performance across different base models and bridges, SPINNs overall outperformed pure data-driven models. In some bridge cases, SPINN reduced forecasting errors by up to 50 percent. In this study, we also explored general models for bridge clusters, trained by aggregating datasets across multiple bridges in a region. The pure data-driven models mostly benefited from this approach, in particular bridges with limited data. However, bridge-specific SPINNs provided more accurate predictions than general SPINNs for almost all case studies. Also, the time-dependent empirical equations derived from SPINNs showed reasonable accuracy in estimating maximum scour depth, providing more accurate predictions compared to HEC-18. Comparing both SPINNs and pure deep learning models with traditional HEC-18 equation indicates substantial improvements in scour prediction accuracy. This study can pave the way for hybrid physics-machine learning methodologies to be implemented for bridge scour design and maintenance.
♻ ☆ Swish-T : Enhancing Swish Activation with Tanh Bias for Improved Neural Network Performance
We propose the Swish-T family, an enhancement of the existing non-monotonic activation function Swish. Swish-T is defined by adding a Tanh bias to the original Swish function. This modification creates a family of Swish-T variants, each designed to excel in different tasks, showcasing specific advantages depending on the application context. The Tanh bias allows for broader acceptance of negative values during initial training stages, offering a smoother non-monotonic curve than the original Swish. We ultimately propose the Swish-T$_{\textbf{C}}$ function, while Swish-T and Swish-T$_{\textbf{B}}$, byproducts of Swish-T$_{\textbf{C}}$, also demonstrate satisfactory performance. Furthermore, our ablation study shows that using Swish-T$_{\textbf{C}}$ as a non-parametric function can still achieve high performance. The superiority of the Swish-T family has been empirically demonstrated across various models and benchmark datasets, including MNIST, Fashion MNIST, SVHN, CIFAR-10, and CIFAR-100. The code is publicly available at "https://github.com/ictseoyoungmin/Swish-T-pytorch".
comment: 11 pages, 6 figures Revised the derivative of the sigmoid function from 1-sigmoid to sigmoid(1-sigmoid) for correctness.Updated related equations in Section 3.2 Conclusions to Conclusion in Section 6
♻ ☆ Towards Unsupervised Question Answering System with Multi-level Summarization for Legal Text
This paper summarizes Team SCaLAR's work on SemEval-2024 Task 5: Legal Argument Reasoning in Civil Procedure. To address this Binary Classification task, which was daunting due to the complexity of the Legal Texts involved, we propose a simple yet novel similarity and distance-based unsupervised approach to generate labels. Further, we explore the Multi-level fusion of Legal-Bert embeddings using ensemble features, including CNN, GRU, and LSTM. To address the lengthy nature of Legal explanation in the dataset, we introduce T5-based segment-wise summarization, which successfully retained crucial information, enhancing the model's performance. Our unsupervised system witnessed a 20-point increase in macro F1-score on the development set and a 10-point increase on the test set, which is promising given its uncomplicated architecture.
comment: 6 pages, 2 figures
♻ ☆ Metric-guided Image Reconstruction Bounds via Conformal Prediction
Recent advancements in machine learning have led to the development of novel medical imaging systems and algorithms that address ill-posed problems. Assessing their trustworthiness and understanding how to deploy them safely at test time remains an important and open problem. In this work, we propose using conformal prediction to compute valid and distribution-free bounds on downstream metrics given reconstructions generated by one algorithm, and retrieve upper/lower bounds and inlier/outlier reconstructions according to the adjusted bounds. Our work offers 1) test time image reconstruction evaluation without ground truth, 2) downstream performance guarantees, 3) meaningful upper/lower bound reconstructions, and 4) meaningful statistical inliers/outlier reconstructions. We demonstrate our method on post-mastectomy radiotherapy planning using 3D breast CT reconstructions, and show 1) that metric-guided bounds have valid coverage for downstream metrics while conventional pixel-wise bounds do not and 2) anatomical differences of upper/lower bounds between metric-guided and pixel-wise methods. Our work paves way for more meaningful and trustworthy test-time evaluation of medical image reconstructions. Code available at https://github.com/matthewyccheung/conformal-metric
♻ ☆ A Curious Case of Searching for the Correlation between Training Data and Adversarial Robustness of Transformer Textual Models ACL
Existing works have shown that fine-tuned textual transformer models achieve state-of-the-art prediction performances but are also vulnerable to adversarial text perturbations. Traditional adversarial evaluation is often done \textit{only after} fine-tuning the models and ignoring the training data. In this paper, we want to prove that there is also a strong correlation between training data and model robustness. To this end, we extract 13 different features representing a wide range of input fine-tuning corpora properties and use them to predict the adversarial robustness of the fine-tuned models. Focusing mostly on encoder-only transformer models BERT and RoBERTa with additional results for BART, ELECTRA, and GPT2, we provide diverse evidence to support our argument. First, empirical analyses show that (a) extracted features can be used with a lightweight classifier such as Random Forest to predict the attack success rate effectively, and (b) features with the most influence on the model robustness have a clear correlation with the robustness. Second, our framework can be used as a fast and effective additional tool for robustness evaluation since it (a) saves 30x-193x runtime compared to the traditional technique, (b) is transferable across models, (c) can be used under adversarial training, and (d) robust to statistical randomness. Our code is publicly available at \url{https://github.com/CaptainCuong/RobustText_ACL2024}.
comment: Accepted to ACL Findings 2024
♻ ☆ Towards Universal Mesh Movement Networks
Solving complex Partial Differential Equations (PDEs) accurately and efficiently is an essential and challenging problem in all scientific and engineering disciplines. Mesh movement methods provide the capability to improve the accuracy of the numerical solution without increasing the overall mesh degree of freedom count. Conventional sophisticated mesh movement methods are extremely expensive and struggle to handle scenarios with complex boundary geometries. However, existing learning-based methods require re-training from scratch given a different PDE type or boundary geometry, which limits their applicability, and also often suffer from robustness issues in the form of inverted elements. In this paper, we introduce the Universal Mesh Movement Network (UM2N), which -- once trained -- can be applied in a non-intrusive, zero-shot manner to move meshes with different size distributions and structures, for solvers applicable to different PDE types and boundary geometries. UM2N consists of a Graph Transformer (GT) encoder for extracting features and a Graph Attention Network (GAT) based decoder for moving the mesh. We evaluate our method on advection and Navier-Stokes based examples, as well as a real-world tsunami simulation case. Our method outperforms existing learning-based mesh movement methods in terms of the benchmarks described above. In comparison to the conventional sophisticated Monge-Amp\`ere PDE-solver based method, our approach not only significantly accelerates mesh movement, but also proves effective in scenarios where the conventional method fails. Our project page is at https://erizmr.github.io/UM2N/.
♻ ☆ Divide And Conquer: Learning Chaotic Dynamical Systems With Multistep Penalty Neural Ordinary Differential Equations
Forecasting high-dimensional dynamical systems is a fundamental challenge in various fields, such as the geosciences and engineering. Neural Ordinary Differential Equations (NODEs), which combine the power of neural networks and numerical solvers, have emerged as a promising algorithm for forecasting complex nonlinear dynamical systems. However, classical techniques used for NODE training are ineffective for learning chaotic dynamical systems. In this work, we propose a novel NODE-training approach that allows for robust learning of chaotic dynamical systems. Our method addresses the challenges of non-convexity and exploding gradients associated with underlying chaotic dynamics. Training data trajectories from such systems are split into multiple, non-overlapping time windows. In addition to the deviation from the training data, the optimization loss term further penalizes the discontinuities of the predicted trajectory between the time windows. The window size is selected based on the fastest Lyapunov time scale of the system. Multi-step penalty(MP) method is first demonstrated on Lorenz equation, to illustrate how it improves the loss landscape and thereby accelerating the optimization convergence. MP method can optimize chaotic systems in a manner similar to least-squares shadowing with significantly lower computational costs. Our proposed algorithm, denoted the Multistep Penalty NODE(MP-NODE), is applied to chaotic systems such as the Kuramoto-Sivashinsky equation and the two-dimensional Kolmogorov flow. It is observed that MP-NODE provide viable performance for such chaotic systems, not only for short-term trajectory predictions but also for invariant statistics that are hallmarks of the chaotic nature of these dynamics.
comment: 20 pages, 10 Figures, submitted to Journal of Computational Physics
♻ ☆ Evidential Uncertainty Sets in Deep Classifiers Using Conformal Prediction
In this paper, we propose Evidential Conformal Prediction (ECP) method for image classifiers to generate the conformal prediction sets. Our method is designed based on a non-conformity score function that has its roots in Evidential Deep Learning (EDL) as a method of quantifying model (epistemic) uncertainty in DNN classifiers. We use evidence that are derived from the logit values of target labels to compute the components of our non-conformity score function: the heuristic notion of uncertainty in CP, uncertainty surprisal, and expected utility. Our extensive experimental evaluation demonstrates that ECP outperforms three state-of-the-art methods for generating CP sets, in terms of their set sizes and adaptivity while maintaining the coverage of true labels.
comment: Accepted in 13th Symposium on Conformal and Probabilistic Prediction with Applications (COPA2024). To be published in the Proceedings of Machine Learning Research (PMLR), vol. 230, 2024 (24 Pages)
♻ ☆ Rethinking Machine Unlearning for Large Language Models
We explore machine unlearning (MU) in the domain of large language models (LLMs), referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities, while maintaining the integrity of essential knowledge generation and not affecting causally unrelated information. We envision LLM unlearning becoming a pivotal element in the life-cycle management of LLMs, potentially standing as an essential foundation for developing generative AI that is not only safe, secure, and trustworthy, but also resource-efficient without the need of full retraining. We navigate the unlearning landscape in LLMs from conceptual formulation, methodologies, metrics, and applications. In particular, we highlight the often-overlooked aspects of existing LLM unlearning research, e.g., unlearning scope, data-model interaction, and multifaceted efficacy assessment. We also draw connections between LLM unlearning and related areas such as model editing, influence functions, model explanation, adversarial training, and reinforcement learning. Furthermore, we outline an effective assessment framework for LLM unlearning and explore its applications in copyright and privacy safeguards and sociotechnical harm reduction.
♻ ☆ Fair Resource Allocation in Multi-Task Learning
By jointly learning multiple tasks, multi-task learning (MTL) can leverage the shared knowledge across tasks, resulting in improved data efficiency and generalization performance. However, a major challenge in MTL lies in the presence of conflicting gradients, which can hinder the fair optimization of some tasks and subsequently impede MTL's ability to achieve better overall performance. Inspired by fair resource allocation in communication networks, we formulate the optimization of MTL as a utility maximization problem, where the loss decreases across tasks are maximized under different fairness measurements. To solve this problem, we propose FairGrad, a novel MTL optimization method. FairGrad not only enables flexible emphasis on certain tasks but also achieves a theoretical convergence guarantee. Extensive experiments demonstrate that our method can achieve state-of-the-art performance among gradient manipulation methods on a suite of multi-task benchmarks in supervised learning and reinforcement learning. Furthermore, we incorporate the idea of $\alpha$-fairness into loss functions of various MTL methods. Extensive empirical studies demonstrate that their performance can be significantly enhanced. Code is provided at \url{https://github.com/OptMN-Lab/fairgrad}.
♻ ☆ Differentially Private Graph Diffusion with Applications in Personalized PageRanks
Graph diffusion, which iteratively propagates real-valued substances among the graph, is used in numerous graph/network-involved applications. However, releasing diffusion vectors may reveal sensitive linking information in the data such as transaction information in financial network data. However, protecting the privacy of graph data is challenging due to its interconnected nature. This work proposes a novel graph diffusion framework with edge-level differential privacy guarantees by using noisy diffusion iterates. The algorithm injects Laplace noise per diffusion iteration and adopts a degree-based thresholding function to mitigate the high sensitivity induced by low-degree nodes. Our privacy loss analysis is based on Privacy Amplification by Iteration (PABI), which to our best knowledge, is the first effort that analyzes PABI with Laplace noise and provides relevant applications. We also introduce a novel Infinity-Wasserstein distance tracking method, which tightens the analysis of privacy leakage and makes PABI more applicable in practice. We evaluate this framework by applying it to Personalized Pagerank computation for ranking tasks. Experiments on real-world network data demonstrate the superiority of our method under stringent privacy conditions.
♻ ☆ AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents ICRA 2024
Foundation models that incorporate language, vision, and more recently actions have revolutionized the ability to harness internet scale data to reason about useful tasks. However, one of the key challenges of training embodied foundation models is the lack of data grounded in the physical world. In this paper, we propose AutoRT, a system that leverages existing foundation models to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision. AutoRT leverages vision-language models (VLMs) for scene understanding and grounding, and further uses large language models (LLMs) for proposing diverse and novel instructions to be performed by a fleet of robots. Guiding data collection by tapping into the knowledge of foundation models enables AutoRT to effectively reason about autonomy tradeoffs and safety while significantly scaling up data collection for robot learning. We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies. We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
comment: 26 pages, 9 figures, ICRA 2024 VLMNM Workshop
♻ ☆ FLea: Addressing Data Scarcity and Label Skew in Federated Learning via Privacy-preserving Feature Augmentation KDD'24
Federated Learning (FL) enables model development by leveraging data distributed across numerous edge devices without transferring local data to a central server. However, existing FL methods still face challenges when dealing with scarce and label-skewed data across devices, resulting in local model overfitting and drift, consequently hindering the performance of the global model. In response to these challenges, we propose a pioneering framework called \textit{FLea}, incorporating the following key components: \textit{i)} A global feature buffer that stores activation-target pairs shared from multiple clients to support local training. This design mitigates local model drift caused by the absence of certain classes; \textit{ii)} A feature augmentation approach based on local and global activation mix-ups for local training. This strategy enlarges the training samples, thereby reducing the risk of local overfitting; \textit{iii)} An obfuscation method to minimize the correlation between intermediate activations and the source data, enhancing the privacy of shared features. To verify the superiority of \textit{FLea}, we conduct extensive experiments using a wide range of data modalities, simulating different levels of local data scarcity and label skew. The results demonstrate that \textit{FLea} consistently outperforms state-of-the-art FL counterparts (among 13 of the experimented 18 settings, the improvement is over $5\%$) while concurrently mitigating the privacy vulnerabilities associated with shared features. Code is available at https://github.com/XTxiatong/FLea.git
comment: This paper has been acceped by KDD'24
♻ ☆ Knowledge Transfer from Vision Foundation Models for Efficient Training of Small Task-specific Models
Vision Foundation Models (VFMs) pretrained on massive datasets exhibit impressive performance on various downstream tasks, especially with limited labeled target data. However, due to their high inference compute cost, these models cannot be deployed for many real-world applications. Motivated by this, we ask the following important question, "How can we leverage the knowledge from a large VFM to train a small task-specific model for a new target task with limited labeled training data?", and propose a simple task-oriented knowledge transfer approach as a highly effective solution to this problem. Our experimental results on five target tasks show that the proposed approach outperforms task-agnostic VFM distillation, web-scale CLIP pretraining, supervised ImageNet pretraining, and self-supervised DINO pretraining by up to 11.6%, 22.1%, 13.7%, and 29.8%, respectively. Furthermore, the proposed approach also demonstrates up to 9x, 4x and 15x reduction in pretraining compute cost when compared to task-agnostic VFM distillation, ImageNet pretraining and DINO pretraining, respectively, while outperforming them. We also show that the dataset used for transferring knowledge has a significant effect on the final target task performance, and introduce a retrieval-augmented knowledge transfer strategy that uses web-scale image retrieval to curate effective transfer sets.
comment: International Conference on Machine Learning, 2024
System/Control 23
☆ Comparative Evaluation of Learning Models for Bionic Robots: Non-Linear Transfer Function Identifications
The control and modeling of bionic robot dynamics have increasingly adopted model-free control strategies using machine learning methods. Given the non-linear elastic nature of bionic robotic systems, learning-based methods provide reliable alternatives by utilizing numerical data to establish a direct mapping from actuation inputs to robot trajectories without complex kinematics models. However, for developers, the method of identifying an appropriate learning model for their specific bionic robots and further constructing the transfer function has not been thoroughly discussed. Thus, this research trains four types of models, including ensemble learning models, regularization-based models, kernel-based models, and neural network models, suitable for multi-input multi-output (MIMO) data and non-linear transfer function identification, in order to evaluate their (1) accuracy, (2) computation complexity, and (3) performance of capturing biological movements. This research encompasses data collection methods for control inputs and action outputs, selection of machine learning models, comparative analysis of training results, and transfer function identifications. The main objective is to provide a comprehensive evaluation strategy and framework for the application of model-free control.
comment: 16 pages, 20 figures
☆ Roadmap to Neuromorphic Computing with Emerging Technologies
The roadmap is organized into several thematic sections, outlining current computing challenges, discussing the neuromorphic computing approach, analyzing mature and currently utilized technologies, providing an overview of emerging technologies, addressing material challenges, exploring novel computing concepts, and finally examining the maturity level of emerging technologies while determining the next essential steps for their advancement.
comment: 90 pages, 22 figures, roadmap
☆ Stability-Preserving Model Reduction of Networked Lur'e Systems
This paper proposes a model reduction approach for simplifying the interconnection topology of Lur'e network systems. A class of reduced-order models are generated by the projection framework based on graph clustering, which not only preserve the network structure but also ensure absolute stability. Furthermore, we provide an upper bound on the input-output approximation error between the original and reduced-order Lur'e network systems, which is expressed as a function of the characteristic matrix of graph clustering. Finally, the results are illustrated via a numerical example.
comment: to appear in 22nd European Control Conference (ECC24), Stockholm, Sweden
☆ Transport Map Coupling Filter for State-Parameter Estimation
Many dynamical systems are subjected to stochastic influences, such as random excitations, noise, and unmodeled behavior. Tracking the system's state and parameters based on a physical model is a common task for which filtering algorithms, such as Kalman filters and their non-linear extensions, are typically used. However, many of these filters use assumptions on the transition probabilities or the covariance model, which can lead to inaccuracies in non-linear systems. We will show the application of a stochastic coupling filter that can approximate arbitrary transition densities under non-Gaussian noise. The filter is based on transport maps, which couple the approximation densities to a user-chosen reference density, allowing for straightforward sampling and evaluation of probabilities.
comment: Published in Advances in Reliability, Safety and Security ESREL 2024 Contributions, https://esrel2024.com/wp-content/uploads/articles/part9/transport-map-coupling-filter-for-state-parameter-estimation.pdf
☆ A Tax-Subsidy Scheme for Efficient Investment in Renewable Generation Capacity
The impact of energy production significantly affects system sustainability, which has enabled a shift towards renewable energy sources. Thus, producer behavior is crucial in electricity markets to achieve sustainability goals. In this paper, we address two key challenges comprising electricity markets and generation investment. Firstly, electricity markets typically are operated with competitive market clearing and merit-order dispatch, which neglects negative externalities from pollution. A Pigouvian tax is proposed in order to investigate the impacts of these externalities on electricity prices and resolve this issue. Secondly, renewable energy sources entail low operational costs, which result in lower system prices and reduced profits for producers. Furthermore, producers face high investment costs when moving into renewable energy resources, which leads to strategic investment decisions. In order to mitigate this strategic behavior, subsidies are proposed equal to producers' contribution to consumer surplus. These subsidies incentivize producers to decrease prices and increase consumer surplus, so, producers would be motivated to invest in socially optimal generation capacity. Finally, we demonstrate that implementing the proposed tax and subsidy does not increase the regulator's information burden.
☆ Data-Driven Subsynchronous Oscillation Suppression for Renewable Energy Integrated Power Systems Based on Koopman Operator
Recently, subsynchronous oscillations (SSOs) have emerged frequently worldwide, with the high penetration of renewable power generation in modern power systems. The SSO introduced by renewables has become a prominent new stability problem, seriously threatening the stable operation of systems. This paper proposes a data-driven dynamic optimal controller for renewable energy integrated power systems, to suppress SSOs with the control of renewables. The challenges of the controller design are the nonlinearity, complexity and hard accessibility of the system models. Using Koopman operator, the system dynamics are accurately extracted from data and utilized to the linear model predictive control (MPC). Firstly, the globally linear representation of the system dynamics is obtained by lifting, and the key states are selected as control signals by analyzing Koopman participation factors. Subsequently, augmented with the control term, the Koopman linear parameter-varying predictor of the controlled system is constructed. Finally, using MPC, the proposed controller computes control signals online in a moving horizon fashion. Case studies show that the proposed controller is effective, adaptive and robust in various conditions, surpassing other controllers with reliable control performance.
☆ Passivity Tools for Hybrid Learning Rules in Large Populations
Recent work has pioneered the use of system-theoretic passivity to study equilibrium stability for the dynamics of noncooperative strategic interactions in large populations of learning agents. In this and related works, the stability analysis leverages knowledge that certain ``canonical'' classes of learning rules used to model the agents' strategic behaviors satisfy a passivity condition known as $\delta$-passivity. In this paper, we consider that agents exhibit learning behaviors that do not align with a canonical class. Specifically, we focus on characterizing $\delta$-passivity for hybrid learning rules that combine elements from canonical classes. Our analysis also introduces and uses a more general version of $\delta$-passivity, which, for the first time, can handle discontinuous learning rules, including those showing best-response behaviors. We state and prove theorems establishing $\delta$-passivity for two broad convex cones of hybrid learning rules. These cones can merge into a larger one preserving $\delta$-passivity in scenarios limited to two strategies. In our proofs, we establish intermediate facts that are significant on their own and could potentially be used to further generalize our work. We illustrate the applicability of our results through numerical examples.
comment: 12 pages, 3 figures
☆ Cloud-Edge-Terminal Collaborative AIGC for Autonomous Driving
In dynamic autonomous driving environment, Artificial Intelligence-Generated Content (AIGC) technology can supplement vehicle perception and decision making by leveraging models' generative and predictive capabilities, and has the potential to enhance motion planning, trajectory prediction and traffic simulation. This article proposes a cloud-edge-terminal collaborative architecture to support AIGC for autonomous driving. By delving into the unique properties of AIGC services, this article initiates the attempts to construct mutually supportive AIGC and network systems for autonomous driving, including communication, storage and computation resource allocation schemes to support AIGC services, and leveraging AIGC to assist system design and resource management.
☆ Refined Motion Compensation with Soft Laser Manipulators using Data-Driven Surrogate Models
Non-contact laser ablation, a precise thermal technique, simultaneously cuts and coagulates tissue without the insertion errors associated with rigid needles. Human organ motions, such as those in the liver, exhibit rhythmic components influenced by respiratory and cardiac cycles, making effective laser energy delivery to target lesions while compensating for tumor motion crucial. This research introduces a data-driven method to derive surrogate models of a soft manipulator. These low-dimensional models offer computational efficiency when integrated into the Model Predictive Control (MPC) framework, while still capturing the manipulator's dynamics with and without control input. Spectral Submanifolds (SSM) theory models the manipulator's autonomous dynamics, acknowledging its tendency to reach equilibrium when external forces are removed. Preliminary results show that the MPC controller using the surrogate model outperforms two other models within the same MPC framework. The data-driven MPC controller also supports a design-agnostic feature, allowing the interchangeability of different soft manipulators within the laser ablation surgery robot system.
☆ Enhancing Scalability of Optimal Kron-based Reduction of Networks (Opti-KRON) via Decomposition with Community Detection
Electrical networks contain thousands of interconnected nodes and edges, which leads to computational challenges in some power system studies. To address these challenges, we contend that network reductions can serve as a framework to enable scalable computing in power systems. By building upon a prior AC "Opti-KRON" formulation, this paper presents a DC power flow formulation for finding network reductions that are optimal within the context of large transmission analysis. Opti-KRON previously formulated optimal Kron-based network reductions as a mixed integer linear program (MILP), where the number of binary variables scaled with the number of nodes. To improve the scalability of the Opti-KRON approach, we augment the MILP formulation with a community detection (CD) technique that segments a large network into smaller, disjoint, but contiguous sub-graphs (i.e., communities). For each sub-graph, we then (in parallel) apply MILP-based along with a new cutting plane constraint, thus, enhancing scalability. Ultimately, the new DC-based Opti-KRON method can achieve a 80-95\% reduction of networks (in terms of nodes) while statistically outperforming other CD- and Kron-based methods. We present simulation results for the IEEE RTS-96 and the 2383-bus Polish networks.
☆ Impact of Network Deployment on the Performance of NCR-assisted Networks ISWC
To address the need of coverage enhancement in the fifth generation (5G) of wireless cellular telecommunications, while taking into account possible bottlenecks related to deploying fiber based backhaul (e.g., required cost and time), the 3rd generation partnership project (3GPP) proposed in Release 18 the concept of network-controlled repeaters (NCRs). NCRs enhance previous radio frequency (RF) repeaters by exploring beamforming transmissions controlled by the network through side control information. In this context, this paper introduces the concept of NCR. Furthermore, we present a system level model that allows the performance evaluation of an NCR-assisted network. Finally, we evaluate the network deployment impact on the performance of NCR-assisted networks. As we show, with proper network planning, NCRs can boost the signal to interference-plus-noise ratio (SINR) of the user equipments (UEs) in a poor coverage of a macro base station. Furthermore, celledge UEs and uplink (UL) communications are the ones that benefit the most from the presence of NCRs.
comment: Paper accepted for publication in the conference proceedings of "19th International Symposium on Wireless Communication Systems" (ISWCS)
☆ Local Synchronization of Power System Devices
This paper introduces a novel concept of local synchronization of power systems devices based on the difference between the complex frequency of the voltage and current injected at terminals. Formal definitions are provided to account for bounded and asymptotic local synchronization. The definitions are suitable for modern power systems as they remove classical assumptions limiting the application of the concept of synchronization to synchronous machines and omitting voltage dynamics. The paper also provides a systematic analytical description of the synchronization mechanisms of common power system devices. Finally, a variety of examples is included to illustrate the theoretical value and practical application of the proposed definitions to power systems modeling and stability analysis.
♻ ☆ Physics-Informed AI Inverter
This letter devises an AI-Inverter that pilots the use of a physics-informed neural network (PINN) to enable AI-based electromagnetic transient simulations (EMT) of grid-forming inverters. The contributions are threefold: (1) A PINN-enabled AI-Inverter is formulated; (2) An enhanced learning strategy, balanced-adaptive PINN, is devised; (3) extensive validations and comparative analysis of the accuracy and efficiency of AI-Inverter are made to show its superiority over the classical electromagnetic transient programs (EMTP).
♻ ☆ Using matrix sparsification to solve tropical linear vector equations
A linear vector equation in two unknown vectors is examined in the framework of tropical algebra dealing with the theory and applications of semirings and semifields with idempotent addition. We consider a two-sided equation where each side is a tropical product of a given matrix by one of the unknown vectors. We use a matrix sparsification technique to reduce the equation to a set of vector inequalities that involve row-monomial matrices obtained from the given matrices. An existence condition of solutions for the inequalities is established, and a direct representation of the solutions is derived in a compact vector form. To illustrate the proposed approach and to compare the obtained result with that of an existing solution procedure, we apply our solution technique to handle two-sided equations known in the literature. Finally, a computational scheme based on the approach to derive all solutions of the two-sided equation is discussed.
comment: 16 pages
♻ ☆ Koopman Spectrum Nonlinear Regulators and Efficient Online Learning
Most modern reinforcement learning algorithms optimize a cumulative single-step cost along a trajectory. The optimized motions are often 'unnatural', representing, for example, behaviors with sudden accelerations that waste energy and lack predictability. In this work, we present a novel paradigm of controlling nonlinear systems via the minimization of the Koopman spectrum cost: a cost over the Koopman operator of the controlled dynamics. This induces a broader class of dynamical behaviors that evolve over stable manifolds such as nonlinear oscillators, closed loops, and smooth movements. We demonstrate that some dynamics characterizations that are not possible with a cumulative cost are feasible in this paradigm, which generalizes the classical eigenstructure and pole assignments to nonlinear decision making. Moreover, we present a sample efficient online learning algorithm for our problem that enjoys a sub-linear regret bound under some structural assumptions.
comment: 41 pages, 21 figures
♻ ☆ Trajectory Tracking for UAVs: An Interpolating Control Approach
Building on our previous work, this paper investigates the effectiveness of interpolating control (IC) for real-time trajectory tracking. Unlike prior studies that focused on trajectory tracking itself or UAV stabilization control in simulation, we evaluate the performance of a modified extended IC (eIC) controller compared to Model Predictive Control (MPC) through both simulated and laboratory experiments with a remotely controlled UAV. The evaluation focuses on the computational efficiency and control quality of real-time UAV trajectory tracking compared to previous IC applications. The results demonstrate that the eIC controller achieves competitive performance compared to MPC while significantly reducing computational complexity, making it a promising alternative for resource-constrained platforms.
comment: 7 pages, submitted to MMAR2024 conference
♻ ☆ Event-Triggered Parameterized Control of Nonlinear Systems
This paper deals with event-triggered parameterized control (ETPC) of nonlinear systems with external disturbances. In this control method, between two successive events, each control input to the plant is a linear combination of a set of linearly independent scalar functions. At each event, the controller updates the coefficients of the parameterized control input so as to minimize the error in approximating a continuous time control signal and communicates the same to the actuator. We design an event-triggering rule (ETR) that guarantees global uniform ultimate boundedness of trajectories of the closed loop system. We also ensure the absence of Zeno behavior by showing the existence of a uniform positive lower bound on the inter-event times (IETs). We illustrate our results through numerical examples.
♻ ☆ Geometrically Modulable Gait Design for Quadrupeds
Miniature-legged robots are constrained by their onboard computation and control, thus motivating the need for simple, first-principles-based geometric models that connect \emph{periodic actuation or gaits} (a universal robot control paradigm) to the induced average locomotion. In this paper, we develop a \emph{modulable two-beat gait design framework} for sprawled planar quadrupedal systems under the no-slip using tools from geometric mechanics. We reduce standard two-beat gaits into unique subgaits in mutually exclusive shape subspaces. Subgaits are characterized by a locomotive stance phase when limbs are in ground contact and a non-locomotive, instantaneous swing phase where the limbs are reset without contact. During the stance phase, the contacting limbs form a four-bar mechanism. To analyze the ensuing locomotion, we develop the following tools: (a) a vector field to generate nonslip actuation, (b) the kinematics of a four-bar mechanism as a local connection, and (c) stratified panels that combine the kinematics and constrained actuation to encode the net change in the system's position generated by a stance-swing subgait cycle. Decoupled subgaits are then designed independently using flows on the shape-change basis and are combined with appropriate phasing to produce a two-beat gait. Further, we introduce ``scaling" and ``sliding" control inputs to continuously modulate the global trajectories of the quadrupedal system in gait time through which we demonstrate cycle-average speed, direction, and steering control using the control inputs. Thus, this framework has the potential to create uncomplicated open-loop gait plans or gain schedules for robots with limited resources, bringing them closer to achieving autonomous control.
comment: 8 pages, 6 figures
♻ ☆ Distributed Coordination of Multi-Microgrids in Active Distribution Networks for Provisioning Ancillary Services
With the phenomenal growth in renewable energy generation, the conventional synchronous generator-based power plants are gradually getting replaced by renewable energy sources-based microgrids. Such transition gives rise to the challenges of procuring various ancillary services from microgrids. We propose a distributed optimization framework that coordinates multiple microgrids in an active distribution network for provisioning passive voltage support-based ancillary services while satisfying operational constraints. Specifically, we exploit the reactive power support capability of the inverters and the flexibility offered by storage systems available with microgrids for provisioning ancillary service support to the transmission grid. We develop novel mixed-integer inequalities to represent the set of feasible active and reactive power exchange with the transmission grid that ensures passive voltage support. The proposed alternating direction method of multipliers-based algorithm is fully distributed, and does not require the presence of a centralized entity to achieve coordination among the microgrids. We present detailed numerical results on the IEEE 33-bus distribution test system to demonstrate the effectiveness of the proposed approach and examine the scalability and convergence behavior of the distributed algorithm for different choice of hyperparameters and network sizes.
♻ ☆ Practical Power System Inertia Monitoring Based on Pumped Storage Hydropower Operation Signature
This paper proposes a practical method to monitor power system inertia using Pumped Storage Hydropower (PSH) switching-off events. This approach offers real-time system-level inertia estimation with minimal expenses, no disruption, and the inclusion of behind-the-meter inertia. First, accurate inertia estimation is achieved through improved RoCoF calculation that accounts for pre-event RoCoF, reducing common random frequency fluctuations in practice. Second, PSH field data is analyzed, highlighting the benefits of using switching-off events for grid inertia estimation. Third, an event detection trigger is designed to capture pump switching-off events based on local and system features. Fourth, the method is validated on the U.S. Eastern Interconnection model with over 60,000 buses, demonstrating very high accuracy (3%-5% error rate). Finally, it is applied to the U.S. Western Interconnection, with field validation showing a 9.9% average absolute error rate. Despite challenges in practical power system inertia estimation, this method enhances decision-making for power grid reliability and efficiency, addressing challenges posed by renewable energy integration.
comment: 8 pages, 15 figures
♻ ☆ Final-state, Open-loop Control of Parabolic PDEs with Dirichlet Boundary Conditions
In this paper, a quadratic optimal control problem is considered for second-order parabolic PDEs with homogeneous Dirichlet boundary conditions, in which the "point" control function (depending only on time) constitutes a source term. These problems involve choosing a control function (with or without "peak-value" constraints) to approximately steer the solution of the PDE in question to a desired function at the end of a prescribed (finite) time-interval. To compute approximations to the desired optimal control functions, semi-discrete, Galerkin approximations to the equation involved are introduced and the corresponding (approximating) control problems are tackled. It is shown that the sequences of solutions to both the constrained and unconstrained approximating (finite-dimensional) control problems converge, respectively, to the optimal solutions of the control problems involving the original initial/boundary value problem. The solution to the unconstrained approximating problem can be quite explicitly characterized, with the main numerical step for its computation requiring only the solution of a Lyapunov equation. Whereas approximate solutions to the constrained control problems can be obtained on the basis of Lagrangian duality and piecewise linear multipliers. These points are worked out in detail and illustrated by numerical examples involving the heat equation (HEq).
comment: 30 pages, 11 figures, submitted
♻ ☆ Enhancing power grid resilience to cyber-physical attacks using distributed retail electricity markets
We propose using a hierarchical retail market structure to alert and dispatch resources to mitigate cyber-physical attacks on a distribution grid. We simulate attacks where a number of generation nodes in a distribution grid are attacked. We show that the market is able to successfully meet the shortfall between demand and supply by utilizing the flexibility of remaining resources while minimizing any extra power that needs to be imported from the main transmission grid. This includes utilizing upward flexibility or reserves of remaining online generators and some curtailment or shifting of flexible loads, which results in higher costs. Using price signals and market-based coordination, the grid operator can achieve its objectives without direct control over distributed energy resources and is able to accurately compensate prosumers for the grid support they provide.
comment: Accepted to the 15th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) and as part of the CPS-IoT Week 2024
♻ ☆ Collaborative Decision-Making and the k-Strong Price of Anarchy in Common Interest Games
The control of large-scale, multi-agent systems often entails distributing decision-making across the system components. However, with advances in communication and computation technologies, we can consider new collaborative decision-making paradigms that exist somewhere between centralized and distributed control. In this work, we seek to understand the benefits and costs of increased collaborative communication in multi-agent systems. We specifically study this in the context of common interest games in which groups of up to k agents can coordinate their actions in maximizing the common objective function. The equilibria that emerge in these systems are the k-strong Nash equilibria of the common interest game; studying the properties of these states can provide relevant insights into the efficacy of inter-agent collaboration. Our contributions come threefold: 1) provide bounds on how well k-strong Nash equilibria approximate the optimal system welfare, formalized by the k-strong price of anarchy, 2) study the run-time and transient performance of collaborative agent-based dynamics, and 3) consider the task of redesigning objectives for groups of agents which improve system performance. We study these three facets generally as well as in the context of resource allocation problems, in which we provide tractable linear programs that give tight bounds on the k-strong price of anarchy.
comment: arXiv admin note: text overlap with arXiv:2308.08045
Robotics 62
☆ Empathic Grounding: Explorations using Multimodal Interaction and Large Language Models with Conversational Agents
We introduce the concept of "empathic grounding" in conversational agents as an extension of Clark's conceptualization of grounding in conversation in which the grounding criterion includes listener empathy for the speaker's affective state. Empathic grounding is generally required whenever the speaker's emotions are foregrounded and can make the grounding process more efficient and reliable by communicating both propositional and affective understanding. Both speaker expressions of affect and listener empathic grounding can be multimodal, including facial expressions and other nonverbal displays. Thus, models of empathic grounding for embodied agents should be multimodal to facilitate natural and efficient communication. We describe a multimodal model that takes as input user speech and facial expression to generate multimodal grounding moves for a listening agent using a large language model. We also describe a testbed to evaluate approaches to empathic grounding, in which a humanoid robot interviews a user about a past episode of pain and then has the user rate their perception of the robot's empathy. We compare our proposed model to one that only generates non-affective grounding cues in a between-subjects experiment. Findings demonstrate that empathic grounding increases user perceptions of empathy, understanding, emotional intelligence, and trust. Our work highlights the role of emotion awareness and multimodality in generating appropriate grounding moves for conversational agents.
☆ Equivariant Diffusion Policy
Recent work has shown diffusion models are an effective approach to learning the multimodal distributions arising from demonstration data in behavior cloning. However, a drawback of this approach is the need to learn a denoising function, which is significantly more complex than learning an explicit policy. In this work, we propose Equivariant Diffusion Policy, a novel diffusion policy learning method that leverages domain symmetries to obtain better sample efficiency and generalization in the denoising function. We theoretically analyze the $\mathrm{SO}(2)$ symmetry of full 6-DoF control and characterize when a diffusion model is $\mathrm{SO}(2)$-equivariant. We furthermore evaluate the method empirically on a set of 12 simulation tasks in MimicGen, and show that it obtains a success rate that is, on average, 21.9% higher than the baseline Diffusion Policy. We also evaluate the method on a real-world system to show that effective policies can be learned with relatively few training samples, whereas the baseline Diffusion Policy cannot.
☆ Active Human Pose Estimation via an Autonomous UAV Agent
One of the core activities of an active observer involves moving to secure a "better" view of the scene, where the definition of "better" is task-dependent. This paper focuses on the task of human pose estimation from videos capturing a person's activity. Self-occlusions within the scene can complicate or even prevent accurate human pose estimation. To address this, relocating the camera to a new vantage point is necessary to clarify the view, thereby improving 2D human pose estimation. This paper formalizes the process of achieving an improved viewpoint. Our proposed solution to this challenge comprises three main components: a NeRF-based Drone-View Data Generation Framework, an On-Drone Network for Camera View Error Estimation, and a Combined Planner for devising a feasible motion plan to reposition the camera based on the predicted errors for camera views. The Data Generation Framework utilizes NeRF-based methods to generate a comprehensive dataset of human poses and activities, enhancing the drone's adaptability in various scenarios. The Camera View Error Estimation Network is designed to evaluate the current human pose and identify the most promising next viewing angles for the drone, ensuring a reliable and precise pose estimation from those angles. Finally, the combined planner incorporates these angles while considering the drone's physical and environmental limitations, employing efficient algorithms to navigate safe and effective flight paths. This system represents a significant advancement in active 2D human pose estimation for an autonomous UAV agent, offering substantial potential for applications in aerial cinematography by improving the performance of autonomous human pose estimation and maintaining the operational safety and efficiency of UAVs.
☆ Design of an End-effector with Application to Avocado Harvesting
Robot-assisted fruit harvesting has been a critical research direction supporting sustainable crop production. One important determinant of system behavior and efficiency is the end-effector that comes in direct contact with the crop during harvesting and directly affects harvesting success. Harvesting avocados poses unique challenges not addressed by existing end-effectors (namely, they have uneven surfaces and irregular shapes grow on thick peduncles, and have a sturdy calyx attached). The work reported in this paper contributes a new end-effector design suitable for avocado picking. A rigid system design with a two-stage rotational motion is developed, to first grasp the avocado and then detach it from its peduncle. A force analysis is conducted to determine key design parameters. Preliminary experiments demonstrate the efficiency of the developed end-effector to pick and apply a moment to an avocado from a specific viewpoint (as compared to pulling it directly), and in-lab experiments show that the end-effector can grasp and retrieve avocados with a 100% success rate.
☆ Optimising robotic operation speed with edge computing over 5G networks: Insights from selective harvesting robots
Selective harvesting by autonomous robots will be a critical enabling technology for future farming. Increases in inflation and shortages of skilled labour are driving factors that can help encourage user acceptability of robotic harvesting. For example, robotic strawberry harvesting requires real-time high-precision fruit localisation, 3D mapping and path planning for 3-D cluster manipulation. Whilst industry and academia have developed multiple strawberry harvesting robots, none have yet achieved human-cost parity. Achieving this goal requires increased picking speed (perception, control and movement), accuracy and the development of low-cost robotic system designs. We propose the edge-server over 5G for Selective Harvesting (E5SH) system, which is an integration of high bandwidth and low latency Fifth Generation (5G) mobile network into a crop harvesting robotic platform, which we view as an enabler for future robotic harvesting systems. We also consider processing scale and speed in conjunction with system environmental and energy costs. A system architecture is presented and evaluated with support from quantitative results from a series of experiments that compare the performance of the system in response to different architecture choices, including image segmentation models, network infrastructure (5G vs WiFi) and messaging protocols such as Message Queuing Telemetry Transport (MQTT) and Transport Control Protocol Robot Operating System (TCPROS). Our results demonstrate that the E5SH system delivers step-change peak processing performance speedup of above 18-fold than a stand-alone embedded computing Nvidia Jetson Xavier NX (NJXN) system.
comment: Preprint, to be appear in Journal of Field Robotics
☆ An Intelligent Robotic System for Perceptive Pancake Batter Stirring and Precise Pouring IROS 2024
Cooking robots have long been desired by the commercial market, while the technical challenge is still significant. A major difficulty comes from the demand of perceiving and handling liquid with different properties. This paper presents a robot system that mixes batter and makes pancakes out of it, where understanding and handling the viscous liquid is an essential component. The system integrates Haptic Sensing and control algorithms to autonomously stir flour and water to achieve the desired batter uniformity, estimate the batter's properties such as the water-flour ratio and liquid level, as well as perform precise manipulations to pour the batter into any specified shape. Experimental results show the system's capability to always produce batter of desired uniformity, estimate water-flour ratio and liquid level precisely, and accurately pour it into complex shapes. This research showcases the potential for robots to assist in kitchens and step towards commercial culinary automation.
comment: 8 pages, 10 figures, Accepted to IROS 2024
☆ Enabling Tactile Feedback for Robotic Strawberry Handling using AST Skin
Acoustic Soft Tactile (AST) skin is a novel sensing technology which derives tactile information from the modulation of acoustic waves travelling through the skin's embedded acoustic channels. A generalisable data-driven calibration model maps the acoustic modulations to the corresponding tactile information in the form of contact forces with their contact locations and contact geometries. AST skin technology has been highlighted for its easy customisation. As a case study, this paper discusses the possibility of using AST skin on a custom-built robotic end effector finger for strawberry handling. The paper delves into the design, prototyping, and calibration method to sensorise the end effector finger with AST skin. A real-time force-controlled gripping experiment is conducted with the sensorised finger to handle strawberries by their peduncle. The finger could successfully grip the strawberry peduncle by maintaining a preset force of 2 N with a maximum Mean Absolute Error (MAE) of 0.31 N over multiple peduncle diameters and strawberry weight classes. Moreover, this study sets confidence in the usability of AST skin in generating real-time tactile feedback for robot manipulation tasks.
comment: TAROS 2024
☆ AquaMILR: Mechanical intelligence simplifies control of undulatory robots in cluttered fluid environments
While undulatory swimming of elongate limbless robots has been extensively studied in open hydrodynamic environments, less research has been focused on limbless locomotion in complex, cluttered aquatic environments. Motivated by the concept of mechanical intelligence, where controls for obstacle navigation can be offloaded to passive body mechanics in terrestrial limbless locomotion, we hypothesize that principles of mechanical intelligence can be extended to cluttered hydrodynamic regimes. To test this, we developed an untethered limbless robot capable of undulatory swimming on water surfaces, utilizing a bilateral cable-driven mechanism inspired by organismal muscle actuation morphology to achieve programmable anisotropic body compliance. We demonstrated through robophysical experiments that, similar to terrestrial locomotion, an appropriate level of body compliance can facilitate emergent swim through complex hydrodynamic environments under pure open-loop control. Moreover, we found that swimming performance depends on undulation frequency, with effective locomotion achieved only within a specific frequency range. This contrasts with highly damped terrestrial regimes, where inertial effects can often be neglected. Further, to enhance performance and address the challenges posed by nondeterministic obstacle distributions, we incorporated computational intelligence by developing a real-time body compliance tuning controller based on cable tension feedback. This controller improves the robot's robustness and overall speed in heterogeneous hydrodynamic environments.
☆ SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving
Scene flow estimation predicts the 3D motion at each point in successive LiDAR scans. This detailed, point-level, information can help autonomous vehicles to accurately predict and understand dynamic changes in their surroundings. Current state-of-the-art methods require annotated data to train scene flow networks and the expense of labeling inherently limits their scalability. Self-supervised approaches can overcome the above limitations, yet face two principal challenges that hinder optimal performance: point distribution imbalance and disregard for object-level motion constraints. In this paper, we propose SeFlow, a self-supervised method that integrates efficient dynamic classification into a learning-based scene flow pipeline. We demonstrate that classifying static and dynamic points helps design targeted objective functions for different motion patterns. We also emphasize the importance of internal cluster consistency and correct object point association to refine the scene flow estimation, in particular on object details. Our real-time capable method achieves state-of-the-art performance on the self-supervised scene flow task on Argoverse 2 and Waymo datasets. The code is open-sourced at https://github.com/KTH-RPL/SeFlow along with trained model weights.
comment: 25 pages (14 main pages + 11 supp materail), 5 figures
☆ Sparse Diffusion Policy: A Sparse, Reusable, and Flexible Policy for Robot Learning
The increasing complexity of tasks in robotics demands efficient strategies for multitask and continual learning. Traditional models typically rely on a universal policy for all tasks, facing challenges such as high computational costs and catastrophic forgetting when learning new tasks. To address these issues, we introduce a sparse, reusable, and flexible policy, Sparse Diffusion Policy (SDP). By adopting Mixture of Experts (MoE) within a transformer-based diffusion policy, SDP selectively activates experts and skills, enabling efficient and task-specific learning without retraining the entire model. SDP not only reduces the burden of active parameters but also facilitates the seamless integration and reuse of experts across various tasks. Extensive experiments on diverse tasks in both simulations and real world show that SDP 1) excels in multitask scenarios with negligible increases in active parameters, 2) prevents forgetting in continual learning of new tasks, and 3) enables efficient task transfer, offering a promising solution for advanced robotic applications. Demos and codes can be found in https://forrest-110.github.io/sparse_diffusion_policy/.
☆ Open-TeleVision: Teleoperation with Immersive Active Visual Feedback
Teleoperation serves as a powerful method for collecting on-robot data essential for robot learning from demonstrations. The intuitiveness and ease of use of the teleoperation system are crucial for ensuring high-quality, diverse, and scalable data. To achieve this, we propose an immersive teleoperation system Open-TeleVision that allows operators to actively perceive the robot's surroundings in a stereoscopic manner. Additionally, the system mirrors the operator's arm and hand movements on the robot, creating an immersive experience as if the operator's mind is transmitted to a robot embodiment. We validate the effectiveness of our system by collecting data and training imitation learning policies on four long-horizon, precise tasks (Can Sorting, Can Insertion, Folding, and Unloading) for 2 different humanoid robots and deploy them in the real world. The system is open-sourced at: https://robot-tv.github.io/
comment: Website: https://robot-tv.github.io/
☆ EquiBot: SIM(3)-Equivariant Diffusion Policy for Generalizable and Data Efficient Learning
Building effective imitation learning methods that enable robots to learn from limited data and still generalize across diverse real-world environments is a long-standing problem in robot learning. We propose EquiBot, a robust, data-efficient, and generalizable approach for robot manipulation task learning. Our approach combines SIM(3)-equivariant neural network architectures with diffusion models. This ensures that our learned policies are invariant to changes in scale, rotation, and translation, enhancing their applicability to unseen environments while retaining the benefits of diffusion-based policy learning such as multi-modality and robustness. We show in a suite of 6 simulation tasks that our proposed method reduces the data requirements and improves generalization to novel scenarios. In the real world, we show with in total 10 variations of 6 mobile manipulation tasks that our method can easily generalize to novel objects and scenes after learning from just 5 minutes of human demonstrations in each task.
comment: The first two authors contributed equally
☆ Active Shadowing (ASD): Manipulating Visual Perception of Robotics Behaviors via Implicit Communication
Explicit communication is often valued for its directness during interaction. Implicit communication, on the other hand, is indirect in that its communicative content must be inferred. Implicit communication is considered more desirable in teaming situations that requires reduced interruptions for improved fluency. In this paper, we investigate another unique advantage of implicit communication: its ability to manipulate the perception of object or behavior of interest. When communication results in the perception of an object or behavior to deviate from other information (about the object or behavior) available via observation, it introduces a discrepancy between perception and observation. We show that such a discrepancy in visual perception can benefit human-robot interaction in a controlled manner and introduce an approach referred to as active shadowing (ASD). Through user studies, we demonstrate the effectiveness of active shadowing in creating a misaligned perception of the robot's behavior and its execution in the real-world, resulting in more efficient task completion without sacrificing its understandability. We also analyze conditions under which such visual manipulation is effective.
☆ AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction CVPR24
In this technical report, we present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ Dataset Challenge at CVPR 2024. Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling. Initially, we independently train the occupancy model, followed by flow prediction using sequential frame integration. Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth. Experimental results on the nuScenes dataset demonstrate significant improvements in accuracy and robustness, showcasing the effectiveness of our approach in real-world scenarios. Our single model based on Swin-Base ranks second on the public leaderboard, validating the potential of our method in advancing autonomous car perception systems.
comment: 2nd Place in the 3D Occupancy and Flow Prediction Challenge (CVPR24)
☆ RoboPack: Learning Tactile-Informed Dynamics Models for Dense Packing
Tactile feedback is critical for understanding the dynamics of both rigid and deformable objects in many manipulation tasks, such as non-prehensile manipulation and dense packing. We introduce an approach that combines visual and tactile sensing for robotic manipulation by learning a neural, tactile-informed dynamics model. Our proposed framework, RoboPack, employs a recurrent graph neural network to estimate object states, including particles and object-level latent physics information, from historical visuo-tactile observations and to perform future state predictions. Our tactile-informed dynamics model, learned from real-world data, can solve downstream robotics tasks with model-predictive control. We demonstrate our approach on a real robot equipped with a compliant Soft-Bubble tactile sensor on non-prehensile manipulation and dense packing tasks, where the robot must infer the physics properties of objects from direct and indirect interactions. Trained on only an average of 30 minutes of real-world interaction data per task, our model can perform online adaptation and make touch-informed predictions. Through extensive evaluations in both long-horizon dynamics prediction and real-world manipulation, our method demonstrates superior effectiveness compared to previous learning-based and physics-based simulation systems.
comment: Robotics: Science and Systems (RSS), 2024. Project page: https://robo-pack.github.io/
☆ UAV Trajectory Planning with Path Processing
This paper examines the influence of initial guesses on trajectory planning for Unmanned Aerial Vehicles (UAVs) formulated in terms of Optimal Control Problem (OCP). The OCP is solved numerically using the Pseudospectral collocation method. Our approach leverages a path identified through Lazy Theta* and incorporates known constraints and a model of the UAV's behavior for the initial guess. Our findings indicate that a suitable initial guess has a beneficial influence on the planned trajectory. They also suggest promising directions for future research.
comment: 6 pages, submitted to ICARCV2024 conference
☆ Unfolding the Literature: A Review of Robotic Cloth Manipulation
The realm of textiles spans clothing, households, healthcare, sports, and industrial applications. The deformable nature of these objects poses unique challenges that prior work on rigid objects cannot fully address. The increasing interest within the community in textile perception and manipulation has led to new methods that aim to address challenges in modeling, perception, and control, resulting in significant progress. However, this progress is often tailored to one specific textile or a subcategory of these textiles. To understand what restricts these methods and hinders current approaches from generalizing to a broader range of real-world textiles, this review provides an overview of the field, focusing specifically on how and to what extent textile variations are addressed in modeling, perception, benchmarking, and manipulation of textiles. We finally conclude by identifying key open problems and outlining grand challenges that will drive future advancements in the field.
comment: 30 pages, 3 figures, 2 tables. Submitted to Annual Review of Control, Robotics, and Autonomous Systems
PanopticRecon: Leverage Open-vocabulary Instance Segmentation for Zero-shot Panoptic Reconstruction
Panoptic reconstruction is a challenging task in 3D scene understanding. However, most existing methods heavily rely on pre-trained semantic segmentation models and known 3D object bounding boxes for 3D panoptic segmentation, which is not available for in-the-wild scenes. In this paper, we propose a novel zero-shot panoptic reconstruction method from RGB-D images of scenes. For zero-shot segmentation, we leverage open-vocabulary instance segmentation, but it has to face partial labeling and instance association challenges. We tackle both challenges by propagating partial labels with the aid of dense generalized features and building a 3D instance graph for associating 2D instance IDs. Specifically, we exploit partial labels to learn a classifier for generalized semantic features to provide complete labels for scenes with dense distilled features. Moreover, we formulate instance association as a 3D instance graph segmentation problem, allowing us to fully utilize the scene geometry prior and all 2D instance masks to infer global unique pseudo 3D instance ID. Our method outperforms state-of-the-art methods on the indoor dataset ScanNet V2 and the outdoor dataset KITTI-360, demonstrating the effectiveness of our graph segmentation method and reconstruction network.
☆ Deep Reinforcement Learning for Adverse Garage Scenario Generation
Autonomous vehicles need to travel over 11 billion miles to ensure their safety. Therefore, the importance of simulation testing before real-world testing is self-evident. In recent years, the release of 3D simulators for autonomous driving, represented by Carla and CarSim, marks the transition of autonomous driving simulation testing environments from simple 2D overhead views to complex 3D models. During simulation testing, experimenters need to build static scenes and dynamic traffic flows, pedestrian flows, and other experimental elements to construct experimental scenarios. When building static scenes in 3D simulators, experimenters often need to manually construct 3D models, set parameters and attributes, which is time-consuming and labor-intensive. This thesis proposes an automated program generation framework. Based on deep reinforcement learning, this framework can generate different 2D ground script codes, on which 3D model files and map model files are built. The generated 3D ground scenes are displayed in the Carla simulator, where experimenters can use this scene for navigation algorithm simulation testing.
comment: 14 pages, 17 figures
☆ Active Sensing Strategy: Multi-Modal, Multi-Robot Source Localization and Mapping in Real-World Settings with Fixed One-Way Switching
This paper introduces a state-machine model for a multi-modal, multi-robot environmental sensing algorithm tailored to dynamic real-world settings. The algorithm uniquely combines two exploration strategies for gas source localization and mapping: (1) an initial exploration phase using multi-robot coverage path planning with variable formations for early gas field indication; and (2) a subsequent active sensing phase employing multi-robot swarms for precise field estimation. The state machine governs the transition between these two phases. During exploration, a coverage path maximizes the visited area while measuring gas concentration and estimating the initial gas field at predefined sample times. In the active sensing phase, mobile robots in a swarm collaborate to select the next measurement point, ensuring coordinated and efficient sensing. System validation involves hardware-in-the-loop experiments and real-time tests with a radio source emulating a gas field. The approach is benchmarked against state-of-the-art single-mode active sensing and gas source localization techniques. Evaluation highlights the multi-modal switching approach's ability to expedite convergence, navigate obstacles in dynamic environments, and significantly enhance gas source location accuracy. The findings show a 43% reduction in turnaround time, a 50% increase in estimation accuracy, and improved robustness of multi-robot environmental sensing in cluttered scenarios without collisions, surpassing the performance of conventional active sensing strategies.
☆ RoDyn-SLAM: Robust Dynamic Dense RGB-D SLAM with Neural Radiance Fields
Leveraging neural implicit representation to conduct dense RGB-D SLAM has been studied in recent years. However, this approach relies on a static environment assumption and does not work robustly within a dynamic environment due to the inconsistent observation of geometry and photometry. To address the challenges presented in dynamic environments, we propose a novel dynamic SLAM framework with neural radiance field. Specifically, we introduce a motion mask generation method to filter out the invalid sampled rays. This design effectively fuses the optical flow mask and semantic mask to enhance the precision of motion mask. To further improve the accuracy of pose estimation, we have designed a divide-and-conquer pose optimization algorithm that distinguishes between keyframes and non-keyframes. The proposed edge warp loss can effectively enhance the geometry constraints between adjacent frames. Extensive experiments are conducted on the two challenging datasets, and the results show that RoDyn-SLAM achieves state-of-the-art performance among recent neural RGB-D methods in both accuracy and robustness.
comment: IEEE RAL 2024
☆ Robot Instance Segmentation with Few Annotations for Grasping
The ability of robots to manipulate objects relies heavily on their aptitude for visual perception. In domains characterized by cluttered scenes and high object variability, most methods call for vast labeled datasets, laboriously hand-annotated, with the aim of training capable models. Once deployed, the challenge of generalizing to unfamiliar objects implies that the model must evolve alongside its domain. To address this, we propose a novel framework that combines Semi-Supervised Learning (SSL) with Learning Through Interaction (LTI), allowing a model to learn by observing scene alterations and leverage visual consistency despite temporal gaps without requiring curated data of interaction sequences. As a result, our approach exploits partially annotated data through self-supervision and incorporates temporal context using pseudo-sequences generated from unlabeled still images. We validate our method on two common benchmarks, ARMBench mix-object-tote and OCID, where it achieves state-of-the-art performance. Notably, on ARMBench, we attain an $\text{AP}_{50}$ of $86.37$, almost a $20\%$ improvement over existing work, and obtain remarkable results in scenarios with extremely low annotation, achieving an $\text{AP}_{50}$ score of $84.89$ with just $1 \%$ of annotated data compared to $72$ presented in ARMBench on the fully annotated counterpart.
Preserving Relative Localization of FoV-Limited Drone Swarm via Active Mutual Observation IROS 2024
Relative state estimation is crucial for vision-based swarms to estimate and compensate for the unavoidable drift of visual odometry. For autonomous drones equipped with the most compact sensor setting -- a stereo camera that provides a limited field of view (FoV), the demand for mutual observation for relative state estimation conflicts with the demand for environment observation. To balance the two demands for FoV limited swarms by acquiring mutual observations with a safety guarantee, this paper proposes an active localization correction system, which plans camera orientations via a yaw planner during the flight. The yaw planner manages the contradiction by calculating suitable timing and yaw angle commands based on the evaluation of localization uncertainty estimated by the Kalman Filter. Simulation validates the scalability of our algorithm. In real-world experiments, we reduce positioning drift by up to 65% and managed to maintain a given formation in both indoor and outdoor GPS-denied flight, from which the accuracy, efficiency, and robustness of the proposed system are verified.
comment: Accepted by IROS 2024, 8 pages, 10 figures
☆ Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print]
Owing to the recent success of Large Language Models, Modern A.I has been much focused on linguistic interactions with humans but less focused on non-linguistic forms of communication between man and machine. In the present paper, we test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context. Taking inspiration from child-caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs; while a human "caregiver" attempts to learn the correct object to satisfy the robot's present communicated need. We studied the effects of i) human training type, and ii) robot reinforcement learning type, to assess mutual learning terminal accuracy and rate of learning (as measured by the average reward achieved by the robot). Our results find mutual learning between a human and a robot is significantly improved with Differential Outcomes Training (DOT) compared to Non-DOT (control) conditions. We find further improvements when the robot uses an exploration-exploitation policy selection, compared to purely exploitation policy selection. These findings have implications for utilizing socially assistive robots (SAR) in therapeutic contexts, e.g. for cognitive interventions, and educational applications.
comment: 14 pages, with references; 1 figure, 3 tables
☆ Quaternion-based Adaptive Backstepping Fast Terminal Sliding Mode Control for Quadrotor UAVs with Finite Time Convergence
This paper proposes a novel quaternion-based approach for tracking the translation (position and linear velocity) and rotation (attitude and angular velocity) trajectories of underactuated Unmanned Aerial Vehicles (UAVs). Quadrotor UAVs are challenging regarding accuracy, singularity, and uncertainties issues. Controllers designed based on unit-quaternion are singularity-free for attitude representation compared to other methods (e.g., Euler angles), which fail to represent the vehicle's attitude at multiple orientations. Quaternion-based Adaptive Backstepping Control (ABC) and Adaptive Fast Terminal Sliding Mode Control (AFTSMC) are proposed to address a set of challenging problems. A quaternion-based ABC, a superior recursive approach, is proposed to generate the necessary thrust handling unknown uncertainties and UAV translation trajectory tracking. Next, a quaternion-based AFTSMC is developed to overcome parametric uncertainties, avoid singularity, and ensure fast convergence in a finite time. Moreover, the proposed AFTSMC is able to significantly minimize control signal chattering, which is the main reason for actuator failure and provide smooth and accurate rotational control input. To ensure the robustness of the proposed approach, the designed control algorithms have been validated considering unknown time-variant parametric uncertainties and significant initialization errors. The proposed techniques has been compared to state-of-the-art control technique. Keywords: Adaptive Backstepping Control (ABC), Adaptive Fast Terminal Sliding Mode Control (AFTSMC), Unit-quaternion, Unmanned Aerial Vehicles, Singularity Free, Pose Control
comment: Accepted in Results in Engineering
☆ Deep Learning Models for Flapping Fin Unmanned Underwater Vehicle Control System Gait Optimization
The last few decades have led to the rise of research focused on propulsion and control systems for bio-inspired unmanned underwater vehicles (UUVs), which provide more maneuverable alternatives to traditional UUVs in underwater missions. Recent work has explored the use of time-series neural network surrogate models to predict thrust and power from vehicle design and fin kinematics. We develop a search-based inverse model that leverages kinematics-to-thrust and kinematics-to-power neural network models for control system design. Our inverse model finds a set of fin kinematics with the multi-objective goal of reaching a target thrust under power constraints while creating a smooth kinematics transition between flapping cycles. We demonstrate how a control system integrating this inverse model can make online, cycle-to-cycle adjustments to prioritize different system objectives, with improvements in increasing thrust generation or reducing power consumption of any given movement upwards of 0.5 N and 3.0 W in a range of 2.2 N and 9.0 W. As propulsive efficiency is of utmost importance for flapping-fin UUVs in order to extend their range and endurance for essential operations but lacks prior research, we develop a non-dimensional figure of merit (FOM), derived from measures of propulsive efficiency, that is able to evaluate different fin designs and kinematics, and allow for comparison with other bio-inspired platforms. We use the developed FOM to analyze optimal gaits and compare the performance between different fin materials, providing a better understanding of how fin materials affect thrust generation and propulsive efficiency and allowing us to inform control systems and weight for efficiency on the developed inverse gait-selector model.
comment: 28 pages, 20 figures. arXiv admin note: text overlap with arXiv:2310.14135
☆ Let Hybrid A* Path Planner Obey Traffic Rules: A Deep Reinforcement Learning-Based Planning Framework
Deep reinforcement learning (DRL) allows a system to interact with its environment and take actions by training an efficient policy that maximizes self-defined rewards. In autonomous driving, it can be used as a strategy for high-level decision making, whereas low-level algorithms such as the hybrid A* path planning have proven their ability to solve the local trajectory planning problem. In this work, we combine these two methods where the DRL makes high-level decisions such as lane change commands. After obtaining the lane change command, the hybrid A* planner is able to generate a collision-free trajectory to be executed by a model predictive controller (MPC). In addition, the DRL algorithm is able to keep the lane change command consistent within a chosen time-period. Traffic rules are implemented using linear temporal logic (LTL), which is then utilized as a reward function in DRL. Furthermore, we validate the proposed method on a real system to demonstrate its feasibility from simulation to implementation on real hardware.
☆ 6-DoF Grasp Detection in Clutter with Enhanced Receptive Field and Graspable Balance Sampling
6-DoF grasp detection of small-scale grasps is crucial for robots to perform specific tasks. This paper focuses on enhancing the recognition capability of small-scale grasping, aiming to improve the overall accuracy of grasping prediction results and the generalization ability of the network. We propose an enhanced receptive field method that includes a multi-radii cylinder grouping module and a passive attention module. This method enhances the receptive field area within the graspable space and strengthens the learning of graspable features. Additionally, we design a graspable balance sampling module based on a segmentation network, which enables the network to focus on features of small objects, thereby improving the recognition capability of small-scale grasping. Our network achieves state-of-the-art performance on the GraspNet-1Billion dataset, with an overall improvement of approximately 10% in average precision@k (AP). Furthermore, we deployed our grasp detection model in pybullet grasping platform, which validates the effectiveness of our method.
☆ MARS: Multimodal Active Robotic Sensing for Articulated Characterization
Precise perception of articulated objects is vital for empowering service robots. Recent studies mainly focus on point cloud, a single-modal approach, often neglecting vital texture and lighting details and assuming ideal conditions like optimal viewpoints, unrepresentative of real-world scenarios. To address these limitations, we introduce MARS, a novel framework for articulated object characterization. It features a multi-modal fusion module utilizing multi-scale RGB features to enhance point cloud features, coupled with reinforcement learning-based active sensing for autonomous optimization of observation viewpoints. In experiments conducted with various articulated object instances from the PartNet-Mobility dataset, our method outperformed current state-of-the-art methods in joint parameter estimation accuracy. Additionally, through active sensing, MARS further reduces errors, demonstrating enhanced efficiency in handling suboptimal viewpoints. Furthermore, our method effectively generalizes to real-world articulated objects, enhancing robot interactions. Code is available at https://github.com/robhlzeng/MARS.
☆ Wind Estimation in Unmanned Aerial Vehicles with Causal Machine Learning
In this work we demonstrate the possibility of estimating the wind environment of a UAV without specialised sensors, using only the UAV's trajectory, applying a causal machine learning approach. We implement the causal curiosity method which combines machine learning times series classification and clustering with a causal framework. We analyse three distinct wind environments: constant wind, shear wind, and turbulence, and explore different optimisation strategies for optimal UAV manoeuvres to estimate the wind conditions. The proposed approach can be used to design optimal trajectories in challenging weather conditions, and to avoid specialised sensors that add to the UAV's weight and compromise its functionality.
comment: 11 pages, 9 figures, 10 tables. To be presented in 15th International Conference on Mechanical and Aerospace Engineering (ICMAE)
☆ FedRC: A Rapid-Converged Hierarchical Federated Learning Framework in Street Scene Semantic Understanding IROS 2024
Street Scene Semantic Understanding (denoted as TriSU) is a crucial but complex task for world-wide distributed autonomous driving (AD) vehicles (e.g., Tesla). Its inference model faces poor generalization issue due to inter-city domain-shift. Hierarchical Federated Learning (HFL) offers a potential solution for improving TriSU model generalization, but suffers from slow convergence rate because of vehicles' surrounding heterogeneity across cities. Going beyond existing HFL works that have deficient capabilities in complex tasks, we propose a rapid-converged heterogeneous HFL framework (FedRC) to address the inter-city data heterogeneity and accelerate HFL model convergence rate. In our proposed FedRC framework, both single RGB image and RGB dataset are modelled as Gaussian distributions in HFL aggregation weight design. This approach not only differentiates each RGB sample instead of typically equalizing them, but also considers both data volume and statistical properties rather than simply taking data quantity into consideration. Extensive experiments on the TriSU task using across-city datasets demonstrate that FedRC converges faster than the state-of-the-art benchmark by 38.7%, 37.5%, 35.5%, and 40.6% in terms of mIoU, mPrecision, mRecall, and mF1, respectively. Furthermore, qualitative evaluations in the CARLA simulation environment confirm that the proposed FedRC framework delivers top-tier performance.
comment: This work has been accepted by 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024)
☆ Mission Planner for UAV Battery Replacement
The paper presents a mission planner for an autonomous unmanned aerial vehicle (UAV) battery management system. The objective of the system is to plan replacements of the UAV's battery on the static battery management stations. The plan ensures that UAVs have sufficient energy to fulfill their long-term mission, which would otherwise be impossible. The paper provides a detailed description of the mission planner and all of its components. The functionality of the planner is successfully demonstrated in simulated multi-UAV multi-station scenarios.
comment: 6 pages, 6 figures, submitted to MFI 2024 conference
☆ No More Potentially Dynamic Objects: Static Point Cloud Map Generation based on 3D Object Detection and Ground Projection
In this paper, we propose an algorithm to generate a static point cloud map based on LiDAR point cloud data. Our proposed pipeline detects dynamic objects using 3D object detectors and projects points of dynamic objects onto the ground. Typically, point cloud data acquired in real-time serves as a snapshot of the surrounding areas containing both static objects and dynamic objects. The static objects include buildings and trees, otherwise, the dynamic objects contain objects such as parked cars that change their position over time. Removing dynamic objects from the point cloud map is crucial as they can degrade the quality and localization accuracy of the map. To address this issue, in this paper, we propose an algorithm that creates a map only consisting of static objects. We apply a 3D object detection algorithm to the point cloud data which are obtained from LiDAR to implement our pipeline. We then stack the points to create the map after performing ground segmentation and projection. As a result, not only we can eliminate currently dynamic objects at the time of map generation but also potentially dynamic objects such as parked vehicles. We validate the performance of our method using two kinds of datasets collected on real roads: KITTI and our dataset. The result demonstrates the capability of our proposal to create an accurate static map excluding dynamic objects from input point clouds. Also, we verified the improved performance of localization using a generated map based on our method.
☆ Evolutionary Morphology Towards Overconstrained Locomotion via Large-Scale, Multi-Terrain Deep Reinforcement Learning
While the animals' Fin-to-Limb evolution has been well-researched in biology, such morphological transformation remains under-adopted in the modern design of advanced robotic limbs. This paper investigates a novel class of overconstrained locomotion from a design and learning perspective inspired by evolutionary morphology, aiming to integrate the concept of `intelligent design under constraints' - hereafter referred to as constraint-driven design intelligence - in developing modern robotic limbs with superior energy efficiency. We propose a 3D-printable design of robotic limbs parametrically reconfigurable as a classical planar 4-bar linkage, an overconstrained Bennett linkage, and a spherical 4-bar linkage. These limbs adopt a co-axial actuation, identical to the modern legged robot platforms, with the added capability of upgrading into a wheel-legged system. Then, we implemented a large-scale, multi-terrain deep reinforcement learning framework to train these reconfigurable limbs for a comparative analysis of overconstrained locomotion in energy efficiency. Results show that the overconstrained limbs exhibit more efficient locomotion than planar limbs during forward and sideways walking over different terrains, including floors, slopes, and stairs, with or without random noises, by saving at least 22% mechanical energy in completing the traverse task, with the spherical limbs being the least efficient. It also achieves the highest average speed of 0.85 meters per second on flat terrain, which is 20% faster than the planar limbs. This study paves the path for an exciting direction for future research in overconstrained robotics leveraging evolutionary morphology and reconfigurable mechanism intelligence when combined with state-of-the-art methods in deep reinforcement learning.
comment: 13 pages, 5 figures, Accepted and Presented at ReMAR2024
☆ Collaborative Graph Exploration with Reduced Pose-SLAM Uncertainty via Submodular Optimization IROS
This paper considers the collaborative graph exploration problem in GPS-denied environments, where a group of robots are required to cover a graph environment while maintaining reliable pose estimations in collaborative simultaneous localization and mapping (SLAM). Considering both objectives presents challenges for multi-robot pathfinding, as it involves the expensive covariance inference for SLAM uncertainty evaluation, especially considering various combinations of robots' paths. To reduce the computational complexity, we propose an efficient two-stage strategy where exploration paths are first generated for quick coverage, and then enhanced by adding informative and distance-efficient loop-closing actions, called loop edges, along the paths for reliable pose estimation. We formulate the latter problem as a non-monotone submodular maximization problem by relating SLAM uncertainty with pose graph topology, which (1) facilitates more efficient evaluation of SLAM uncertainty than covariance inference, and (2) allows the application of approximation algorithms in submodular optimization to provide optimality guarantees. We further introduce the ordering heuristics to improve objective values while preserving the optimality bound. Simulation experiments over randomly generated graph environments verify the efficiency of our methods in finding paths for quick coverage and enhanced pose graph reliability, and benchmark the performance of the approximation algorithms and the greedy-based algorithm in the loop edge selection problem. Our implementations will be open-source at https://github.com/bairuofei/CGE.
comment: 9 pages, 13 figures, accepted by IEEE/RSJ IROS(2024)
☆ Parallel Computing Architectures for Robotic Applications: A Comprehensive Review
With the growing complexity and capability of contemporary robotic systems, the necessity of sophisticated computing solutions to efficiently handle tasks such as real-time processing, sensor integration, decision-making, and control algorithms is also increasing. Conventional serial computing frequently fails to meet these requirements, underscoring the necessity for high-performance computing alternatives. Parallel computing, the utilization of several processing elements simultaneously to solve computational problems, offers a possible answer. Various parallel computing designs, such as multi-core CPUs, GPUs, FPGAs, and distributed systems, provide substantial enhancements in processing capacity and efficiency. By utilizing these architectures, robotic systems can attain improved performance in functionalities such as real-time image processing, sensor fusion, and path planning. The transformative potential of parallel computing architectures in advancing robotic technology has been underscored, real-life case studies of these architectures in the robotics field have been discussed, and comparisons are presented. Challenges pertaining to these architectures have been explored, and possible solutions have been mentioned for further research and enhancement of the robotic applications.
☆ Object Segmentation from Open-Vocabulary Manipulation Instructions Based on Optimal Transport Polygon Matching with Multimodal Foundation Models IROS2024
We consider the task of generating segmentation masks for the target object from an object manipulation instruction, which allows users to give open vocabulary instructions to domestic service robots. Conventional segmentation generation approaches often fail to account for objects outside the camera's field of view and cases in which the order of vertices differs but still represents the same polygon, which leads to erroneous mask generation. In this study, we propose a novel method that generates segmentation masks from open vocabulary instructions. We implement a novel loss function using optimal transport to prevent significant loss where the order of vertices differs but still represents the same polygon. To evaluate our approach, we constructed a new dataset based on the REVERIE dataset and Matterport3D dataset. The results demonstrated the effectiveness of the proposed method compared with existing mask generation methods. Remarkably, our best model achieved a +16.32% improvement on the dataset compared with a representative polygon-based method.
comment: Accepted for presentation at IROS2024
☆ Acceleration method for generating perception failure scenarios based on editing Markov process
With the rapid advancement of autonomous driving technology, self-driving cars have become a central focus in the development of future transportation systems. Scenario generation technology has emerged as a crucial tool for testing and verifying the safety performance of autonomous driving systems. Current research in scenario generation primarily focuses on open roads such as highways, with relatively limited studies on underground parking garages. The unique structural constraints, insufficient lighting, and high-density obstacles in underground parking garages impose greater demands on the perception systems, which are critical to autonomous driving technology. This study proposes an accelerated generation method for perception failure scenarios tailored to the underground parking garage environment, aimed at testing and improving the safety performance of autonomous vehicle (AV) perception algorithms in such settings. The method presented in this paper generates an intelligent testing environment with a high density of perception failure scenarios by learning the interactions between background vehicles (BVs) and autonomous vehicles (AVs) within perception failure scenarios. Furthermore, this method edits the Markov process within the perception failure scenario data to increase the density of critical information in the training data, thereby optimizing the learning and generation of perception failure scenarios. A simulation environment for an underground parking garage was developed using the Carla and Vissim platforms, with Bevfusion employed as the perception algorithm for testing. The study demonstrates that this method can generate an intelligent testing environment with a high density of perception failure scenarios and enhance the safety performance of perception algorithms within this experimental setup.
☆ Locomotion as Manipulation with ReachBot
Caves and lava tubes on the Moon and Mars are sites of geological and astrobiological interest but consist of terrain that is inaccessible with traditional robot locomotion. To support the exploration of these sites, we present ReachBot, a robot that uses extendable booms as appendages to manipulate itself with respect to irregular rock surfaces. The booms terminate in grippers equipped with microspines and provide ReachBot with a large workspace, allowing it to achieve force closure in enclosed spaces such as the walls of a lava tube. To propel ReachBot, we present a contact-before-motion planner for non-gaited legged locomotion that utilizes internal force control, similar to a multi-fingered hand, to keep its long, slender booms in tension. Motion planning also depends on finding and executing secure grips on rock features. We use a Monte Carlo simulation to inform gripper design and predict grasp strength and variability. Additionally, we use a two-step perception system to identify possible grasp locations. To validate our approach and mechanisms under realistic conditions, we deployed a single ReachBot arm and gripper in a lava tube in the Mojave Desert. The field test confirmed that ReachBot will find many targets for secure grasps with the proposed kinematic design.
Tokenize the World into Object-level Knowledge to Address Long-tail Events in Autonomous Driving
The autonomous driving industry is increasingly adopting end-to-end learning from sensory inputs to minimize human biases in system design. Traditional end-to-end driving models, however, suffer from long-tail events due to rare or unseen inputs within their training distributions. To address this, we propose TOKEN, a novel Multi-Modal Large Language Model (MM-LLM) that tokenizes the world into object-level knowledge, enabling better utilization of LLM's reasoning capabilities to enhance autonomous vehicle planning in long-tail scenarios. TOKEN effectively alleviates data scarcity and inefficient tokenization by leveraging a traditional end-to-end driving model to produce condensed and semantically enriched representations of the scene, which are optimized for LLM planning compatibility through deliberate representation and reasoning alignment training stages. Our results demonstrate that TOKEN excels in grounding, reasoning, and planning capabilities, outperforming existing frameworks with a 27% reduction in trajectory L2 error and a 39% decrease in collision rates in long-tail scenarios. Additionally, our work highlights the importance of representation alignment and structured reasoning in sparking the common-sense reasoning capabilities of MM-LLMs for effective planning.
☆ Real-Time Neuromorphic Navigation: Integrating Event-Based Vision and Physics-Driven Planning on a Parrot Bebop2 Quadrotor
In autonomous aerial navigation, real-time and energy-efficient obstacle avoidance remains a significant challenge, especially in dynamic and complex indoor environments. This work presents a novel integration of neuromorphic event cameras with physics-driven planning algorithms implemented on a Parrot Bebop2 quadrotor. Neuromorphic event cameras, characterized by their high dynamic range and low latency, offer significant advantages over traditional frame-based systems, particularly in poor lighting conditions or during high-speed maneuvers. We use a DVS camera with a shallow Spiking Neural Network (SNN) for event-based object detection of a moving ring in real-time in an indoor lab. Further, we enhance drone control with physics-guided empirical knowledge inside a neural network training mechanism, to predict energy-efficient flight paths to fly through the moving ring. This integration results in a real-time, low-latency navigation system capable of dynamically responding to environmental changes while minimizing energy consumption. We detail our hardware setup, control loop, and modifications necessary for real-world applications, including the challenges of sensor integration without burdening the flight capabilities. Experimental results demonstrate the effectiveness of our approach in achieving robust, collision-free, and energy-efficient flight paths, showcasing the potential of neuromorphic vision and physics-driven planning in enhancing autonomous navigation systems.
☆ Non-Prehensile Aerial Manipulation using Model-Based Deep Reinforcement Learning
With the continual adoption of Uncrewed Aerial Vehicles (UAVs) across a wide-variety of application spaces, robust aerial manipulation remains a key research challenge. Aerial manipulation tasks require interacting with objects in the environment, often without knowing their dynamical properties like mass and friction a priori. Additionally, interacting with these objects can have a significant impact on the control and stability of the vehicle. We investigated an approach for robust control and non-prehensile aerial manipulation in unknown environments. In particular, we use model-based Deep Reinforcement Learning (DRL) to learn a world model of the environment while simultaneously learning a policy for interaction with the environment. We evaluated our approach on a series of push tasks by moving an object between goal locations and demonstrated repeatable behaviors across a range of friction values.
comment: \copyright 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ AdaFold: Adapting Folding Trajectories of Cloths via Feedback-loop Manipulation
We present AdaFold, a model-based feedback-loop framework for optimizing folding trajectories. AdaFold extracts a particle-based representation of cloth from RGB-D images and feeds back the representation to a model predictive control to re-plan folding trajectory at every time-step. A key component of AdaFold that enables feedback-loop manipulation is the use of semantic descriptors extracted from geometric features. These descriptors enhance the particle representation of the cloth to distinguish between ambiguous point clouds of differently folded cloths. Our experiments demonstrate AdaFold's ability to adapt folding trajectories to cloths with varying physical properties and generalize from simulated training to real-world execution.
comment: 8 pages, 6 figures, 5 tables. Currently under review
♻ ☆ Multi-Agent Strategy Explanations for Human-Robot Collaboration ICRA
As robots are deployed in human spaces, it is important that they are able to coordinate their actions with the people around them. Part of such coordination involves ensuring that people have a good understanding of how a robot will act in the environment. This can be achieved through explanations of the robot's policy. Much prior work in explainable AI and RL focuses on generating explanations for single-agent policies, but little has been explored in generating explanations for collaborative policies. In this work, we investigate how to generate multi-agent strategy explanations for human-robot collaboration. We formulate the problem using a generic multi-agent planner, show how to generate visual explanations through strategy-conditioned landmark states and generate textual explanations by giving the landmarks to an LLM. Through a user study, we find that when presented with explanations from our proposed framework, users are able to better explore the full space of strategies and collaborate more efficiently with new robot partners.
comment: International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ Towards Proactive Safe Human-Robot Collaborations via Data-Efficient Conditional Behavior Prediction ICRA
We focus on the problem of how we can enable a robot to collaborate seamlessly with a human partner, specifically in scenarios where preexisting data is sparse. Much prior work in human-robot collaboration uses observational models of humans (i.e. models that treat the robot purely as an observer) to choose the robot's behavior, but such models do not account for the influence the robot has on the human's actions, which may lead to inefficient interactions. We instead formulate the problem of optimally choosing a collaborative robot's behavior based on a conditional model of the human that depends on the robot's future behavior. First, we propose a novel model-based formulation of conditional behavior prediction that allows the robot to infer the human's intentions based on its future plan in data-sparse environments. We then show how to utilize a conditional model for proactive goal selection and safe trajectory generation around human collaborators. Finally, we use our proposed proactive controller in a collaborative task with real users to show that it can improve users' interactions with a robot collaborator quantitatively and qualitatively.
comment: International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ VR Isle Academy: A VR Digital Twin Approach for Robotic Surgical Skill Development
Contemporary progress in the field of robotics, marked by improved efficiency and stability, has paved the way for the global adoption of surgical robotic systems (SRS). While these systems enhance surgeons' skills by offering a more accurate and less invasive approach to operations, they come at a considerable cost. Moreover, SRS components often involve heavy machinery, making the training process challenging due to limited access to such equipment. In this paper we introduce a cost-effective way to facilitate training for a simulator of a SRS via a portable, device-agnostic, ultra realistic simulation with hand tracking and feet tracking support. Error assessment is accessible in both real-time and offline, which enables the monitoring and tracking of users' performance. The VR application has been objectively evaluated by several untrained testers showcasing significant reduction in error metrics as the number of training sessions increases. This indicates that the proposed VR application denoted as VR Isle Academy operates efficiently, improving the robot - controlling skills of the testers in an intuitive and immersive way towards reducing the learning curve at minimal cost.
comment: 10 pages, 14 figures, Acknowledgement Section updated
♻ ☆ Text2Robot: Evolutionary Robot Design from Text Descriptions
Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
comment: Our project website is at: http://generalroboticslab.com/Text2Robot
♻ ☆ Quadratic Programming-based Reference Spreading Control for Dual-Arm Robotic Manipulation with Planned Simultaneous Impacts
With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. This framework is an extension of the reference spreading control framework, in which overlapping ante- and post-impact references that are consistent with impact dynamics are defined. In this work, such a reference is constructed starting from a teleoperation-based approach. By using the corresponding ante- and post-impact control modes in the scope of a quadratic programming control approach, peaking of the velocity error and control inputs due to impacts is avoided while maintaining high tracking performance. With the inclusion of a novel interim mode, we aim to also avoid input peaks and steps when uncertainty in the environment causes a series of unplanned single impacts to occur rather than the planned simultaneous impact. This work in particular presents for the first time an experimental evaluation of reference spreading control on a robotic setup, showcasing its robustness against uncertainty in the environment compared to three baseline control approaches.
comment: 14 pages, 11 figures. Accepted for publication in IEEE Transactions on Robotics (T-RO) in June, 2024
♻ ☆ AVM-SLAM: Semantic Visual SLAM with Multi-Sensor Fusion in a Bird's Eye View for Automated Valet Parking IROS 2024
Accurate localization in challenging garage environments -- marked by poor lighting, sparse textures, repetitive structures, dynamic scenes, and the absence of GPS -- is crucial for automated valet parking (AVP) tasks. Addressing these challenges, our research introduces AVM-SLAM, a cutting-edge semantic visual SLAM architecture with multi-sensor fusion in a bird's eye view (BEV). This novel framework synergizes the capabilities of four fisheye cameras, wheel encoders, and an inertial measurement unit (IMU) to construct a robust SLAM system. Unique to our approach is the implementation of a flare removal technique within the BEV imagery, significantly enhancing road marking detection and semantic feature extraction by convolutional neural networks for superior mapping and localization. Our work also pioneers a semantic pre-qualification (SPQ) module, designed to adeptly handle the challenges posed by environments with repetitive textures, thereby enhancing loop detection and system robustness. To demonstrate the effectiveness and resilience of AVM-SLAM, we have released a specialized multi-sensor and high-resolution dataset of an underground garage, accessible at https://yale-cv.github.io/avm-slam_dataset, encouraging further exploration and validation of our approach within similar settings.
comment: Accepted by IROS 2024
♻ ☆ DynamicGlue: Epipolar and Time-Informed Data Association in Dynamic Environments using Graph Neural Networks
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
♻ ☆ Primal-Dual iLQR
We introduce a new algorithm for solving unconstrained discrete-time optimal control problems. Our method follows a direct multiple shooting approach, and consists of applying the SQP method together with an $\ell_2$ augmented Lagrangian primal-dual merit function. We use the LQR algorithm to efficiently solve the primal-dual Newton-KKT system. As our algorithm is a specialization of NPSQP, it inherits its generic properties, including global convergence, fast local convergence, and the lack of need for second order corrections or dimension expansions, improving on existing direct multiple shooting approaches such as acados, ALTRO, GNMS, FATROP, and FDDP. The solutions of the LQR-shaped subproblems posed by our algorithm can be be parallelized to run in time logarithmic in the number of stages, states, and controls. Moreover, as our method avoids sequential rollouts of the nonlinear dynamics, it can run in $O(1)$ parallel time per line search iteration. Therefore, this paper provides a practical, theoretically sound, and highly parallelizable (for example, with a GPU) method for solving nonlinear discrete-time optimal control problems. An open-source JAX implementation of this algorithm can be found on GitHub (joaospinto/primal_dual_ilqr).
comment: 7 pages, 1 figure, 1 table
♻ ☆ Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration
Large Language Models (LLMs) are gaining popularity in the field of robotics. However, LLM-based robots are limited to simple, repetitive motions due to the poor integration between language models, robots, and the environment. This paper proposes a novel approach to enhance the performance of LLM-based autonomous manipulation through Human-Robot Collaboration (HRC). The approach involves using a prompted GPT-4 language model to decompose high-level language commands into sequences of motions that can be executed by the robot. The system also employs a YOLO-based perception algorithm, providing visual cues to the LLM, which aids in planning feasible motions within the specific environment. Additionally, an HRC method is proposed by combining teleoperation and Dynamic Movement Primitives (DMP), allowing the LLM-based robot to learn from human guidance. Real-world experiments have been conducted using the Toyota Human Support Robot for manipulation tasks. The outcomes indicate that tasks requiring complex trajectory planning and reasoning over environments can be efficiently accomplished through the incorporation of human demonstrations.
comment: IEEE Robotics and Automation Letters
♻ ☆ RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this paper, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at mias.group/RoadFormer.
comment: 10 pages 7 figures. Accepted by Transactions on Intelligent Vehicles
♻ ☆ SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
comment: 8 pages, 7 figures, has been accepted for publication in the IEEE Robotics and Automation Letters (RA-L)
♻ ☆ DAVIS-Ag: A Synthetic Plant Dataset for Prototyping Domain-Inspired Active Vision in Agricultural Robots
In agricultural environments, viewpoint planning can be a critical functionality for a robot with visual sensors to obtain informative observations of objects of interest (e.g., fruits) from complex structures of plant with random occlusions. Although recent studies on active vision have shown some potential for agricultural tasks, each model has been designed and validated on a unique environment that would not easily be replicated for benchmarking novel methods being developed later. In this paper, we introduce a dataset, so-called DAVIS-Ag, for promoting more extensive research on Domain-inspired Active VISion in Agriculture. To be specific, we leveraged our open-source "AgML" framework and 3D plant simulator of "Helios" to produce 502K RGB images from 30K densely sampled spatial locations in 632 synthetic orchards. Moreover, plant environments of strawberries, tomatoes, and grapes are considered at two different scales (i.e., Single-Plant and Multi-Plant). Useful labels are also provided for each image, including (1) bounding boxes and (2) instance segmentation masks for all identifiable fruits, and also (3) pointers to other images of the viewpoints that are reachable by an execution of action so as to simulate active viewpoint selections at each time step. Using DAVIS-Ag, we visualize motivating examples where fruit visibility can dramatically change depending on the pose of the camera view primarily due to occlusions by other components, such as leaves. Furthermore, we present several baseline models with experiment results for benchmarking in the task of target visibility maximization. Transferability to real strawberry environments is also investigated to demonstrate the feasibility of using the dataset for prototyping real-world solutions. For future research, our dataset is made publicly available online: https://github.com/ctyeong/DAVIS-Ag.
comment: 8 pages, 6 figures, 5 tables. Accepted to CASE2024
♻ ☆ Mobile Robot Oriented Large-Scale Indoor Dataset for Dynamic Scene Understanding ICRA2024
Most existing robotic datasets capture static scene data and thus are limited in evaluating robots' dynamic performance. To address this, we present a mobile robot oriented large-scale indoor dataset, denoted as THUD (Tsinghua University Dynamic) robotic dataset, for training and evaluating their dynamic scene understanding algorithms. Specifically, the THUD dataset construction is first detailed, including organization, acquisition, and annotation methods. It comprises both real-world and synthetic data, collected with a real robot platform and a physical simulation platform, respectively. Our current dataset includes 13 larges-scale dynamic scenarios, 90K image frames, 20M 2D/3D bounding boxes of static and dynamic objects, camera poses, and IMU. The dataset is still continuously expanding. Then, the performance of mainstream indoor scene understanding tasks, e.g. 3D object detection, semantic segmentation, and robot relocalization, is evaluated on our THUD dataset. These experiments reveal serious challenges for some robot scene understanding tasks in dynamic scenes. By sharing this dataset, we aim to foster and iterate new mobile robot algorithms quickly for robot actual working dynamic environment, i.e. complex crowded dynamic scenes.
comment: This version has been accepted by ICRA2024 and the dataset has been published, where the link can be found in the paper
♻ ☆ Graph-based SLAM-Aware Exploration with Prior Topo-Metric Information
Autonomous exploration requires a robot to explore an unknown environment while constructing an accurate map using Simultaneous Localization and Mapping (SLAM) techniques. Without prior information, the exploration performance is usually conservative due to the limited planning horizon. This paper exploits prior information about the environment, represented as a topo-metric graph, to benefit both the exploration efficiency and the pose graph reliability in SLAM. Based on the relationship between pose graph reliability and graph topology, we formulate a SLAM-aware path planning problem over the prior graph, which finds a fast exploration path enhanced with the globally informative loop-closing actions to stabilize the SLAM pose graph. A greedy algorithm is proposed to solve the problem, where theoretical thresholds are derived to significantly prune non-optimal loop-closing actions, without affecting the potential informative ones. Furthermore, we incorporate the proposed planner into a hierarchical exploration framework, with flexible features including path replanning, and online prior graph update that adds additional information to the prior graph. Simulation and real-world experiments indicate that the proposed method can reliably achieve higher mapping accuracy than compared methods when exploring environments with rich topologies, while maintaining comparable exploration efficiency. Our method has been open-sourced on GitHub.
comment: 8 pages, 6 figures. Accepted by IEEE RA-L for publication
♻ ☆ Shakebot: A Low-cost, Open-source Robotic Shake Table for Earthquake Research and Education
Shake tables serve as a critical tool for simulating earthquake events and testing the response of structures to seismic forces. However, existing shake tables are either expensive or proprietary. This paper presents the design and implementation of a low-cost, open-source shake table named \textit{Shakebot} for earthquake engineering research and education, built using Robot Operating System (ROS) and principles of robotics. The Shakebot adapts affordable and high-accuracy components from 3D printers, particularly a closed-loop stepper motor for actuation and a toothed belt for transmission. The stepper motor enables the bed to reach a maximum horizontal acceleration of 11.8 $m/s^2$ (1.2 $\mathbf{g}$), and velocity of 0.5 $m/s$, with a 2 $kg$ specimen. The Shakebot is equipped with an accelerometer and a high frame-rate camera for bed motion estimation. The low cost and easy use make the Shakebot accessible to a wide range of users, including students, educators, and researchers in resource-constrained settings. The Shakebot, along with its digital twin--a virtual shake robot--has showcased significant potential in advancing ground motion research. Specifically, this study examines the dynamics of precariously balanced rocks. The Shakebot provides an approach to validate the simulation through physical experiments. The ROS-based perception and motion software facilitates the code transition from our virtual shake robot to the physical Shakebot. The reuse of the control programs ensures that the implemented ground motions are consistent for both the simulation and physical experiments, which is critical to validate our simulation experiments.
♻ ☆ LHManip: A Dataset for Long-Horizon Language-Grounded Manipulation Tasks in Cluttered Tabletop Environments
Instructing a robot to complete an everyday task within our homes has been a long-standing challenge for robotics. While recent progress in language-conditioned imitation learning and offline reinforcement learning has demonstrated impressive performance across a wide range of tasks, they are typically limited to short-horizon tasks -- not reflective of those a home robot would be expected to complete. While existing architectures have the potential to learn these desired behaviours, the lack of the necessary long-horizon, multi-step datasets for real robotic systems poses a significant challenge. To this end, we present the Long-Horizon Manipulation (LHManip) dataset comprising 200 episodes, demonstrating 20 different manipulation tasks via real robot teleoperation. The tasks entail multiple sub-tasks, including grasping, pushing, stacking and throwing objects in highly cluttered environments. Each task is paired with a natural language instruction and multi-camera viewpoints for point-cloud or NeRF reconstruction. In total, the dataset comprises 176,278 observation-action pairs which form part of the Open X-Embodiment dataset. The full LHManip dataset is made publicly available at https://github.com/fedeceola/LHManip.
comment: RSS 2024 Workshop on Data Generation for Robotics
♻ ☆ 3D Feature Distillation with Object-Centric Priors
Grounding natural language to the physical world is a ubiquitous topic with a wide range of applications in computer vision and robotics. Recently, 2D vision-language models such as CLIP have been widely popularized, due to their impressive capabilities for open-vocabulary grounding in 2D images. Recent works aim to elevate 2D CLIP features to 3D via feature distillation, but either learn neural fields that are scene-specific and hence lack generalization, or focus on indoor room scan data that require access to multiple camera views, which is not practical in robot manipulation scenarios. Additionally, related methods typically fuse features at pixel-level and assume that all camera views are equally informative. In this work, we show that this approach leads to sub-optimal 3D features, both in terms of grounding accuracy, as well as segmentation crispness. To alleviate this, we propose a multi-view feature fusion strategy that employs object-centric priors to eliminate uninformative views based on semantic information, and fuse features at object-level via instance segmentation masks. To distill our object-centric 3D features, we generate a large-scale synthetic multi-view dataset of cluttered tabletop scenes, spawning 15k scenes from over 3300 unique object instances, which we make publicly available. We show that our method reconstructs 3D CLIP features with improved grounding capacity and spatial consistency, while doing so from single-view RGB-D, thus departing from the assumption of multiple camera views at test time. Finally, we show that our approach can generalize to novel tabletop domains and be re-purposed for 3D instance segmentation without fine-tuning, and demonstrate its utility for language-guided robotic grasping in clutter
♻ ☆ Towards Open-World Grasping with Large Vision-Language Models
The ability to grasp objects in-the-wild from open-ended language instructions constitutes a fundamental challenge in robotics. An open-world grasping system should be able to combine high-level contextual with low-level physical-geometric reasoning in order to be applicable in arbitrary scenarios. Recent works exploit the web-scale knowledge inherent in large language models (LLMs) to plan and reason in robotic context, but rely on external vision and action models to ground such knowledge into the environment and parameterize actuation. This setup suffers from two major bottlenecks: a) the LLM's reasoning capacity is constrained by the quality of visual grounding, and b) LLMs do not contain low-level spatial understanding of the world, which is essential for grasping in contact-rich scenarios. In this work we demonstrate that modern vision-language models (VLMs) are capable of tackling such limitations, as they are implicitly grounded and can jointly reason about semantics and geometry. We propose OWG, an open-world grasping pipeline that combines VLMs with segmentation and grasp synthesis models to unlock grounded world understanding in three stages: open-ended referring segmentation, grounded grasp planning and grasp ranking via contact reasoning, all of which can be applied zero-shot via suitable visual prompting mechanisms. We conduct extensive evaluation in cluttered indoor scene datasets to showcase OWG's robustness in grounding from open-ended language, as well as open-world robotic grasping experiments in both simulation and hardware that demonstrate superior performance compared to previous supervised and zero-shot LLM-based methods.
♻ ☆ Multimodal Safe Control for Human-Robot Interaction
Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.
comment: American Control Conference (ACC) 2024
Vision 52
♻ ☆ Framing image registration as a landmark detection problem for label-noise-aware task representation (HitR)
Accurate image registration is pivotal in biomedical image analysis, where selecting suitable registration algorithms demands careful consideration. While numerous algorithms are available, the evaluation metrics to assess their performance have remained relatively static. This study addresses this challenge by introducing a novel evaluation metric termed Landmark Hit Rate (HitR), which focuses on the clinical relevance of image registration accuracy. Unlike traditional metrics such as Target Registration Error, which emphasize subresolution differences, HitR considers whether registration algorithms successfully position landmarks within defined confidence zones. This paradigm shift acknowledges the inherent annotation noise in medical images, allowing for more meaningful assessments. To equip HitR with label-noise-awareness, we propose defining these confidence zones based on an Inter-rater Variance analysis. Consequently, hit rate curves are computed for varying landmark zone sizes, enabling performance measurement for a task-specific level of accuracy. Our approach offers a more realistic and meaningful assessment of image registration algorithms, reflecting their suitability for clinical and biomedical applications.
♻ ☆ Distilling Knowledge from Text-to-Image Generative Models Improves Visio-Linguistic Reasoning in CLIP
Image-text contrastive models like CLIP have wide applications in zero-shot classification, image-text retrieval, and transfer learning. However, they often struggle on compositional visio-linguistic tasks (e.g., attribute-binding or object-relationships) where their performance is no better than random chance. To address this, we introduce SDS-CLIP, a lightweight and sample-efficient distillation method to enhance CLIP's compositional visio-linguistic reasoning. Our approach fine-tunes CLIP using a distillation objective borrowed from large text-to-image generative models like Stable-Diffusion, which are known for their strong visio-linguistic reasoning abilities. On the challenging Winoground benchmark, SDS-CLIP improves the visio-linguistic performance of various CLIP models by up to 7%, while on the ARO dataset, it boosts performance by up to 3%. This work underscores the potential of well-designed distillation objectives from generative models to enhance contrastive image-text models with improved visio-linguistic reasoning capabilities.
comment: Short paper
♻ ☆ Fine-tuning can cripple your foundation model; preserving features may be the solution
Pre-trained foundation models, due to their enormous capacity and exposure to vast amounts of data during pre-training, are known to have learned plenty of real-world concepts. An important step in making these pre-trained models effective on downstream tasks is to fine-tune them on related datasets. While various fine-tuning methods have been devised and have been shown to be highly effective, we observe that a fine-tuned model's ability to recognize concepts on tasks $\textit{different}$ from the downstream one is reduced significantly compared to its pre-trained counterpart. This is an undesirable effect of fine-tuning as a substantial amount of resources was used to learn these pre-trained concepts in the first place. We call this phenomenon ''concept forgetting'' and via experiments show that most end-to-end fine-tuning approaches suffer heavily from this side effect. To this end, we propose a simple fix to this problem by designing a new fine-tuning method called $\textit{LDIFS}$ (short for $\ell_2$ distance in feature space) that, while learning new concepts related to the downstream task, allows a model to preserve its pre-trained knowledge as well. Through extensive experiments on 10 fine-tuning tasks we show that $\textit{LDIFS}$ significantly reduces concept forgetting. Additionally, we show that LDIFS is highly effective in performing continual fine-tuning on a sequence of tasks as well, in comparison with both fine-tuning as well as continual learning baselines.
comment: Published in TMLR: https://openreview.net/forum?id=kfhoeZCeW7
♻ ☆ Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of disparities in performance between subgroups. Since not all sources of biases in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess how those biases are encoded in models, and how capable bias mitigation methods are at ameliorating performance disparities. In this article, we introduce a novel analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI using a tool for generating synthetic magnetic resonance images with known disease effects and sources of bias. The feasibility is showcased by using three counterfactual bias scenarios to measure the impact of simulated bias effects on a convolutional neural network (CNN) classifier and the efficacy of three bias mitigation strategies. The analysis revealed that the simulated biases resulted in expected subgroup performance disparities when the CNN was trained on the synthetic datasets. Moreover, reweighing was identified as the most successful bias mitigation strategy for this setup, and we demonstrated how explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. Developing fair AI models is a considerable challenge given that many and often unknown sources of biases can be present in medical imaging datasets. In this work, we present a novel methodology to objectively study the impact of biases and mitigation strategies on deep learning pipelines, which can support the development of clinical AI that is robust and responsible.
comment: Published in the Journal of the American Medical Informatics Association
♻ ☆ Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery
In the rise of climate change, land cover mapping has become such an urgent need in environmental monitoring. The accuracy of land cover classification has gotten increasingly based on the improvement of remote sensing data. Land cover classification using satellite imageries has been explored and become more prevalent in recent years, but the methodologies remain some drawbacks of subjective and time-consuming. Some deep learning techniques have been utilized to overcome these limitations. However, most studies implemented just one image type to evaluate algorithms for land cover mapping. Therefore, our study conducted deep learning semantic segmentation in multispectral, hyperspectral, and high spatial aerial image datasets for landcover mapping. This research implemented a semantic segmentation method such as Unet, Linknet, FPN, and PSPnet for categorizing vegetation, water, and others (i.e., soil and impervious surface). The LinkNet model obtained high accuracy in IoU (Intersection Over Union) at 0.92 in all datasets, which is comparable with other mentioned techniques. In evaluation with different image types, the multispectral images showed higher performance with the IoU, and F1-score are 0.993 and 0.997, respectively. Our outcome highlighted the efficiency and broad applicability of LinkNet and multispectral image on land cover classification. This research contributes to establishing an approach on landcover segmentation via open source for long-term future application.
comment: conference, This preprint is based on the following published conference article: Panuntun, I. A., Chen, Y.-N., Jamaluddin, I., & Tran, T. L. C., 2023. Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery. 44th Asian Conference on Remote Sensing, ACRS 2023. Code 198676
♻ ☆ Bytes Are All You Need: Transformers Operating Directly On File Bytes
Modern deep learning approaches usually utilize modality-specific processing. For example, the most common deep learning approach to image classification involves decoding image file bytes into an RGB tensor which is passed into a neural network. Instead, we investigate modality-independent representation learning by performing classification directly on file bytes, without the need for decoding files at inference time. This enables models to operate on various modalities without any hand-designed, modality-specific processing. Our model, ByteFormer, improves ImageNet Top-1 classification accuracy by $5\%$ (from $72.2\%$ to $77.33\%$) relative to DeIT models of similar size. Compared to Perceiver IO, our model requires absolutely no modality-specific processing at inference time, and uses an order of magnitude fewer parameters at equivalent accuracy on ImageNet. We demonstrate that the same ByteFormer architecture can perform audio classification without modifications or modality-specific preprocessing. We achieve $95.42\%$ classification accuracy on the Speech Commands V2 dataset (comparable to the state-of-the-art accuracy of $98.7\%$). Additionally, we demonstrate that ByteFormer can operate jointly on images and audio, handling joint classification without explicit knowledge of the input modality. We release our code at https://github.com/apple/corenet/tree/main/projects/byteformer.
♻ ☆ A Geometric Algorithm for Tubular Shape Reconstruction from Skeletal Representation
We introduce a novel approach for the reconstruction of tubular shapes from skeletal representations. Our method processes all skeletal points as a whole, eliminating the need for splitting input structure into multiple segments. We represent the tubular shape as a truncated signed distance function (TSDF) in a voxel hashing manner, in which the signed distance between a voxel center and the object is computed through a simple geometric algorithm. Our method does not involve any surface sampling scheme or solving large matrix equations, and therefore is a faster and more elegant solution for tubular shape reconstruction compared to other approaches. Experiments demonstrate the efficiency and effectiveness of the proposed method. Code is avaliable at https://github.com/wlsdzyzl/Dragon.
comment: 9 pages (without reference), 6 figures
♻ ☆ Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models UAI 2024
For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
comment: Accepted by UAI 2024
♻ ☆ Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.
comment: The Forty-first International Conference on Machine Learning, 2024
♻ ☆ An Efficient Instance Segmentation Framework Based on Oriented Bounding Boxes
Instance segmentation for completely occluded objects and dense objects in robot vision measurement are two challenging tasks. To uniformly deal with them, this paper proposes a unified coarse-to-fine instance segmentation framework, CFNet, which uses box prompt-based segmentation foundation models (BSMs), e.g., Segment Anything Model. Specifically, CFNet first detects oriented bounding boxes (OBBs) to distinguish instances and provide coarse localization information. Then, it predicts OBB prompt-related masks for fine segmentation. CFNet performs instance segmentation with OBBs that only contain partial object boundaries on occluders to predict occluded object instances, which overcomes the difficulty of existing amodal instance segmentation methods in directly predicting occluded objects. In addition, since OBBs only serve as prompts, CFNet alleviates the over-dependence on bounding box detection performance of current instance segmentation methods using OBBs for dense objects. Moreover, to enable BSMs to handle OBB prompts, we propose a novel OBB prompt encoder. To make CFNet more lightweight, we perform knowledge distillation on it and introduce a Gaussian label smoothing method for teacher model outputs. Experiments demonstrate that CFNet outperforms current instance segmentation methods on both industrial and public datasets. The code is available at https://github.com/zhen6618/OBBInstanceSegmentation.
♻ ☆ DreamPBR: Text-driven Generation of High-resolution SVBRDF with Multi-modal Guidance
Prior material creation methods had limitations in producing diverse results mainly because reconstruction-based methods relied on real-world measurements and generation-based methods were trained on relatively small material datasets. To address these challenges, we propose DreamPBR, a novel diffusion-based generative framework designed to create spatially-varying appearance properties guided by text and multi-modal controls, providing high controllability and diversity in material generation. Key to achieving diverse and high-quality PBR material generation lies in integrating the capabilities of recent large-scale vision-language models trained on billions of text-image pairs, along with material priors derived from hundreds of PBR material samples. We utilize a novel material Latent Diffusion Model (LDM) to establish the mapping between albedo maps and the corresponding latent space. The latent representation is then decoded into full SVBRDF parameter maps using a rendering-aware PBR decoder. Our method supports tileable generation through convolution with circular padding. Furthermore, we introduce a multi-modal guidance module, which includes pixel-aligned guidance, style image guidance, and 3D shape guidance, to enhance the control capabilities of the material LDM. We demonstrate the effectiveness of DreamPBR in material creation, showcasing its versatility and user-friendliness on a wide range of controllable generation and editing applications.
comment: 16 pages, 17 figures
♻ ☆ Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt
In the realm of large vision language models (LVLMs), jailbreak attacks serve as a red-teaming approach to bypass guardrails and uncover safety implications. Existing jailbreaks predominantly focus on the visual modality, perturbing solely visual inputs in the prompt for attacks. However, they fall short when confronted with aligned models that fuse visual and textual features simultaneously for generation. To address this limitation, this paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively. Initially, we adversarially embed universally harmful perturbations in an image, guided by a few-shot query-agnostic corpus (e.g., affirmative prefixes and negative inhibitions). This process ensures that image prompt LVLMs to respond positively to any harmful queries. Subsequently, leveraging the adversarial image, we optimize textual prompts with specific harmful intent. In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts through a feedback-iteration manner. To validate the efficacy of our approach, we conducted extensive evaluations on various datasets and LVLMs, demonstrating that our method significantly outperforms other methods by large margins (+29.03% in attack success rate on average). Additionally, we showcase the potential of our attacks on black-box commercial LVLMs, such as Gemini and ChatGLM.
♻ ☆ Topo4D: Topology-Preserving Gaussian Splatting for High-Fidelity 4D Head Capture
4D head capture aims to generate dynamic topological meshes and corresponding texture maps from videos, which is widely utilized in movies and games for its ability to simulate facial muscle movements and recover dynamic textures in pore-squeezing. The industry often adopts the method involving multi-view stereo and non-rigid alignment. However, this approach is prone to errors and heavily reliant on time-consuming manual processing by artists. To simplify this process, we propose Topo4D, a novel framework for automatic geometry and texture generation, which optimizes densely aligned 4D heads and 8K texture maps directly from calibrated multi-view time-series images. Specifically, we first represent the time-series faces as a set of dynamic 3D Gaussians with fixed topology in which the Gaussian centers are bound to the mesh vertices. Afterward, we perform alternative geometry and texture optimization frame-by-frame for high-quality geometry and texture learning while maintaining temporal topology stability. Finally, we can extract dynamic facial meshes in regular wiring arrangement and high-fidelity textures with pore-level details from the learned Gaussians. Extensive experiments show that our method achieves superior results than the current SOTA face reconstruction methods both in the quality of meshes and textures. Project page: https://xuanchenli.github.io/Topo4D/.
♻ ☆ Instruction-Guided Scene Text Recognition
Multi-modal models show appealing performance in visual recognition tasks recently, as free-form text-guided training evokes the ability to understand fine-grained visual content. However, current models are either inefficient or cannot be trivially upgraded to scene text recognition (STR) due to the composition difference between natural and text images. We propose a novel instruction-guided scene text recognition (IGTR) paradigm that formulates STR as an instruction learning problem and understands text images by predicting character attributes, e.g., character frequency, position, etc. IGTR first devises $\left \langle condition,question,answer\right \rangle$ instruction triplets, providing rich and diverse descriptions of character attributes. To effectively learn these attributes through question-answering, IGTR develops lightweight instruction encoder, cross-modal feature fusion module and multi-task answer head, which guides nuanced text image understanding. Furthermore, IGTR realizes different recognition pipelines simply by using different instructions, enabling a character-understanding-based text reasoning paradigm that considerably differs from current methods. Experiments on English and Chinese benchmarks show that IGTR outperforms existing models by significant margins, while maintaining a small model size and efficient inference speed. Moreover, by adjusting the sampling of instructions, IGTR offers an elegant way to tackle the recognition of both rarely appearing and morphologically similar characters, which were previous challenges. Code at \href{https://github.com/Topdu/OpenOCR}{this http URL}.
♻ ☆ Local-Aware Global Attention Network for Person Re-Identification Based on Body and Hand Images
Learning representative, robust and discriminative information from images is essential for effective person re-identification (Re-Id). In this paper, we propose a compound approach for end-to-end discriminative deep feature learning for person Re-Id based on both body and hand images. We carefully design the Local-Aware Global Attention Network (LAGA-Net), a multi-branch deep network architecture consisting of one branch for spatial attention, one branch for channel attention, one branch for global feature representations and another branch for local feature representations. The attention branches focus on the relevant features of the image while suppressing the irrelevant backgrounds. In order to overcome the weakness of the attention mechanisms, equivariant to pixel shuffling, we integrate relative positional encodings into the spatial attention module to capture the spatial positions of pixels. The global branch intends to preserve the global context or structural information. For the the local branch, which intends to capture the fine-grained information, we perform uniform partitioning to generate stripes on the conv-layer horizontally. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. A set of ablation study shows that each component contributes to the increased performance of the LAGA-Net. Extensive evaluations on four popular body-based person Re-Id benchmarks and two publicly available hand datasets demonstrate that our proposed method consistently outperforms existing state-of-the-art methods.
comment: arXiv admin note: substantial text overlap with arXiv:2108.02234
♻ ☆ CILF-CIAE: CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation
The age estimation task aims to predict the age of an individual by analyzing facial features in an image. The development of age estimation can improve the efficiency and accuracy of various applications (e.g., age verification and secure access control, etc.). In recent years, contrastive language-image pre-training (CLIP) has been widely used in various multimodal tasks and has made some progress in the field of age estimation. However, existing CLIP-based age estimation methods require high memory usage (quadratic complexity) when globally modeling images, and lack an error feedback mechanism to prompt the model about the quality of age prediction results. To tackle the above issues, we propose a novel CLIP-driven Image-Language Fusion for Correcting Inverse Age Estimation (CILF-CIAE). Specifically, we first introduce the CLIP model to extract image features and text semantic information respectively, and map them into a highly semantically aligned high-dimensional feature space. Next, we designed a new Transformer architecture (i.e., FourierFormer) to achieve channel evolution and spatial interaction of images, and to fuse image and text semantic information. Compared with the quadratic complexity of the attention mechanism, the proposed Fourierformer is of linear log complexity. To further narrow the semantic gap between image and text features, we utilize an efficient contrastive multimodal learning module that supervises the multimodal fusion process of FourierFormer through contrastive loss for image-text matching, thereby improving the interaction effect between different modalities. Finally, we introduce reversible age estimation, which uses end-to-end error feedback to reduce the error rate of age predictions. Through extensive experiments on multiple data sets, CILF-CIAE has achieved better age prediction results.
comment: 14 pages, 14 figures, 3 tables
♻ ☆ WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising MICCAI2024
In clinical examinations and diagnoses, low-dose computed tomography (LDCT) is crucial for minimizing health risks compared with normal-dose computed tomography (NDCT). However, reducing the radiation dose compromises the signal-to-noise ratio, leading to degraded quality of CT images. To address this, we analyze LDCT denoising task based on experimental results from the frequency perspective, and then introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data. The proposed WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM). First, WIA is introduced to align NDCT with LDCT by mainly adding noise to the high-frequency components, which is the main difference between LDCT and NDCT. Second, to better capture high-frequency components and detailed information, Frequency-Aware Multi-scale Loss (FAM) is proposed by effectively utilizing multi-scale feature space. Extensive experiments on two public LDCT denoising datasets demonstrate that our WIA-LD2ND, only uses NDCT, outperforms existing several state-of-the-art weakly-supervised and self-supervised methods. Source code is available at https://github.com/zhaohaoyu376/WI-LD2ND.
comment: MICCAI2024
♻ ☆ MoreStyle: Relax Low-frequency Constraint of Fourier-based Image Reconstruction in Generalizable Medical Image Segmentation MICCAI2024
The task of single-source domain generalization (SDG) in medical image segmentation is crucial due to frequent domain shifts in clinical image datasets. To address the challenge of poor generalization across different domains, we introduce a Plug-and-Play module for data augmentation called MoreStyle. MoreStyle diversifies image styles by relaxing low-frequency constraints in Fourier space, guiding the image reconstruction network. With the help of adversarial learning, MoreStyle further expands the style range and pinpoints the most intricate style combinations within latent features. To handle significant style variations, we introduce an uncertainty-weighted loss. This loss emphasizes hard-to-classify pixels resulting only from style shifts while mitigating true hard-to-classify pixels in both MoreStyle-generated and original images. Extensive experiments on two widely used benchmarks demonstrate that the proposed MoreStyle effectively helps to achieve good domain generalization ability, and has the potential to further boost the performance of some state-of-the-art SDG methods. Source code is available at https://github.com/zhaohaoyu376/morestyle.
comment: MICCAI2024
♻ ☆ Recovering the Pre-Fine-Tuning Weights of Generative Models ICML 2024
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
comment: ICML 2024. Project page: https://vision.huji.ac.il/spectral_detuning/
♻ ☆ Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models
Generalization is a main issue for current audio deepfake detectors, which struggle to provide reliable results on out-of-distribution data. Given the speed at which more and more accurate synthesis methods are developed, it is very important to design techniques that work well also on data they were not trained for. In this paper we study the potential of large-scale pre-trained models for audio deepfake detection, with special focus on generalization ability. To this end, the detection problem is reformulated in a speaker verification framework and fake audios are exposed by the mismatch between the voice sample under test and the voice of the claimed identity. With this paradigm, no fake speech sample is necessary in training, cutting off any link with the generation method at the root, and ensuring full generalization ability. Features are extracted by general-purpose large pre-trained models, with no need for training or fine-tuning on specific fake detection or speaker verification datasets. At detection time only a limited set of voice fragments of the identity under test is required. Experiments on several datasets widespread in the community show that detectors based on pre-trained models achieve excellent performance and show strong generalization ability, rivaling supervised methods on in-distribution data and largely overcoming them on out-of-distribution data.
♻ ☆ Adaptively Bypassing Vision Transformer Blocks for Efficient Visual Tracking
Empowered by transformer-based models, visual tracking has advanced significantly. However, the slow speed of current trackers limits their applicability on devices with constrained computational resources. To address this challenge, we introduce ABTrack, an adaptive computation framework that adaptively bypassing transformer blocks for efficient visual tracking. The rationale behind ABTrack is rooted in the observation that semantic features or relations do not uniformly impact the tracking task across all abstraction levels. Instead, this impact varies based on the characteristics of the target and the scene it occupies. Consequently, disregarding insignificant semantic features or relations at certain abstraction levels may not significantly affect the tracking accuracy. We propose a Bypass Decision Module (BDM) to determine if a transformer block should be bypassed, which adaptively simplifies the architecture of ViTs and thus speeds up the inference process. To counteract the time cost incurred by the BDMs and further enhance the efficiency of ViTs, we introduce a novel ViT pruning method to reduce the dimension of the latent representation of tokens in each transformer block. Extensive experiments on multiple tracking benchmarks validate the effectiveness and generality of the proposed method and show that it achieves state-of-the-art performance. Code is released at: https://github.com/xyyang317/ABTrack.
♻ ☆ AdaCL:Adaptive Continual Learning
Class-Incremental Learning aims to update a deep classifier to learn new categories while maintaining or improving its accuracy on previously observed classes. Common methods to prevent forgetting previously learned classes include regularizing the neural network updates and storing exemplars in memory, which come with hyperparameters such as the learning rate, regularization strength, or the number of exemplars. However, these hyperparameters are usually only tuned at the start and then kept fixed throughout the learning sessions, ignoring the fact that newly encountered tasks may have varying levels of novelty or difficulty. This study investigates the necessity of hyperparameter `adaptivity' in Class-Incremental Learning: the ability to dynamically adjust hyperparameters such as the learning rate, regularization strength, and memory size according to the properties of the new task at hand. We propose AdaCL, a Bayesian Optimization-based approach to automatically and efficiently determine the optimal values for those parameters with each learning task. We show that adapting hyperpararmeters on each new task leads to improvement in accuracy, forgetting and memory. Code is available at https://github.com/ElifCerenGokYildirim/AdaCL.
comment: Published in 1st ContinualAI Unconference
♻ ☆ Woven Fabric Capture with a Reflection-Transmission Photo Pair SIGGRAPH 2024
Digitizing woven fabrics would be valuable for many applications, from digital humans to interior design. Previous work introduces a lightweight woven fabric acquisition approach by capturing a single reflection image and estimating the fabric parameters with a differentiable geometric and shading model. The renderings of the estimated fabric parameters can closely match the photo; however, the captured reflection image is insufficient to fully characterize the fabric sample reflectance. For instance, fabrics with different thicknesses might have similar reflection images but lead to significantly different transmission. We propose to recover the woven fabric parameters from two captured images: reflection and transmission. At the core of our method is a differentiable bidirectional scattering distribution function (BSDF) model, handling reflection and transmission, including single and multiple scattering. We propose a two-layer model, where the single scattering uses an SGGX phase function as in previous work, and multiple scattering uses a new azimuthally-invariant microflake definition, which we term ASGGX. This new fabric BSDF model closely matches real woven fabrics in both reflection and transmission. We use a simple setup for capturing reflection and transmission photos with a cell phone camera and two point lights, and estimate the fabric parameters via a lightweight network, together with a differentiable optimization. We also model the out-of-focus effects explicitly with a simple solution to match the thin-lens camera better. As a result, the renderings of the estimated parameters can agree with the input images on both reflection and transmission for the first time. The code for this paper is at https://github.com/lxtyin/FabricBTDF-Recovery.
comment: 10 pages, 16 figures (in the main paper). Accepted by SIGGRAPH 2024 conference
♻ ☆ Towards Robust Physical-world Backdoor Attacks on Lane Detection
Deep learning-based lane detection (LD) plays a critical role in autonomous driving systems, such as adaptive cruise control. However, it is vulnerable to backdoor attacks. Existing backdoor attack methods on LD exhibit limited effectiveness in dynamic real-world scenarios, primarily because they fail to consider dynamic scene factors, including changes in driving perspectives (e.g., viewpoint transformations) and environmental conditions (e.g., weather or lighting changes). To tackle this issue, this paper introduces BadLANE, a dynamic scene adaptation backdoor attack for LD designed to withstand changes in real-world dynamic scene factors. To address the challenges posed by changing driving perspectives, we propose an amorphous trigger pattern composed of shapeless pixels. This trigger design allows the backdoor to be activated by various forms or shapes of mud spots or pollution on the road or lens, enabling adaptation to changes in vehicle observation viewpoints during driving. To mitigate the effects of environmental changes, we design a meta-learning framework to train meta-generators tailored to different environmental conditions. These generators produce meta-triggers that incorporate diverse environmental information, such as weather or lighting conditions, as the initialization of the trigger patterns for backdoor implantation, thus enabling adaptation to dynamic environments. Extensive experiments on various commonly used LD models in both digital and physical domains validate the effectiveness of our attacks, outperforming other baselines significantly (+25.15% on average in Attack Success Rate). Our codes will be available upon paper publication.
♻ ☆ Training-Free Acceleration of ViTs with Delayed Spatial Merging ICML 2024
Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.
comment: ICML 2024 ES-FoMo Workshop
♻ ☆ Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation MICCAI
Cone-beam computed tomography (CBCT) is an important tool facilitating computer aided interventions, despite often suffering from artifacts that pose challenges for accurate interpretation. While the degraded image quality can affect downstream segmentation, the availability of high quality, preoperative scans represents potential for improvements. Here we consider a setting where preoperative CT and intraoperative CBCT scans are available, however, the alignment (registration) between the scans is imperfect. We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect of CBCT quality and misalignment on the final segmentation performance. For that purpose, we make use of a synthetically generated data set containing real CT and synthetic CBCT volumes. As an application scenario, we focus on liver and liver tumor segmentation. We show that the fusion of preoperative CT and simulated, intraoperative CBCT mostly improves segmentation performance (compared to using intraoperative CBCT only) and that even clearly misaligned preoperative data has the potential to improve segmentation performance.
comment: Submitted to SASHIMI2024 (MICCAI workshop)
♻ ☆ Fuzzy Attention-based Border Rendering Network for Lung Organ Segmentation MICCAI 2024
Automatic lung organ segmentation on CT images is crucial for lung disease diagnosis. However, the unlimited voxel values and class imbalance of lung organs can lead to false-negative/positive and leakage issues in advanced methods. Additionally, some slender lung organs are easily lost during the recycled down/up-sample procedure, e.g., bronchioles & arterioles, causing severe discontinuity issue. Inspired by these, this paper introduces an effective lung organ segmentation method called Fuzzy Attention-based Border Rendering (FABR) network. Since fuzzy logic can handle the uncertainty in feature extraction, hence the fusion of deep networks and fuzzy sets should be a viable solution for better performance. Meanwhile, unlike prior top-tier methods that operate on all regular dense points, our FABR depicts lung organ regions as cube-trees, focusing only on recycle-sampled border vulnerable points, rendering the severely discontinuous, false-negative/positive organ regions with a novel Global-Local Cube-tree Fusion (GLCF) module. All experimental results, on four challenging datasets of airway & artery, demonstrate that our method can achieve the favorable performance significantly.
comment: MICCAI 2024
♻ ☆ Exploring the Potential of Multi-Modal AI for Driving Hazard Prediction
This paper addresses the problem of predicting hazards that drivers may encounter while driving a car. We formulate it as a task of anticipating impending accidents using a single input image captured by car dashcams. Unlike existing approaches to driving hazard prediction that rely on computational simulations or anomaly detection from videos, this study focuses on high-level inference from static images. The problem needs predicting and reasoning about future events based on uncertain observations, which falls under visual abductive reasoning. To enable research in this understudied area, a new dataset named the DHPR (Driving Hazard Prediction and Reasoning) dataset is created. The dataset consists of 15K dashcam images of street scenes, and each image is associated with a tuple containing car speed, a hypothesized hazard description, and visual entities present in the scene. These are annotated by human annotators, who identify risky scenes and provide descriptions of potential accidents that could occur a few seconds later. We present several baseline methods and evaluate their performance on our dataset, identifying remaining issues and discussing future directions. This study contributes to the field by introducing a novel problem formulation and dataset, enabling researchers to explore the potential of multi-modal AI for driving hazard prediction.
comment: Main Paper: 11 pages, Supplementary Materials: 25 pages
♻ ☆ PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.
comment: 10 pages; typos corrected, appendix added
♻ ☆ DynamicGlue: Epipolar and Time-Informed Data Association in Dynamic Environments using Graph Neural Networks
The assumption of a static environment is common in many geometric computer vision tasks like SLAM but limits their applicability in highly dynamic scenes. Since these tasks rely on identifying point correspondences between input images within the static part of the environment, we propose a graph neural network-based sparse feature matching network designed to perform robust matching under challenging conditions while excluding keypoints on moving objects. We employ a similar scheme of attentional aggregation over graph edges to enhance keypoint representations as state-of-the-art feature-matching networks but augment the graph with epipolar and temporal information and vastly reduce the number of graph edges. Furthermore, we introduce a self-supervised training scheme to extract pseudo labels for image pairs in dynamic environments from exclusively unprocessed visual-inertial data. A series of experiments show the superior performance of our network as it excludes keypoints on moving objects compared to state-of-the-art feature matching networks while still achieving similar results regarding conventional matching metrics. When integrated into a SLAM system, our network significantly improves performance, especially in highly dynamic scenes.
♻ ☆ E-ANT: A Large-Scale Dataset for Efficient Automatic GUI NavigaTion
Online GUI navigation on mobile devices has driven a lot of attention recent years since it contributes to many real-world applications. With the rapid development of large language models (LLM), multimodal large language models (MLLM) have tremendous potential on this task. However, existing MLLMs need high quality data to improve its abilities of making the correct navigation decisions according to the human user inputs. In this paper, we developed a novel and highly valuable dataset, named \textbf{E-ANT}, as the first Chinese GUI navigation dataset that contains real human behaviour and high quality screenshots with annotations, containing nearly 40,000 real human traces over 5000+ different tinyAPPs. Furthermore, we evaluate various powerful MLLMs on E-ANT and show their experiments results with sufficient ablations. We believe that our proposed dataset will be beneficial for both the evaluation and development of GUI navigation and LLM/MLLM decision-making capabilities.
comment: 9 pages, 5 figures, Under review
♻ ☆ VIPriors 4: Visual Inductive Priors for Data-Efficient Deep Learning Challenges
The fourth edition of the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop features two data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate inductive biases to improve the data efficiency of deep learning models. Significant advancements are made compared to the provided baselines, where winning solutions surpass the baselines by a considerable margin in both tasks. As in previous editions, these achievements are primarily attributed to heavy use of data augmentation policies and large model ensembles, though novel prior-based methods seem to contribute more to successful solutions compared to last year. This report highlights the key aspects of the challenges and their outcomes.
♻ ☆ Training morphological neural networks with gradient descent: some theoretical insights
Morphological neural networks, or layers, can be a powerful tool to boost the progress in mathematical morphology, either on theoretical aspects such as the representation of complete lattice operators, or in the development of image processing pipelines. However, these architectures turn out to be difficult to train when they count more than a few morphological layers, at least within popular machine learning frameworks which use gradient descent based optimization algorithms. In this paper we investigate the potential and limitations of differentiation based approaches and back-propagation applied to morphological networks, in light of the non-smooth optimization concept of Bouligand derivative. We provide insights and first theoretical guidelines, in particular regarding initialization and learning rates.
♻ ☆ YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once Series
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv10. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv10 and progressing through YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, accuracy, and computational efficiency in real-time object detection. The study highlights the transformative impact of YOLO across five critical application areas: automotive safety, healthcare, industrial manufacturing, surveillance, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and General Artificial Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications.
comment: 11 Figures, 7 Tables
♻ ☆ A Simple Framework for Open-Vocabulary Zero-Shot Segmentation
Zero-shot classification capabilities naturally arise in models trained within a vision-language contrastive framework. Despite their classification prowess, these models struggle in dense tasks like zero-shot open-vocabulary segmentation. This deficiency is often attributed to the absence of localization cues in captions and the intertwined nature of the learning process, which encompasses both image representation learning and cross-modality alignment. To tackle these issues, we propose SimZSS, a Simple framework for open-vocabulary Zero-Shot Segmentation. The method is founded on two key principles: i) leveraging frozen vision-only models that exhibit spatial awareness while exclusively aligning the text encoder and ii) exploiting the discrete nature of text and linguistic knowledge to pinpoint local concepts within captions. By capitalizing on the quality of the visual representations, our method requires only image-caption pairs datasets and adapts to both small curated and large-scale noisy datasets. When trained on COCO Captions across 8 GPUs, SimZSS achieves state-of-the-art results on 7 out of 8 benchmark datasets in less than 15 minutes.
♻ ☆ VTG-LLM: Integrating Timestamp Knowledge into Video LLMs for Enhanced Video Temporal Grounding
Video Temporal Grounding (VTG) focuses on accurately identifying event timestamps within a particular video based on a linguistic query, playing a vital role in downstream tasks such as video browsing and editing. While Video Large Language Models (video LLMs) have made significant progress in understanding video content, they often face challenges in accurately pinpointing timestamps within videos, which limits their performance on VTG tasks. Therefore, to improve video LLMs' ability to effectively locate timestamps, we argue that two critical aspects need to be enhanced. First, it is essential to have high-quality instructional tuning datasets that encompass mainstream VTG tasks. Second, directly incorporating timestamp knowledge into video LLMs is crucial, as it enables models to efficiently comprehend timestamp information. To address these needs, we first introduce VTG-IT-120K, a high-quality and comprehensive instruction tuning dataset that covers VTG tasks such as moment retrieval, dense video captioning, video summarization, and video highlight detection. Furthermore, we propose a specially designed video LLM model for VTG tasks, VTG-LLM, which (1) effectively integrates timestamp knowledge into visual tokens; (2) incorporates absolute-time tokens that specifically handle timestamp knowledge, thereby avoiding concept shifts; and (3) introduces a lightweight, high-performance slot-based token compression method to facilitate the sampling of more video frames. Comprehensive experiments showcase the superior performance of VTG-LLM in comparison to other video LLM methods across various VTG tasks. Our code and datasets are available at \url{https://github.com/gyxxyg/VTG-LLM}.
♻ ☆ RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this paper, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at mias.group/RoadFormer.
comment: 10 pages 7 figures. Accepted by Transactions on Intelligent Vehicles
♻ ☆ 3D Human Mesh Estimation from Virtual Markers CVPR 2023
Inspired by the success of volumetric 3D pose estimation, some recent human mesh estimators propose to estimate 3D skeletons as intermediate representations, from which, the dense 3D meshes are regressed by exploiting the mesh topology. However, body shape information is lost in extracting skeletons, leading to mediocre performance. The advanced motion capture systems solve the problem by placing dense physical markers on the body surface, which allows to extract realistic meshes from their non-rigid motions. However, they cannot be applied to wild images without markers. In this work, we present an intermediate representation, named virtual markers, which learns 64 landmark keypoints on the body surface based on the large-scale mocap data in a generative style, mimicking the effects of physical markers. The virtual markers can be accurately detected from wild images and can reconstruct the intact meshes with realistic shapes by simple interpolation. Our approach outperforms the state-of-the-art methods on three datasets. In particular, it surpasses the existing methods by a notable margin on the SURREAL dataset, which has diverse body shapes. Code is available at https://github.com/ShirleyMaxx/VirtualMarker
comment: CVPR 2023
♻ ☆ SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs
Trajectory prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene, including traffic participants, road topology, traffic signs, as well as their semantic relations to each other. Despite increased attention to this issue, most approaches in trajectory prediction do not consider all of these factors sufficiently. We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a semantic traffic scene graph using a hybrid approach. It utilizes high-level information in the form of meta-paths, i.e. trajectories on which an agent is allowed to drive from a knowledge graph which is then processed by a novel pipeline based on multiple attention mechanisms to predict accurate trajectories. SemanticFormer comprises a hierarchical heterogeneous graph encoder to capture spatio-temporal and relational information across agents as well as between agents and road elements. Further, it includes a predictor to fuse different encodings and decode trajectories with probabilities. Finally, a refinement module assesses permitted meta-paths of trajectories and speed profiles to obtain final predicted trajectories. Evaluation of the nuScenes benchmark demonstrates improved performance compared to several SOTA methods. In addition, we demonstrate that our knowledge graph can be easily added to two graph-based existing SOTA methods, namely VectorNet and Laformer, replacing their original homogeneous graphs. The evaluation results suggest that by adding our knowledge graph the performance of the original methods is enhanced by 5% and 4%, respectively.
comment: 8 pages, 7 figures, has been accepted for publication in the IEEE Robotics and Automation Letters (RA-L)
♻ ☆ DifAttack++: Query-Efficient Black-Box Adversarial Attack via Hierarchical Disentangled Feature Space in Cross-Domain AAAI24
This work investigates efficient score-based black-box adversarial attacks with a high Attack Success Rate (\textbf{ASR}) and good generalizability. We design a novel attack method based on a hierarchical DIsentangled Feature space, called \textbf{DifAttack++}, which differs significantly from the existing ones operating over the entire feature space. Specifically, DifAttack++ firstly disentangles an image's latent feature into an Adversarial Feature (\textbf{AF}) and a Visual Feature (\textbf{VF}) via an autoencoder equipped with our specially designed Hierarchical Decouple-Fusion (\textbf{HDF}) module, where the AF dominates the adversarial capability of an image, while the VF largely determines its visual appearance. We train such two autoencoders for the clean and adversarial image domains (i.e., cross-domain) respectively to achieve image reconstructions and feature disentanglement, by using pairs of clean images and their Adversarial Examples (\textbf{AE}s) generated from available surrogate models via white-box attack methods. Eventually, in the black-box attack stage, DifAttack++ iteratively optimizes the AF according to the query feedback from the victim model until a successful AE is generated, while keeping the VF unaltered. Extensive experimental results demonstrate that our DifAttack++ leads to superior ASR and query efficiency than state-of-the-art methods, meanwhile exhibiting much better visual quality of AEs. The code is available at https://github.com/csjunjun/DifAttack.git.
comment: arXiv admin note: substantial text overlap with arXiv:2309.14585 An extension of the AAAI24 paper "DifAttack: Query-Efficient Black-Box Attack via Disentangled Feature Space."
♻ ☆ ConsistI2V: Enhancing Visual Consistency for Image-to-Video Generation
Image-to-video (I2V) generation aims to use the initial frame (alongside a text prompt) to create a video sequence. A grand challenge in I2V generation is to maintain visual consistency throughout the video: existing methods often struggle to preserve the integrity of the subject, background, and style from the first frame, as well as ensure a fluid and logical progression within the video narrative. To mitigate these issues, we propose ConsistI2V, a diffusion-based method to enhance visual consistency for I2V generation. Specifically, we introduce (1) spatiotemporal attention over the first frame to maintain spatial and motion consistency, (2) noise initialization from the low-frequency band of the first frame to enhance layout consistency. These two approaches enable ConsistI2V to generate highly consistent videos. We also extend the proposed approaches to show their potential to improve consistency in auto-regressive long video generation and camera motion control. To verify the effectiveness of our method, we propose I2V-Bench, a comprehensive evaluation benchmark for I2V generation. Our automatic and human evaluation results demonstrate the superiority of ConsistI2V over existing methods.
comment: Project Page: https://tiger-ai-lab.github.io/ConsistI2V/
♻ ☆ Deep Active Audio Feature Learning in Resource-Constrained Environments
The scarcity of labelled data makes training Deep Neural Network (DNN) models in bioacoustic applications challenging. In typical bioacoustics applications, manually labelling the required amount of data can be prohibitively expensive. To effectively identify both new and current classes, DNN models must continue to learn new features from a modest amount of fresh data. Active Learning (AL) is an approach that can help with this learning while requiring little labelling effort. Nevertheless, the use of fixed feature extraction approaches limits feature quality, resulting in underutilization of the benefits of AL. We describe an AL framework that addresses this issue by incorporating feature extraction into the AL loop and refining the feature extractor after each round of manual annotation. In addition, we use raw audio processing rather than spectrograms, which is a novel approach. Experiments reveal that the proposed AL framework requires 14.3%, 66.7%, and 47.4% less labelling effort on benchmark audio datasets ESC-50, UrbanSound8k, and InsectWingBeat, respectively, for a large DNN model and similar savings on a microcontroller-based counterpart. Furthermore, we showcase the practical relevance of our study by incorporating data from conservation biology projects. All codes are publicly available on GitHub.
♻ ☆ Scene Graph Generation in Large-Size VHR Satellite Imagery: A Large-Scale Dataset and A Context-Aware Approach
Scene graph generation (SGG) in satellite imagery (SAI) benefits promoting intelligent understanding of geospatial scenarios from perception to cognition. In SAI, objects exhibit great variations in scales and aspect ratios, and there exist rich relationships between objects (even between spatially disjoint objects), which makes it necessary to holistically conduct SGG in large-size very-high-resolution (VHR) SAI. However, the lack of SGG datasets with large-size VHR SAI has constrained the advancement of SGG in SAI. Due to the complexity of large-size VHR SAI, mining triplets in large-size VHR SAI heavily relies on long-range contextual reasoning. Consequently, SGG models designed for small-size natural imagery are not directly applicable to large-size VHR SAI. To address the scarcity of datasets, this paper constructs a large-scale dataset for SGG in large-size VHR SAI with image sizes ranging from 512 x 768 to 27,860 x 31,096 pixels, named RSG, encompassing over 210,000 objects and more than 400,000 triplets. To realize SGG in large-size VHR SAI, we propose a context-aware cascade cognition (CAC) framework to understand SAI at three levels: object detection (OBD), pair pruning and relationship prediction. As a fundamental prerequisite for SGG in large-size SAI, a holistic multi-class object detection network (HOD-Net) that can flexibly integrate multi-scale contexts is proposed. With the consideration that there exist a huge amount of object pairs in large-size SAI but only a minority of object pairs contain meaningful relationships, we design a pair proposal generation (PPG) network via adversarial reconstruction to select high-value pairs. Furthermore, a relationship prediction network with context-aware messaging (RPCM) is proposed to predict the relationship types of these pairs.
comment: This paper releases a SAI-oriented SGG toolkit with about 30 OBD methods and 10 SGG methods, and develops a benchmark based on RSG where our HOD-Net and RPCM significantly outperform the state-of-the-art methods in both OBD and SGG tasks. The RSG dataset and SAI-oriented toolkit will be made publicly available at https://linlin-dev.github.io/project/RSG
Long Context Transfer from Language to Vision
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos. Many works address this by reducing the number of visual tokens using visual resamplers. Alternatively, in this paper, we approach this problem from the perspective of the language model. By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training. We call this phenomenon long context transfer and carefully ablate its properties. To effectively measure LMMs' ability to generalize to long contexts in the vision modality, we develop V-NIAH (Visual Needle-In-A-Haystack), a purely synthetic long vision benchmark inspired by the language model's NIAH test. Our proposed Long Video Assistant (LongVA) can process 2000 frames or over 200K visual tokens without additional complexities. With its extended context length, LongVA achieves state-of-the-art performance on Video-MME among 7B-scale models by densely sampling more input frames. Our work is open-sourced at https://github.com/EvolvingLMMs-Lab/LongVA.
comment: Code, demo, and models are available at https://github.com/EvolvingLMMs-Lab/LongVA
♻ ☆ EgoVideo: Exploring Egocentric Foundation Model and Downstream Adaptation CVPR 2024
In this report, we present our solutions to the EgoVis Challenges in CVPR 2024, including five tracks in the Ego4D challenge and three tracks in the EPIC-Kitchens challenge. Building upon the video-language two-tower model and leveraging our meticulously organized egocentric video data, we introduce a novel foundation model called EgoVideo. This model is specifically designed to cater to the unique characteristics of egocentric videos and provides strong support for our competition submissions. In the Ego4D challenges, we tackle various tasks including Natural Language Queries, Step Grounding, Moment Queries, Short-term Object Interaction Anticipation, and Long-term Action Anticipation. In addition, we also participate in the EPIC-Kitchens challenge, where we engage in the Action Recognition, Multiple Instance Retrieval, and Domain Adaptation for Action Recognition tracks. By adapting EgoVideo to these diverse tasks, we showcase its versatility and effectiveness in different egocentric video analysis scenarios, demonstrating the powerful representation ability of EgoVideo as an egocentric foundation model. Our codebase and pretrained models are publicly available at https://github.com/OpenGVLab/EgoVideo.
comment: Champion solutions in the EgoVis CVPR 2024 workshop
♻ ☆ Video Anomaly Detection in 10 Years: A Survey and Outlook
Video anomaly detection (VAD) holds immense importance across diverse domains such as surveillance, healthcare, and environmental monitoring. While numerous surveys focus on conventional VAD methods, they often lack depth in exploring specific approaches and emerging trends. This survey explores deep learning-based VAD, expanding beyond traditional supervised training paradigms to encompass emerging weakly supervised, self-supervised, and unsupervised approaches. A prominent feature of this review is the investigation of core challenges within the VAD paradigms including large-scale datasets, features extraction, learning methods, loss functions, regularization, and anomaly score prediction. Moreover, this review also investigates the vision language models (VLMs) as potent feature extractors for VAD. VLMs integrate visual data with textual descriptions or spoken language from videos, enabling a nuanced understanding of scenes crucial for anomaly detection. By addressing these challenges and proposing future research directions, this review aims to foster the development of robust and efficient VAD systems leveraging the capabilities of VLMs for enhanced anomaly detection in complex real-world scenarios. This comprehensive analysis seeks to bridge existing knowledge gaps, provide researchers with valuable insights, and contribute to shaping the future of VAD research.
♻ ☆ Is Synthetic Data all We Need? Benchmarking the Robustness of Models Trained with Synthetic Images CVPR 2024
A long-standing challenge in developing machine learning approaches has been the lack of high-quality labeled data. Recently, models trained with purely synthetic data, here termed synthetic clones, generated using large-scale pre-trained diffusion models have shown promising results in overcoming this annotation bottleneck. As these synthetic clone models progress, they are likely to be deployed in challenging real-world settings, yet their suitability remains understudied. Our work addresses this gap by providing the first benchmark for three classes of synthetic clone models, namely supervised, self-supervised, and multi-modal ones, across a range of robustness measures. We show that existing synthetic self-supervised and multi-modal clones are comparable to or outperform state-of-the-art real-image baselines for a range of robustness metrics - shape bias, background bias, calibration, etc. However, we also find that synthetic clones are much more susceptible to adversarial and real-world noise than models trained with real data. To address this, we find that combining both real and synthetic data further increases the robustness, and that the choice of prompt used for generating synthetic images plays an important part in the robustness of synthetic clones.
comment: Accepted at CVPR 2024 Workshop: SyntaGen-Harnessing Generative Models for Synthetic Visual Datasets. Project page at https://synbenchmark.github.io/SynCloneBenchmark Comments: Fix typo in Fig. 1
♻ ☆ SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.
♻ ☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
♻ ☆ Harnessing the Power of MLLMs for Transferable Text-to-Image Person ReID CVPR 2024
Text-to-image person re-identification (ReID) retrieves pedestrian images according to textual descriptions. Manually annotating textual descriptions is time-consuming, restricting the scale of existing datasets and therefore the generalization ability of ReID models. As a result, we study the transferable text-to-image ReID problem, where we train a model on our proposed large-scale database and directly deploy it to various datasets for evaluation. We obtain substantial training data via Multi-modal Large Language Models (MLLMs). Moreover, we identify and address two key challenges in utilizing the obtained textual descriptions. First, an MLLM tends to generate descriptions with similar structures, causing the model to overfit specific sentence patterns. Thus, we propose a novel method that uses MLLMs to caption images according to various templates. These templates are obtained using a multi-turn dialogue with a Large Language Model (LLM). Therefore, we can build a large-scale dataset with diverse textual descriptions. Second, an MLLM may produce incorrect descriptions. Hence, we introduce a novel method that automatically identifies words in a description that do not correspond with the image. This method is based on the similarity between one text and all patch token embeddings in the image. Then, we mask these words with a larger probability in the subsequent training epoch, alleviating the impact of noisy textual descriptions. The experimental results demonstrate that our methods significantly boost the direct transfer text-to-image ReID performance. Benefiting from the pre-trained model weights, we also achieve state-of-the-art performance in the traditional evaluation settings.
comment: CVPR 2024
♻ ☆ Geometry-Aware Score Distillation via 3D Consistent Noising and Gradient Consistency Modeling
Score distillation sampling (SDS), the methodology in which the score from pretrained 2D diffusion models is distilled into 3D representation, has recently brought significant advancements in text-to-3D generation task. However, this approach is still confronted with critical geometric inconsistency problems such as the Janus problem. Starting from a hypothesis that such inconsistency problems may be induced by multiview inconsistencies between 2D scores predicted from various viewpoints, we introduce GSD, a simple and general plug-and-play framework for incorporating 3D consistency and therefore geometry awareness into the SDS process. Our methodology is composed of three components: 3D consistent noising, designed to produce 3D consistent noise maps that perfectly follow the standard Gaussian distribution, geometry-based gradient warping for identifying correspondences between predicted gradients of different viewpoints, and novel gradient consistency loss to optimize the scene geometry toward producing more consistent gradients. We demonstrate that our method significantly improves performance, successfully addressing the geometric inconsistency problems in text-to-3D generation task with minimal computation cost and being compatible with existing score distillation-based models. Our project page is available at https://ku-cvlab.github.io/GSD/.
♻ ☆ GRACE: Graph-Regularized Attentive Convolutional Entanglement with Laplacian Smoothing for Robust DeepFake Video Detection
As DeepFake video manipulation techniques escalate, posing profound threats, the urgent need to develop efficient detection strategies is underscored. However, one particular issue lies with facial images being mis-detected, often originating from degraded videos or adversarial attacks, leading to unexpected temporal artifacts that can undermine the efficacy of DeepFake video detection techniques. This paper introduces a novel method for robust DeepFake video detection, harnessing the power of the proposed Graph-Regularized Attentive Convolutional Entanglement (GRACE) based on the graph convolutional network with graph Laplacian to address the aforementioned challenges. First, conventional Convolution Neural Networks are deployed to perform spatiotemporal features for the entire video. Then, the spatial and temporal features are mutually entangled by constructing a graph with sparse constraint, enforcing essential features of valid face images in the noisy face sequences remaining, thus augmenting stability and performance for DeepFake video detection. Furthermore, the Graph Laplacian prior is proposed in the graph convolutional network to remove the noise pattern in the feature space to further improve the performance. Comprehensive experiments are conducted to illustrate that our proposed method delivers state-of-the-art performance in DeepFake video detection under noisy face sequences. The source code is available at https://github.com/ming053l/GRACE.
comment: Submitted to TPAMI 2024
Machine Learning 85
☆ Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Deep Gaussian Processes (DGPs) leverage a compositional structure to model non-stationary processes. DGPs typically rely on local inducing point approximations across intermediate GP layers. Recent advances in DGP inference have shown that incorporating global Fourier features from Reproducing Kernel Hilbert Space (RKHS) can enhance the DGPs' capability to capture complex non-stationary patterns. This paper extends the use of these features to compositional GPs involving linear transformations. In particular, we introduce Ordinary Differential Equation (ODE) -based RKHS Fourier features that allow for adaptive amplitude and phase modulation through convolution operations. This convolutional formulation relates our work to recently proposed deep latent force models, a multi-layer structure designed for modelling nonlinear dynamical systems. By embedding these adjustable RKHS Fourier features within a doubly stochastic variational inference framework, our model exhibits improved predictive performance across various regression tasks.
☆ Improving Multilingual Instruction Finetuning via Linguistically Natural and Diverse Datasets
Advancements in Large Language Models (LLMs) have significantly enhanced instruction-following capabilities. However, most Instruction Fine-Tuning (IFT) datasets are predominantly in English, limiting model performance in other languages. Traditional methods for creating multilingual IFT datasets such as translating existing English IFT datasets or converting existing NLP datasets into IFT datasets by templating, struggle to capture linguistic nuances and ensure prompt (instruction) diversity. To address this issue, we propose a novel method for collecting multilingual IFT datasets that preserves linguistic naturalness and ensures prompt diversity. This approach leverages English-focused LLMs, monolingual corpora, and a scoring function to create high-quality, diversified IFT datasets in multiple languages. Experiments demonstrate that LLMs finetuned using these IFT datasets show notable improvements in both generative and discriminative tasks, indicating enhanced language comprehension by LLMs in non-English contexts. Specifically, on the multilingual summarization task, LLMs using our IFT dataset achieved 17.57% and 15.23% improvements over LLMs fine-tuned with translation-based and template-based datasets, respectively.
☆ Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time ECCV 2024
Leveraging Large Language Models' remarkable proficiency in text-based tasks, recent works on Multi-modal LLMs (MLLMs) extend them to other modalities like vision and audio. However, the progress in these directions has been mostly focused on tasks that only require a coarse-grained understanding of the audio-visual semantics. We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio both spatially and temporally. With a new modality alignment module based on optimal transport and a cross-attention module that enforces audio-visual consistency, Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking. Moreover, we carefully curate a large dataset AVFIT that comprises 3M instruction tuning samples collected from open-source datasets, and introduce MeerkatBench that unifies five challenging audio-visual tasks. We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
comment: Accepted at ECCV 2024
♻ ☆ Adam-mini: Use Fewer Learning Rates To Gain More
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.
♻ ☆ Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
♻ ☆ Unmasking Bias in AI: A Systematic Review of Bias Detection and Mitigation Strategies in Electronic Health Record-based Models
Objectives: Leveraging artificial intelligence (AI) in conjunction with electronic health records (EHRs) holds transformative potential to improve healthcare. Yet, addressing bias in AI, which risks worsening healthcare disparities, cannot be overlooked. This study reviews methods to detect and mitigate diverse forms of bias in AI models developed using EHR data. Methods: We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, analyzing articles from PubMed, Web of Science, and IEEE published between January 1, 2010, and Dec 17, 2023. The review identified key biases, outlined strategies for detecting and mitigating bias throughout the AI model development process, and analyzed metrics for bias assessment. Results: Of the 450 articles retrieved, 20 met our criteria, revealing six major bias types: algorithmic, confounding, implicit, measurement, selection, and temporal. The AI models were primarily developed for predictive tasks in healthcare settings. Four studies concentrated on the detection of implicit and algorithmic biases employing fairness metrics like statistical parity, equal opportunity, and predictive equity. Sixty proposed various strategies for mitigating biases, especially targeting implicit and selection biases. These strategies, evaluated through both performance (e.g., accuracy, AUROC) and fairness metrics, predominantly involved data collection and preprocessing techniques like resampling, reweighting, and transformation. Discussion: This review highlights the varied and evolving nature of strategies to address bias in EHR-based AI models, emphasizing the urgent needs for the establishment of standardized, generalizable, and interpretable methodologies to foster the creation of ethical AI systems that promote fairness and equity in healthcare.
comment: Published in JAMIA Volume 31, Issue 5, May 2024
♻ ☆ Fine-tuning can cripple your foundation model; preserving features may be the solution
Pre-trained foundation models, due to their enormous capacity and exposure to vast amounts of data during pre-training, are known to have learned plenty of real-world concepts. An important step in making these pre-trained models effective on downstream tasks is to fine-tune them on related datasets. While various fine-tuning methods have been devised and have been shown to be highly effective, we observe that a fine-tuned model's ability to recognize concepts on tasks $\textit{different}$ from the downstream one is reduced significantly compared to its pre-trained counterpart. This is an undesirable effect of fine-tuning as a substantial amount of resources was used to learn these pre-trained concepts in the first place. We call this phenomenon ''concept forgetting'' and via experiments show that most end-to-end fine-tuning approaches suffer heavily from this side effect. To this end, we propose a simple fix to this problem by designing a new fine-tuning method called $\textit{LDIFS}$ (short for $\ell_2$ distance in feature space) that, while learning new concepts related to the downstream task, allows a model to preserve its pre-trained knowledge as well. Through extensive experiments on 10 fine-tuning tasks we show that $\textit{LDIFS}$ significantly reduces concept forgetting. Additionally, we show that LDIFS is highly effective in performing continual fine-tuning on a sequence of tasks as well, in comparison with both fine-tuning as well as continual learning baselines.
comment: Published in TMLR: https://openreview.net/forum?id=kfhoeZCeW7
♻ ☆ Does Writing with Language Models Reduce Content Diversity? ICLR 2024
Large language models (LLMs) have led to a surge in collaborative writing with model assistance. As different users incorporate suggestions from the same model, there is a risk of decreased diversity in the produced content, potentially limiting diverse perspectives in public discourse. In this work, we measure the impact of co-writing on diversity via a controlled experiment, where users write argumentative essays in three setups -- using a base LLM (GPT3), a feedback-tuned LLM (InstructGPT), and writing without model help. We develop a set of diversity metrics and find that writing with InstructGPT (but not the GPT3) results in a statistically significant reduction in diversity. Specifically, it increases the similarity between the writings of different authors and reduces the overall lexical and content diversity. We additionally find that this effect is mainly attributable to InstructGPT contributing less diverse text to co-written essays. In contrast, the user-contributed text remains unaffected by model collaboration. This suggests that the recent improvement in generation quality from adapting models to human feedback might come at the cost of more homogeneous and less diverse content.
comment: ICLR 2024
♻ ☆ Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging
Artificial intelligence (AI) models trained using medical images for clinical tasks often exhibit bias in the form of disparities in performance between subgroups. Since not all sources of biases in real-world medical imaging data are easily identifiable, it is challenging to comprehensively assess how those biases are encoded in models, and how capable bias mitigation methods are at ameliorating performance disparities. In this article, we introduce a novel analysis framework for systematically and objectively investigating the impact of biases in medical images on AI models. We developed and tested this framework for conducting controlled in silico trials to assess bias in medical imaging AI using a tool for generating synthetic magnetic resonance images with known disease effects and sources of bias. The feasibility is showcased by using three counterfactual bias scenarios to measure the impact of simulated bias effects on a convolutional neural network (CNN) classifier and the efficacy of three bias mitigation strategies. The analysis revealed that the simulated biases resulted in expected subgroup performance disparities when the CNN was trained on the synthetic datasets. Moreover, reweighing was identified as the most successful bias mitigation strategy for this setup, and we demonstrated how explainable AI methods can aid in investigating the manifestation of bias in the model using this framework. Developing fair AI models is a considerable challenge given that many and often unknown sources of biases can be present in medical imaging datasets. In this work, we present a novel methodology to objectively study the impact of biases and mitigation strategies on deep learning pipelines, which can support the development of clinical AI that is robust and responsible.
comment: Published in the Journal of the American Medical Informatics Association
♻ ☆ Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery
In the rise of climate change, land cover mapping has become such an urgent need in environmental monitoring. The accuracy of land cover classification has gotten increasingly based on the improvement of remote sensing data. Land cover classification using satellite imageries has been explored and become more prevalent in recent years, but the methodologies remain some drawbacks of subjective and time-consuming. Some deep learning techniques have been utilized to overcome these limitations. However, most studies implemented just one image type to evaluate algorithms for land cover mapping. Therefore, our study conducted deep learning semantic segmentation in multispectral, hyperspectral, and high spatial aerial image datasets for landcover mapping. This research implemented a semantic segmentation method such as Unet, Linknet, FPN, and PSPnet for categorizing vegetation, water, and others (i.e., soil and impervious surface). The LinkNet model obtained high accuracy in IoU (Intersection Over Union) at 0.92 in all datasets, which is comparable with other mentioned techniques. In evaluation with different image types, the multispectral images showed higher performance with the IoU, and F1-score are 0.993 and 0.997, respectively. Our outcome highlighted the efficiency and broad applicability of LinkNet and multispectral image on land cover classification. This research contributes to establishing an approach on landcover segmentation via open source for long-term future application.
comment: conference, This preprint is based on the following published conference article: Panuntun, I. A., Chen, Y.-N., Jamaluddin, I., & Tran, T. L. C., 2023. Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery. 44th Asian Conference on Remote Sensing, ACRS 2023. Code 198676
♻ ☆ Predicting Fairness of ML Software Configurations
This paper investigates the relationships between hyperparameters of machine learning and fairness. Data-driven solutions are increasingly used in critical socio-technical applications where ensuring fairness is important. Rather than explicitly encoding decision logic via control and data structures, the ML developers provide input data, perform some pre-processing, choose ML algorithms, and tune hyperparameters (HPs) to infer a program that encodes the decision logic. Prior works report that the selection of HPs can significantly influence fairness. However, tuning HPs to find an ideal trade-off between accuracy, precision, and fairness has remained an expensive and tedious task. Can we predict fairness of HP configuration for a given dataset? Are the predictions robust to distribution shifts? We focus on group fairness notions and investigate the HP space of 5 training algorithms. We first find that tree regressors and XGBoots significantly outperformed deep neural networks and support vector machines in accurately predicting the fairness of HPs. When predicting the fairness of ML hyperparameters under temporal distribution shift, the tree regressors outperforms the other algorithms with reasonable accuracy. However, the precision depends on the ML training algorithm, dataset, and protected attributes. For example, the tree regressor model was robust for training data shift from 2014 to 2018 on logistic regression and discriminant analysis HPs with sex as the protected attribute; but not for race and other training algorithms. Our method provides a sound framework to efficiently perform fine-tuning of ML training algorithms and understand the relationships between HPs and fairness.
comment: To Appear in the 20th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE'24)
♻ ☆ Embedded FPGA Developments in 130nm and 28nm CMOS for Machine Learning in Particle Detector Readout
Embedded field programmable gate array (eFPGA) technology allows the implementation of reconfigurable logic within the design of an application-specific integrated circuit (ASIC). This approach offers the low power and efficiency of an ASIC along with the ease of FPGA configuration, particularly beneficial for the use case of machine learning in the data pipeline of next-generation collider experiments. An open-source framework called "FABulous" was used to design eFPGAs using 130 nm and 28 nm CMOS technology nodes, which were subsequently fabricated and verified through testing. The capability of an eFPGA to act as a front-end readout chip was assessed using simulation of high energy particles passing through a silicon pixel sensor. A machine learning-based classifier, designed for reduction of sensor data at the source, was synthesized and configured onto the eFPGA. A successful proof-of-concept was demonstrated through reproduction of the expected algorithm result on the eFPGA with perfect accuracy. Further development of the eFPGA technology and its application to collider detector readout is discussed.
comment: 16 pages, 12 figures
♻ ☆ Cutting through buggy adversarial example defenses: fixing 1 line of code breaks Sabre
Sabre is a defense to adversarial examples that was accepted at IEEE S&P 2024. We first reveal significant flaws in the evaluation that point to clear signs of gradient masking. We then show the cause of this gradient masking: a bug in the original evaluation code. By fixing a single line of code in the original repository, we reduce Sabre's robust accuracy to 0%. In response to this, the authors modify the defense and introduce a new defense component not described in the original paper. But this fix contains a second bug; modifying one more line of code reduces robust accuracy to below baseline levels. After we released the first version of our paper online, the authors introduced another change to the defense; by commenting out one line of code during attack we reduce the robust accuracy to 0% again.
♻ ☆ Affine Invariant Ensemble Transform Methods to Improve Predictive Uncertainty in Neural Networks
We consider the problem of performing Bayesian inference for logistic regression using appropriate extensions of the ensemble Kalman filter. Two interacting particle systems are proposed that sample from an approximate posterior and prove quantitative convergence rates of these interacting particle systems to their mean-field limit as the number of particles tends to infinity. Furthermore, we apply these techniques and examine their effectiveness as methods of Bayesian approximation for quantifying predictive uncertainty in neural networks.
♻ ☆ Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models UAI 2024
For downstream applications of vision-language pre-trained models, there has been significant interest in constructing effective prompts. Existing works on prompt engineering, which either require laborious manual designs or optimize the prompt tuning as a point estimation problem, may fail to describe diverse characteristics of categories and limit their applications. We introduce a Bayesian probabilistic resolution to prompt tuning, where the label-specific stochastic prompts are generated hierarchically by first sampling a latent vector from an underlying distribution and then employing a lightweight generative model. Importantly, we semantically regularize the tuning process by minimizing the statistical distance between the visual patches and linguistic prompts, which pushes the stochastic label representations to faithfully capture diverse visual concepts, instead of overfitting the training categories. We evaluate the effectiveness of our approach on four tasks: few-shot image recognition, base-to-new generalization, dataset transfer learning, and domain shifts. Extensive results over 15 datasets show promising transferability and generalization performance of our proposed model, both quantitatively and qualitatively.
comment: Accepted by UAI 2024
♻ ☆ Unleashing the Power of Meta-tuning for Few-shot Generalization Through Sparse Interpolated Experts
Recent successes suggest that parameter-efficient fine-tuning of foundation models as the state-of-the-art method for transfer learning in vision, replacing the rich literature of alternatives such as meta-learning. In trying to harness the best of both worlds, meta-tuning introduces a subsequent optimization stage of foundation models but has so far only shown limited success and crucially tends to underperform on out-of-distribution (OOD) tasks. In this paper, we introduce Sparse MetA-Tuning (SMAT), a method inspired by sparse mixture-of-experts approaches and trained to isolate subsets of pre-trained parameters automatically for meta-tuning on each task. SMAT successfully overcomes OOD sensitivity and delivers on the promise of enhancing the transfer abilities of vision foundation models beyond parameter-efficient fine-tuning. We establish new state-of-the-art results on a challenging combination of Meta-Dataset augmented with additional OOD tasks in both zero-shot and gradient-based adaptation settings. In addition, we provide a thorough analysis of the superiority of learned over hand-designed sparsity patterns for sparse expert methods and the pivotal importance of the sparsity level in balancing between in-distribution and out-of-distribution generalization. Our code is publicly available.
comment: The Forty-first International Conference on Machine Learning, 2024
♻ ☆ Learning the boundary-to-domain mapping using Lifting Product Fourier Neural Operators for partial differential equations ICML 2024
Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.
comment: Accepted by ICML 2024 AI for Science Workshop
♻ ☆ Safe Linear Bandits over Unknown Polytopes COLT 2024
The safe linear bandit problem (SLB) is an online approach to linear programming with unknown objective and unknown roundwise constraints, under stochastic bandit feedback of rewards and safety risks of actions. We study the tradeoffs between efficacy and smooth safety costs of SLBs over polytopes, and the role of aggressive doubly-optimistic play in avoiding the strong assumptions made by extant pessimistic-optimistic approaches. We first elucidate an inherent hardness in SLBs due the lack of knowledge of constraints: there exist `easy' instances, for which suboptimal extreme points have large `gaps', but on which SLB methods must still incur $\Omega(\sqrt{T})$ regret or safety violations, due to an inability to resolve unknown optima to arbitrary precision. We then analyse a natural doubly-optimistic strategy for the safe linear bandit problem, DOSS, which uses optimistic estimates of both reward and safety risks to select actions, and show that despite the lack of knowledge of constraints or feasible points, DOSS simultaneously obtains tight instance-dependent $O(\log^2 T)$ bounds on efficacy regret, and $\tilde O(\sqrt{T})$ bounds on safety violations. Further, when safety is demanded to a finite precision, violations improve to $O(\log^2 T).$ These results rely on a novel dual analysis of linear bandits: we argue that \algoname proceeds by activating noisy versions of at least $d$ constraints in each round, which allows us to separately analyse rounds where a `poor' set of constraints is activated, and rounds where `good' sets of constraints are activated. The costs in the former are controlled to $O(\log^2 T)$ by developing new dual notions of gaps, based on global sensitivity analyses of linear programs, that quantify the suboptimality of each such set of constraints. The latter costs are controlled to $O(1)$ by explicitly analysing the solutions of optimistic play.
comment: v3: Presented at COLT 2024
♻ ☆ Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text
Detecting text generated by modern large language models is thought to be hard, as both LLMs and humans can exhibit a wide range of complex behaviors. However, we find that a score based on contrasting two closely related language models is highly accurate at separating human-generated and machine-generated text. Based on this mechanism, we propose a novel LLM detector that only requires simple calculations using a pair of pre-trained LLMs. The method, called Binoculars, achieves state-of-the-art accuracy without any training data. It is capable of spotting machine text from a range of modern LLMs without any model-specific modifications. We comprehensively evaluate Binoculars on a number of text sources and in varied situations. Over a wide range of document types, Binoculars detects over 90% of generated samples from ChatGPT (and other LLMs) at a false positive rate of 0.01%, despite not being trained on any ChatGPT data.
comment: 20 pages, code available at https://github.com/ahans30/Binoculars
♻ ☆ Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces II: non-compact symmetric spaces
Gaussian processes are arguably the most important class of spatiotemporal models within machine learning. They encode prior information about the modeled function and can be used for exact or approximate Bayesian learning. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.
♻ ☆ Inverse Evolution Layers: Physics-informed Regularizers for Deep Neural Networks
Traditional image processing methods employing partial differential equations (PDEs) offer a multitude of meaningful regularizers, along with valuable theoretical foundations for a wide range of image-related tasks. This makes their integration into neural networks a promising avenue. In this paper, we introduce a novel regularization approach inspired by the reverse process of PDE-based evolution models. Specifically, we propose inverse evolution layers (IELs), which serve as bad property amplifiers to penalize neural networks of which outputs have undesired characteristics. Using IELs, one can achieve specific regularization objectives and endow neural networks' outputs with corresponding properties of the PDE models. Our experiments, focusing on semantic segmentation tasks using heat-diffusion IELs, demonstrate their effectiveness in mitigating noisy label effects. Additionally, we develop curve-motion IELs to enforce convex shape regularization in neural network-based segmentation models for preventing the generation of concave outputs. Theoretical analysis confirms the efficacy of IELs as an effective regularization mechanism, particularly in handling training with label issues.
♻ ☆ On the Convergence of Multi-objective Optimization under Generalized Smoothness
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning. Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions, which are typically unsatisfactory for neural networks, such as recurrent neural networks (RNNs) and transformers. In this paper, we study a more general and realistic class of $\ell$-smooth loss functions, where $\ell$ is a general non-decreasing function of gradient norm. We develop two novel single-loop algorithms for $\ell$-smooth MOO problems, Generalized Smooth Multi-objective Gradient descent (GSMGrad) and its stochastic variant, Stochastic Generalized Smooth Multi-objective Gradient descent (SGSMGrad), which approximate the conflict-avoidant (CA) direction that maximizes the minimum improvement among objectives. We provide a comprehensive convergence analysis of both algorithms and show that they converge to an $\epsilon$-accurate Pareto stationary point with a guaranteed $\epsilon$-level average CA distance (i.e., the gap between the updating direction and the CA direction) over all iterations, where totally $\mathcal{O}(\epsilon^{-2})$ and $\mathcal{O}(\epsilon^{-4})$ samples are needed for deterministic and stochastic settings, respectively. Our algorithms can also guarantee a tighter $\epsilon$-level CA distance in each iteration using more samples. Moreover, we propose a practical variant of GSMGrad named GSMGrad-FA using only constant-level time and space, while achieving the same performance guarantee as GSMGrad. Our experiments validate our theory and demonstrate the effectiveness of the proposed methods.
♻ ☆ Rethinking LLM Memorization through the Lens of Adversarial Compression
Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage. One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information. The answer hinges, to a large degree, on how we define memorization. In this work, we propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs. A given string from the training data is considered memorized if it can be elicited by a prompt (much) shorter than the string itself -- in other words, if these strings can be "compressed" with the model by computing adversarial prompts of fewer tokens. The ACR overcomes the limitations of existing notions of memorization by (i) offering an adversarial view of measuring memorization, especially for monitoring unlearning and compliance; and (ii) allowing for the flexibility to measure memorization for arbitrary strings at a reasonably low compute. Our definition serves as a practical tool for determining when model owners may be violating terms around data usage, providing a potential legal tool and a critical lens through which to address such scenarios.
comment: https://locuslab.github.io/acr-memorization
♻ ☆ From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport
In the last decade, we have witnessed the introduction of several novel deep neural network (DNN) architectures exhibiting ever-increasing performance across diverse tasks. Explaining the upward trend of their performance, however, remains difficult as different DNN architectures of comparable depth and width -- common factors associated with their expressive power -- may exhibit a drastically different performance even when trained on the same dataset. In this paper, we introduce the concept of the non-linearity signature of DNN, the first theoretically sound solution for approximately measuring the non-linearity of deep neural networks. Built upon a score derived from closed-form optimal transport mappings, this signature provides a better understanding of the inner workings of a wide range of DNN architectures and learning paradigms, with a particular emphasis on the computer vision task. We provide extensive experimental results that highlight the practical usefulness of the proposed non-linearity signature and its potential for long-reaching implications. The code for our work is available at https://github.com/qbouniot/AffScoreDeep
comment: Code available at https://github.com/qbouniot/AffScoreDeep
♻ ☆ Efficient Prompt Tuning by Multi-Space Projection and Prompt Fusion
Prompt tuning is a promising method to fine-tune a pre-trained language model without retraining its large-scale parameters. Instead, it attaches a soft prompt to the input text, whereby downstream tasks can be well adapted by merely learning the embeddings of prompt tokens. Nevertheless, existing methods still suffer from two challenges: (i) they are hard to balance accuracy and efficiency. A longer (shorter) soft prompt generally leads to a better(worse) accuracy but at the cost of more (less) training time. (ii)The performance may not be consistent when adapting to different downstream tasks. We attribute it to the same embedding space but responsible for different requirements of downstream tasks. To address these issues, we propose an Efficient Prompt Tuning method (EPT) by multi-space projection and prompt fusion. Specifically, it decomposes a given soft prompt into a shorter prompt and two low-rank matrices, significantly reducing the training time. Accuracy is also enhanced by leveraging low-rank matrices and the short prompt as additional knowledge sources to enrich the semantics of the original short prompt. In addition, we project the soft prompt into multiple subspaces to improve the performance consistency, and then adaptively learn the combination weights of different spaces through a gating network. Experiments on 13 natural language processing downstream tasks show that our method significantly and consistently outperforms 11 comparison methods with the relative percentage of improvements up to 12.9%, and training time decreased by 14%.
♻ ☆ Decomposing Global Feature Effects Based on Feature Interactions
Global feature effect methods, such as partial dependence plots, provide an intelligible visualization of the expected marginal feature effect. However, such global feature effect methods can be misleading, as they do not represent local feature effects of single observations well when feature interactions are present. We formally introduce generalized additive decomposition of global effects (GADGET), which is a new framework based on recursive partitioning to find interpretable regions in the feature space such that the interaction-related heterogeneity of local feature effects is minimized. We provide a mathematical foundation of the framework and show that it is applicable to the most popular methods to visualize marginal feature effects, namely partial dependence, accumulated local effects, and Shapley additive explanations (SHAP) dependence. Furthermore, we introduce and validate a new permutation-based interaction test to detect significant feature interactions that is applicable to any feature effect method that fits into our proposed framework. We empirically evaluate the theoretical characteristics of the proposed methods based on various feature effect methods in different experimental settings. Moreover, we apply our introduced methodology to three real-world examples to showcase their usefulness.
♻ ☆ Federated Temporal Difference Learning with Linear Function Approximation under Environmental Heterogeneity
We initiate the study of federated reinforcement learning under environmental heterogeneity by considering a policy evaluation problem. Our setup involves $N$ agents interacting with environments that share the same state and action space but differ in their reward functions and state transition kernels. Assuming agents can communicate via a central server, we ask: Does exchanging information expedite the process of evaluating a common policy? To answer this question, we provide the first comprehensive finite-time analysis of a federated temporal difference (TD) learning algorithm with linear function approximation, while accounting for Markovian sampling, heterogeneity in the agents' environments, and multiple local updates to save communication. Our analysis crucially relies on several novel ingredients: (i) deriving perturbation bounds on TD fixed points as a function of the heterogeneity in the agents' underlying Markov decision processes (MDPs); (ii) introducing a virtual MDP to closely approximate the dynamics of the federated TD algorithm; and (iii) using the virtual MDP to make explicit connections to federated optimization. Putting these pieces together, we rigorously prove that in a low-heterogeneity regime, exchanging model estimates leads to linear convergence speedups in the number of agents.
♻ ☆ Text2Robot: Evolutionary Robot Design from Text Descriptions
Robot design has traditionally been costly and labor-intensive. Despite advancements in automated processes, it remains challenging to navigate a vast design space while producing physically manufacturable robots. We introduce Text2Robot, a framework that converts user text specifications and performance preferences into physical quadrupedal robots. Within minutes, Text2Robot can use text-to-3D models to provide strong initializations of diverse morphologies. Within a day, our geometric processing algorithms and body-control co-optimization produce a walking robot by explicitly considering real-world electronics and manufacturability. Text2Robot enables rapid prototyping and opens new opportunities for robot design with generative models.
comment: Our project website is at: http://generalroboticslab.com/Text2Robot
♻ ☆ DCSI -- An improved measure of cluster separability based on separation and connectedness
Whether class labels in a given data set correspond to meaningful clusters is crucial for the evaluation of clustering algorithms using real-world data sets. This property can be quantified by separability measures. The central aspects of separability for density-based clustering are between-class separation and within-class connectedness, and neither classification-based complexity measures nor cluster validity indices (CVIs) adequately incorporate them. A newly developed measure (density cluster separability index, DCSI) aims to quantify these two characteristics and can also be used as a CVI. Extensive experiments on synthetic data indicate that DCSI correlates strongly with the performance of DBSCAN measured via the adjusted Rand index (ARI) but lacks robustness when it comes to multi-class data sets with overlapping classes that are ill-suited for density-based hard clustering. Detailed evaluation on frequently used real-world data sets shows that DCSI can correctly identify touching or overlapping classes that do not correspond to meaningful density-based clusters.
♻ ☆ Biology-inspired joint distribution neurons based on Hierarchical Correlation Reconstruction allowing for multidirectional neural networks
Biological neural networks seem qualitatively superior (e.g. in learning, flexibility, robustness) from current artificial like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). Simultaneously, in contrast to them: have fundamentally multidirectional signal propagation~\cite{axon}, also of probability distributions e.g. for uncertainty estimation, and are believed not being able to use standard backpropagation training~\cite{backprop}. There are proposed novel artificial neurons based on HCR (Hierarchical Correlation Reconstruction) removing the above low level differences: with neurons containing local joint distribution model (of its connections), representing joint density on normalized variables as just linear combination among $(f_\mathbf{j})$ orthonormal polynomials: $\rho(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$ and $B$ some chosen basis, with basis growth approaching complete description of joint distribution. By various index summations of such $(a_\mathbf{j})$ tensor as neuron parameters, we get simple formulas for e.g. conditional expected values for propagation in any direction, like $E[x|y,z]$, $E[y|x]$, which degenerate to KAN-like parametrization if restricting to pairwise dependencies. Such HCR network can also propagate probability distributions (also joint) like $\rho(y,z|x)$. It also allows for additional training approaches, like direct $(a_\mathbf{j})$ estimation, through tensor decomposition, or more biologically plausible information bottleneck training: layers directly influencing only neighbors, optimizing content to maximize information about the next layer, and minimizing about the previous to minimize the noise.
comment: 7 pages, 6 figures
♻ ☆ Robust Model-Based Reinforcement Learning with an Adversarial Auxiliary Model
Reinforcement learning has demonstrated impressive performance in various challenging problems such as robotics, board games, and classical arcade games. However, its real-world applications can be hindered by the absence of robustness and safety in the learned policies. More specifically, an RL agent that trains in a certain Markov decision process (MDP) often struggles to perform well in nearly identical MDPs. To address this issue, we employ the framework of Robust MDPs (RMDPs) in a model-based setting and introduce a novel learned transition model. Our method specifically incorporates an auxiliary pessimistic model, updated adversarially, to estimate the worst-case MDP within a Kullback-Leibler uncertainty set. In comparison to several existing works, our work does not impose any additional conditions on the training environment, such as the need for a parametric simulator. To test the effectiveness of the proposed pessimistic model in enhancing policy robustness, we integrate it into a practical RL algorithm, called Robust Model-Based Policy Optimization (RMBPO). Our experimental results indicate a notable improvement in policy robustness on high-dimensional MuJoCo control tasks, with the auxiliary model enhancing the performance of the learned policy in distorted MDPs. We further explore the learned deviation between the proposed auxiliary world model and the nominal model, to examine how pessimism is achieved. By learning a pessimistic world model and demonstrating its role in improving policy robustness, our research contributes towards making (model-based) RL more robust.
comment: Will be presented at the RL Safety Workshop at RLC 2024
♻ ☆ Connectivity Oracles for Predictable Vertex Failures
The problem of designing connectivity oracles supporting vertex failures is one of the basic data structures problems for undirected graphs. It is already well understood: previous works [Duan--Pettie STOC'10; Long--Saranurak FOCS'22] achieve query time linear in the number of failed vertices, and it is conditionally optimal as long as we require preprocessing time polynomial in the size of the graph and update time polynomial in the number of failed vertices. We revisit this problem in the paradigm of algorithms with predictions: we ask if the query time can be improved if the set of failed vertices can be predicted beforehand up to a small number of errors. More specifically, we design a data structure that, given a graph $G=(V,E)$ and a set of vertices predicted to fail $\widehat{D} \subseteq V$ of size $d=|\widehat{D}|$, preprocesses it in time $\tilde{O}(d|E|)$ and then can receive an update given as the symmetric difference between the predicted and the actual set of failed vertices $\widehat{D} \triangle D = (\widehat{D} \setminus D) \cup (D \setminus \widehat{D})$ of size $\eta = |\widehat{D} \triangle D|$, process it in time $\tilde{O}(\eta^4)$, and after that answer connectivity queries in $G \setminus D$ in time $O(\eta)$. Viewed from another perspective, our data structure provides an improvement over the state of the art for the \emph{fully dynamic subgraph connectivity problem} in the \emph{sensitivity setting} [Henzinger--Neumann ESA'16]. We argue that the preprocessing time and query time of our data structure are conditionally optimal under standard fine-grained complexity assumptions.
♻ ☆ Efficient Estimation for Longitudinal Networks via Adaptive Merging
Longitudinal network consists of a sequence of temporal edges among multiple nodes, where the temporal edges are observed in real time. It has become ubiquitous with the rise of online social platform and e-commerce, but largely under-investigated in literature. In this paper, we propose an efficient estimation framework for longitudinal network, leveraging strengths of adaptive network merging, tensor decomposition and point process. It merges neighboring sparse networks so as to enlarge the number of observed edges and reduce estimation variance, whereas the estimation bias introduced by network merging is controlled by exploiting local temporal structures for adaptive network neighborhood. A projected gradient descent algorithm is proposed to facilitate estimation, where the upper bound of the estimation error in each iteration is established. A thorough analysis is conducted to quantify the asymptotic behavior of the proposed method, which shows that it can significantly reduce the estimation error and also provides guideline for network merging under various scenarios. We further demonstrate the advantage of the proposed method through extensive numerical experiments on synthetic datasets and a militarized interstate dispute dataset.
comment: 30 pages and 4 figures; appendix including technical proof will be uploaded later
♻ ☆ Model Generation with LLMs: From Requirements to UML Sequence Diagrams
Complementing natural language (NL) requirements with graphical models can improve stakeholders' communication and provide directions for system design. However, creating models from requirements involves manual effort. The advent of generative large language models (LLMs), ChatGPT being a notable example, offers promising avenues for automated assistance in model generation. This paper investigates the capability of ChatGPT to generate a specific type of model, i.e., UML sequence diagrams, from NL requirements. We conduct a qualitative study in which we examine the sequence diagrams generated by ChatGPT for 28 requirements documents of various types and from different domains. Observations from the analysis of the generated diagrams have systematically been captured through evaluation logs, and categorized through thematic analysis. Our results indicate that, although the models generally conform to the standard and exhibit a reasonable level of understandability, their completeness and correctness with respect to the specified requirements often present challenges. This issue is particularly pronounced in the presence of requirements smells, such as ambiguity and inconsistency. The insights derived from this study can influence the practical utilization of LLMs in the RE process, and open the door to novel RE-specific prompting strategies targeting effective model generation.
♻ ☆ Recovering the Pre-Fine-Tuning Weights of Generative Models ICML 2024
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
comment: ICML 2024. Project page: https://vision.huji.ac.il/spectral_detuning/
♻ ☆ Probabilistic Test-Time Generalization by Variational Neighbor-Labeling
This paper strives for domain generalization, where models are trained exclusively on source domains before being deployed on unseen target domains. We follow the strict separation of source training and target testing, but exploit the value of the unlabeled target data itself during inference. We make three contributions. First, we propose probabilistic pseudo-labeling of target samples to generalize the source-trained model to the target domain at test time. We formulate the generalization at test time as a variational inference problem, by modeling pseudo labels as distributions, to consider the uncertainty during generalization and alleviate the misleading signal of inaccurate pseudo labels. Second, we learn variational neighbor labels that incorporate the information of neighboring target samples to generate more robust pseudo labels. Third, to learn the ability to incorporate more representative target information and generate more precise and robust variational neighbor labels, we introduce a meta-generalization stage during training to simulate the generalization procedure. Experiments on seven widely-used datasets demonstrate the benefits, abilities, and effectiveness of our proposal.
comment: Accepted by CoLLAs 2024
♻ ☆ Model Internals-based Answer Attribution for Trustworthy Retrieval-Augmented Generation
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs' context usage throughout the generation. In this work, we present MIRAGE --Model Internals-based RAG Explanations -- a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE's attributions and underscores the promising application of model internals for RAG answer attribution.
comment: Under review. Code and data released at https://github.com/Betswish/MIRAGE
♻ ☆ Bayesian Regression Markets
Although machine learning tasks are highly sensitive to the quality of input data, relevant datasets can often be challenging for firms to acquire, especially when held privately by a variety of owners. For instance, if these owners are competitors in a downstream market, they may be reluctant to share information. Focusing on supervised learning for regression tasks, we develop a regression market to provide a monetary incentive for data sharing. Our mechanism adopts a Bayesian framework, allowing us to consider a more general class of regression tasks. We present a thorough exploration of the market properties, and show that similar proposals in literature expose the market agents to sizeable financial risks, which can be mitigated in our setup.
comment: 35 pages, 11 figures, 3 tables. Published in Journal of Machine Learning Research (2024)
♻ ☆ In-Context Reinforcement Learning for Variable Action Spaces ICML 2024
Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations. Implementation is available at: https://github.com/corl-team/headless-ad.
comment: ICML 2024
♻ ☆ A Policy Gradient Primal-Dual Algorithm for Constrained MDPs with Uniform PAC Guarantees
We study a primal-dual (PD) reinforcement learning (RL) algorithm for online constrained Markov decision processes (CMDPs). Despite its widespread practical use, the existing theoretical literature on PD-RL algorithms for this problem only provides sublinear regret guarantees and fails to ensure convergence to optimal policies. In this paper, we introduce a novel policy gradient PD algorithm with uniform probably approximate correctness (Uniform-PAC) guarantees, simultaneously ensuring convergence to optimal policies, sublinear regret, and polynomial sample complexity for any target accuracy. Notably, this represents the first Uniform-PAC algorithm for the online CMDP problem. In addition to the theoretical guarantees, we empirically demonstrate in a simple CMDP that our algorithm converges to optimal policies, while baseline algorithms exhibit oscillatory performance and constraint violation.
♻ ☆ Robust Low-Cost Drone Detection and Classification in Low SNR Environments
The proliferation of drones, or unmanned aerial vehicles (UAVs), has raised significant safety concerns due to their potential misuse in activities such as espionage, smuggling, and infrastructure disruption. This paper addresses the critical need for effective drone detection and classification systems that operate independently of UAV cooperation. We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones using spectrogram data derived from consecutive Fourier transforms of signal components. The focus is on model robustness in low signal-to-noise ratio (SNR) environments, which is critical for real-world applications. A comprehensive dataset is provided to support future model development. In addition, we demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna, validated through real-world field testing. On our development dataset, all models consistently achieved an average balanced classification accuracy of >= 85% at SNR > -12dB. In the field test, these models achieved an average balance accuracy of > 80%, depending on transmitter distance and antenna direction. Our contributions include: a publicly available dataset for model development, a comparative analysis of CNN for drone detection under low SNR conditions, and the deployment and field evaluation of a practical, low-cost detection system.
comment: 10 pages, submitted to IEEE Journal of Radio Frequency Identification
♻ ☆ AdaCL:Adaptive Continual Learning
Class-Incremental Learning aims to update a deep classifier to learn new categories while maintaining or improving its accuracy on previously observed classes. Common methods to prevent forgetting previously learned classes include regularizing the neural network updates and storing exemplars in memory, which come with hyperparameters such as the learning rate, regularization strength, or the number of exemplars. However, these hyperparameters are usually only tuned at the start and then kept fixed throughout the learning sessions, ignoring the fact that newly encountered tasks may have varying levels of novelty or difficulty. This study investigates the necessity of hyperparameter `adaptivity' in Class-Incremental Learning: the ability to dynamically adjust hyperparameters such as the learning rate, regularization strength, and memory size according to the properties of the new task at hand. We propose AdaCL, a Bayesian Optimization-based approach to automatically and efficiently determine the optimal values for those parameters with each learning task. We show that adapting hyperpararmeters on each new task leads to improvement in accuracy, forgetting and memory. Code is available at https://github.com/ElifCerenGokYildirim/AdaCL.
comment: Published in 1st ContinualAI Unconference
♻ ☆ Energy-based Epistemic Uncertainty for Graph Neural Networks
In domains with interdependent data, such as graphs, quantifying the epistemic uncertainty of a Graph Neural Network (GNN) is challenging as uncertainty can arise at different structural scales. Existing techniques neglect this issue or only distinguish between structure-aware and structure-agnostic uncertainty without combining them into a single measure. We propose GEBM, an energy-based model (EBM) that provides high-quality uncertainty estimates by aggregating energy at different structural levels that naturally arise from graph diffusion. In contrast to logit-based EBMs, we provably induce an integrable density in the data space by regularizing the energy function. We introduce an evidential interpretation of our EBM that significantly improves the predictive robustness of the GNN. Our framework is a simple and effective post hoc method applicable to any pre-trained GNN that is sensitive to various distribution shifts. It consistently achieves the best separation of in-distribution and out-of-distribution data on 6 out of 7 anomaly types while having the best average rank over shifts on \emph{all} datasets.
♻ ☆ Minimax Excess Risk of First-Order Methods for Statistical Learning with Data-Dependent Oracles
In this paper, our aim is to analyse the generalization capabilities of first-order methods for statistical learning in multiple, different yet related, scenarios including supervised learning, transfer learning, robust learning and federated learning. To do so, we provide sharp upper and lower bounds for the minimax excess risk of strongly convex and smooth statistical learning when the gradient is accessed through partial observations given by a data-dependent oracle. This novel class of oracles can query the gradient with any given data distribution, and is thus well suited to scenarios in which the training data distribution does not match the target (or test) distribution. In particular, our upper and lower bounds are proportional to the smallest mean square error achievable by gradient estimators, thus allowing us to easily derive multiple sharp bounds in the aforementioned scenarios using the extensive literature on parameter estimation.
comment: 22 pages, 0 figures
♻ ☆ Fast and Efficient 2-bit LLM Inference on GPU: 2/4/16-bit in a Weight Matrix with Asynchronous Dequantization
Large language models (LLMs) have demonstrated impressive abilities in various domains while the inference cost is expensive. Many previous studies exploit quantization methods to reduce LLM inference cost by reducing latency and memory consumption. Applying 2-bit single-precision weight quantization brings >3% accuracy loss, so the state-of-the-art methods use mixed-precision methods for LLMs (e.g. Llama2-7b, etc.) to improve the accuracy. However, challenges still exist: (1) Uneven distribution in weight matrix. (2) Large speed degradation by adding sparse outliers. (3) Time-consuming dequantization operations on GPUs. To tackle these challenges and enable fast and efficient LLM inference on GPUs, we propose the following techniques in this paper. (1) Intra-weight mixed-precision quantization. (2) Exclusive 2-bit sparse outlier with minimum speed degradation. (3) Asynchronous dequantization. We conduct extensive experiments on different model families (e.g. Llama3, etc.) and model sizes. We achieve 2.91-bit for each weight considering all scales/zeros for different models with negligible loss. As a result, with our 2/4/16 mixed-precision quantization for each weight matrix and asynchronous dequantization during inference, our design achieves an end-to-end speedup for Llama2-7b is 1.74x over the original model, and we reduce both runtime cost and total cost by up to 2.53x and 2.29x with less GPU requirements.
♻ ☆ Remote sensing framework for geological mapping via stacked autoencoders and clustering
Supervised machine learning methods for geological mapping via remote sensing face limitations due to the scarcity of accurately labelled training data that can be addressed by unsupervised learning, such as dimensionality reduction and clustering. Dimensionality reduction methods have the potential to play a crucial role in improving the accuracy of geological maps. Although conventional dimensionality reduction methods may struggle with nonlinear data, unsupervised deep learning models such as autoencoders can model non-linear relationships. Stacked autoencoders feature multiple interconnected layers to capture hierarchical data representations useful for remote sensing data. This study presents an unsupervised machine learning-based framework for processing remote sensing data using stacked autoencoders for dimensionality reduction and k-means clustering for mapping geological units. We use Landsat 8, ASTER, and Sentinel-2 datasets to evaluate the framework for geological mapping of the Mutawintji region in Western New South Wales, Australia. We also compare stacked autoencoders with principal component analysis and canonical autoencoders. Our results reveal that the framework produces accurate and interpretable geological maps, efficiently discriminating rock units. We find that the accuracy of stacked autoencoders ranges from 86.6 % to 90 %, depending on the remote sensing data type, which is superior to their counterparts. We also find that the generated maps align with prior geological knowledge of the study area while providing novel insights into geological structures.
♻ ☆ A General Verification Framework for Dynamical and Control Models via Certificate Synthesis
An emerging branch of control theory specialises in certificate learning, concerning the specification of a desired (possibly complex) system behaviour for an autonomous or control model, which is then analytically verified by means of a function-based proof. However, the synthesis of controllers abiding by these complex requirements is in general a non-trivial task and may elude the most expert control engineers. This results in a need for automatic techniques that are able to design controllers and to analyse a wide range of elaborate specifications. In this paper, we provide a general framework to encode system specifications and define corresponding certificates, and we present an automated approach to formally synthesise controllers and certificates. Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks to provide candidate control and certificate functions, whilst using SMT-solvers to offer a formal guarantee of correctness. We test our framework by developing a prototype software tool, and assess its efficacy at verification via control and certificate synthesis over a large and varied suite of benchmarks.
♻ ☆ Contextualized Hybrid Ensemble Q-learning: Learning Fast with Control Priors
Combining Reinforcement Learning (RL) with a prior controller can yield the best out of two worlds: RL can solve complex nonlinear problems, while the control prior ensures safer exploration and speeds up training. Prior work largely blends both components with a fixed weight, neglecting that the RL agent's performance varies with the training progress and across regions in the state space. Therefore, we advocate for an adaptive strategy that dynamically adjusts the weighting based on the RL agent's current capabilities. We propose a new adaptive hybrid RL algorithm, Contextualized Hybrid Ensemble Q-learning (CHEQ). CHEQ combines three key ingredients: (i) a time-invariant formulation of the adaptive hybrid RL problem treating the adaptive weight as a context variable, (ii) a weight adaption mechanism based on the parametric uncertainty of a critic ensemble, and (iii) ensemble-based acceleration for data-efficient RL. Evaluating CHEQ on a car racing task reveals substantially stronger data efficiency, exploration safety, and transferability to unknown scenarios than state-of-the-art adaptive hybrid RL methods.
♻ ☆ Explaining the Explainers in Graph Neural Networks: a Comparative Study
Following a fast initial breakthrough in graph based learning, Graph Neural Networks (GNNs) have reached a widespread application in many science and engineering fields, prompting the need for methods to understand their decision process. GNN explainers have started to emerge in recent years, with a multitude of methods both novel or adapted from other domains. To sort out this plethora of alternative approaches, several studies have benchmarked the performance of different explainers in terms of various explainability metrics. However, these earlier works make no attempts at providing insights into why different GNN architectures are more or less explainable, or which explainer should be preferred in a given setting. In this survey, we fill these gaps by devising a systematic experimental study, which tests ten explainers on eight representative architectures trained on six carefully designed graph and node classification datasets. With our results we provide key insights on the choice and applicability of GNN explainers, we isolate key components that make them usable and successful and provide recommendations on how to avoid common interpretation pitfalls. We conclude by highlighting open questions and directions of possible future research.
♻ ☆ Mimicking User Data: On Mitigating Fine-Tuning Risks in Closed Large Language Models
Fine-tuning large language models on small, high-quality datasets can enhance their performance on specific downstream tasks. Recent research shows that fine-tuning on benign, instruction-following data can inadvertently undo the safety alignment process and increase a model's propensity to comply with harmful queries. Although critical, understanding and mitigating safety risks in well-defined tasks remains distinct from the instruction-following context due to structural differences in the data. Our work addresses the gap in our understanding of these risks across diverse types of data in closed models - where providers control how user data is utilized in the fine-tuning process. We demonstrate how malicious actors can subtly manipulate the structure of almost any task-specific dataset to foster significantly more dangerous model behaviors, while maintaining an appearance of innocuity and reasonable downstream task performance. To address this issue, we propose a novel mitigation strategy that mixes in safety data which mimics the task format and prompting style of the user data, showing this is more effective than existing baselines at re-establishing safety alignment while maintaining similar task performance.
♻ ☆ Training-Free Acceleration of ViTs with Delayed Spatial Merging ICML 2024
Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.
comment: ICML 2024 ES-FoMo Workshop
♻ ☆ CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay ICML'24
Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the target program output given input) to the realized output produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines. Our code is available at https://github.com/Qualcomm-AI-research/codeit .
comment: ICML'24 camera-ready version
♻ ☆ CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.
♻ ☆ Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation MICCAI
Cone-beam computed tomography (CBCT) is an important tool facilitating computer aided interventions, despite often suffering from artifacts that pose challenges for accurate interpretation. While the degraded image quality can affect downstream segmentation, the availability of high quality, preoperative scans represents potential for improvements. Here we consider a setting where preoperative CT and intraoperative CBCT scans are available, however, the alignment (registration) between the scans is imperfect. We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect of CBCT quality and misalignment on the final segmentation performance. For that purpose, we make use of a synthetically generated data set containing real CT and synthetic CBCT volumes. As an application scenario, we focus on liver and liver tumor segmentation. We show that the fusion of preoperative CT and simulated, intraoperative CBCT mostly improves segmentation performance (compared to using intraoperative CBCT only) and that even clearly misaligned preoperative data has the potential to improve segmentation performance.
comment: Submitted to SASHIMI2024 (MICCAI workshop)
♻ ☆ $σ$-PCA: a building block for neural learning of identifiable linear transformations
Linear principal component analysis (PCA) learns (semi-)orthogonal transformations by orienting the axes to maximize variance. Consequently, it can only identify orthogonal axes whose variances are clearly distinct, but it cannot identify the subsets of axes whose variances are roughly equal. It cannot eliminate the subspace rotational indeterminacy: it fails to disentangle components with equal variances (eigenvalues), resulting, in each eigen subspace, in randomly rotated axes. In this paper, we propose $\sigma$-PCA, a method that (1) formulates a unified model for linear and nonlinear PCA, the latter being a special case of linear independent component analysis (ICA), and (2) introduces a missing piece into nonlinear PCA that allows it to eliminate, from the canonical linear PCA solution, the subspace rotational indeterminacy -- without whitening the inputs. Whitening, a preprocessing step which converts the inputs into unit-variance inputs, has generally been a prerequisite step for linear ICA methods, which meant that conventional nonlinear PCA could not necessarily preserve the orthogonality of the overall transformation, could not directly reduce dimensionality, and could not intrinsically order by variances. We offer insights on the relationship between linear PCA, nonlinear PCA, and linear ICA -- three methods with autoencoder formulations for learning special linear transformations from data, transformations that are (semi-)orthogonal for PCA, and arbitrary unit-variance for ICA. As part of our formulation, nonlinear PCA can be seen as a method that maximizes both variance and statistical independence, lying in the middle between linear PCA and linear ICA, serving as a building block for learning linear transformations that are identifiable.
comment: Update with published version
♻ ☆ Generalization Error of Graph Neural Networks in the Mean-field Regime ICML 2024
This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural networks and message passing graph neural networks. Prior to this study, existing bounds on the generalization error in the over-parametrized regime were uninformative, limiting our understanding of over-parameterized network performance. Our novel approach involves deriving upper bounds within the mean-field regime for evaluating the generalization error of these graph neural networks. We establish upper bounds with a convergence rate of $O(1/n)$, where $n$ is the number of graph samples. These upper bounds offer a theoretical assurance of the networks' performance on unseen data in the challenging over-parameterized regime and overall contribute to our understanding of their performance.
comment: Accepted in ICML 2024
♻ ☆ Uni-Mol2: Exploring Molecular Pretraining Model at Scale
In recent years, pretraining models have made significant advancements in the fields of natural language processing (NLP), computer vision (CV), and life sciences. The significant advancements in NLP and CV are predominantly driven by the expansion of model parameters and data size, a phenomenon now recognized as the scaling laws. However, research exploring scaling law in molecular pretraining models remains unexplored. In this work, we present Uni-Mol2 , an innovative molecular pretraining model that leverages a two-track transformer to effectively integrate features at the atomic level, graph level, and geometry structure level. Along with this, we systematically investigate the scaling law within molecular pretraining models, characterizing the power-law correlations between validation loss and model size, dataset size, and computational resources. Consequently, we successfully scale Uni-Mol2 to 1.1 billion parameters through pretraining on 800 million conformations, making it the largest molecular pretraining model to date. Extensive experiments show consistent improvement in the downstream tasks as the model size grows. The Uni-Mol2 with 1.1B parameters also outperforms existing methods, achieving an average 27% improvement on the QM9 and 14% on COMPAS-1D dataset.
♻ ☆ Long-term drought prediction using deep neural networks based on geospatial weather data
The problem of high-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance. Yet, it is still unsolved with reasonable accuracy due to data complexity and aridity stochasticity. We tackle drought data by introducing an end-to-end approach that adopts a spatio-temporal neural network model with accessible open monthly climate data as the input. Our systematic research employs diverse proposed models and five distinct environmental regions as a testbed to evaluate the efficacy of the Palmer Drought Severity Index (PDSI) prediction. Key aggregated findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts. At the same time, the Convolutional LSTM excels in longer-term forecasting. Both models achieved high ROC AUC scores: 0.948 for one month ahead and 0.617 for twelve months ahead forecasts, becoming closer to perfect ROC-AUC by $54\%$ and $16\%$, respectively, c.t. classic approaches.
♻ ☆ Total Variation Distance Meets Probabilistic Inference ICML
In this paper, we establish a novel connection between total variation (TV) distance estimation and probabilistic inference. In particular, we present an efficient, structure-preserving reduction from relative approximation of TV distance to probabilistic inference over directed graphical models. This reduction leads to a fully polynomial randomized approximation scheme (FPRAS) for estimating TV distances between same-structure distributions over any class of Bayes nets for which there is an efficient probabilistic inference algorithm. In particular, it leads to an FPRAS for estimating TV distances between distributions that are defined over a common Bayes net of small treewidth. Prior to this work, such approximation schemes only existed for estimating TV distances between product distributions. Our approach employs a new notion of $partial$ couplings of high-dimensional distributions, which might be of independent interest.
comment: 25 pages. This work has been accepted for presentation at the International Conference on Machine Learning (ICML) 2024
♻ ☆ A Deep Learning Approach for Overall Survival Prediction in Lung Cancer with Missing Values
In the field of lung cancer research, particularly in the analysis of overall survival (OS), artificial intelligence (AI) serves crucial roles with specific aims. Given the prevalent issue of missing data in the medical domain, our primary objective is to develop an AI model capable of dynamically handling this missing data. Additionally, we aim to leverage all accessible data, effectively analyzing both uncensored patients who have experienced the event of interest and censored patients who have not, by embedding a specialized technique within our AI model, not commonly utilized in other AI tasks. Through the realization of these objectives, our model aims to provide precise OS predictions for non-small cell lung cancer (NSCLC) patients, thus overcoming these significant challenges. We present a novel approach to survival analysis with missing values in the context of NSCLC, which exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy. More specifically, this model tailors the transformer architecture to tabular data by adapting its feature embedding and masked self-attention to mask missing data and fully exploit the available ones. By making use of ad-hoc designed losses for OS, it is able to account for both censored and uncensored patients, as well as changes in risks over time. We compared our method with state-of-the-art models for survival analysis coupled with different imputation strategies. We evaluated the results obtained over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.
comment: 24 pages, 4 figures
♻ ☆ Model Compression Method for S4 with Diagonal State Space Layers using Balanced Truncation
To implement deep learning models on edge devices, model compression methods have been widely recognized as useful. However, it remains unclear which model compression methods are effective for Structured State Space Sequence (S4) models incorporating Diagonal State Space (DSS) layers, tailored for processing long-sequence data. In this paper, we propose to use the balanced truncation, a prevalent model reduction technique in control theory, applied specifically to DSS layers in pre-trained S4 model as a novel model compression method. Moreover, we propose using the reduced model parameters obtained by the balanced truncation as initial parameters of S4 models with DSS layers during the main training process. Numerical experiments demonstrate that our trained models combined with the balanced truncation surpass conventionally trained models with Skew-HiPPO initialization in accuracy, even with fewer parameters. Furthermore, our observations reveal a positive correlation: higher accuracy in the original model consistently leads to increased accuracy in models trained using our model compression method, suggesting that our approach effectively leverages the strengths of the original model.
♻ ☆ Training morphological neural networks with gradient descent: some theoretical insights
Morphological neural networks, or layers, can be a powerful tool to boost the progress in mathematical morphology, either on theoretical aspects such as the representation of complete lattice operators, or in the development of image processing pipelines. However, these architectures turn out to be difficult to train when they count more than a few morphological layers, at least within popular machine learning frameworks which use gradient descent based optimization algorithms. In this paper we investigate the potential and limitations of differentiation based approaches and back-propagation applied to morphological networks, in light of the non-smooth optimization concept of Bouligand derivative. We provide insights and first theoretical guidelines, in particular regarding initialization and learning rates.
♻ ☆ Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling
Predicting multivariate time series is crucial, demanding precise modeling of intricate patterns, including inter-series dependencies and intra-series variations. Distinctive trend characteristics in each time series pose challenges, and existing methods, relying on basic moving average kernels, may struggle with the non-linear structure and complex trends in real-world data. Given that, we introduce a learnable decomposition strategy to capture dynamic trend information more reasonably. Additionally, we propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously for better time series forecasting, which is implemented by channel-wise self-attention and autoregressive self-attention. To evaluate the effectiveness of our method, we conducted experiments across eight open-source datasets and compared it with the state-of-the-art methods. Through the comparison results, our Leddam (LEarnable Decomposition and Dual Attention Module) not only demonstrates significant advancements in predictive performance, but also the proposed decomposition strategy can be plugged into other methods with a large performance-boosting, from 11.87% to 48.56% MSE error degradation.
♻ ☆ KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message passing) layers. Within each of these layers, the representation of each node is updated from an aggregation and transformation of its neighbours representations at the previous layer. The upper bound for the expressive power of message passing GNNs was reached through the use of MLPs as a transformation, due to their universal approximation capabilities. However, MLPs suffer from well-known limitations, which recently motivated the introduction of Kolmogorov-Arnold Networks (KANs). KANs rely on the Kolmogorov-Arnold representation theorem, rendering them a promising alternative to MLPs. In this work, we compare the performance of KANs against that of MLPs in graph learning tasks. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our preliminary results indicate that while KANs are on-par with MLPs in classification tasks, they seem to have a clear advantage in the graph regression tasks. Code is available at https: //github.com/RomanBresson/KAGNN.
♻ ☆ Evaluating Copyright Takedown Methods for Language Models
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material. These models can memorize and generate content similar to their training data, posing potential concerns. Therefore, model creators are motivated to develop mitigation methods that prevent generating protected content. We term this procedure as copyright takedowns for LMs, noting the conceptual similarity to (but legal distinction from) the DMCA takedown This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs. We propose CoTaEval, an evaluation framework to assess the effectiveness of copyright takedown methods, the impact on the model's ability to retain uncopyrightable factual knowledge from the training data whose recitation is embargoed, and how well the model maintains its general utility and efficiency. We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches. Our findings indicate that no tested method excels across all metrics, showing significant room for research in this unique problem setting and indicating potential unresolved challenges for live policy proposals.
comment: 31 pages, 9 figures, 14 tables
♻ ☆ Assessing the Brittleness of Safety Alignment via Pruning and Low-Rank Modifications
Large language models (LLMs) show inherent brittleness in their safety mechanisms, as evidenced by their susceptibility to jailbreaking and even non-malicious fine-tuning. This study explores this brittleness of safety alignment by leveraging pruning and low-rank modifications. We develop methods to identify critical regions that are vital for safety guardrails, and that are disentangled from utility-relevant regions at both the neuron and rank levels. Surprisingly, the isolated regions we find are sparse, comprising about $3\%$ at the parameter level and $2.5\%$ at the rank level. Removing these regions compromises safety without significantly impacting utility, corroborating the inherent brittleness of the model's safety mechanisms. Moreover, we show that LLMs remain vulnerable to low-cost fine-tuning attacks even when modifications to the safety-critical regions are restricted. These findings underscore the urgent need for more robust safety strategies in LLMs.
comment: 22 pages, 9 figures. Project page is available at https://boyiwei.com/alignment-attribution/
♻ ☆ σ-GPTs: A New Approach to Autoregressive Models ECML
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
comment: 23 pages, 7 figures, accepted at ECML/PKDD 2024
♻ ☆ Classification under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference
An open scientific challenge is how to classify events with reliable measures of uncertainty, when we have a mechanistic model of the data-generating process but the distribution over both labels and latent nuisance parameters is different between train and target data. We refer to this type of distributional shift as generalized label shift (GLS). Direct classification using observed data $\mathbf{X}$ as covariates leads to biased predictions and invalid uncertainty estimates of labels $Y$. We overcome these biases by proposing a new method for robust uncertainty quantification that casts classification as a hypothesis testing problem under nuisance parameters. The key idea is to estimate the classifier's receiver operating characteristic (ROC) across the entire nuisance parameter space, which allows us to devise cutoffs that are invariant under GLS. Our method effectively endows a pre-trained classifier with domain adaptation capabilities and returns valid prediction sets while maintaining high power. We demonstrate its performance on two challenging scientific problems in biology and astroparticle physics with data from realistic mechanistic models.
comment: 26 pages, 19 figures, code available at https://github.com/lee-group-cmu/lf2i
♻ ☆ RouteLLM: Learning to Route LLMs with Preference Data
Large language models (LLMs) exhibit impressive capabilities across a wide range of tasks, yet the choice of which model to use often involves a trade-off between performance and cost. More powerful models, though effective, come with higher expenses, while less capable models are more cost-effective. To address this dilemma, we propose several efficient router models that dynamically select between a stronger and a weaker LLM during inference, aiming to optimize the balance between cost and response quality. We develop a training framework for these routers leveraging human preference data and data augmentation techniques to enhance performance. Our evaluation on widely-recognized benchmarks shows that our approach significantly reduces costs-by over 2 times in certain cases-without compromising the quality of responses. Interestingly, our router models also demonstrate significant transfer learning capabilities, maintaining their performance even when the strong and weak models are changed at test time. This highlights the potential of these routers to provide a cost-effective yet high-performance solution for deploying LLMs.
♻ ☆ Mutual Information Assisted Ensemble Recommender System for Identifying Critical Risk Factors in Healthcare Prognosis
Purpose: Health recommenders act as important decision support systems, aiding patients and medical professionals in taking actions that lead to patients' well-being. These systems extract the information which may be of particular relevance to the end-user, helping them in making appropriate decisions. The present study proposes a feature recommender, as a part of a disease management system, that identifies and recommends the most important risk factors for an illness. Methods: A novel mutual information and ensemble-based feature ranking approach for identifying critical risk factors in healthcare prognosis is proposed. Results: To establish the effectiveness of the proposed method, experiments have been conducted on four benchmark datasets of diverse diseases (clear cell renal cell carcinoma (ccRCC), chronic kidney disease, Indian liver patient, and cervical cancer risk factors). The performance of the proposed recommender is compared with four state-of-the-art methods using recommender systems' performance metrics like average precision@K, precision@K, recall@K, F1@K, reciprocal rank@K. The method is able to recommend all relevant critical risk factors for ccRCC. It also attains a higher accuracy (96.6% and 98.6% using support vector machine and neural network, respectively) for ccRCC staging with a reduced feature set as compared to existing methods. Moreover, the top two features recommended using the proposed method with ccRCC, viz. size of tumor and metastasis status, are medically validated from the existing TNM system. Results are also found to be superior for the other three datasets. Conclusion: The proposed recommender can identify and recommend risk factors that have the most discriminating power for detecting diseases.
♻ ☆ Efficient and Flexible Method for Reducing Moderate-size Deep Neural Networks with Condensation
Neural networks have been extensively applied to a variety of tasks, achieving astounding results. Applying neural networks in the scientific field is an important research direction that is gaining increasing attention. In scientific applications, the scale of neural networks is generally moderate-size, mainly to ensure the speed of inference during application. Additionally, comparing neural networks to traditional algorithms in scientific applications is inevitable. These applications often require rapid computations, making the reduction of neural network sizes increasingly important. Existing work has found that the powerful capabilities of neural networks are primarily due to their non-linearity. Theoretical work has discovered that under strong non-linearity, neurons in the same layer tend to behave similarly, a phenomenon known as condensation. Condensation offers an opportunity to reduce the scale of neural networks to a smaller subnetwork with similar performance. In this article, we propose a condensation reduction algorithm to verify the feasibility of this idea in practical problems. Our reduction method can currently be applied to both fully connected networks and convolutional networks, achieving positive results. In complex combustion acceleration tasks, we reduced the size of the neural network to 41.7% of its original scale while maintaining prediction accuracy. In the CIFAR10 image classification task, we reduced the network size to 11.5% of the original scale, still maintaining a satisfactory validation accuracy. Our method can be applied to most trained neural networks, reducing computational pressure and improving inference speed.
♻ ☆ CoMadOut -- A Robust Outlier Detection Algorithm based on CoMAD
Unsupervised learning methods are well established in the area of anomaly detection and achieve state of the art performances on outlier datasets. Outliers play a significant role, since they bear the potential to distort the predictions of a machine learning algorithm on a given dataset. Especially among PCA-based methods, outliers have an additional destructive potential regarding the result: they may not only distort the orientation and translation of the principal components, they also make it more complicated to detect outliers. To address this problem, we propose the robust outlier detection algorithm CoMadOut, which satisfies two required properties: (1) being robust towards outliers and (2) detecting them. Our CoMadOut outlier detection variants using comedian PCA define, dependent on its variant, an inlier region with a robust noise margin by measures of in-distribution (variant CMO) and optimized scores by measures of out-of-distribution (variants CMO*), e.g. kurtosis-weighting by CMO+k. These measures allow distribution based outlier scoring for each principal component, and thus, an appropriate alignment of the degree of outlierness between normal and abnormal instances. Experiments comparing CoMadOut with traditional, deep and other comparable robust outlier detection methods showed that the performance of the introduced CoMadOut approach is competitive to well established methods related to average precision (AP), area under the precision recall curve (AUPRC) and area under the receiver operating characteristic (AUROC) curve. In summary our approach can be seen as a robust alternative for outlier detection tasks.
comment: published in Springer Machine Learning Journal (MLJ)
♻ ☆ ASCENT: Amplifying Power Side-Channel Resilience via Learning & Monte-Carlo Tree Search
Power side-channel (PSC) analysis is pivotal for securing cryptographic hardware. Prior art focused on securing gate-level netlists obtained as-is from chip design automation, neglecting all the complexities and potential side-effects for security arising from the design automation process. That is, automation traditionally prioritizes power, performance, and area (PPA), sidelining security. We propose a "security-first" approach, refining the logic synthesis stage to enhance the overall resilience of PSC countermeasures. We introduce ASCENT, a learning-and-search-based framework that (i) drastically reduces the time for post-design PSC evaluation and (ii) explores the security-vs-PPA design space. Thus, ASCENT enables an efficient exploration of a large number of candidate netlists, leading to an improvement in PSC resilience compared to regular PPA-optimized netlists. ASCENT is up to 120x faster than traditional PSC analysis and yields a 3.11x improvement for PSC resilience of state-of-the-art PSC countermeasures
comment: Accepted at 2024 ACM/IEEE International Conference on Computer-Aided Design
♻ ☆ FunBO: Discovering Acquisition Functions for Bayesian Optimization with FunSearch
The sample efficiency of Bayesian optimization algorithms depends on carefully crafted acquisition functions (AFs) guiding the sequential collection of function evaluations. The best-performing AF can vary significantly across optimization problems, often requiring ad-hoc and problem-specific choices. This work tackles the challenge of designing novel AFs that perform well across a variety of experimental settings. Based on FunSearch, a recent work using Large Language Models (LLMs) for discovery in mathematical sciences, we propose FunBO, an LLM-based method that can be used to learn new AFs written in computer code by leveraging access to a limited number of evaluations for a set of objective functions. We provide the analytic expression of all discovered AFs and evaluate them on various global optimization benchmarks and hyperparameter optimization tasks. We show how FunBO identifies AFs that generalize well in and out of the training distribution of functions, thus outperforming established general-purpose AFs and achieving competitive performance against AFs that are customized to specific function types and are learned via transfer-learning algorithms.
♻ ☆ Capacity Provisioning Motivated Online Non-Convex Optimization Problem with Memory and Switching Cost
An online non-convex optimization problem is considered where the goal is to minimize the flow time (total delay) of a set of jobs by modulating the number of active servers, but with a switching cost associated with changing the number of active servers over time. Each job can be processed by at most one fixed speed server at any time. Compared to the usual online convex optimization (OCO) problem with switching cost, the objective function considered is non-convex and more importantly, at each time, it depends on all past decisions and not just the present one. Both worst-case and stochastic inputs are considered; for both cases, competitive algorithms are derived.
♻ ☆ FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment. However, despite their considerable advantages over traditional statistical approaches, current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth. This discrepancy is largely due to an insufficient emphasis on extracting the sequence's latent information, particularly its global information within the frequency domain and the relationship between different variables. To address this issue, we propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components using a multi-scale sequence adaptive decomposition and fusion architecture, and processes them separately. FAITH utilizes Frequency Channel feature Extraction Module and Frequency Temporal feature Extraction Module to capture inter-channel relationships and temporal global information in the sequence, significantly improving its ability to handle long-term dependencies and complex patterns. Furthermore, FAITH achieves theoretically linear complexity by modifying the time-frequency domain transformation method, effectively reducing computational costs. Extensive experiments on 6 benchmarks for long-term forecasting and 3 benchmarks for short-term forecasting demonstrate that FAITH outperforms existing models in many fields, such as electricity, weather and traffic, proving its effectiveness and superiority both in long-term and short-term time series forecasting tasks. Our codes and data are available at https://github.com/LRQ577/FAITH.
comment: We think there are some errors in the experiment result, it may lead to a wrong conclusion. So we think it will be responsible to withdraw it
♻ ☆ Backdoor for Debias: Mitigating Model Bias with Backdoor Attack-based Artificial Bias
With the swift advancement of deep learning, state-of-the-art algorithms have been utilized in various social situations. Nonetheless, some algorithms have been discovered to exhibit biases and provide unequal results. The current debiasing methods face challenges such as poor utilization of data or intricate training requirements. In this work, we found that the backdoor attack can construct an artificial bias similar to the model bias derived in standard training. Considering the strong adjustability of backdoor triggers, we are motivated to mitigate the model bias by carefully designing reverse artificial bias created from backdoor attack. Based on this, we propose a backdoor debiasing framework based on knowledge distillation, which effectively reduces the model bias from original data and minimizes security risks from the backdoor attack. The proposed solution is validated on both image and structured datasets, showing promising results. This work advances the understanding of backdoor attacks and highlights its potential for beneficial applications. The code for the study can be found at \url{https://anonymous.4open.science/r/DwB-BC07/}.
♻ ☆ Multi-State TD Target for Model-Free Reinforcement Learning
Temporal difference (TD) learning is a fundamental technique in reinforcement learning that updates value estimates for states or state-action pairs using a TD target. This target represents an improved estimate of the true value by incorporating both immediate rewards and the estimated value of subsequent states. Traditionally, TD learning relies on the value of a single subsequent state. We propose an enhanced multi-state TD (MSTD) target that utilizes the estimated values of multiple subsequent states. Building on this new MSTD concept, we develop complete actor-critic algorithms that include management of replay buffers in two modes, and integrate with deep deterministic policy optimization (DDPG) and soft actor-critic (SAC). Experimental results demonstrate that algorithms employing the MSTD target significantly improve learning performance compared to traditional methods.The code is provided on GitHub.
comment: 8 pages, 16 figures
♻ ☆ Fast Unsupervised Deep Outlier Model Selection with Hypernetworks
Outlier detection (OD) finds many applications with a rich literature of numerous techniques. Deep neural network based OD (DOD) has seen a recent surge of attention thanks to the many advances in deep learning. In this paper, we consider a critical-yet-understudied challenge with unsupervised DOD, that is, effective hyperparameter (HP) tuning/model selection. While several prior work report the sensitivity of OD models to HPs, it becomes ever so critical for the modern DOD models that exhibit a long list of HPs. We introduce HYPER for tuning DOD models, tackling two fundamental challenges: (1) validation without supervision (due to lack of labeled anomalies), and (2) efficient search of the HP/model space (due to exponential growth in the number of HPs). A key idea is to design and train a novel hypernetwork (HN) that maps HPs onto optimal weights of the main DOD model. In turn, HYPER capitalizes on a single HN that can dynamically generate weights for many DOD models (corresponding to varying HPs), which offers significant speed-up. In addition, it employs meta-learning on historical OD tasks with labels to train a proxy validation function, likewise trained with our proposed HN efficiently. Extensive experiments on 35 OD tasks show that HYPER achieves high performance against 8 baselines with significant efficiency gains.
comment: 12 pages, 7 figures
♻ ☆ UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction KDD
Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergence response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios Extensive experiments on more than 20 spatio-temporal scenarios demonstrate UniST's efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction. The datasets and code implementation are released on https://github.com/tsinghua-fib-lab/UniST.
comment: 2024 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2024
♻ ☆ Cost Aware Best Arm Identification
In this paper, we study a best arm identification problem with dual objects. In addition to the classic reward, each arm is associated with a cost distribution and the goal is to identify the largest reward arm using the minimum expected cost. We call it \emph{Cost Aware Best Arm Identification} (CABAI), which captures the separation of testing and implementation phases in product development pipelines and models the objective shift between phases, i.e., cost for testing and reward for implementation. We first derive a theoretical lower bound for CABAI and propose an algorithm called $\mathsf{CTAS}$ to match it asymptotically. To reduce the computation of $\mathsf{CTAS}$, we further propose a simple algorithm called \emph{Chernoff Overlap} (CO), based on a square-root rule, which we prove is optimal in simplified two-armed models and generalizes well in numerical experiments. Our results show that (i) ignoring the heterogeneous action cost results in sub-optimality in practice, and (ii) simple algorithms can deliver near-optimal performance over a wide range of problems.
♻ ☆ From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning
Reliable molecular property prediction is essential for various scientific endeavors and industrial applications, such as drug discovery. However, the data scarcity, combined with the highly non-linear causal relationships between physicochemical and biological properties and conventional molecular featurization schemes, complicates the development of robust molecular machine learning models. Self-supervised learning (SSL) has emerged as a popular solution, utilizing large-scale, unannotated molecular data to learn a foundational representation of chemical space that might be advantageous for downstream tasks. Yet, existing molecular SSL methods largely overlook chemical knowledge, including molecular structure similarity, scaffold composition, and the context-dependent aspects of molecular properties when operating over the chemical space. They also struggle to learn the subtle variations in structure-activity relationship. This paper introduces a novel pre-training framework that learns robust and generalizable chemical knowledge. It leverages the structural hierarchy within the molecule, embeds them through distinct pre-training tasks across channels, and aggregates channel information in a task-specific manner during fine-tuning. Our approach demonstrates competitive performance across various molecular property benchmarks and offers strong advantages in particularly challenging yet ubiquitous scenarios like activity cliffs.
♻ ☆ SketchQL Demonstration: Zero-shot Video Moment Querying with Sketches
In this paper, we will present SketchQL, a video database management system (VDBMS) for retrieving video moments with a sketch-based query interface. This novel interface allows users to specify object trajectory events with simple mouse drag-and-drop operations. Users can use trajectories of single objects as building blocks to compose complex events. Using a pre-trained model that encodes trajectory similarity, SketchQL achieves zero-shot video moments retrieval by performing similarity searches over the video to identify clips that are the most similar to the visual query. In this demonstration, we introduce the graphic user interface of SketchQL and detail its functionalities and interaction mechanisms. We also demonstrate the end-to-end usage of SketchQL from query composition to video moments retrieval using real-world scenarios.
♻ ☆ A Survey on Deep Clustering: From the Prior Perspective
Facilitated by the powerful feature extraction ability of neural networks, deep clustering has achieved great success in analyzing high-dimensional and complex real-world data. The performance of deep clustering methods is affected by various factors such as network structures and learning objectives. However, as pointed out in this survey, the essence of deep clustering lies in the incorporation and utilization of prior knowledge, which is largely ignored by existing works. From pioneering deep clustering methods based on data structure assumptions to recent contrastive clustering methods based on data augmentation invariances, the development of deep clustering intrinsically corresponds to the evolution of prior knowledge. In this survey, we provide a comprehensive review of deep clustering methods by categorizing them into six types of prior knowledge. We find that in general the prior innovation follows two trends, namely, i) from mining to constructing, and ii) from internal to external. Besides, we provide a benchmark on five widely-used datasets and analyze the performance of methods with diverse priors. By providing a novel prior knowledge perspective, we hope this survey could provide some novel insights and inspire future research in the deep clustering community.
Towards Graph Foundation Models: A Survey and Beyond
Foundation models have emerged as critical components in a variety of artificial intelligence applications, and showcase significant success in natural language processing and several other domains. Meanwhile, the field of graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm envisions models that are pre-trained on extensive graph data and can be adapted for various graph tasks. Despite this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify the existing work related to GFMs into three distinct categories, based on their dependence on graph neural networks and large language models. In addition to providing a thorough review of the current state of GFMs, this article also outlooks potential avenues for future research in this rapidly evolving domain.
System/Control 35
☆ Toward Wireless System and Circuit Co-Design for the Internet of Self-Adaptive Things SP
The deployment of a growing number of devices in Internet of Things (IoT) networks implies that uninterrupted and seamless adaptation of wireless communication parameters (e.g., carrier frequency, bandwidth and modulation) will become essential. To utilize wireless devices capable of switching several communication parameters requires real-time self-optimizations at the radio frequency integrated circuit (RFIC) level based on system level performance metrics during the processing of complex modulated signals. This article introduces a novel design verification approach for reconfigurable RFICs based on end-to-end wireless system-level performance metrics while operating in a dynamically changing communication environment. In contrast to prior work, this framework includes two modules that simulate a wireless channel and decode waveforms. These are connected to circuit-level modules that capture device- and circuit-level non-idealities of RFICs for design validation and optimization, such as transistor noises, intermodulation/harmonic distortions, and memory effects from parasitic capacitances. We demonstrate this framework with a receiver (RX) consisting of a reconfigurable complementary metal-oxide semiconductor (CMOS) low-noise amplifier (LNA) designed at the transistor level, a behavioral model of a mixer, and an ideal filter model. The seamless integration between system-level wireless models with circuit-level and behavioral models (such as VerilogA-based models) for RFIC blocks enables to preemptively evaluate circuit and system designs, and to optimize for different communication scenarios with adaptive circuits having extensive tuning ranges. An exemplary case study is presented, in which simulation results reveal that the LNA power consumption can be reduced up to 16x depending on system-level requirements.
comment: Accepted, 5 figures, 1 table. To be included in Proc. IEEE DySPAN 2024
☆ Quantifying cascading power outages during climate extremes considering renewable energy integration
Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of evolving climate extremes on renewable generation, and transmission and distribution networks. The model is validated by the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona, the first-ever system-wide blackout event with complete weather-induced outage records. The model presents a novel resilience pattern that was not captured by the present state-of-the-art models and reveals that early failure of certain critical components surprisingly enhances overall system resilience. Sensitivity analysis of various behind-the-meter solar integration scenarios demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without additional flexibility resources can exacerbate the failure probability due to substantially enlarged energy imbalances.
comment: 16 pages, 5 figures
☆ Adaptive control of reaction-diffusion PDEs via neural operator-approximated gain kernels
Neural operator approximations of the gain kernels in PDE backstepping has emerged as a viable method for implementing controllers in real time. With such an approach, one approximates the gain kernel, which maps the plant coefficient into the solution of a PDE, with a neural operator. It is in adaptive control that the benefit of the neural operator is realized, as the kernel PDE solution needs to be computed online, for every updated estimate of the plant coefficient. We extend the neural operator methodology from adaptive control of a hyperbolic PDE to adaptive control of a benchmark parabolic PDE (a reaction-diffusion equation with a spatially-varying and unknown reaction coefficient). We prove global stability and asymptotic regulation of the plant state for a Lyapunov design of parameter adaptation. The key technical challenge of the result is handling the 2D nature of the gain kernels and proving that the target system with two distinct sources of perturbation terms, due to the parameter estimation error and due to the neural approximation error, is Lyapunov stable. To verify our theoretical result, we present simulations achieving calculation speedups up to 45x relative to the traditional finite difference solvers for every timestep in the simulation trajectory.
comment: 13 pages, 4 figures
☆ Predicting DC-Link Capacitor Current Ripple in AC-DC Rectifier Circuits Using Fine-Tuned Large Language Models
Foundational Large Language Models (LLMs) such as GPT 3.5 turbo allow users to refine the model based on newer information, known as fine-tuning. This paper leverages this ability to analyze AC-DC converter behaviors, focusing on the ripple current in DC-link capacitors. Capacitors degrade faster under high ripple currents, complicating life monitoring and necessitating preemptive replacements. Using minimal invasive measurements from a full bridge rectifier and PFC-boost converter, we developed LLM-based models to predict ripple content in DC-link currents under noisy conditions. In this regard, based on simulations and experimental data from a full-bridge rectifier and a 1.5kW PFC, we have demonstrated the LLMs ability for near accurate prediction of capacitor ripple current estimation. This study highlights the LLMs potential in modeling nonlinear power electronic circuit behaviors and determining data requirements for precise circuit parameter predictions to predict component degradation and/or performance without any additional sensors. The final paper will have expanded results, capacitor ESR estimation based on fine tuned LLM output.
comment: 6 pages, 12 figures, conference
☆ Generation Expansion Equilibria with Predictive Dispatch Model
This paper proposes a methodology to solve generation expansion equilibrium problems by using a predictive model to represent the equilibrium in a simplified network constrained electricity market. The investment problem for each generation company (Genco) is a bi-level problem with the investment decision made in the upper level and market clearing condition in the lower level, which traditionally is represented as a Mathematical Program with Equilibrium Constraint (MPEC). The predictive model is trained for estimating the system-wide revenues for each technology type across energy, ancillary services and capacity markets given the amount of technology-specific installed capacity on the grid. The profit maximization investment problem for each Genco is solved using a global search algorithm, which uses the predictive model to evaluate the objective function. To solve for the strategic equilibrium, each Genco's problem is plugged into a diagonalization algorithm that is generally used in multi-leader, single-follower bi-level problems. The methodology presented here enables significant computational improvements while still capturing the desired market characteristics and dynamics of traditional equilibrium modeling approaches
☆ Humidity-Aware Model Predictive Control for Residential Air Conditioning: A Field Study
Model predictive control of residential air conditioning could reduce energy costs and greenhouse gas emissions while maintaining or improving occupants' thermal comfort. However, most approaches to predictive air conditioning control either do not model indoor humidity or treat it as constant. This simplification stems from challenges with modeling indoor humidity dynamics, particularly the high-order, nonlinear equations that govern heat and mass transfer between the air conditioner's evaporator coil and the indoor air. This paper develops a machine-learning approach to modeling indoor humidity dynamics that is suitable for real-world deployment at scale. This study then investigates the value of humidity modeling in four field tests of predictive control in an occupied house. The four field tests evaluate two different building models: One with constant humidity and one with time-varying humidity. Each modeling approach is tested in two different predictive controllers: One that focuses on reducing energy costs and one that focuses on constraining electric power during a demand response event. The two models lead to similar performance for reducing energy costs. Combining the results of this study and a prior heating study of the same house, the estimated year-round energy cost savings were $340-497 or 22-31% (95% confidence intervals); these savings were consistent across both humidity models. However, in the demand response tests, the simplifying assumption of constant humidity led to far more frequent and severe violations of the power constraint. These results suggest that accurate building models are important for nonlinear objectives, such as reducing or constraining peak demand, while for linear objectives such as reducing energy costs or emissions, model accuracy is less important.
☆ Joint Design of Conventional Public Transport Network and Mobility on Demand
Conventional Public Transport (PT) is based on fixed lines, running with routes and schedules determined a-priori. In low-demand areas, conventional PT is inefficient. Therein, Mobility on Demand (MoD) could serve users more efficiently and with an improved quality of service (QoS). The idea of integrating MoD into PT is therefore abundantly discussed by researchers and practitioners, mainly in the form of adding MoD on top of PT. Efficiency can be instead gained if also conventional PT lines are redesigned after integrating MoD in the first or last mile. In this paper we focus on this re-design problem. We devise a bilevel optimization problem where, given a certain initial design, the upper level determines stop selection and frequency settings, while the lower level routes a fleet of MoD vehicles. We propose a solution method based on Particle Swarm Optimization (PSO) for the upper level, while we adopt Large Neighborhood Search (LNS) in the lower level. Our solution method is computationally efficient and we test it in simulations with up to 10k travel requests. Results show important operational cost savings obtained via appropriately reducing the conventional PT coverage after integrating MoD, while preserving QoS.
comment: 26th Euro Working Group on Transportation Meeting
☆ How Clustering Affects the Convergence of Decentralized Optimization over Networks: A Monte-Carlo-based Approach
Decentralized algorithms have gained substantial interest owing to advancements in cloud computing, Internet of Things (IoT), intelligent transportation networks, and parallel processing over sensor networks. The convergence of such algorithms is directly related to specific properties of the underlying network topology. Specifically, the clustering coefficient is known to affect, for example, the controllability/observability and the epidemic growth over networks. In this work, we study the effects of the clustering coefficient on the convergence rate of networked optimization approaches. In this regard, we model the structure of large-scale distributed systems by random scale-free (SF) and clustered scale-free (CSF) networks and compare the convergence rate by tuning the network clustering coefficient. This is done by keeping other relevant network properties (such as power-law degree distribution, number of links, and average degree) unchanged. Monte-Carlo-based simulations are used to compare the convergence rate over many trials of SF graph topologies. Furthermore, to study the convergence rate over real case studies, we compare the clustering coefficient of some real-world networks with the eigenspectrum of the underlying network (as a measure of convergence rate). The results interestingly show higher convergence rate over low-clustered networks. This is significant as one can improve the learning rate of many existing decentralized machine-learning scenarios by tuning the network clustering.
comment: SNAM Journal
☆ C-MP: A decentralized adaptive-coordinated traffic signal control using the Max Pressure framework
Coordinated traffic signals seek to provide uninterrupted flow through a series of closely spaced intersections, typically using pre-defined fixed signal timings and offsets. Adaptive traffic signals dynamically change signal timings based on observed traffic conditions in a way that might disrupt coordinated movements, particularly when these decisions are made independently at each intersection. To alleviate this issue, this paper introduces a novel Max Pressure-based traffic signal framework that can provide coordination even under decentralized decision-making. The proposed Coordinated Max Pressure (C-MP) algorithm uses the space mean speeds of vehicles to explicitly detect freely flowing platoons of vehicles and prioritizes their movement along a corridor. Specifically, upstream platoons are detected and their weight in the MP framework increased to provide priority, while downstream platoons are detected and their weight reduced to ensure smooth traffic flow across corridors. The study analytically proves that C-MP maintains the desirable maximum stability property, while micro-simulation analyses conducted on an arterial network demonstrate its ability to achieve a larger stable region compared to benchmark MP control policies. Simulation results also reveal that the proposed control algorithm can effectively coordinate traffic signals in both directions along an arterial without explicitly assigned offsets or constraints. The results also reveal C-MP's superiority to benchmark coordination strategies in reducing travel time, and fuel consumption both at the corridor level and the network level by balancing the negative impact imparted to vehicles in the minor direction.
comment: Submitted to Transportation Research Part C: Emerging Technologies
☆ Hydraulic Parameter Estimation for District Heating Based on Laboratory Experiments
In this paper we consider calibration of hydraulic models for district heating systems based on operational data. We extend previous theoretical work on the topic to handle real-world complications, namely unknown valve characteristics and hysteresis. We generate two datasets in the Smart Water Infrastructure laboratory in Aalborg, Denmark, on which we evaluate the proposed procedure. In the first data set the system is controlled in such a way to excite all operational modes in terms of combinations of valve set-points. Here the best performing model predicted volume flow rates within roughly 5 and 10 \% deviation from the mean volume flow rate for the consumer with the highest and lowest mean volume flow rates respectively. This performance was met in the majority of the operational region. In the second data set, the system was controlled in order to mimic real load curves. The model trained on this data set performed similarly well when evaluated on data in the operational range represented in the training data. However, the model performance deteriorated when evaluated on data which was not represented in the training data.
☆ UAV Trajectory Planning with Path Processing
This paper examines the influence of initial guesses on trajectory planning for Unmanned Aerial Vehicles (UAVs) formulated in terms of Optimal Control Problem (OCP). The OCP is solved numerically using the Pseudospectral collocation method. Our approach leverages a path identified through Lazy Theta* and incorporates known constraints and a model of the UAV's behavior for the initial guess. Our findings indicate that a suitable initial guess has a beneficial influence on the planned trajectory. They also suggest promising directions for future research.
comment: 6 pages, submitted to ICARCV2024 conference
☆ Quaternion-based Adaptive Backstepping Fast Terminal Sliding Mode Control for Quadrotor UAVs with Finite Time Convergence
This paper proposes a novel quaternion-based approach for tracking the translation (position and linear velocity) and rotation (attitude and angular velocity) trajectories of underactuated Unmanned Aerial Vehicles (UAVs). Quadrotor UAVs are challenging regarding accuracy, singularity, and uncertainties issues. Controllers designed based on unit-quaternion are singularity-free for attitude representation compared to other methods (e.g., Euler angles), which fail to represent the vehicle's attitude at multiple orientations. Quaternion-based Adaptive Backstepping Control (ABC) and Adaptive Fast Terminal Sliding Mode Control (AFTSMC) are proposed to address a set of challenging problems. A quaternion-based ABC, a superior recursive approach, is proposed to generate the necessary thrust handling unknown uncertainties and UAV translation trajectory tracking. Next, a quaternion-based AFTSMC is developed to overcome parametric uncertainties, avoid singularity, and ensure fast convergence in a finite time. Moreover, the proposed AFTSMC is able to significantly minimize control signal chattering, which is the main reason for actuator failure and provide smooth and accurate rotational control input. To ensure the robustness of the proposed approach, the designed control algorithms have been validated considering unknown time-variant parametric uncertainties and significant initialization errors. The proposed techniques has been compared to state-of-the-art control technique. Keywords: Adaptive Backstepping Control (ABC), Adaptive Fast Terminal Sliding Mode Control (AFTSMC), Unit-quaternion, Unmanned Aerial Vehicles, Singularity Free, Pose Control
comment: Accepted in Results in Engineering
☆ From Coupling to Resilience: Quantifying the Impact of Interconnection in Energy Carrier Grids
Due to the increasing share of renewable energy resources and the emergence of couplings of different energy carrier grids, which may support the electricity networks by providing additional flexibility, conducting research on the properties of multi-energy systems is necessary. Primarily to keep stable grid operation and provide efficient planning, the resilience of such systems against low-probability, high-impact events is central. Previous steady-state resilience studies of electricity grids also involved investigating the topological attributes from a complex network theory perspective. However, this work aims to determine the influence of complex topological attributes on the resilience of coupled energy grids. To achieve this, we set up a Monte Carlo simulation to calculate the load-shedding performance indicator for the grids when affected by high-impact events. This indicator is used to calculate resilience metrics, which express the influence of the grids on each other. The metrics are the base to search for correlations between centrality/vitality metrics and the resilience impact metric. We apply our method to a case study based on a benchmark electricity grid. Our results show that, first, our impact metric is feasible for determining the influences of the network on each other. Second, we show that increasing coupling densities can lead to lower resilience in single-carrier grids. Third, it is apparent that centrality influences the impact of the grid components' resilience.
☆ Bayesian grey-box identification of nonlinear convection effects in heat transfer dynamics
We propose a computational procedure for identifying convection in heat transfer dynamics. The procedure is based on a Gaussian process latent force model, consisting of a white-box component (i.e., known physics) for the conduction and linear convection effects and a Gaussian process that acts as a black-box component for the nonlinear convection effects. States are inferred through Bayesian smoothing and we obtain approximate posterior distributions for the kernel covariance function's hyperparameters using Laplace's method. The nonlinear convection function is recovered from the Gaussian process states using a Bayesian regression model. We validate the procedure by simulation error using the identified nonlinear convection function, on both data from a simulated system and measurements from a physical assembly.
comment: 6 pages, 4 figures. Published as part of the proceedings of the IEEE Conference on Control Technology and Applications 2024
☆ An AI-based, Error-bounded Compression Scheme for High-frequency Power Quality Disturbance Data
The implementation of modern monitoring systems for power quality disturbances have the potential to generate substantial amounts of data, reaching a point where transmission and storage of high-frequency measurements become impractical. This research paper addresses this challenge by presenting a new, AI-based data compression method. It is based on existing, multi-level compression schemes; however, it uses state-of-the-art technologies, such as autoencoders, to improve the performance. Furthermore, it solves the problem that such algorithms usually cannot ensure an error bound. The scheme is tested on synthetically generated power quality disturbance samples. The evaluation is performed using different metrics such as final compression rate and overhead size. Compression rates between 5 and 68 were achieved depending on the error bound and noise level. Additionally, the impact of the compression on the performance of subsequent algorithms is determined by applying a classification algorithm to the decompressed data. The classification accuracy only declined by 0.8--11.9 \%, depending on the chosen error bound.
comment: 6 pages, 7 figures, 1 table, conference, SEST 2024
☆ HGNET: A Hierarchical Feature Guided Network for Occupancy Flow Field Prediction
Predicting the motion of multiple traffic participants has always been one of the most challenging tasks in autonomous driving. The recently proposed occupancy flow field prediction method has shown to be a more effective and scalable representation compared to general trajectory prediction methods. However, in complex multi-agent traffic scenarios, it remains difficult to model the interactions among various factors and the dependencies among prediction outputs at different time steps. In view of this, we propose a transformer-based hierarchical feature guided network (HGNET), which can efficiently extract features of agents and map information from visual and vectorized inputs, modeling multimodal interaction relationships. Second, we design the Feature-Guided Attention (FGAT) module to leverage the potential guiding effects between different prediction targets, thereby improving prediction accuracy. Additionally, to enhance the temporal consistency and causal relationships of the predictions, we propose a Time Series Memory framework to learn the conditional distribution models of the prediction outputs at future time steps from multivariate time series. The results demonstrate that our model exhibits competitive performance, which ranks 3rd in the 2024 Waymo Occupancy and Flow Prediction Challenge.
☆ MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge KDD 2024
The rapid decline in groundwater around the world poses a significant challenge to sustainable agriculture. To address this issue, agricultural managed aquifer recharge (Ag-MAR) is proposed to recharge the aquifer by artificially flooding agricultural lands using surface water. Ag-MAR requires a carefully selected flooding schedule to avoid affecting the oxygen absorption of crop roots. However, current Ag-MAR scheduling does not take into account complex environmental factors such as weather and soil oxygen, resulting in crop damage and insufficient recharging amounts. This paper proposes MARLP, the first end-to-end data-driven control system for Ag-MAR. We first formulate Ag-MAR as an optimization problem. To that end, we analyze four-year in-field datasets, which reveal the multi-periodicity feature of the soil oxygen level trends and the opportunity to use external weather forecasts and flooding proposals as exogenous clues for soil oxygen prediction. Then, we design a two-stage forecasting framework. In the first stage, it extracts both the cross-variate dependency and the periodic patterns from historical data to conduct preliminary forecasting. In the second stage, it uses weather-soil and flooding-soil causality to facilitate an accurate prediction of soil oxygen levels. Finally, we conduct model predictive control (MPC) for Ag-MAR flooding. To address the challenge of large action spaces, we devise a heuristic planning module to reduce the number of flooding proposals to enable the search for optimal solutions. Real-world experiments show that MARLP reduces the oxygen deficit ratio by 86.8% while improving the recharging amount in unit time by 35.8%, compared with the previous four years.
comment: Accepted by KDD 2024
☆ Data on the Move: Traffic-Oriented Data Trading Platform Powered by AI Agent with Common Sense
In the digital era, data has become a pivotal asset, advancing technologies such as autonomous driving. Despite this, data trading faces challenges like the absence of robust pricing methods and the lack of trustworthy trading mechanisms. To address these challenges, we introduce a traffic-oriented data trading platform named Data on The Move (DTM), integrating traffic simulation, data trading, and Artificial Intelligent (AI) agents. The DTM platform supports evident-based data value evaluation and AI-based trading mechanisms. Leveraging the common sense capabilities of Large Language Models (LLMs) to assess traffic state and data value, DTM can determine reasonable traffic data pricing through multi-round interaction and simulations. Moreover, DTM provides a pricing method validation by simulating traffic systems, multi-agent interactions, and the heterogeneity and irrational behaviors of individuals in the trading market. Within the DTM platform, entities such as connected vehicles and traffic light controllers could engage in information collecting, data pricing, trading, and decision-making. Simulation results demonstrate that our proposed AI agent-based pricing approach enhances data trading by offering rational prices, as evidenced by the observed improvement in traffic efficiency. This underscores the effectiveness and practical value of DTM, offering new perspectives for the evolution of data markets and smart cities. To the best of our knowledge, this is the first study employing LLMs in data pricing and a pioneering data trading practice in the field of intelligent vehicles and smart cities.
☆ Exploiting Dependency-Aware Priority Adjustment for Mixed-Criticality TSN Flow Scheduling
Time-Sensitive Networking (TSN) serves as a one-size-fits-all solution for mixed-criticality communication, in which flow scheduling is vital to guarantee real-time transmissions. Traditional approaches statically assign priorities to flows based on their associated applications, resulting in significant queuing delays. In this paper, we observe that assigning different priorities to a flow leads to varying delays due to different shaping mechanisms applied to different flow types. Leveraging this insight, we introduce a new scheduling method in mixed-criticality TSN that incorporates a priority adjustment scheme among diverse flow types to mitigate queuing delays and enhance schedulability. Specifically, we propose dependency-aware priority adjustment algorithms tailored to different link-overlapping conditions. Experiments in various settings validate the effectiveness of the proposed method, which enhances the schedulability by 20.57% compared with the SOTA method.
comment: This paper has been accepted by IWQoS'24
☆ Effective Management of Airport Security Queues with Passenger Reassignment
Airport security queues often suffer from inefficiencies that result in long wait times and decreased throughput, especially at peak departure time, affecting both passengers and airlines. This work addresses the problem of reassigning passengers to specific time slots for crossing security, aiming to mitigate these inefficiencies. We frame this problem as a Minimum Cost Network Flow (MCNF) problem, enabling us to solve it exactly in polynomial time due to its linear programming structure. Our approach redistributes passenger demand across different time intervals. By optimizing the reassignment of passengers to sigma-minute time slots, we achieve significant improvements in throughput and reductions in waiting time. Preliminary results demonstrate the effectiveness of our method in enhancing operational efficiency and passenger satisfaction. The MCNF formulation offers a scalable and adaptable solution, providing long-term benefits for airport security management.
☆ Fleet Size and Spill for UAM Operation under Uncertain Demand
Variation and imbalance in demand poses significant challenges to Urban Air Mobility (UAM) operations, affecting strategic decisions such as fleet sizing. To study the implications of demand variation on UAM fleet operations, we propose a stochastic passenger arrival time generation model that uses real-world data to infer demand distributions, and two integer programs that compute the zero-spill fleet size and the spill-minimizing flight schedules and charging policies, respectively. Our numerical experiment on a two-vertiport network shows that spill in relatively inelastic to fleet size and that the driving factor behind spill is the imbalance in demand.
☆ An Outline of Prognostics and Health Management Large Model: Concepts, Paradigms, and Challenges
Prognosis and Health Management (PHM), critical for ensuring task completion by complex systems and preventing unexpected failures, is widely adopted in aerospace, manufacturing, maritime, rail, energy, etc. However, PHM's development is constrained by bottlenecks like generalization, interpretation and verification abilities. Presently, generative artificial intelligence (AI), represented by Large Model, heralds a technological revolution with the potential to fundamentally reshape traditional technological fields and human production methods. Its capabilities, including strong generalization, reasoning, and generative attributes, present opportunities to address PHM's bottlenecks. To this end, based on a systematic analysis of the current challenges and bottlenecks in PHM, as well as the research status and advantages of Large Model, we propose a novel concept and three progressive paradigms of Prognosis and Health Management Large Model (PHM-LM) through the integration of the Large Model with PHM. Subsequently, we provide feasible technical approaches for PHM-LM to bolster PHM's core capabilities within the framework of the three paradigms. Moreover, to address core issues confronting PHM, we discuss a series of technical challenges of PHM-LM throughout the entire process of construction and application. This comprehensive effort offers a holistic PHM-LM technical framework, and provides avenues for new PHM technologies, methodologies, tools, platforms and applications, which also potentially innovates design, research & development, verification and application mode of PHM. And furthermore, a new generation of PHM with AI will also capably be realized, i.e., from custom to generalized, from discriminative to generative, and from theoretical conditions to practical applications.
☆ Physics-informed Neural Networks for Heterogeneous Poroelastic Media
This study introduces a novel physics-informed neural networks (PINNs) framework designed to model coupled-field problems specifically tailored for heterogeneous poroelastic media. Firstly, a composite neural network is developed where distinct neural networks are dedicated to predicting displacement and pressure variables for each material, employing identical activation functions but trained separately across all other parameters. Secondly, we handle the challenges of heterogeneous material interfaces by the Interface- PINNs (I-PINNs) framework, where different activation functions across any material interface are prescribed to ensure that the discontinuities in solution fields and gradients are accurately captured. We compare the modified PINNs framework with the conventional approach on two one-dimensional benchmark examples for poroelasticity in heterogeneous media. Furthermore, we assess a single neural network architecture, comparing it against the composite neural network proposed in this work. These examples show that the proposed framework demonstrates superior approximation accuracy in both displacements and pressures, and better convergence behavior.
comment: 34 pages, 12 figures, 3 tables
♻ ☆ Physics-Informed AI Inverter
This letter devises an AI-Inverter that pilots the use of a physics-informed neural network (PINN) to enable AI-based electromagnetic transient simulations (EMT) of grid-forming inverters. The contributions are threefold: (1) A PINN-enabled AI-Inverter is formulated; (2) An enhanced learning strategy, balanced-adaptive PINN, is devised; (3) extensive validations and comparative analysis of the accuracy and efficiency of AI-Inverter are made to show its superiority over the classical electromagnetic transient programs (EMTP).
♻ ☆ A Convex Hull Cheapest Insertion Heuristic for the Non-Euclidean TSP
The convex hull cheapest insertion heuristic is known to produce good solutions to the Traveling Salesperson Problem in Euclidean spaces, but it has never been extended to the non-Euclidean problem. This paper proposes an adaptation that uses multidimensional scaling to first project the points from a non-Euclidean space into a Euclidean equivalent space, thereby enabling the generation of a convex hull that initializes the algorithm. To evaluate the proposed algorithm, non-Euclidean spaces are created by adding separators to the Euclidean TSPLIB benchmark data-set, or by using the L1 norm as a metric. This adapted heuristic is demonstrated to outperform the commonly used Nearest Neighbor heuristic and Nearest Insertion heuristic in 88% and 99% of the cases studied, respectively. When compared with metaheuristic algorithms, the proposed heuristic's tour costs are lower than the solutions found by the genetic algorithm and ant colony optimization algorithm in 87% and 95% of the instances, respectively.
comment: Manuscript submitted 27 January 2024 to the Operations Research Letters
♻ ☆ Quadratic Programming-based Reference Spreading Control for Dual-Arm Robotic Manipulation with Planned Simultaneous Impacts
With the aim of further enabling the exploitation of intentional impacts in robotic manipulation, a control framework is presented that directly tackles the challenges posed by tracking control of robotic manipulators that are tasked to perform nominally simultaneous impacts. This framework is an extension of the reference spreading control framework, in which overlapping ante- and post-impact references that are consistent with impact dynamics are defined. In this work, such a reference is constructed starting from a teleoperation-based approach. By using the corresponding ante- and post-impact control modes in the scope of a quadratic programming control approach, peaking of the velocity error and control inputs due to impacts is avoided while maintaining high tracking performance. With the inclusion of a novel interim mode, we aim to also avoid input peaks and steps when uncertainty in the environment causes a series of unplanned single impacts to occur rather than the planned simultaneous impact. This work in particular presents for the first time an experimental evaluation of reference spreading control on a robotic setup, showcasing its robustness against uncertainty in the environment compared to three baseline control approaches.
comment: 14 pages, 11 figures. Accepted for publication in IEEE Transactions on Robotics (T-RO) in June, 2024
♻ ☆ Turbidity Control in Sedimentation Columns by Direction Dependent Models
Sedimentation is a crucial phenomenon in recovering water from slurries by separating solid-liquid. Thickeners and sedimentation columns are equipments widely used in the process industry to reclaim water from process slurries. This contribution addresses the problem of controlling the turbidity of the recovered water in a sedimentation column by manipulating the underflow. The phenomenological model describing the turbidity is too complex to be used in a control strategy, and it is difficult to identify its parameters using plant measurements. This work proposes an empirical piece-wise time-delay model for modeling the turbidity at the top of the column to circumvent these problems. A systematic design procedure is developed to tune a Proportional Integral controller guaranteeing closed-loop stability for systems modeled as a piece-wise time delay model. Experiments in a pilot plant validate the theoretical results and illustrate the control performance under various operational scenarios.
♻ ☆ Structure-Preserving Discretization and Model Order Reduction of Boundary-Controlled 1D Port-Hamiltonian Systems
This paper presents a systematic methodology for the discretization and reduction of a class of one-dimensional Partial Differential Equations (PDEs) with inputs and outputs collocated at the spatial boundaries. The class of system that we consider is known as Boundary-Controlled Port-Hamiltonian Systems (BC-PHSs) and covers a wide class of Hyperbolic PDEs with a large type of boundary inputs and outputs. This is, for instance, the case of waves and beams with Neumann, Dirichlet, or mixed boundary conditions. Based on a Partitioned Finite Element Method (PFEM), we develop a numerical scheme for the structure-preserving spatial discretization for the class of one-dimensional BC-PHSs. We show that if the initial PDE is passive (or impedance energy preserving), the discretized model also is. In addition and since the discretized model or Full Order Model (FOM) can be of large dimension, we recall the standard Loewner framework for the Model Order Reduction (MOR) using frequency domain interpolation. We recall the main steps to produce a Reduced Order Model (ROM) that approaches the FOM in a given range of frequencies. We summarize the steps to follow in order to obtain a ROM that preserves the passive structure as well. Finally, we provide a constructive way to build a projector that allows to recover the physical meaning of the state variables from the ROM to the FOM. We use the one-dimensional wave equation and the Timoshenko beam as examples to show the versatility of the proposed approach.
♻ ☆ A General Verification Framework for Dynamical and Control Models via Certificate Synthesis
An emerging branch of control theory specialises in certificate learning, concerning the specification of a desired (possibly complex) system behaviour for an autonomous or control model, which is then analytically verified by means of a function-based proof. However, the synthesis of controllers abiding by these complex requirements is in general a non-trivial task and may elude the most expert control engineers. This results in a need for automatic techniques that are able to design controllers and to analyse a wide range of elaborate specifications. In this paper, we provide a general framework to encode system specifications and define corresponding certificates, and we present an automated approach to formally synthesise controllers and certificates. Our approach contributes to the broad field of safe learning for control, exploiting the flexibility of neural networks to provide candidate control and certificate functions, whilst using SMT-solvers to offer a formal guarantee of correctness. We test our framework by developing a prototype software tool, and assess its efficacy at verification via control and certificate synthesis over a large and varied suite of benchmarks.
♻ ☆ Unambiguous Interpretation of IEC 60848 GRAFCET based on a Literature Review
IEC 60848 GRAFCET is a standardized, graphical specification language for control functions. Because of the semiformal nature of IEC 60848, the details of specifications created with GRAFCET can be interpreted in different ways, possibly leading to faulty implementations. These ambiguities have been partially addressed in existing literature, but solved in different manners. Based on a literature review, this work aims at providing an overview of existing interpretations and, based on that, proposes a comprehensive interpretation algorithm for IEC 60848, which takes all relevant ambiguities from the literature review into account.
comment: \c{opyright} 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Saturation-Informed Current-Limiting Control for Grid-Forming Converters
In this paper, we investigate the transient stability of a state-of-the-art grid-forming complex-droop control (i.e., dispatchable virtual oscillator control, dVOC) under current saturation. We quantify the saturation level of a converter by introducing the concept of degree of saturation (DoS), and we propose a provably stable current-limiting control with saturation-informed feedback, which feeds the degree of saturation back to the inner voltage-control loop and the outer grid-forming loop. As a result, although the output current is saturated, the voltage phase angle can still be generated from an internal virtual voltage-source node that is governed by an equivalent complex-droop control. We prove that the proposed control achieves transient stability during current saturation under grid faults. We also provide parametric stability conditions for multi-converter systems under grid-connected and islanded scenarios. The stability performance of the current-limiting control is validated with various case studies.
♻ ☆ Complex-Frequency Synchronization of Converter-Based Power Systems
In this paper, we study phase-amplitude multivariable dynamics in converter-based power systems from a complex-frequency perspective. Complex frequency represents the rate of change of voltage amplitude and phase angle by its real and imaginary parts, respectively. This emerging notion is of significance as it accommodates the multivariable characteristics of power networks where active and reactive power are inherently coupled with both voltage amplitude and phase. We propose the notion of complex-frequency synchronization to study the phase-amplitude multivariable stability issue in a power system with dispatchable virtual oscillator-controlled (dVOC) converters. To achieve this, we separate the system into linear fast dynamics and approximately linear slow dynamics. The linearity property makes it tractable to analyze fast complex-frequency synchronization and slower voltage stabilization. From the perspective of complex frequency and complex-frequency synchronization, we provide novel insights into the equivalence of dVOC and complex-power-frequency droop control, stability analysis methods, and stability criteria. Our study offers a practical solution to address challenging stability issues in converter-based power systems.
♻ ☆ Unifying Safety Approaches for Stochastic Systems: From Barrier Functions to Uncertain Abstractions via Dynamic Programming
Providing safety guarantees for stochastic dynamical systems has become a central problem in many fields, including control theory, machine learning, and robotics. Existing methods either employ Stochastic Barrier Functions (SBFs) or rely on numerical approaches based on abstractions. While SBFs are analogous to Lyapunov functions to prove (probabilistic) set invariance, abstraction-based approaches approximate the stochastic system into a finite model for the computation of safety probability bounds. In this paper, we offer a new perspective on these seemingly different methods. We show that both these approaches arise as approximations of a stochastic dynamic programming problem. Such a new and unifying perspective allows us to formally show the correctness of both approaches, characterize their convergence and optimality properties, and examine advantages and disadvantages of each. Our analysis reveals that abstraction-based methods can provide more accurate certificates of safety, but generally at a higher computational cost. We conclude the article with a discussion that highlights possible future directions.
comment: Submitted to IEEE Transaction on Automatic Control
♻ ☆ Real-Time Kinematics-Based Sensor-Fault Detection for Autonomous Vehicles Using Single and Double Transport with Adaptive Numerical Differentiation
Sensor-fault detection is crucial for the safe operation of autonomous vehicles. This paper introduces a novel kinematics-based approach for detecting and identifying faulty sensors, which is model-independent, rule-free, and applicable to ground and aerial vehicles. This method, called kinematics-based sensor fault detection (KSFD), relies on kinematic relations, sensor measurements, and real-time single and double numerical differentiation. Using onboard data from radar, rate gyros, magnetometers, and accelerometers, KSFD uniquely identifies a single faulty sensor in real time. To achieve this, adaptive input and state estimation (AISE) is used for real-time single and double numerical differentiation of the sensor data, and the single and double transport theorems are used to evaluate the consistency of data. Unlike model-based and knowledge-based methods, KSFD relies solely on sensor signals, kinematic relations, and AISE for real-time numerical differentiation. For ground vehicles, KSFD requires six kinematics-based error metrics, whereas, for aerial vehicles, nine error metrics are used. Simulated and experimental examples are provided to evaluate the effectiveness of KSFD.
comment: 30 pages, 29 figures, submitted to Control Engineering Practice
♻ ☆ Multi-Objective Complementary Control
This paper proposes a novel multi-objective control framework for linear time-invariant systems in which performance and robustness can be achieved in a complementary way instead of trade-off. In particular, a state-space solution is first established for a new stabilizing control structure consisting of two independently designed controllers coordinated with a Youla-type operator ${\bm Q}$. It is then shown by performance analysis that these two independently designed controllers operate in a naturally complementary way for a tracking control system, due to the coordination function of ${\bm Q}$ driven by the residual signal of a Luenberger observer. Moreover, it is pointed out that ${\bm Q}$ could be further optimized with an additional gain factor to achieve improved performance, through a data-driven methodology for a measured cost function.
Robotics 18
☆ Ego-to-Exo: Interfacing Third Person Visuals from Egocentric Views in Real-time for Improved ROV Teleoperation
Underwater ROVs (Remotely Operated Vehicles) are unmanned submersible vehicles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator's ability to maneuver and navigate the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that (i) offers on-demand "third"-person (exocentric) visuals from past egocentric views, and (ii) facilitates enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in underwater telerobotics.
comment: V1, 8 pages
☆ Emergent Crowd Grouping via Heuristic Self-Organization
Modeling crowds has many important applications in games and computer animation. Inspired by the emergent following effect in real-life crowd scenarios, in this work, we develop a method for implicitly grouping moving agents. We achieve this by analyzing local information around each agent and rotating its preferred velocity accordingly. Each agent could automatically form an implicit group with its neighboring agents that have similar directions. In contrast to an explicit group, there are no strict boundaries for an implicit group. If an agent's direction deviates from its group as a result of positional changes, it will autonomously exit the group or join another implicitly formed neighboring group. This implicit grouping is autonomously emergent among agents rather than deliberately controlled by the algorithm. The proposed method is compared with many crowd simulation models, and the experimental results indicate that our approach achieves the lowest congestion levels in some classic scenarios. In addition, we demonstrate that adjusting the preferred velocity of agents can actually reduce the dissimilarity between their actual velocity and the original preferred velocity. Our work is available online.
☆ A Fast Online Omnidirectional Quadrupedal Jumping Framework Via Virtual-Model Control and Minimum Jerk Trajectory Generation IROS2024
Exploring the limits of quadruped robot agility, particularly in the context of rapid and real-time planning and execution of omnidirectional jump trajectories, presents significant challenges due to the complex dynamics involved, especially when considering significant impulse contacts. This paper introduces a new framework to enable fast, omnidirectional jumping capabilities for quadruped robots. Utilizing minimum jerk technology, the proposed framework efficiently generates jump trajectories that exploit its analytical solutions, ensuring numerical stability and dynamic compatibility with minimal computational resources. The virtual model control is employed to formulate a Quadratic Programming (QP) optimization problem to accurately track the Center of Mass (CoM) trajectories during the jump phase. The whole-body control strategies facilitate precise and compliant landing motion. Moreover, the different jumping phase is triggered by time-schedule. The framework's efficacy is demonstrated through its implementation on an enhanced version of the open-source Mini Cheetah robot. Omnidirectional jumps-including forward, backward, and other directional-were successfully executed, showcasing the robot's capability to perform rapid and consecutive jumps with an average trajectory generation and tracking solution time of merely 50 microseconds.
comment: IROS2024 paper,7 pages,8 figures
☆ CAMON: Cooperative Agents for Multi-Object Navigation with LLM-based Conversations
Visual navigation tasks are critical for household service robots. As these tasks become increasingly complex, effective communication and collaboration among multiple robots become imperative to ensure successful completion. In recent years, large language models (LLMs) have exhibited remarkable comprehension and planning abilities in the context of embodied agents. However, their application in household scenarios, specifically in the use of multiple agents collaborating to complete complex navigation tasks through communication, remains unexplored. Therefore, this paper proposes a framework for decentralized multi-agent navigation, leveraging LLM-enabled communication and collaboration. By designing the communication-triggered dynamic leadership organization structure, we achieve faster team consensus with fewer communication instances, leading to better navigation effectiveness and collaborative exploration efficiency. With the proposed novel communication scheme, our framework promises to be conflict-free and robust in multi-object navigation tasks, even when there is a surge in team size.
comment: Accepted to the RSS 2024 Workshop: GROUND
☆ DADEE: Well-calibrated uncertainty quantification in neural networks for barriers-based robot safety
Uncertainty-aware controllers that guarantee safety are critical for safety critical applications. Among such controllers, Control Barrier Functions (CBFs) based approaches are popular because they are fast, yet safe. However, most such works depend on Gaussian Processes (GPs) or MC-Dropout for learning and uncertainty estimation, and both approaches come with drawbacks: GPs are non-parametric methods that are slow, while MC-Dropout does not capture aleatoric uncertainty. On the other hand, modern Bayesian learning algorithms have shown promise in uncertainty quantification. The application of modern Bayesian learning methods to CBF-based controllers has not yet been studied. We aim to fill this gap by surveying uncertainty quantification algorithms and evaluating them on CBF-based safe controllers. We find that model variance-based algorithms (for example, Deep ensembles, MC-dropout, etc.) and direct estimation-based algorithms (such as DEUP) have complementary strengths. Algorithms in the former category can only estimate uncertainty accurately out-of-domain, while those in the latter category can only do so in-domain. We combine the two approaches to obtain more accurate uncertainty estimates both in- and out-of-domain. As measured by the failure rate of a simulated robot, this results in a safer CBF-based robot controller.
☆ Learning Granularity-Aware Affordances from Human-Object Interaction for Tool-Based Functional Grasping in Dexterous Robotics
To enable robots to use tools, the initial step is teaching robots to employ dexterous gestures for touching specific areas precisely where tasks are performed. Affordance features of objects serve as a bridge in the functional interaction between agents and objects. However, leveraging these affordance cues to help robots achieve functional tool grasping remains unresolved. To address this, we propose a granularity-aware affordance feature extraction method for locating functional affordance areas and predicting dexterous coarse gestures. We study the intrinsic mechanisms of human tool use. On one hand, we use fine-grained affordance features of object-functional finger contact areas to locate functional affordance regions. On the other hand, we use highly activated coarse-grained affordance features in hand-object interaction regions to predict grasp gestures. Additionally, we introduce a model-based post-processing module that includes functional finger coordinate localization, finger-to-end coordinate transformation, and force feedback-based coarse-to-fine grasping. This forms a complete dexterous robotic functional grasping framework GAAF-Dex, which learns Granularity-Aware Affordances from human-object interaction for tool-based Functional grasping in Dexterous Robotics. Unlike fully-supervised methods that require extensive data annotation, we employ a weakly supervised approach to extract relevant cues from exocentric (Exo) images of hand-object interactions to supervise feature extraction in egocentric (Ego) images. We have constructed a small-scale dataset, FAH, which includes near 6K images of functional hand-object interaction Exo- and Ego images of 18 commonly used tools performing 6 tasks. Extensive experiments on the dataset demonstrate our method outperforms state-of-the-art methods. The code will be made publicly available at https://github.com/yangfan293/GAAF-DEX.
comment: The source code and the established dataset will be made publicly available at https://github.com/yangfan293/GAAF-DEX
UniQuad: A Unified and Versatile Quadrotor Platform Series for UAV Research and Application ICRA
As quadrotors take on an increasingly diverse range of roles, researchers often need to develop new hardware platforms tailored for specific tasks, introducing significant engineering overhead. In this article, we introduce the UniQuad series, a unified and versatile quadrotor platform series that offers high flexibility to adapt to a wide range of common tasks, excellent customizability for advanced demands, and easy maintenance in case of crashes. This project is fully open-source at https://hkust-aerial-robotics.github.io/UniQuad.
comment: Submitted to 40th Anniversary of the IEEE Conference on Robotics and Automation (ICRA-X40)
FALCON: Fast Autonomous Aerial Exploration using Coverage Path Guidance
This paper introduces FALCON, a novel Fast Autonomous expLoration framework using COverage path guidaNce, which aims at setting a new performance benchmark in the field of autonomous aerial exploration. Despite recent advancements in the domain, existing exploration planners often suffer from inefficiencies such as frequent revisitations of previously explored regions. FALCON effectively harnesses the full potential of online generated coverage paths in enhancing exploration efficiency. The framework begins with an incremental connectivity-aware space decomposition and connectivity graph construction, which facilitate efficient coverage path planning. Subsequently, a hierarchical planner generates a coverage path spanning the entire unexplored space, serving as a global guidance. Then, a local planner optimizes the frontier visitation order, minimizing traversal time while consciously incorporating the intention of the global guidance. Finally, minimum-time smooth and safe trajectories are produced to visit the frontier viewpoints. For fair and comprehensive benchmark experiments, we introduce a lightweight exploration planner evaluation environment that allows for comparing exploration planners across a variety of testing scenarios using an identical quadrotor simulator. Additionally, a VECO criteria is proposed for an in-depth analysis of FALCON's significant performance in comparison with the state-of-the-art exploration planners. Extensive ablation studies demonstrate the effectiveness of each component in the proposed framework. Real-world experiments conducted fully onboard further validate FALCON's practical capability in complex and challenging environments. The source code of both the exploration planner FALCON and the exploration planner evaluation environment will be released to benefit the community.
☆ An abstract theory of sensor eventification
Unlike traditional cameras, event cameras measure changes in light intensity and report differences. This paper examines the conditions necessary for other traditional sensors to admit eventified versions that provide adequate information despite outputting only changes. The requirements depend upon the regularity of the signal space, which we show may depend on several factors including structure arising from the interplay of the robot and its environment, the input-output computation needed to achieve its task, as well as the specific mode of access (synchronous, asynchronous, polled, triggered). Further, there are additional properties of stability (or non-oscillatory behavior) that can be desirable for a system to possess and that we show are also closely related to the preceding notions. This paper contributes theory and algorithms (plus a hardness result) that addresses these considerations while developing several elementary robot examples along the way.
comment: 21 pages, 14 figures
♻ ☆ A Survey of Optimization-based Task and Motion Planning: From Classical To Learning Approaches
Task and Motion Planning (TAMP) integrates high-level task planning and low-level motion planning to equip robots with the autonomy to effectively reason over long-horizon, dynamic tasks. Optimization-based TAMP focuses on hybrid optimization approaches that define goal conditions via objective functions and are capable of handling open-ended goals, robotic dynamics, and physical interaction between the robot and the environment. Therefore, optimization-based TAMP is particularly suited to solve highly complex, contact-rich locomotion and manipulation problems. This survey provides a comprehensive review on optimization-based TAMP, covering (i) planning domain representations, including action description languages and temporal logic, (ii) individual solution strategies for components of TAMP, including AI planning and trajectory optimization (TO), and (iii) the dynamic interplay between logic-based task planning and model-based TO. A particular focus of this survey is to highlight the algorithm structures to efficiently solve TAMP, especially hierarchical and distributed approaches. Additionally, the survey emphasizes the synergy between the classical methods and contemporary learning-based innovations such as large language models. Furthermore, the future research directions for TAMP is discussed in this survey, highlighting both algorithmic and application-specific challenges.
comment: 26 pages, 13 figures, submitted for review
♻ ☆ Outlier-Robust Geometric Perception: A Novel Thresholding-Based Estimator with Intra-Class Variance Maximization
Geometric perception problems are fundamental tasks in robotics and computer vision. In real-world applications, they often encounter the inevitable issue of outliers, preventing traditional algorithms from making correct estimates. In this paper, we present a novel general-purpose robust estimator TIVM (Thresholding with Intra-class Variance Maximization) that can collaborate with standard non-minimal solvers to efficiently reject outliers for geometric perception problems. First, we introduce the technique of intra-class variance maximization to design a dynamic 2-group thresholding method on the measurement residuals, aiming to distinctively separate inliers from outliers. Then, we develop an iterative framework that robustly optimizes the model by approaching the pure-inlier group using a multi-layered dynamic thresholding strategy as subroutine, in which a self-adaptive mechanism for layer-number tuning is further employed to minimize the user-defined parameters. We validate the proposed estimator on 3 classic geometric perception problems: rotation averaging, point cloud registration and category-level perception, and experiments show that it is robust against 70--90\% of outliers and can converge typically in only 3--15 iterations, much faster than state-of-the-art robust solvers such as RANSAC, GNC and ADAPT. Furthermore, another highlight is that: our estimator can retain approximately the same level of robustness even when the inlier-noise statistics of the problem are fully unknown.
♻ ☆ RoboGPT: an intelligent agent of making embodied long-term decisions for daily instruction tasks
Robotic agents must master common sense and long-term sequential decisions to solve daily tasks through natural language instruction. The developments in Large Language Models (LLMs) in natural language processing have inspired efforts to use LLMs in complex robot planning. Despite LLMs' great generalization and comprehension of instruction tasks, LLMs-generated task plans sometimes lack feasibility and correctness. To address the problem, we propose a RoboGPT agent\footnote{our code and dataset will be released soon} for making embodied long-term decisions for daily tasks, with two modules: 1) LLMs-based planning with re-plan to break the task into multiple sub-goals; 2) RoboSkill individually designed for sub-goals to learn better navigation and manipulation skills. The LLMs-based planning is enhanced with a new robotic dataset and re-plan, called RoboGPT. The new robotic dataset of 67k daily instruction tasks is gathered for fine-tuning the Llama model and obtaining RoboGPT. RoboGPT planner with strong generalization can plan hundreds of daily instruction tasks. Additionally, a low-computational Re-Plan module is designed to allow plans to flexibly adapt to the environment, thereby addressing the nomenclature diversity challenge. The proposed RoboGPT agent outperforms SOTA methods on the ALFRED daily tasks. Moreover, RoboGPT planner exceeds SOTA LLM-based planners like ChatGPT in task-planning rationality for hundreds of unseen daily tasks, and even other domain tasks, while keeping the large model's original broad application and generality.
♻ ☆ Human-Robot Interaction Conversational User Enjoyment Scale (HRI CUES)
Understanding user enjoyment is crucial in human-robot interaction (HRI), as it can impact interaction quality and influence user acceptance and long-term engagement with robots, particularly in the context of conversations with social robots. However, current assessment methods rely solely on self-reported questionnaires, failing to capture interaction dynamics. This work introduces the Human-Robot Interaction Conversational User Enjoyment Scale (HRI CUES), a novel scale for assessing user enjoyment from an external perspective during conversations with a robot. Developed through rigorous evaluations and discussions of three annotators with relevant expertise, the scale provides a structured framework for assessing enjoyment in each conversation exchange (turn) alongside overall interaction levels. It aims to complement self-reported enjoyment from users and holds the potential for autonomously identifying user enjoyment in real-time HRI. The scale was validated on 25 older adults' open-domain dialogue with a companion robot that was powered by a large language model for conversations, corresponding to 174 minutes of data, showing moderate to good alignment. The dataset is available online. Additionally, the study offers insights into understanding the nuances and challenges of assessing user enjoyment in robot interactions, and provides guidelines on applying the scale to other domains.
comment: Under review at Transactions on Affective Computing. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
♻ ☆ NaVid: Video-based VLM Plans the Next Step for Vision-and-Language Navigation
Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
comment: Accepted by Robotics: Science and Systems (RSS 2024)
♻ ☆ DAG-Plan: Generating Directed Acyclic Dependency Graphs for Dual-Arm Cooperative Planning
Dual-arm robots offer enhanced versatility and efficiency over single-arm counterparts by enabling concurrent manipulation of multiple objects or cooperative execution of tasks using both arms. However, effectively coordinating the two arms for complex long-horizon tasks remains a significant challenge. Existing task planning methods predominantly focus on single-arm robots or rely on predefined bimanual operations, failing to fully leverage the capabilities of dual-arm systems. To address this limitation, we introduce DAG-Plan, a structured task planning framework tailored for dual-arm robots. DAG-Plan harnesses large language models (LLMs) to decompose intricate tasks into actionable sub-tasks represented as nodes within a directed acyclic graph (DAG). Critically, DAG-Plan dynamically assigns these sub-tasks to the appropriate arm based on real-time environmental observations, enabling parallel and adaptive execution. We evaluate DAG-Plan on the novel Dual-Arm Kitchen Benchmark, comprising 9 sequential tasks with 78 sub-tasks and 26 objects. Extensive experiments demonstrate the superiority of DAG-Plan over directly using LLM to generate plans, achieving nearly 50% higher efficiency compared to the single-arm task planning baseline and nearly double the success rate of the dual-arm task planning baseline.
comment: 46 pages, 13 figures
♻ ☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential to revolutionize applications in zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on six publicly available datasets across different domains and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Meanwhile, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvements in segmentation performance and annotation time savings over manual approaches.
♻ ☆ IDLS: Inverse Depth Line based Visual-Inertial SLAM
For robust visual-inertial SLAM in perceptually-challenging indoor environments,recent studies exploit line features to extract descriptive information about scene structure to deal with the degeneracy of point features. But existing point-line-based SLAM methods mainly use Pl\"ucker matrix or orthogonal representation to represent a line, which needs to calculate at least four variables to determine a line. Given the numerous line features to determine in each frame, the overly flexible line representation increases the computation burden and comprises the accuracy of the results. In this paper, we propose inverse depth representation for a line, which models each extracted line feature using only two variables, i.e., the inverse depths of the two ending points. It exploits the fact that the projected line's pixel coordinates on the image plane are rather accurate, which partially restrict the line. Using this compact line presentation, Inverse Depth Line SLAM (IDLS) is proposed to track the line features in SLAM in an accurate and efficient way. A robust line triangulation method and a novel line re-projection error model are introduced. And a two-step optimization method is proposed to firstly determine the lines and then to estimate the camera poses in each frame. IDLS is extensively evaluated in multiple perceptually-challenging datasets. The results show it is more accurate, robust, and needs lower computational overhead than the current state-of-the-art of point-line-based SLAM methods.
♻ ☆ Autonomous Control of a Novel Closed Chain Five Bar Active Suspension via Deep Reinforcement Learning
Planetary exploration requires traversal in environments with rugged terrains. In addition, Mars rovers and other planetary exploration robots often carry sensitive scientific experiments and components onboard, which must be protected from mechanical harm. This paper deals with an active suspension system focused on chassis stabilisation and an efficient traversal method while encountering unavoidable obstacles. Soft Actor-Critic (SAC) was applied along with Proportional Integral Derivative (PID) control to stabilise the chassis and traverse large obstacles at low speeds. The model uses the rover's distance from surrounding obstacles, the height of the obstacle, and the chassis' orientation to actuate the control links of the suspension accurately. Simulations carried out in the Gazebo environment are used to validate the proposed active system.
comment: 15 pages, 11 figures
Vision 23
♻ ☆ Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions
We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering discrete distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general maximum a posteriori (MAP) perspective of clustering distributions, emphasizing that the statistical models underlying the existing distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring data conformity within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates various parametric densities for modeling simplex data and enables the control of the cluster-balance bias. This yields highly competitive performances for the unsupervised adjustment of black-box model predictions in various scenarios. Our code and comparisons with the existing simplex-clustering approaches and our introduced softmax-prediction benchmarks are publicly available: https://github.com/fchiaroni/Clustering_Softmax_Predictions.
♻ ☆ A Linear Time and Space Local Point Cloud Geometry Encoder via Vectorized Kernel Mixture (VecKM) ICML2024
We propose VecKM, a local point cloud geometry encoder that is descriptive and efficient to compute. VecKM leverages a unique approach by vectorizing a kernel mixture to represent the local point cloud. Such representation's descriptiveness is supported by two theorems that validate its ability to reconstruct and preserve the similarity of the local shape. Unlike existing encoders downsampling the local point cloud, VecKM constructs the local geometry encoding using all neighboring points, producing a more descriptive encoding. Moreover, VecKM is efficient to compute and scalable to large point cloud inputs: VecKM reduces the memory cost from $(n^2+nKd)$ to $(nd+np)$; and reduces the major runtime cost from computing $nK$ MLPs to $n$ MLPs, where $n$ is the size of the point cloud, $K$ is the neighborhood size, $d$ is the encoding dimension, and $p$ is a marginal factor. The efficiency is due to VecKM's unique factorizable property that eliminates the need of explicitly grouping points into neighbors. In the normal estimation task, VecKM demonstrates not only 100x faster inference speed but also highest accuracy and strongest robustness. In classification and segmentation tasks, integrating VecKM as a preprocessing module achieves consistently better performance than the PointNet, PointNet++, and point transformer baselines, and runs consistently faster by up to 10 times.
comment: ICML2024 Conference Paper
InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds
While novel view synthesis (NVS) from a sparse set of images has advanced significantly in 3D computer vision, it relies on precise initial estimation of camera parameters using Structure-from-Motion (SfM). For instance, the recently developed Gaussian Splatting depends heavily on the accuracy of SfM-derived points and poses. However, SfM processes are time-consuming and often prove unreliable in sparse-view scenarios, where matched features are scarce, leading to accumulated errors and limited generalization capability across datasets. In this study, we introduce a novel and efficient framework to enhance robust NVS from sparse-view images. Our framework, InstantSplat, integrates multi-view stereo(MVS) predictions with point-based representations to construct 3D Gaussians of large-scale scenes from sparse-view data within seconds, addressing the aforementioned performance and efficiency issues by SfM. Specifically, InstantSplat generates densely populated surface points across all training views and determines the initial camera parameters using pixel-alignment. Nonetheless, the MVS points are not globally accurate, and the pixel-wise prediction from all views results in an excessive Gaussian number, yielding a overparameterized scene representation that compromises both training speed and accuracy. To address this issue, we employ a grid-based, confidence-aware Farthest Point Sampling to strategically position point primitives at representative locations in parallel. Next, we enhance pose accuracy and tune scene parameters through a gradient-based joint optimization framework from self-supervision. By employing this simplified framework, InstantSplat achieves a substantial reduction in training time, from hours to mere seconds, and demonstrates robust performance across various numbers of views in diverse datasets.
comment: Project Page: https://instantsplat.github.io/
♻ ☆ Inconsistency-Aware Cross-Attention for Audio-Visual Fusion in Dimensional Emotion Recognition
Leveraging complementary relationships across modalities has recently drawn a lot of attention in multimodal emotion recognition. Most of the existing approaches explored cross-attention to capture the complementary relationships across the modalities. However, the modalities may also exhibit weak complementary relationships, which may deteriorate the cross-attended features, resulting in poor multimodal feature representations. To address this problem, we propose Inconsistency-Aware Cross-Attention (IACA), which can adaptively select the most relevant features on-the-fly based on the strong or weak complementary relationships across audio and visual modalities. Specifically, we design a two-stage gating mechanism that can adaptively select the appropriate relevant features to deal with weak complementary relationships. Extensive experiments are conducted on the challenging Aff-Wild2 dataset to show the robustness of the proposed model.
comment: arXiv admin note: substantial text overlap with arXiv:2403.19554
♻ ☆ Vox-UDA: Voxel-wise Unsupervised Domain Adaptation for Cryo-Electron Subtomogram Segmentation with Denoised Pseudo Labeling
Cryo-Electron Tomography (cryo-ET) is a 3D imaging technology facilitating the study of macromolecular structures at near-atomic resolution. Recent volumetric segmentation approaches on cryo-ET images have drawn widespread interest in biological sector. However, existing methods heavily rely on manually labeled data, which requires highly professional skills, thereby hindering the adoption of fully-supervised approaches for cryo-ET images. Some unsupervised domain adaptation (UDA) approaches have been designed to enhance the segmentation network performance using unlabeled data. However, applying these methods directly to cryo-ET images segmentation tasks remains challenging due to two main issues: 1) the source data, usually obtained through simulation, contain a certain level of noise, while the target data, directly collected from raw-data from real-world scenario, have unpredictable noise levels. 2) the source data used for training typically consists of known macromoleculars, while the target domain data are often unknown, causing the model's segmenter to be biased towards these known macromolecules, leading to a domain shift problem. To address these challenges, in this work, we introduce the first voxel-wise unsupervised domain adaptation approach, termed Vox-UDA, specifically for cryo-ET subtomogram segmentation. Vox-UDA incorporates a noise generation module to simulate target-like noises in the source dataset for cross-noise level adaptation. Additionally, we propose a denoised pseudo-labeling strategy based on improved Bilateral Filter to alleviate the domain shift problem. Experimental results on both simulated and real cryo-ET subtomogram datasets demonstrate the superiority of our proposed approach compared to state-of-the-art UDA methods.
comment: 11 pages
♻ ☆ Common and Rare Fundus Diseases Identification Using Vision-Language Foundation Model with Knowledge of Over 400 Diseases
Previous foundation models for retinal images were pre-trained with limited disease categories and knowledge base. Here we introduce RetiZero, a vision-language foundation model that leverages knowledge from over 400 fundus diseases. To RetiZero's pre-training, we compiled 341,896 fundus images paired with text descriptions, sourced from public datasets, ophthalmic literature, and online resources, encompassing a diverse range of diseases across multiple ethnicities and countries. RetiZero exhibits superior performance in several downstream tasks, including zero-shot disease recognition, image-to-image retrieval, and internal- and cross-domain disease identification. In zero-shot scenarios, RetiZero achieves Top5 accuracy scores of 0.8430 for 15 fundus diseases and 0.7561 for 52 fundus diseases. For image retrieval, it achieves Top5 scores of 0.9500 and 0.8860 for the same disease sets, respectively. Clinical evaluations show that RetiZero's Top3 zero-shot performance surpasses the average of 19 ophthalmologists from Singapore, China and the United States. Furthermore, RetiZero significantly enhances clinicians' accuracy in diagnosing fundus disease. These findings underscore the value of integrating the RetiZero foundation model into clinical settings, where a variety of fundus diseases are encountered.
♻ ☆ Outlier-Robust Geometric Perception: A Novel Thresholding-Based Estimator with Intra-Class Variance Maximization
Geometric perception problems are fundamental tasks in robotics and computer vision. In real-world applications, they often encounter the inevitable issue of outliers, preventing traditional algorithms from making correct estimates. In this paper, we present a novel general-purpose robust estimator TIVM (Thresholding with Intra-class Variance Maximization) that can collaborate with standard non-minimal solvers to efficiently reject outliers for geometric perception problems. First, we introduce the technique of intra-class variance maximization to design a dynamic 2-group thresholding method on the measurement residuals, aiming to distinctively separate inliers from outliers. Then, we develop an iterative framework that robustly optimizes the model by approaching the pure-inlier group using a multi-layered dynamic thresholding strategy as subroutine, in which a self-adaptive mechanism for layer-number tuning is further employed to minimize the user-defined parameters. We validate the proposed estimator on 3 classic geometric perception problems: rotation averaging, point cloud registration and category-level perception, and experiments show that it is robust against 70--90\% of outliers and can converge typically in only 3--15 iterations, much faster than state-of-the-art robust solvers such as RANSAC, GNC and ADAPT. Furthermore, another highlight is that: our estimator can retain approximately the same level of robustness even when the inlier-noise statistics of the problem are fully unknown.
♻ ☆ Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors
This paper presents RADAR-Robust Adversarial Detection via Adversarial Retraining-an approach designed to enhance the robustness of adversarial detectors against adaptive attacks, while maintaining classifier performance. An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly. Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy. During the training phase, we integrate into the dataset adversarial examples, which were optimized to fool both the classifier and the adversarial detector, enabling the adversarial detector to learn and adapt to potential attack scenarios. Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks -- without sacrificing clean accuracy.
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: draftcls option
♻ ☆ ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation
Diffusion transformers (DiTs) have exhibited remarkable performance in visual generation tasks, such as generating realistic images or videos based on textual instructions. However, larger model sizes and multi-frame processing for video generation lead to increased computational and memory costs, posing challenges for practical deployment on edge devices. Post-Training Quantization (PTQ) is an effective method for reducing memory costs and computational complexity. When quantizing diffusion transformers, we find that applying existing diffusion quantization methods designed for U-Net faces challenges in preserving quality. After analyzing the major challenges for quantizing diffusion transformers, we design an improved quantization scheme: "ViDiT-Q": Video and Image Diffusion Transformer Quantization) to address these issues. Furthermore, we identify highly sensitive layers and timesteps hinder quantization for lower bit-widths. To tackle this, we improve ViDiT-Q with a novel metric-decoupled mixed-precision quantization method (ViDiT-Q-MP). We validate the effectiveness of ViDiT-Q across a variety of text-to-image and video models. While baseline quantization methods fail at W8A8 and produce unreadable content at W4A8, ViDiT-Q achieves lossless W8A8 quantization. ViDiTQ-MP achieves W4A8 with negligible visual quality degradation, resulting in a 2.5x memory optimization and a 1.5x latency speedup.
comment: Project Page: https://a-suozhang.xyz/viditq.github.io/
♻ ☆ Learning to Adapt Foundation Model DINOv2 for Capsule Endoscopy Diagnosis
Foundation models have become prominent in computer vision, achieving notable success in various tasks. However, their effectiveness largely depends on pre-training with extensive datasets. Applying foundation models directly to small datasets of capsule endoscopy images from scratch is challenging. Pre-training on broad, general vision datasets is crucial for successfully fine-tuning our model for specific tasks. In this work, we introduce a simplified approach called Adapt foundation models with a low-rank adaptation (LoRA) technique for easier customization. Our method, inspired by the DINOv2 foundation model, applies low-rank adaptation learning to tailor foundation models for capsule endoscopy diagnosis effectively. Unlike traditional fine-tuning methods, our strategy includes LoRA layers designed to absorb specific surgical domain knowledge. During the training process, we keep the main model (the backbone encoder) fixed and focus on optimizing the LoRA layers and the disease classification component. We tested our method on two publicly available datasets for capsule endoscopy disease classification. The results were impressive, with our model achieving 97.75% accuracy on the Kvasir-Capsule dataset and 98.81% on the Kvasirv2 dataset. Our solution demonstrates that foundation models can be adeptly adapted for capsule endoscopy diagnosis, highlighting that mere reliance on straightforward fine-tuning or pre-trained models from general computer vision tasks is inadequate for such specific applications.
comment: To appear in ICBIR 2024
♻ ☆ PUDD: Towards Robust Multi-modal Prototype-based Deepfake Detection CVPR2024
Deepfake techniques generate highly realistic data, making it challenging for humans to discern between actual and artificially generated images. Recent advancements in deep learning-based deepfake detection methods, particularly with diffusion models, have shown remarkable progress. However, there is a growing demand for real-world applications to detect unseen individuals, deepfake techniques, and scenarios. To address this limitation, we propose a Prototype-based Unified Framework for Deepfake Detection (PUDD). PUDD offers a detection system based on similarity, comparing input data against known prototypes for video classification and identifying potential deepfakes or previously unseen classes by analyzing drops in similarity. Our extensive experiments reveal three key findings: (1) PUDD achieves an accuracy of 95.1% on Celeb-DF, outperforming state-of-the-art deepfake detection methods; (2) PUDD leverages image classification as the upstream task during training, demonstrating promising performance in both image classification and deepfake detection tasks during inference; (3) PUDD requires only 2.7 seconds for retraining on new data and emits 10$^{5}$ times less carbon compared to the state-of-the-art model, making it significantly more environmentally friendly.
comment: CVPR2024
♻ ☆ NaVid: Video-based VLM Plans the Next Step for Vision-and-Language Navigation
Vision-and-language navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavor to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometers, or depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision making and instruction following. We train NaVid with 510k navigation samples collected from continuous environments, including action-planning and instruction-reasoning samples, along with 763k large-scale web data. Extensive experiments show that NaVid achieves state-of-the-art performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
comment: Accepted by Robotics: Science and Systems (RSS 2024)
♻ ☆ IntegratedPIFu: Integrated Pixel Aligned Implicit Function for Single-view Human Reconstruction ECCV 2022
We propose IntegratedPIFu, a new pixel aligned implicit model that builds on the foundation set by PIFuHD. IntegratedPIFu shows how depth and human parsing information can be predicted and capitalised upon in a pixel-aligned implicit model. In addition, IntegratedPIFu introduces depth oriented sampling, a novel training scheme that improve any pixel aligned implicit model ability to reconstruct important human features without noisy artefacts. Lastly, IntegratedPIFu presents a new architecture that, despite using less model parameters than PIFuHD, is able to improves the structural correctness of reconstructed meshes. Our results show that IntegratedPIFu significantly outperforms existing state of the arts methods on single view human reconstruction. Our code has been made available online.
comment: Accepted to ECCV 2022
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image SP
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
comment: Accepted in ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Diffusion Schrödinger Bridge Models for High-Quality MR-to-CT Synthesis for Head and Neck Proton Treatment Planning
In recent advancements in proton therapy, MR-based treatment planning is gaining momentum to minimize additional radiation exposure compared to traditional CT-based methods. This transition highlights the critical need for accurate MR-to-CT image synthesis, which is essential for precise proton dose calculations. Our research introduces the Diffusion Schr\"odinger Bridge Models (DSBM), an innovative approach for high-quality MR-to-CT synthesis. DSBM learns the nonlinear diffusion processes between MR and CT data distributions. This method improves upon traditional diffusion models by initiating synthesis from the prior distribution rather than the Gaussian distribution, enhancing both generation quality and efficiency. We validated the effectiveness of DSBM on a head and neck cancer dataset, demonstrating its superiority over traditional image synthesis methods through both image-level and dosimetric-level evaluations. The effectiveness of DSBM in MR-based proton treatment planning highlights its potential as a valuable tool in various clinical scenarios.
comment: International Conference on the use of Computers in Radiation therapy (ICCR)
♻ ☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential to revolutionize applications in zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on six publicly available datasets across different domains and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Meanwhile, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvements in segmentation performance and annotation time savings over manual approaches.
♻ ☆ IDLS: Inverse Depth Line based Visual-Inertial SLAM
For robust visual-inertial SLAM in perceptually-challenging indoor environments,recent studies exploit line features to extract descriptive information about scene structure to deal with the degeneracy of point features. But existing point-line-based SLAM methods mainly use Pl\"ucker matrix or orthogonal representation to represent a line, which needs to calculate at least four variables to determine a line. Given the numerous line features to determine in each frame, the overly flexible line representation increases the computation burden and comprises the accuracy of the results. In this paper, we propose inverse depth representation for a line, which models each extracted line feature using only two variables, i.e., the inverse depths of the two ending points. It exploits the fact that the projected line's pixel coordinates on the image plane are rather accurate, which partially restrict the line. Using this compact line presentation, Inverse Depth Line SLAM (IDLS) is proposed to track the line features in SLAM in an accurate and efficient way. A robust line triangulation method and a novel line re-projection error model are introduced. And a two-step optimization method is proposed to firstly determine the lines and then to estimate the camera poses in each frame. IDLS is extensively evaluated in multiple perceptually-challenging datasets. The results show it is more accurate, robust, and needs lower computational overhead than the current state-of-the-art of point-line-based SLAM methods.
♻ ☆ CDFormer:When Degradation Prediction Embraces Diffusion Model for Blind Image Super-Resolution
Existing Blind image Super-Resolution (BSR) methods focus on estimating either kernel or degradation information, but have long overlooked the essential content details. In this paper, we propose a novel BSR approach, Content-aware Degradation-driven Transformer (CDFormer), to capture both degradation and content representations. However, low-resolution images cannot provide enough content details, and thus we introduce a diffusion-based module $CDFormer_{diff}$ to first learn Content Degradation Prior (CDP) in both low- and high-resolution images, and then approximate the real distribution given only low-resolution information. Moreover, we apply an adaptive SR network $CDFormer_{SR}$ that effectively utilizes CDP to refine features. Compared to previous diffusion-based SR methods, we treat the diffusion model as an estimator that can overcome the limitations of expensive sampling time and excessive diversity. Experiments show that CDFormer can outperform existing methods, establishing a new state-of-the-art performance on various benchmarks under blind settings. Codes and models will be available at \href{https://github.com/I2-Multimedia-Lab/CDFormer}{https://github.com/I2-Multimedia-Lab/CDFormer}.
♻ ☆ Flash-VStream: Memory-Based Real-Time Understanding for Long Video Streams
Benefiting from the advancements in large language models and cross-modal alignment, existing multi-modal video understanding methods have achieved prominent performance in offline scenario. However, online video streams, as one of the most common media forms in the real world, have seldom received attention. Compared to offline videos, the 'dynamic' nature of online video streams poses challenges for the direct application of existing models and introduces new problems, such as the storage of extremely long-term information, interaction between continuous visual content and 'asynchronous' user questions. Therefore, in this paper we present Flash-VStream, a video-language model that simulates the memory mechanism of human. Our model is able to process extremely long video streams in real-time and respond to user queries simultaneously. Compared to existing models, Flash-VStream achieves significant reductions in inference latency and VRAM consumption, which is intimately related to performing understanding of online streaming video. In addition, given that existing video understanding benchmarks predominantly concentrate on offline scenario, we propose VStream-QA, a novel question answering benchmark specifically designed for online video streaming understanding. Comparisons with popular existing methods on the proposed benchmark demonstrate the superiority of our method for such challenging setting. To verify the generalizability of our approach, we further evaluate it on existing video understanding benchmarks and achieves state-of-the-art performance in offline scenarios as well. All code, models, and datasets are available at the https://invinciblewyq.github.io/vstream-page/
♻ ☆ BMapEst: Estimation of Brain Tissue Probability Maps using a Differentiable MRI Simulator
Reconstructing digital brain phantoms in the form of voxel-based, multi-channeled tissue probability maps for individual subjects is essential for capturing brain anatomical variability, understanding neurological diseases, as well as for testing image processing methods. We demonstrate the first framework that estimates brain tissue probability maps (Grey Matter - GM, White Matter - WM, and Cerebrospinal fluid - CSF) with the help of a Physics-based differentiable MRI simulator that models the magnetization signal at each voxel in the volume. Given an observed $T_1$/$T_2$-weighted MRI scan, the corresponding clinical MRI sequence, and the MRI differentiable simulator, we estimate the simulator's input probability maps by back-propagating the L2 loss between the simulator's output and the $T_1$/$T_2$-weighted scan. This approach has the significant advantage of not relying on any training data and instead uses the strong inductive bias of the MRI simulator. We tested the model on 20 scans from the BrainWeb database and demonstrated a highly accurate reconstruction of GM, WM, and CSF. Our source code is available online: https://github.com/BioMedAI-UCSC/BMapEst.
♻ ☆ Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
♻ ☆ AnoFPDM: Anomaly Segmentation with Forward Process of Diffusion Models for Brain MRI
Weakly-supervised diffusion models (DMs) in anomaly segmentation, leveraging image-level labels, have attracted significant attention for their superior performance compared to unsupervised methods. It eliminates the need for pixel-level labels in training, offering a more cost-effective alternative to supervised methods. However, existing methods are not fully weakly-supervised because they heavily rely on costly pixel-level labels for hyperparameter tuning in inference. To tackle this challenge, we introduce Anomaly Segmentation with Forward Process of Diffusion Models (AnoFPDM), a fully weakly-supervised framework that operates without the need of pixel-level labels. Leveraging the unguided forward process as a reference for the guided forward process, we select hyperparameters such as the noise scale, the threshold for segmentation and the guidance strength. We aggregate anomaly maps from guided forward process, enhancing the signal strength of anomalous regions. Remarkably, our proposed method outperforms recent state-of-the-art weakly-supervised approaches, even without utilizing pixel-level labels.
comment: v2: updated introduction, experiments and supplementary material
Machine Learning 37
♻ ☆ Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention ATC
Interacting with humans through multi-turn conversations is a fundamental feature of large language models (LLMs). However, existing LLM serving engines executing multi-turn conversations are inefficient due to the need to repeatedly compute the key-value (KV) caches of historical tokens, incurring high serving costs. To address the problem, this paper proposes CachedAttention, a new attention mechanism that enables reuse of KV caches across multi-turn conversations, significantly reducing the repetitive computation overheads. CachedAttention maintains a hierarchical KV caching system that leverages cost-effective memory/storage mediums to save KV caches for all requests. To reduce KV cache access overheads from slow mediums, CachedAttention employs layer-wise pre-loading and asynchronous saving schemes to overlap the KV cache access with the GPU computation. To ensure that the KV caches to be accessed are placed in the fastest hierarchy, CachedAttention employs scheduler-aware fetching and eviction schemes to consciously place the KV caches in different layers based on the hints from the inference job scheduler. To avoid the invalidation of the saved KV caches incurred by context window overflow, CachedAttention enables the saved KV caches to remain valid via decoupling the positional encoding and effectively truncating the KV caches. Extensive experimental results demonstrate that CachedAttention significantly decreases the time to the first token (TTFT) by up to 87%, improves the prompt prefilling throughput by up to 7.8$\times$ for multi-turn conversations, and reduces the end-to-end inference cost by up to 70%.
comment: Accepted to USENIX Annual Technical Conference (ATC) 2024
♻ ☆ Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions
We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering discrete distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general maximum a posteriori (MAP) perspective of clustering distributions, emphasizing that the statistical models underlying the existing distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring data conformity within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates various parametric densities for modeling simplex data and enables the control of the cluster-balance bias. This yields highly competitive performances for the unsupervised adjustment of black-box model predictions in various scenarios. Our code and comparisons with the existing simplex-clustering approaches and our introduced softmax-prediction benchmarks are publicly available: https://github.com/fchiaroni/Clustering_Softmax_Predictions.
♻ ☆ LQ-LoRA: Low-rank Plus Quantized Matrix Decomposition for Efficient Language Model Finetuning
We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on finetuning RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and enables aggressive quantization to sub-3 bits with only minor performance degradations. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) performs respectably compared to the 16-bit baseline.
♻ ☆ Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning. This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments, where the joint distribution of response variables and covariates varies, but the conditional expectations of outcome given an unknown set of quasi-causal variables are invariant. The challenge of finding such an unknown set of quasi-causal or invariant variables is compounded by the presence of endogenous variables that have heterogeneous effects across different environments, including even one of them in the regression would make the estimation inconsistent. The proposed Focused Adversial Invariant Regularization (FAIR) framework utilizes an innovative minimax optimization approach that breaks down the barriers, driving regression models toward prediction-invariant solutions through adversarial testing. Leveraging the representation power of neural networks, FAIR neural networks (FAIR-NN) are introduced for causality pursuit. It is shown that FAIR-NN can find the invariant variables and quasi-causal variables under a minimal identification condition and that the resulting procedure is adaptive to low-dimensional composition structures in a non-asymptotic analysis. Under a structural causal model, variables identified by FAIR-NN represent pragmatic causality and provably align with exact causal mechanisms under conditions of sufficient heterogeneity. Computationally, FAIR-NN employs a novel Gumbel approximation with decreased temperature and stochastic gradient descent ascent algorithm. The procedures are convincingly demonstrated using simulated and real-data examples.
comment: 48 pages, 7 figures with appendix
♻ ☆ Accelerating Reinforcement Learning with Value-Conditional State Entropy Exploration NeurIPS 2024
A promising technique for exploration is to maximize the entropy of visited state distribution, i.e., state entropy, by encouraging uniform coverage of visited state space. While it has been effective for an unsupervised setup, it tends to struggle in a supervised setup with a task reward, where an agent prefers to visit high-value states to exploit the task reward. Such a preference can cause an imbalance between the distributions of high-value states and low-value states, which biases exploration towards low-value state regions as a result of the state entropy increasing when the distribution becomes more uniform. This issue is exacerbated when high-value states are narrowly distributed within the state space, making it difficult for the agent to complete the tasks. In this paper, we present a novel exploration technique that maximizes the value-conditional state entropy, which separately estimates the state entropies that are conditioned on the value estimates of each state, then maximizes their average. By only considering the visited states with similar value estimates for computing the intrinsic bonus, our method prevents the distribution of low-value states from affecting exploration around high-value states, and vice versa. We demonstrate that the proposed alternative to the state entropy baseline significantly accelerates various reinforcement learning algorithms across a variety of tasks within MiniGrid, DeepMind Control Suite, and Meta-World benchmarks. Source code is available at https://sites.google.com/view/rl-vcse.
comment: NeurIPS 2024. Project webpage: https://sites.google.com/view/rl-vcse
♻ ☆ SEMQA: Semi-Extractive Multi-Source Question Answering NAACL 2024
Recently proposed long-form question answering (QA) systems, supported by large language models (LLMs), have shown promising capabilities. Yet, attributing and verifying their generated abstractive answers can be difficult, and automatically evaluating their accuracy remains an ongoing challenge. In this work, we introduce a new QA task for answering multi-answer questions by summarizing multiple diverse sources in a semi-extractive fashion. Specifically, Semi-extractive Multi-source QA (SEMQA) requires models to output a comprehensive answer, while mixing factual quoted spans -- copied verbatim from given input sources -- and non-factual free-text connectors that glue these spans together into a single cohesive passage. This setting bridges the gap between the outputs of well-grounded but constrained extractive QA systems and more fluent but harder to attribute fully abstractive answers. Particularly, it enables a new mode for language models that leverages their advanced language generation capabilities, while also producing fine in-line attributions by-design that are easy to verify, interpret, and evaluate. To study this task, we create the first dataset of this kind, QuoteSum, with human-written semi-extractive answers to natural and generated questions, and define text-based evaluation metrics. Experimenting with several LLMs in various settings, we find this task to be surprisingly challenging, demonstrating the importance of QuoteSum for developing and studying such consolidation capabilities.
comment: NAACL 2024
♻ ☆ Novel Node Category Detection Under Subpopulation Shift ECML-PKDD 2024
In real-world graph data, distribution shifts can manifest in various ways, such as the emergence of new categories and changes in the relative proportions of existing categories. It is often important to detect nodes of novel categories under such distribution shifts for safety or insight discovery purposes. We introduce a new approach, Recall-Constrained Optimization with Selective Link Prediction (RECO-SLIP), to detect nodes belonging to novel categories in attributed graphs under subpopulation shifts. By integrating a recall-constrained learning framework with a sample-efficient link prediction mechanism, RECO-SLIP addresses the dual challenges of resilience against subpopulation shifts and the effective exploitation of graph structure. Our extensive empirical evaluation across multiple graph datasets demonstrates the superior performance of RECO-SLIP over existing methods. The experimental code is available at https://github.com/hsinghuan/novel-node-category-detection.
comment: Accepted to ECML-PKDD 2024
♻ ☆ Conformal Depression Prediction
While existing depression prediction methods based on deep learning show promise, their practical application is hindered by the lack of trustworthiness, as these deep models are often deployed as \textit{black box} models, leaving us uncertain about the confidence of the model predictions. For high-risk clinical applications like depression prediction, uncertainty quantification is essential in decision-making. In this paper, we introduce conformal depression prediction (CDP), a depression prediction method with uncertainty quantification based on conformal prediction (CP), giving valid confidence intervals with theoretical coverage guarantees for the model predictions. CDP is a plug-and-play module that requires neither model retraining nor an assumption about the depression data distribution. As CDP provides only an average coverage guarantee across all inputs rather than per-input performance guarantee, we further propose CDP-ACC, an improved conformal prediction with approximate conditional coverage. CDP-ACC firstly estimates the prediction distribution through neighborhood relaxation, and then introduces a conformal score function by constructing nested sequences, so as to provide a tighter prediction interval for each specific input. We empirically demonstrate the application of CDP in uncertainty-aware depression prediction, as well as the effectiveness and superiority of CDP-ACC on the AVEC 2013 and AVEC 2014 datasets.
♻ ☆ The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks: Breaking the Curse of Information and Leap Exponents ICML
We investigate the training dynamics of two-layer neural networks when learning multi-index target functions. We focus on multi-pass gradient descent (GD) that reuses the batches multiple times and show that it significantly changes the conclusion about which functions are learnable compared to single-pass gradient descent. In particular, multi-pass GD with finite stepsize is found to overcome the limitations of gradient flow and single-pass GD given by the information exponent (Ben Arous et al., 2021) and leap exponent (Abbe et al., 2023) of the target function. We show that upon re-using batches, the network achieves in just two time steps an overlap with the target subspace even for functions not satisfying the staircase property (Abbe et al., 2021). We characterize the (broad) class of functions efficiently learned in finite time. The proof of our results is based on the analysis of the Dynamical Mean-Field Theory (DMFT). We further provide a closed-form description of the dynamical process of the low-dimensional projections of the weights, and numerical experiments illustrating the theory.
comment: Accepted at the International Conference on Machine Learning (ICML), 2024
♻ ☆ Braced Fourier Continuation and Regression for Anomaly Detection
In this work, the concept of Braced Fourier Continuation and Regression (BFCR) is introduced. BFCR is a novel and computationally efficient means of finding nonlinear regressions or trend lines in arbitrary one-dimensional data sets. The Braced Fourier Continuation (BFC) and BFCR algorithms are first outlined, followed by a discussion of the properties of BFCR as well as demonstrations of how BFCR trend lines may be used effectively for anomaly detection both within and at the edges of arbitrary one-dimensional data sets. Finally, potential issues which may arise while using BFCR for anomaly detection as well as possible mitigation techniques are outlined and discussed. All source code and example data sets are either referenced or available via GitHub, and all associated code is written entirely in Python.
comment: 16 pages, 9 figures, associated Github link: https://github.com/j4sabuda/Braced-Fourier-Continuation-and-Regression -6/30/2024 update corrected and reworded erroneous figure references, minor typos
♻ ☆ Langevin dynamics based algorithm e-TH$\varepsilon$O POULA for stochastic optimization problems with discontinuous stochastic gradient
We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.
♻ ☆ On the convergence of nonlinear averaging dynamics with three-body interactions on hypergraphs
Complex networked systems in fields such as physics, biology, and social sciences often involve interactions that extend beyond simple pairwise ones. Hypergraphs serve as powerful modeling tools for describing and analyzing the intricate behaviors of systems with multi-body interactions. Herein, we investigate a discrete-time nonlinear averaging dynamics with three-body interactions: an underlying hypergraph, comprising triples as hyperedges, delineates the structure of these interactions, while the vertices update their states through a weighted, state-dependent average of neighboring pairs' states. This dynamics captures reinforcing group effects, such as peer pressure, and exhibits higher-order dynamical effects resulting from a complex interplay between initial states, hypergraph topology, and nonlinearity of the update. Differently from linear averaging dynamics on graphs with two-body interactions, this model does not converge to the average of the initial states but rather induces a shift. By assuming random initial states and by making some regularity and density assumptions on the hypergraph, we prove that the dynamics converges to a multiplicatively-shifted average of the initial states, with high probability. We further characterize the shift as a function of two parameters describing the initial state and interaction strength, as well as the convergence time as a function of the hypergraph structure.
comment: To appear in SIAM Journal on Applied Dynamical Systems
♻ ☆ EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
♻ ☆ RoboGPT: an intelligent agent of making embodied long-term decisions for daily instruction tasks
Robotic agents must master common sense and long-term sequential decisions to solve daily tasks through natural language instruction. The developments in Large Language Models (LLMs) in natural language processing have inspired efforts to use LLMs in complex robot planning. Despite LLMs' great generalization and comprehension of instruction tasks, LLMs-generated task plans sometimes lack feasibility and correctness. To address the problem, we propose a RoboGPT agent\footnote{our code and dataset will be released soon} for making embodied long-term decisions for daily tasks, with two modules: 1) LLMs-based planning with re-plan to break the task into multiple sub-goals; 2) RoboSkill individually designed for sub-goals to learn better navigation and manipulation skills. The LLMs-based planning is enhanced with a new robotic dataset and re-plan, called RoboGPT. The new robotic dataset of 67k daily instruction tasks is gathered for fine-tuning the Llama model and obtaining RoboGPT. RoboGPT planner with strong generalization can plan hundreds of daily instruction tasks. Additionally, a low-computational Re-Plan module is designed to allow plans to flexibly adapt to the environment, thereby addressing the nomenclature diversity challenge. The proposed RoboGPT agent outperforms SOTA methods on the ALFRED daily tasks. Moreover, RoboGPT planner exceeds SOTA LLM-based planners like ChatGPT in task-planning rationality for hundreds of unseen daily tasks, and even other domain tasks, while keeping the large model's original broad application and generality.
♻ ☆ Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching
Training on large-scale graphs has achieved remarkable results in graph representation learning, but its cost and storage have raised growing concerns. As one of the most promising directions, graph condensation methods address these issues by employing gradient matching, aiming to condense the full graph into a more concise yet information-rich synthetic set. Though encouraging, these strategies primarily emphasize matching directions of the gradients, which leads to deviations in the training trajectories. Such deviations are further magnified by the differences between the condensation and evaluation phases, culminating in accumulated errors, which detrimentally affect the performance of the condensed graphs. In light of this, we propose a novel graph condensation method named \textbf{C}raf\textbf{T}ing \textbf{R}ationa\textbf{L} trajectory (\textbf{CTRL}), which offers an optimized starting point closer to the original dataset's feature distribution and a more refined strategy for gradient matching. Theoretically, CTRL can effectively neutralize the impact of accumulated errors on the performance of condensed graphs. We provide extensive experiments on various graph datasets and downstream tasks to support the effectiveness of CTRL. Code is released at https://github.com/NUS-HPC-AI-Lab/CTRL.
comment: An effective method for graph condensation
♻ ☆ Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes ICML
Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.
comment: Presented at the 41st International Conference on Machine Learning (ICML) 2024. *Seedat & Huynh contributed equally
♻ ☆ Scaffold Splits Overestimate Virtual Screening Performance
Virtual Screening (VS) of vast compound libraries guided by Artificial Intelligence (AI) models is a highly productive approach to early drug discovery. Data splitting is crucial for better benchmarking of such AI models. Traditional random data splits produce similar molecules between training and test sets, conflicting with the reality of VS libraries which mostly contain structurally distinct compounds. Scaffold split, grouping molecules by shared core structure, is widely considered to reflect this real-world scenario. However, here we show that the scaffold split also overestimates VS performance. The reason is that molecules with different chemical scaffolds are often similar, which hence introduces unrealistically high similarities between training molecules and test molecules following a scaffold split. Our study examined three representative AI models on 60 NCI-60 datasets, each with approximately 30,000 to 50,000 molecules tested on a different cancer cell line. Each dataset was split with three methods: scaffold, Butina clustering and the more accurate Uniform Manifold Approximation and Projection (UMAP) clustering. Regardless of the model, model performance is much worse with UMAP splits from the results of the 2100 models trained and evaluated for each algorithm and split. These robust results demonstrate the need for more realistic data splits to tune, compare, and select models for VS. For the same reason, avoiding the scaffold split is also recommended for other molecular property prediction problems. The code to reproduce these results is available at https://github.com/ScaffoldSplitsOverestimateVS
♻ ☆ Interpretable Multi-task Learning with Shared Variable Embeddings
This paper proposes a general interpretable predictive system with shared information. The system is able to perform predictions in a multi-task setting where distinct tasks are not bound to have the same input/output structure. Embeddings of input and output variables in a common space are obtained, where the input embeddings are produced through attending to a set of shared embeddings, reused across tasks. All the embeddings are treated as model parameters and learned. Specific restrictions on the space of shared embedings and the sparsity of the attention mechanism are considered. Experiments show that the introduction of shared embeddings does not deteriorate the results obtained from a vanilla variable embeddings method. We run a number of further ablations. Inducing sparsity in the attention mechanism leads to both an increase in accuracy and a significant decrease in the number of training steps required. Shared embeddings provide a measure of interpretability in terms of both a qualitative assessment and the ability to map specific shared embeddings to pre-defined concepts that are not tailored to the considered model. There seems to be a trade-off between accuracy and interpretability. The basic shared embeddings method favors interpretability, whereas the sparse attention method promotes accuracy. The results lead to the conclusion that variable embedding methods may be extended with shared information to provide increased interpretability and accuracy.
♻ ☆ Partially Observable Stochastic Games with Neural Perception Mechanisms
Stochastic games are a well established model for multi-agent sequential decision making under uncertainty. In practical applications, though, agents often have only partial observability of their environment. Furthermore, agents increasingly perceive their environment using data-driven approaches such as neural networks trained on continuous data. We propose the model of neuro-symbolic partially-observable stochastic games (NS-POSGs), a variant of continuous-space concurrent stochastic games that explicitly incorporates neural perception mechanisms. We focus on a one-sided setting with a partially-informed agent using discrete, data-driven observations and another, fully-informed agent. We present a new method, called one-sided NS-HSVI, for approximate solution of one-sided NS-POSGs, which exploits the piecewise constant structure of the model. Using neural network pre-image analysis to construct finite polyhedral representations and particle-based representations for beliefs, we implement our approach and illustrate its practical applicability to the analysis of pedestrian-vehicle and pursuit-evasion scenarios.
comment: 42 pages, 6 figures. Extended version of paper to be published in FM 2024
♻ ☆ Dynamic Relative Representations for Goal-Oriented Semantic Communications
In future 6G wireless networks, semantic and effectiveness aspects of communications will play a fundamental role, incorporating meaning and relevance into transmissions. However, obstacles arise when devices employ diverse languages, logic, or internal representations, leading to semantic mismatches that might jeopardize understanding. In latent space communication, this challenge manifests as misalignment within high-dimensional representations where deep neural networks encode data. This paper presents a novel framework for goal-oriented semantic communication, leveraging relative representations to mitigate semantic mismatches via latent space alignment. We propose a dynamic optimization strategy that adapts relative representations, communication parameters, and computation resources for energy-efficient, low-latency, goal-oriented semantic communications. Numerical results demonstrate our methodology's effectiveness in mitigating mismatches among devices, while optimizing energy consumption, delay, and effectiveness.
♻ ☆ Plum: Prompt Learning using Metaheuristic ACL 2024
Since the emergence of large language models, prompt learning has become a popular method for optimizing and customizing these models. Special prompts, such as Chain-of-Thought, have even revealed previously unknown reasoning capabilities within these models. However, the progress of discovering effective prompts has been slow, driving a desire for general prompt optimization methods. Unfortunately, few existing prompt learning methods satisfy the criteria of being truly "general", i.e., automatic, discrete, black-box, gradient-free, and interpretable all at once. In this paper, we introduce metaheuristics, a branch of discrete non-convex optimization methods with over 100 options, as a promising approach to prompt learning. Within our paradigm, we test six typical methods: hill climbing, simulated annealing, genetic algorithms with/without crossover, tabu search, and harmony search, demonstrating their effectiveness in white-box and black-box prompt learning. Furthermore, we show that these methods can be used to discover more human-understandable prompts that were previously unknown in both reasoning and image generation tasks, opening the door to a cornucopia of possibilities in prompt optimization. We release all the codes in \url{https://github.com/research4pan/Plum}.
comment: Published at Findings of ACL 2024
♻ ☆ AdaTreeFormer: Few Shot Domain Adaptation for Tree Counting from a Single High-Resolution Image SP
The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, \ie Jiangsu, Yosemite, and London. Experimental results show that AdaTreeFormer significantly surpasses the state of the art, \eg in the cross domain from the Yosemite to Jiangsu dataset, it achieves a reduction of 15.9 points in terms of the absolute counting errors and an increase of 10.8\% in the accuracy of the detected trees' locations. The codes and datasets are available at https://github.com/HAAClassic/AdaTreeFormer.
comment: Accepted in ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ Reconciling Spatial and Temporal Abstractions for Goal Representation
Goal representation affects the performance of Hierarchical Reinforcement Learning (HRL) algorithms by decomposing the complex learning problem into easier subtasks. Recent studies show that representations that preserve temporally abstract environment dynamics are successful in solving difficult problems and provide theoretical guarantees for optimality. These methods however cannot scale to tasks where environment dynamics increase in complexity i.e. the temporally abstract transition relations depend on larger number of variables. On the other hand, other efforts have tried to use spatial abstraction to mitigate the previous issues. Their limitations include scalability to high dimensional environments and dependency on prior knowledge. In this paper, we propose a novel three-layer HRL algorithm that introduces, at different levels of the hierarchy, both a spatial and a temporal goal abstraction. We provide a theoretical study of the regret bounds of the learned policies. We evaluate the approach on complex continuous control tasks, demonstrating the effectiveness of spatial and temporal abstractions learned by this approach. Find open-source code at https://github.com/cosynus-lix/STAR.
♻ ☆ Machine Learning for Synthetic Data Generation: A Review
Machine learning heavily relies on data, but real-world applications often encounter various data-related issues. These include data of poor quality, insufficient data points leading to under-fitting of machine learning models, and difficulties in data access due to concerns surrounding privacy, safety, and regulations. In light of these challenges, the concept of synthetic data generation emerges as a promising alternative that allows for data sharing and utilization in ways that real-world data cannot facilitate. This paper presents a comprehensive systematic review of existing studies that employ machine learning models for the purpose of generating synthetic data. The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains. Additionally, it explores different machine learning methods, with particular emphasis on neural network architectures and deep generative models. The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation. Furthermore, this study identifies the challenges and opportunities prevalent in this emerging field, shedding light on the potential avenues for future research. By delving into the intricacies of synthetic data generation, this paper aims to contribute to the advancement of knowledge and inspire further exploration in synthetic data generation.
♻ ☆ Heterophily-Aware Graph Attention Network
Graph Neural Networks (GNNs) have shown remarkable success in graph representation learning. Unfortunately, current weight assignment schemes in standard GNNs, such as the calculation based on node degrees or pair-wise representations, can hardly be effective in processing the networks with heterophily, in which the connected nodes usually possess different labels or features. Existing heterophilic GNNs tend to ignore the modeling of heterophily of each edge, which is also a vital part in tackling the heterophily problem. In this paper, we firstly propose a heterophily-aware attention scheme and reveal the benefits of modeling the edge heterophily, i.e., if a GNN assigns different weights to edges according to different heterophilic types, it can learn effective local attention patterns, which enable nodes to acquire appropriate information from distinct neighbors. Then, we propose a novel Heterophily-Aware Graph Attention Network (HA-GAT) by fully exploring and utilizing the local distribution as the underlying heterophily, to handle the networks with different homophily ratios. To demonstrate the effectiveness of the proposed HA-GAT, we analyze the proposed heterophily-aware attention scheme and local distribution exploration, by seeking for an interpretation from their mechanism. Extensive results demonstrate that our HA-GAT achieves state-of-the-art performances on eight datasets with different homophily ratios in both the supervised and semi-supervised node classification tasks.
comment: Accepted by Pattern Recognition
♻ ☆ AB-Training: A Communication-Efficient Approach for Distributed Low-Rank Learning
Communication bottlenecks severely hinder the scalability of distributed neural network training, particularly in high-performance computing (HPC) environments. We introduce AB-training, a novel data-parallel method that leverages low-rank representations and independent training groups to significantly reduce communication overhead. Our experiments demonstrate an average reduction in network traffic of approximately 70.31\% across various scaling scenarios, increasing the training potential of communication-constrained systems and accelerating convergence at scale. AB-training also exhibits a pronounced regularization effect at smaller scales, leading to improved generalization while maintaining or even reducing training time. We achieve a remarkable 44.14 : 1 compression ratio on VGG16 trained on CIFAR-10 with minimal accuracy loss, and outperform traditional data parallel training by 1.55\% on ResNet-50 trained on ImageNet-2012. While AB-training is promising, our findings also reveal that large batch effects persist even in low-rank regimes, underscoring the need for further research into optimized update mechanisms for massively distributed training.
♻ ☆ Segment Anything Model for automated image data annotation: empirical studies using text prompts from Grounding DINO
Grounding DINO and the Segment Anything Model (SAM) have achieved impressive performance in zero-shot object detection and image segmentation, respectively. Together, they have a great potential to revolutionize applications in zero-shot semantic segmentation or data annotation. Yet, in specialized domains like medical image segmentation, objects of interest (e.g., organs, tissues, and tumors) may not fall in existing class names. To address this problem, the referring expression comprehension (REC) ability of Grounding DINO is leveraged to detect arbitrary targets by their language descriptions. However, recent studies have highlighted severe limitation of the REC framework in this application setting owing to its tendency to make false positive predictions when the target is absent in the given image. And, while this bottleneck is central to the prospect of open-set semantic segmentation, it is still largely unknown how much improvement can be achieved by studying the prediction errors. To this end, we perform empirical studies on six publicly available datasets across different domains and reveal that these errors consistently follow a predictable pattern and can, thus, be mitigated by a simple strategy. Specifically, we show that false positive detections with appreciable confidence scores generally occupy large image areas and can usually be filtered by their relative sizes. More importantly, we expect these observations to inspire future research in improving REC-based detection and automated segmentation. Meanwhile, we evaluate the performance of SAM on multiple datasets from various specialized domains and report significant improvements in segmentation performance and annotation time savings over manual approaches.
♻ ☆ Verifying the Generalization of Deep Learning to Out-of-Distribution Domains
Deep neural networks (DNNs) play a crucial role in the field of machine learning, demonstrating state-of-the-art performance across various application domains. However, despite their success, DNN-based models may occasionally exhibit challenges with generalization, i.e., may fail to handle inputs that were not encountered during training. This limitation is a significant challenge when it comes to deploying deep learning for safety-critical tasks, as well as in real-world settings characterized by substantial variability. We introduce a novel approach for harnessing DNN verification technology to identify DNN-driven decision rules that exhibit robust generalization to previously unencountered input domains. Our method assesses generalization within an input domain by measuring the level of agreement between independently trained deep neural networks for inputs in this domain. We also efficiently realize our approach by using off-the-shelf DNN verification engines, and extensively evaluate it on both supervised and unsupervised DNN benchmarks, including a deep reinforcement learning (DRL) system for Internet congestion control -- demonstrating the applicability of our approach for real-world settings. Moreover, our research introduces a fresh objective for formal verification, offering the prospect of mitigating the challenges linked to deploying DNN-driven systems in real-world scenarios.
comment: To appear in the Journal of Automated Reasoning (JAR), 2024. This is an extended version of a CAV 2023 paper, titled: "Verifying Generalization in Deep Learning"
♻ ☆ Time Series Diffusion Method: A Denoising Diffusion Probabilistic Model for Vibration Signal Generation
Diffusion models have demonstrated powerful data generation capabilities in various research fields such as image generation. However, in the field of vibration signal generation, the criteria for evaluating the quality of the generated signal are different from that of image generation and there is a fundamental difference between them. At present, there is no research on the ability of diffusion model to generate vibration signal. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block, ResBlock and TimeEmbedding to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. It is also found that the original DDPM could not generate high quality vibration signals, but the improved U-net in TSDM, which applied the combination of attention block and ResBlock, could effectively improve the quality of vibration signal generation. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively.
♻ ☆ Topology-aware Embedding Memory for Continual Learning on Expanding Networks KDD 2024
Memory replay based techniques have shown great success for continual learning with incrementally accumulated Euclidean data. Directly applying them to continually expanding networks, however, leads to the potential memory explosion problem due to the need to buffer representative nodes and their associated topological neighborhood structures. To this end, we systematically analyze the key challenges in the memory explosion problem, and present a general framework, \textit{i.e.}, Parameter Decoupled Graph Neural Networks (PDGNNs) with Topology-aware Embedding Memory (TEM), to tackle this issue. The proposed framework not only reduces the memory space complexity from $\mathcal{O}(nd^L)$ to $\mathcal{O}(n)$~\footnote{$n$: memory budget, $d$: average node degree, $L$: the radius of the GNN receptive field}, but also fully utilizes the topological information for memory replay. Specifically, PDGNNs decouple trainable parameters from the computation ego-subnetwork via \textit{Topology-aware Embeddings} (TEs), which compress ego-subnetworks into compact vectors (\textit{i.e.}, TEs) to reduce the memory consumption. Based on this framework, we discover a unique \textit{pseudo-training effect} in continual learning on expanding networks and this effect motivates us to develop a novel \textit{coverage maximization sampling} strategy that can enhance the performance with a tight memory budget. Thorough empirical studies demonstrate that, by tackling the memory explosion problem and incorporating topological information into memory replay, PDGNNs with TEM significantly outperform state-of-the-art techniques, especially in the challenging class-incremental setting.
comment: This paper has been accepted by KDD 2024
♻ ☆ Uncertainty-Aware Reward-Free Exploration with General Function Approximation ICML 2024
Mastering multiple tasks through exploration and learning in an environment poses a significant challenge in reinforcement learning (RL). Unsupervised RL has been introduced to address this challenge by training policies with intrinsic rewards rather than extrinsic rewards. However, current intrinsic reward designs and unsupervised RL algorithms often overlook the heterogeneous nature of collected samples, thereby diminishing their sample efficiency. To overcome this limitation, in this paper, we propose a reward-free RL algorithm called \alg. The key idea behind our algorithm is an uncertainty-aware intrinsic reward for exploring the environment and an uncertainty-weighted learning process to handle heterogeneous uncertainty in different samples. Theoretically, we show that in order to find an $\epsilon$-optimal policy, GFA-RFE needs to collect $\tilde{O} (H^2 \log N_{\mathcal F} (\epsilon) \mathrm{dim} (\mathcal F) / \epsilon^2 )$ number of episodes, where $\mathcal F$ is the value function class with covering number $N_{\mathcal F} (\epsilon)$ and generalized eluder dimension $\mathrm{dim} (\mathcal F)$. Such a result outperforms all existing reward-free RL algorithms. We further implement and evaluate GFA-RFE across various domains and tasks in the DeepMind Control Suite. Experiment results show that GFA-RFE outperforms or is comparable to the performance of state-of-the-art unsupervised RL algorithms.
comment: 32 pages, 5 figures, 4 tables, accepted by ICML 2024
♻ ☆ Forecasting the Forced van der Pol Equation with Frequent Phase Shifts Using Reservoir Computing
We tested the performance of reservoir computing (RC) in predicting the dynamics of a certain non-autonomous dynamical system. Specifically, we considered a van del Pol oscillator subjected to periodic external force with frequent phase shifts. The reservoir computer, which was trained and optimized with simulation data generated for a particular phase shift, was designed to predict the oscillation dynamics under periodic external forces with different phase shifts. The results suggest that if the training data have some complexity, it is possible to quantitatively predict the oscillation dynamics exposed to different phase shifts. The setting of this study was motivated by the problem of predicting the state of the circadian rhythm of shift workers and designing a better shift work schedule for each individual. Our results suggest that RC could be exploited for such applications.
♻ ☆ Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
comment: 47 pages, 2 figures, 4 tables. Work in progress
♻ ☆ Compact Proofs of Model Performance via Mechanistic Interpretability ICML
In this work, we propose using mechanistic interpretability -- techniques for reverse engineering model weights into human-interpretable algorithms -- to derive and compactly prove formal guarantees on model performance. We prototype this approach by formally proving lower bounds on the accuracy of 151 small transformers trained on a Max-of-$K$ task. We create 102 different computer-assisted proof strategies and assess their length and tightness of bound on each of our models. Using quantitative metrics, we find that shorter proofs seem to require and provide more mechanistic understanding. Moreover, we find that more faithful mechanistic understanding leads to tighter performance bounds. We confirm these connections by qualitatively examining a subset of our proofs. Finally, we identify compounding structureless noise as a key challenge for using mechanistic interpretability to generate compact proofs on model performance.
comment: accepted to 2024 ICML MI Workshop (Spotlight)
♻ ☆ Counterfactual Fairness through Transforming Data Orthogonal to Bias
Machine learning models have shown exceptional prowess in solving complex issues across various domains. However, these models can sometimes exhibit biased decision-making, resulting in unequal treatment of different groups. Despite substantial research on counterfactual fairness, methods to reduce the impact of multivariate and continuous sensitive variables on decision-making outcomes are still underdeveloped. We propose a novel data pre-processing algorithm, Orthogonal to Bias (OB), which is designed to eliminate the influence of a group of continuous sensitive variables, thus promoting counterfactual fairness in machine learning applications. Our approach, based on the assumption of a jointly normal distribution within a structural causal model (SCM), demonstrates that counterfactual fairness can be achieved by ensuring the data is orthogonal to the observed sensitive variables. The OB algorithm is model-agnostic, making it applicable to a wide range of machine learning models and tasks. Additionally, it includes a sparse variant to improve numerical stability through regularization. Empirical evaluations on both simulated and real-world datasets, encompassing settings with both discrete and continuous sensitive variables, show that our methodology effectively promotes fairer outcomes without compromising accuracy.
♻ ☆ Biomedical Visual Instruction Tuning with Clinician Preference Alignment
Recent advancements in multimodal foundation models have showcased impressive capabilities in understanding and reasoning with visual and textual information. Adapting these foundation models trained for general usage to specialized domains like biomedicine requires large-scale domain-specific instruction datasets. While existing works have explored curating such datasets automatically, the resultant datasets are not explicitly aligned with domain expertise. In this work, we propose a data-centric framework, Biomedical Visual Instruction Tuning with Clinician Preference Alignment (BioMed-VITAL), that incorporates clinician preferences into both stages of generating and selecting instruction data for tuning biomedical multimodal foundation models. First, during the generation stage, we prompt the GPT-4V generator with a diverse set of clinician-selected demonstrations for preference-aligned data candidate generation. Then, during the selection phase, we train a separate selection model, which explicitly distills clinician and policy-guided model preferences into a rating function to select high-quality data for medical instruction tuning. Results show that the model tuned with the instruction-following data from our method demonstrates a significant improvement in open visual chat (18.5% relatively) and medical VQA (win rate up to 81.73%). Our instruction-following data and models are available at BioMed-VITAL.github.io.
♻ ☆ A Mechanistic Analysis of a Transformer Trained on a Symbolic Multi-Step Reasoning Task
Transformers demonstrate impressive performance on a range of reasoning benchmarks. To evaluate the degree to which these abilities are a result of actual reasoning, existing work has focused on developing sophisticated benchmarks for behavioral studies. However, these studies do not provide insights into the internal mechanisms driving the observed capabilities. To improve our understanding of the internal mechanisms of transformers, we present a comprehensive mechanistic analysis of a transformer trained on a synthetic reasoning task. We identify a set of interpretable mechanisms the model uses to solve the task, and validate our findings using correlational and causal evidence. Our results suggest that it implements a depth-bounded recurrent mechanisms that operates in parallel and stores intermediate results in selected token positions. We anticipate that the motifs we identified in our synthetic setting can provide valuable insights into the broader operating principles of transformers and thus provide a basis for understanding more complex models.
System/Control 10
☆ Exploring a Physics-Informed Decision Transformer for Distribution System Restoration: Methodology and Performance Analysis
Driven by advancements in sensing and computing, deep reinforcement learning (DRL)-based methods have demonstrated significant potential in effectively tackling distribution system restoration (DSR) challenges under uncertain operational scenarios. However, the data-intensive nature of DRL poses obstacles in achieving satisfactory DSR solutions for large-scale, complex distribution systems. Inspired by the transformative impact of emerging foundation models, including large language models (LLMs), across various domains, this paper explores an innovative approach harnessing LLMs' powerful computing capabilities to address scalability challenges inherent in conventional DRL methods for solving DSR. To our knowledge, this study represents the first exploration of foundation models, including LLMs, in revolutionizing conventional DRL applications in power system operations. Our contributions are twofold: 1) introducing a novel LLM-powered Physics-Informed Decision Transformer (PIDT) framework that leverages LLMs to transform conventional DRL methods for DSR operations, and 2) conducting comparative studies to assess the performance of the proposed LLM-powered PIDT framework at its initial development stage for solving DSR problems. While our primary focus in this paper is on DSR operations, the proposed PIDT framework can be generalized to optimize sequential decision-making across various power system operations.
☆ Guarding a Target Area from a Heterogeneous Group of Cooperative Attackers
In this paper, we investigate a multi-agent target guarding problem in which a single defender seeks to capture multiple attackers aiming to reach a high-value target area. In contrast to previous studies, the attackers herein are assumed to be heterogeneous in the sense that they have not only different speeds but also different weights representing their respective degrees of importance (e.g., the amount of allocated resources). The objective of the attacker team is to jointly minimize the weighted sum of their final levels of proximity to the target area, whereas the defender aims to maximize the same value. Using geometric arguments, we construct candidate equilibrium control policies that require the solution of a (possibly nonconvex) optimization problem. Subsequently, we validate the optimality of the candidate control policies using parametric optimization techniques. Lastly, we provide numerical examples to illustrate how cooperative behaviors emerge within the attacker team due to their heterogeneity.
comment: This is the revised version of the paper, with the same title, to be presented at American Control Conference (ACC) 2024
☆ Learning System Dynamics without Forgetting
Predicting the trajectories of systems with unknown dynamics (\textit{i.e.} the governing rules) is crucial in various research fields, including physics and biology. This challenge has gathered significant attention from diverse communities. Most existing works focus on learning fixed system dynamics within one single system. However, real-world applications often involve multiple systems with different types of dynamics or evolving systems with non-stationary dynamics (dynamics shifts). When data from those systems are continuously collected and sequentially fed to machine learning models for training, these models tend to be biased toward the most recently learned dynamics, leading to catastrophic forgetting of previously observed/learned system dynamics. To this end, we aim to learn system dynamics via continual learning. Specifically, we present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics and encode the system-specific dynamics into binary masks over the model parameters. During the inference stage, the model can select the most confident mask based on the observational data to identify the system and predict future trajectories accordingly. Empirically, we systematically investigate the task configurations and compare the proposed MS-GODE with state-of-the-art techniques. More importantly, we construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics and significantly enriching the research field of machine learning for dynamic systems.
☆ Safe Reinforcement Learning for Power System Control: A Review
The large-scale integration of intermittent renewable energy resources introduces increased uncertainty and volatility to the supply side of power systems, thereby complicating system operation and control. Recently, data-driven approaches, particularly reinforcement learning (RL), have shown significant promise in addressing complex control challenges in power systems, because RL can learn from interactive feedback without needing prior knowledge of the system model. However, the training process of model-free RL methods relies heavily on random decisions for exploration, which may result in ``bad" decisions that violate critical safety constraints and lead to catastrophic control outcomes. Due to the inability of RL methods to theoretically ensure decision safety in power systems, directly deploying traditional RL algorithms in the real world is deemed unacceptable. Consequently, the safety issue in RL applications, known as safe RL, has garnered considerable attention in recent years, leading to numerous important developments. This paper provides a comprehensive review of the state-of-the-art safe RL techniques and discusses how these techniques can be applied to power system control problems such as frequency regulation, voltage control, and energy management. We then present discussions on key challenges and future research directions, related to convergence and optimality, training efficiency, universality, and real-world deployment.
☆ DADEE: Well-calibrated uncertainty quantification in neural networks for barriers-based robot safety
Uncertainty-aware controllers that guarantee safety are critical for safety critical applications. Among such controllers, Control Barrier Functions (CBFs) based approaches are popular because they are fast, yet safe. However, most such works depend on Gaussian Processes (GPs) or MC-Dropout for learning and uncertainty estimation, and both approaches come with drawbacks: GPs are non-parametric methods that are slow, while MC-Dropout does not capture aleatoric uncertainty. On the other hand, modern Bayesian learning algorithms have shown promise in uncertainty quantification. The application of modern Bayesian learning methods to CBF-based controllers has not yet been studied. We aim to fill this gap by surveying uncertainty quantification algorithms and evaluating them on CBF-based safe controllers. We find that model variance-based algorithms (for example, Deep ensembles, MC-dropout, etc.) and direct estimation-based algorithms (such as DEUP) have complementary strengths. Algorithms in the former category can only estimate uncertainty accurately out-of-domain, while those in the latter category can only do so in-domain. We combine the two approaches to obtain more accurate uncertainty estimates both in- and out-of-domain. As measured by the failure rate of a simulated robot, this results in a safer CBF-based robot controller.
☆ Learning to Control Unknown Strongly Monotone Games
Consider $N$ players each with a $d$-dimensional action set. Each of the players' utility functions includes their reward function and a linear term for each dimension, with coefficients that are controlled by the manager. We assume that the game is strongly monotone, so if each player runs gradient descent, the dynamics converge to a unique Nash equilibrium (NE). The NE is typically inefficient in terms of global performance. The resulting global performance of the system can be improved by imposing $K$-dimensional linear constraints on the NE. We therefore want the manager to pick the controlled coefficients that impose the desired constraint on the NE. However, this requires knowing the players' reward functions and their action sets. Obtaining this game structure information is infeasible in a large-scale network and violates the users' privacy. To overcome this, we propose a simple algorithm that learns to shift the NE of the game to meet the linear constraints by adjusting the controlled coefficients online. Our algorithm only requires the linear constraints violation as feedback and does not need to know the reward functions or the action sets. We prove that our algorithm, which is based on two time-scale stochastic approximation, guarantees convergence with probability 1 to the set of NE that meet target linear constraints. We then provide a mean square convergence rate of $O(t^{-1/4})$ for our algorithm. This is the first such bound for two time-scale stochastic approximation where the slower time-scale is a fixed point iteration with a non-expansive mapping. We demonstrate how our scheme can be applied to optimizing a global quadratic cost at NE and load balancing in resource allocation games. We provide simulations of our algorithm for these scenarios.
comment: Submitted to IEEE Transactions on Automatic Control
☆ An Application of Model Reference Adaptive Control for Multi-Agent Synchronization in Drone Networks
This paper presents the application of a Distributed Model Reference Adaptive Control (DMRAC) strategy for robust multi-agent synchronization of a network of drones. The proposed approach enables the development of controllers capable of accommodating differences in real-life model parameters between agents, thereby enhancing overall network performance. We compare the performance of the adaptive control laws with classical PID controllers for the reference tracking task. Each follower drone has a model reference adaptive controller that continuously updates its parameters based on real-time feedback and reference model information. This adaptability ensures an adequate performance that, compared to conventional non-adaptive techniques, can reduce the amount of energy required and consequently increase the operating duration of the drones. The experimental results, particularly in vertical velocity control, underscore the effectiveness of the proposed approach in achieving synchronized behavior.
comment: 8 pages, 13 figures, extended version of a conference paper
♻ ☆ Output-feedback adaptive model predictive control for ramp metering: a set-membership approach
Ramp metering, which regulates the flow entering the freeway, is one of the most effective freeway traffic control methods. This paper introduces an output-feedback adaptive approach to ramp metering that combines model predictive control (MPC) with set-membership parameter and state estimation. The set-membership estimator is designed based on a mixed-monotone embedding of underlying traffic dynamics. The embedding is also used as the modeling basis for MPC optimization. For a line freeway network with unknown parameters and partial measurement on the freeway mainline, we provide sufficient conditions on the control horizon, cost functions, terminal sets of MPC, and inflow demand at the ramps such that the queue lengths in the closed-loop system remain bounded. The sufficient condition on the demand matches the necessary condition, thereby proving maximal throughput under the proposed controller. The result is strengthened to input-to-state stability when model parameters and demand are known. The samples generated by the proposed controller are shown to facilitate finite time estimation of free-flow model parameters, i.e., free-flow speed and turning ratios. Simulation results illustrate stability of the closed-loop system under the proposed controller even under few mainline measurements, for which the system becomes unstable under existing approaches.
comment: 16 pages, 6 figures
♻ ☆ Model Predictive Control and Reinforcement Learning: A Unified Framework Based on Dynamic Programming
In this paper we describe a new conceptual framework that connects approximate Dynamic Programming (DP), Model Predictive Control (MPC), and Reinforcement Learning (RL). This framework centers around two algorithms, which are designed largely independently of each other and operate in synergy through the powerful mechanism of Newton's method. We call them the off-line training and the on-line play algorithms. The names are borrowed from some of the major successes of RL involving games; primary examples are the recent (2017) AlphaZero program (which plays chess, [SHS17], [SSS17]), and the similarly structured and earlier (1990s) TD-Gammon program (which plays backgammon, [Tes94], [Tes95], [TeG96]). In these game contexts, the off-line training algorithm is the method used to teach the program how to evaluate positions and to generate good moves at any given position, while the on-line play algorithm is the method used to play in real time against human or computer opponents. Significantly, the synergy between off-line training and on-line play also underlies MPC (as well as other major classes of sequential decision problems), and indeed the MPC design architecture is very similar to the one of AlphaZero and TD-Gammon. This conceptual insight provides a vehicle for bridging the cultural gap between RL and MPC, and sheds new light on some fundamental issues in MPC. These include the enhancement of stability properties through rollout, the treatment of uncertainty through the use of certainty equivalence, the resilience of MPC in adaptive control settings that involve changing system parameters, and the insights provided by the superlinear performance bounds implied by Newton's method.
♻ ☆ On Completeness of SDP-Based Barrier Certificate Synthesis over Unbounded Domains
Barrier certificates, serving as differential invariants that witness system safety, play a crucial role in the verification of cyber-physical systems (CPS). Prevailing computational methods for synthesizing barrier certificates are based on semidefinite programming (SDP) by exploiting Putinar Positivstellensatz. Consequently, these approaches are limited by the Archimedean condition, which requires all variables to be bounded, i.e., systems are defined over bounded domains. For systems over unbounded domains, unfortunately, existing methods become incomplete and may fail to identify potential barrier certificates. In this paper, we address this limitation for the unbounded cases. We first give a complete characterization of polynomial barrier certificates by using homogenization, a recent technique in the optimization community to reduce an unbounded optimization problem to a bounded one. Furthermore, motivated by this formulation, we introduce the definition of homogenized systems and propose a complete characterization of a family of non-polynomial barrier certificates with more expressive power. Experimental results demonstrate that our two approaches are more effective while maintaining a comparable level of efficiency.
comment: 18 pages, 1 figure; accepted by the 26th international symposium on Formal Methods (FM2024)